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Abstract: The Adaptive Base Station Positioning Algorithm (ABPA) is presented, which

is based on a neural net approximation of the tra�c density in the coverage area of a cellu-

lar mobile communication system. ABPA employs simulated annealing, thereby achieving

quasi-optimal base station locations depending on the topography of the investigated area.

Furthermore, ABPA considers the radio wave propagation within this area for the base

station positions. Therefore, a three dimensional digital surface model is used to approx-

imate the topography and two �eld strength prediction methods, a line-of-sight (LOS)

approach and a ray-tracing technique, are investigated within the context of adaptive

positioning. In particular, the results obtained by the ray-tracing technique are encour-

aging, showing supplying areas, which seem to be similar to those, stemming from real

measurements. However, as simulations show, the more realistic �eld strength prediction

by ray-tracing has a strong in
uence on the performance of ABPA, resulting in di�erent

base station locations. As an outlook, the combination of �eld strength prediction using

ray-tracing with adaptive tra�c prediction on a road graph by neural nets is proposed

for further investigation.

1 Introduction

The growth of the mobile cellular market imposes a di�cult task to the designers of mobile
communication systems. The determination of the base station locations depends mainly
on two factors: a) the inhomogeneously distributed user density in the coverage area of
the base stations, e.g. a location area in the GSM system, and b) the varying radio signal
strength. When a mobile unit is moving through the supplying area of a base station, it
receives a time-varying radio signal due to re
ections, shadowing on obstacles and di�usion
by scattering. In the planning process, the disturbances of the radio signal caused by these
physical phenomena are usually considered by rough estimations of the �eld strength
models using statistical assumptions [7]. Another method is the approximation of the �eld
strength level with models developed in the context of geometrical optics [9]. However,
the latter models require an extremely high computing e�ort. Moreover, since the mobile
subscribers move through the cellular network along tra�c highways, the resulting mobile
teletra�c density depends both on geographical location and on time. Consequently, the
mobile teletra�c distribution can be decomposed in two parts, the one concerning the
average local distribution of mobile user density in a coverage area, the other representing
the time-varying component due to tra�c mobility caused by working hours, car tra�c
behavior, etc. The planning of adequate base station positions has to consider the �rst
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part, whereas the second can be tackled by dynamic frequency assignment or network
restructuring methods.
In this paper we focus on the problem of �nding optimal positions of base stations, whose
supplying areas are covering the regions where the teletra�c takes place. An adaptive
base station positioning algorithm (ABPA), using a set of formal neurons, distributed
according to the estimated local user density, was presented in [6]. In Section 2 we present
a short outline of ABPA. This algorithm is already able to provide a meaningful solution
of the base station positioning problem, but the �eld strength prediction method used
by ABPA can essentially be improved, since its approximation quality was kept low to
avoid extensive computations. In Section 3 of this paper, free space propagation of radio
waves is shortly reviewed and the Line-of-Sight (LOS) approach used so far in ABPA
is described. Furthermore, the concept of �eld strength approximation using ray-tracing
techniques in combination with ABPA is discussed. In Section 4 we present �rst results
of ABPA using this modi�cation. The improvement of ABPA will facilitate solutions of
the base station positioning problem, which take realistic topographical scenarios into
account. As a future task, the combination of ray-tracing based �eld strength prediction
methods with a modi�cation of selforganizing feature maps, the Neural Gas algorithm,
is proposed in Section 5. This combination is supposed to tackle more accurately the
problem of adapting the local average tra�c density in the context of ABPA.

2 Outline of ABPA Using Selforganizing Feature Maps

TheAdaptiveBase StationPositioningAlgorithm, presented in [5, 6], is based on the idea
that competing base stations try to maximize their supplying areas by covering a max-
imum number of sensory objects, called sensory neurons. These neurons are distributed
in the terrain, to be supplied with radio frequencies, according to a given density, which
stems from the learning process of a selforganizing neural net. This density is assumed to
be an estimation of the local teletra�c density, since it is more likely that car tra�c and
thereby mobile telephony takes place at data points of low terrain than at data points of
high terrain. A selforganizing feature map was used to adapt the low terrain data of the
digital terrain model of the topography, depicted in Figure 1(a). In Figure 1(b) the
result of the adaptation process is illustrated. The geographical topography, which was
investigated, represents the area north-west of W�urzburg. Selforganizing feature maps
(SOM) are preserving the topology of the input vector space by adapting their weight
structure accordingly. The reader is referred to [8] for a detailed description of SOMs.
The usage of neurons by ABPA in the prestructuring step provides a set of sensory ele-
ments for the �eld strength level. In the algorithm, the supplying areas of the base stations,
described by their location, transmitting power and a positioning error, are determined.
Hereby the comparison of the received �eld strength level with a given threshold at the
neuron positions is taken as the criterion, whether a neuron belongs to a base station sup-
plying area or not. Each new arrangement of base stations is denoted as an adaptation
step of the algorithm. Each base station can change its position or its transmitting power,
thereby achieving di�erent supplying areas. The positioning error of the base stations is a
measure for a reasonable choice of their current locations, before the actual adaptation of
these locations takes place. In this step, the base station with the worst positioning error
is moved into the direction where clusters of attracting sensory neurons are located or into



