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Abstract—In this paper we present an analy-
sis of an interconnection network for packet swit-
ching controlled by a neural network. The inter-
connection network is a crossbar switch of size N
which maintains N queues at each of the inputs.
The neural net controller is of Hopfield type and
the performance evaluation is done under reali-
stic input traffic assumptions. In order to investi-
gate the influence of the random characteristics of
the packet traffic on the neural net performance,
we model the offered packet streams by means of
batch inputs, where the interarrival time and the
packet length can be arbitrarily chosen. The in-
coming traffic indicating source-destination packet
streams is symmetrically distributed over the cros-
spoints of the interconnection network. Simula-
tion results for various system parameters are pre-
sented with respect to the performance measures
such as switch throughput and transfer delay. The
performance of the neural net as switch fabric con-
troller is compared to conventional control sche-
mes, where the issue of scheduling fairness is ad-
dressed.

1. NEURAL NET AS INTERCONNECTION NETWORK
SCHEDULER

A. Introduction

The implementation of the future high-speed te-
lecommunication networks requires powerful high-
capacity switch fabrics or interconnection networks.
Due to the recommendation of the asynchronous
transfer mode (ATM) to be used in B-ISDN (broad-
hand integrated services digital network), data or in-
formation will be partitioned into packets or cells
(in ATM) and transmitted over the network. This
leads to the development of a number of switch fabric
structures which handle cells, slots or minipackets

as information units. The most common operation
mode of appropriate switch fabrics is the synchro-
nous mode, i.e. the time axis is slotted and the cells

" are transmitted from the input to the output lines

within one time slot.

Important packet switching fabric types under dis-
cussion in modern cell-based switching systems are
mainly crossbar and banyan switches. Both types
require a switch controller to select the cells for trans-
mission within the next time slot taking into account
certain conditions and constraints (such as minimi-
zing the delay or maximizing the throughput of the
switch). The advantage of crossbar switches is that
they are internally nonblocking. Blocking may only
occur at the inputs or at the outputs. The disadvan-
tage is a costly second-order increase of the number
of crosspoints by increasing number of input and out-
put lines.

In general the switch fabric task can be formula-
ted as a scheduling problem. The aim is to maximize
throughput while taking into account fairness crite-
ria. Furthermore in switching systems operating in
high-speed environments, the time interval left to run
the scheduling task is very short. It must be done
during one cell duration; for a 140 Mbps (megabit
per second) network and a standardized cell size of
53 bytes, the cell duration is about 3 psec. In such a
short interval to perform scheduling task, suboptimal
solutions are already of great interest.

It is well-known that some classes of neural nets
are suitable to be used in optimization and schedu-
ling problems (cf.[