(a) Digital Terrain Model (b) Selforganizing feature map

Figure 1: Neural approximation of the digital terrain model

the direction which is resulting from the repellation of other base stations located in the
immediate surrounding of the base station considered. The determination of supplying
areas afterwards implies the �eld strength prediction for all neurons in the coverage area
according to the methods described in detail in Section 3.
In the course of ABPA, each complete adaptation step is followed by a system state
evaluation, which is embedded in a simulated annealing process [1]. A system state Z

at time step t is characterized by the assignment of all sensory neurons Si depending on
the current distribution of the transmitting stations Tj and their corresponding supplying
areas V (Tj) to one of the following sets:

1. free sensory neurons Sf := fSijSi 62 Vg

2. multiply assigned sensory neurons

Sm := fSijSi 2
S

l;jfV (Tj) \ V (Tl)gg; 8l; 8j; l 6= j

3. de�nitely assigned sensory neurons (Sf [ Sm)

A system state is associated with a system energy, which is proportional to the magnitude
of (Sf [ Sm). A minimization of the system energy corresponds to the maximization of
the de�nitely assigned neurons. Thus, an optimal coverage of the terrain can be obtained.
However, such a result can only be achieved if the simulated annealing procedure [1] is
used to govern the system state transitions. Hereby each state transition takes place with
probability:

PfZ(new) = Z(cur)g = e�
�E

� : (1)

This implies, that the current system state Z(cur) is accepted as a new system state Z(new)

according to the expression on the right hand side of eqn. (1). The decreasing temperature
� plays the role of a cooling parameter of the system and is introduced to prevent the
system of getting stuck in local minima of the energy function landscape. A �nal stationary
state, representing the suboptimal locations of base stations, is reached, if � declines to
zero.



The accuracy of ABPA depends on the determination of the �eld strength level at the
neuron positions, as well as on an appropriate distribution of the neurons itself. An im-
provement of ABPA concerns the restriction of the neuron positions to road and highway
locations in the coverage area and is proposed in Section 5.

3 Field Strength Approximation in the Supplying Area

A key issue in mobile system planning as well as in ABPA is the prediction of �eld
strength in the investigated supplying area. The received signal depends mainly on two
environmental factors: a) the topographical structure and b) the morphographical prop-
erties of the area. These factors determine the in
uence of three basic radio propagation
phenomena: di�raction, re
ection and scattering. Di�raction is mainly governed by the
topographical structure and occurs, when the direct radio path between transmitter and
receiver is obstructed by natural (e.g. hills) or human-made objects (e.g. buildings). Based
on Huygen's principle, secondary waves are formed behind the object, even if there is no
line of sight between transmitter and receiver. Thus a radio signal can be received in
the \shadow" of an object. Re
ections are observed, when a radio wave strikes an object
which is very large, comparing to the wave length. The re
ection coe�cients vary for
di�erent surfaces of objects. Scattering occurs when the radio path contains objects with
dimensions that are in the order of the wave length (e.g. leafs of trees). Since scattering is
based on the same mechanism as re
ection, it causes the energy of the radio beam to be
reradiated di�usely. The strength of re
ection and scattering is substantially in
uenced
by morphographical properties.
In the literature, a lot of models for radio wave propagation are proposed [2, 7, 9]. Complex
proposals provide a good approximation of the path loss, but require high computational
e�ort. Simple models require less computational power, but estimate the �eld strength
only roughly. Within ABPA, the �eld strength prediction takes place in each adaptation
step. Therefore, the applied �eld strength prediction method has to show a good trade-o�
between computation requirements and approximation accuracy. After a short outline of
path loss within free space propagation, the line-of-sight (LOS) approach used by ABPA
is described in subsection 3.2.

3.1 Characterization of Path Loss within Free Space Propagation

A detailed description of the free space propagation model can be found in [3, 7]. For this
model, it is assumed that no obstruction disturbs the propagation of the radio wave. The
signal strength in the supplying area is characterized by the electromagnetic �eld strength
of the received wave. Since in free space waves are propagating equally in each direction,
the wavefront has the form of a a sphere. Therefore the power density Sr at the receiver
in distance d is:

Sr = PtGt=Asphere = PtGt=(4�d
2): (2)

Hereby Pt denotes the transmitting power and Gt the antenna gain. The product Pt �Gt

is called equivalent isotropically radiated power (EIRP) considering the fact, that only



antennas, emitting waves of equal strength in each direction, are taken into account. The
�eld strength Er at the receiver is:

Er =
q
SrZ0 =

q
30Gt(Pt=W )=(d=m)V=m; (3)

where Z0 = 120� 
 denotes the wave resistance for vacuum. The �eld strength level er at
the receiver is de�ned as:

er=(db(�V=m)) = 20 lg(Er=(�V=m))

= 74; 8 + 10 lg(Pt=W ) + 10 lg(Gt)� 20 lg(d=km): (4)

In general, the signal loss is equivalent to the ratio between the transmitted and the
received power, which is calculated in logarithmic scale. Regarding Ae� as the e�ective
absorption cross section of an antenna and Gr as the antenna gain, the received power Pr

results to:

Pr = SrAe� = SrGr�
2=4� = E2

r�
2Gr=(4�Z0) with Ae� = Gr�

2=4�: (5)

Thus, regarding the path loss level LP, the following applies:

LP(db) = 10 lg(Pt=Pr) = 10 lgPt � 20 lgEr � 10 lg
�2

4�
+ 10 lgZ0: (6)

From eqn. (6) follows that the path loss only depends on the transmitting power and the
�eld strength. In case of free space propagation, eqn. (6) can be simpli�ed to:

L0 = 32:5 + 20 lg(d=km) + 20 lg(f=MHz)� gt=dBi� gr=dBi ; (7)

where f is the frequency of the radio signal and gr and gt denote the logarithmic measure of
the antenna gain. Eqn. (7) provides a simple formula to compute the free space path loss,
which only considers the distance between receiver and transmitter. Hata [7], extended the
free space propagation model regarding morphographical properties. More generally, an
additional parameter n is used, describing the relationship between distance and received
power:

L(d) = L(d0) + 10n lg(d=d0) +X�; (8)

where X� is a zero-mean Gaussian random variable, that represents the variation in
average received power, and d0 denotes a reference distance. The parameter n varies for
di�erent signal environments [2]. In eqn. (5) the value of n is 2, denoting the exponent of
Er.

3.2 Line-of-Sight (LOS) Approach

In ABPA, the �eld strength level is calculated according to eqn. (4), which was modi�ed
to take the path loss, caused by di�raction, into account. In Figure 2 a typical scenario
is depicted. A mountain is obstructing the direct propagation of the radio wave from the
transmitter to the mobile station. Due to di�raction, occurring at the top of the hill, the
radio signal can also be received in the shadow of the mountain. In the LOS approach
the actual distance as well as the amount of the obstructed radio path is considered. The
�eld strength level at the mobile station is approximated by:

e0r = (db(�V=m)) = er � �S � dobstruct = (db(�V=m)) ; (9)
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where �S is a proportional factor. The obstructed distance dobstruct can e�ectively be
computed using Bresenham's line algorithm [4]. For rural environment, the heuristic as-
sumption made above is quite useful since the di�raction e�ects are not very strong in
this case. In urban regions the distances from transmitters to the obstructing objects
are usually smaller and thus di�raction has higher impact. As a consequence, the LOS
approach fails for urban environment.

3.3 Field Strength Approximation Using Ray-Tracing

Originally, ray-tracing techniques have been introduced in computer graphics applications
to create photorealistic pictures of 3D sceneries [12]. Ray-tracing algorithms are able to
visualize accurately optical e�ects like shadowing, transparency, etc. This capability makes
the method attractive for �eld strength predictions [11]. Ray-tracing is based on the light
house idea. Radio beams are emitted from a transmitter Tx in distinct directions. The
beams \illuminate" the scenery, i.e. the supplying area. In the algorithm, the beams are
modeled as ray tubes with the �xed solid angle d
 and of identical shape and size in
distance r from the transmitter, cf. Figure 3. The path of an individual beam is traced
recursively until it strikes an object, cf. Figure 4. If a ray strikes an edge or the surface of
the digital terrain model, di�raction or re
ection of the ray takes place. Re
ection can be
modelled very easily using the Fresnel equations [13]. For di�raction, Huygen's principle
in conjunction with the Kircho� laws has to be used to compute the decline in energy of
the ray. Since ray-tracing tracks each beam individually, the behavior of the ray can be
traced in detail at the cost of increased computing e�ort. An remaining problem, using
ray-tracing, is the determination of the correct beam width d
, i.e. the number of emitted
rays, to achieve a certain approximation accuracy.
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3.4 Supplying Areas

Using the two �eld strength approximation methods described above, simulations with a
single transmitter for a real supplying area have been carried out. The investigated terrain
is again the 10km�10km area in the north-west of the city of W�urzburg, cf. Figure 5(a).
The city center is located in the lower part of the picture and on the left side the river Main
is visible. The hilly topography of this area can be considered typical for central Europe.
The 3D model of this area consists of altitude values, sampled every 100 meters, and
the surface is interpolated by triangles using the altitude points as vertices. The sensory
neurons are distributed according to the prestructuring step of ABPA, cp. Section 2. The
transmitterTx in Figure 5(b) and Figure 5(c) is located in the center of each picture and
the neurons, receiving a �eld strength level above a certain threshold, are marked by bold
print. These neurons form the \supplying area" of the transmitter. The approximation of
this area using the LOS approach is depicted in Figure 5(b). Here, eqn. (4) and eqn. (9)
have been applied to compute the �eld strength level. The connectivity of the supplying
area is very high, whereas for the ray-tracing approach, cf. Figure 5(c), the \lacunarity"
of this area is high. In the latter case, re
ection were followed until depth one, using
a re
ection coe�cient of 1.0. The signal level was obtained by eqn. (4) with the total
traversed path length as the distance d. The large \holes" in the supplying area indicate
that the path loss is greater, than predicted by the LOS approach. As shown in Section 4,
this will e�ect the ABPA substantially.

4 Finding Optimal Base Station Locations

To prove the capability of ABPA and the two �eld strength prediction techniques dis-
cussed in this paper, ABPA was tested on the topography north-west of W�urzburg. The
algorithm was used to �nd the best locations of six transmitters in this terrain. The ini-
tial con�guration of the transmitter and the sensory neurons is depicted in Figure 6(a).
Figures 6(b) and (c) show the base station locations, obtained by using the LOS ap-
proximation and the ray-tracing prediction, respectively. The transmitters are marked by

ã and the di�erent supplying areas for the individual transmitters are tagged by various
symbols. The ABPA using LOS (cf. Figure 6(b)) achieved a very good coverage of the
supplying area: 77% of the sensory neurons are de�nitely assigned, 19% of the neurons are
not assigned (marked by a � ) and 4% are supplied by at least two base stations (marked by

¢
). The locations of the base stations are fairly regularly distributed over the terrain. The

result of ABPA in conjunction with ray-tracing is depicted in Figure 6(c). In this case
the algorithm achieved only a poor coverage: 29% of the sensory neurons are de�nitely
assigned, 68% of the neurons are not assigned and 3% are multiply supplied. Two trans-
mitters are placed on dominant positions in the central part of the picture. The others are
placed at the margins of the investigated area. Since the supplying areas of the individual
transmitters don't overlap very much, the transmitters located in the center increase their
sphere of in
uence and force the other base stations to cover only the marginal areas.



Figure 7: Neural approximation of the road graph in coverage area

5 Outlook

A possible extension of the ABPA to increase the accuracy of the algorithm consists
of using a di�erent distribution of the sensory neurons. Instead of approximating low
terrain data by a selforganizing feature map, as described in Section 2, the neurons can
be distributed on a road graph of the coverage area using a variant of the original SOM
algorithm, the so-called Neural Gas [10]. The neurons behave analogously to particles of a
gas and can therefore adapt readily any probability distribution. A special feature of this
algorithm is its ability to approximate subspaces of varying dimensions and preserving
its topologies. If measurements of mobile car tra�c are available, this data can be used
to estimate the local average teletra�c density along the road graph. As a result of the
Neural Gas learning process, the neurons will distribute themselves inhomogeneously on
the road graph according to the measured vehicle tra�c density. The approximation of
the road graph using the Neural Gas algorithm is depicted in Figure 7. Hereby the
adaptation of the tra�c density has not yet been implemented and therefore the neurons
are spaced equally on the road graph. Due to the di�erent distribution of the neurons
ABPA is expected to locate the base stations in accordance to the actual teletra�c.

6 Conclusions

We presented a neural net approach for the adaptive positioning of base stations (ABPA)
in a cellular mobile communication system using an LOS and a ray-tracing technique
for �eld strength approximation. The obtained results are encouraging, since ABPA can
also be used, when the radio wave propagation is modelled by ray-tracing in a more
realistic way. Although ABPA using ray-tracing does not achieve the same high coverage
as with LOS, the algorithm has the ability to �nd suboptimal base station locations.
Some extensions to avoid the driving out of some base station to the margins should be
implemented. We expect that the approach presented in this paper will provide a powerful
tool for planning cellular mobile communication networks.
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commentary remarks on ABPA and its improvements. We would also like to give an
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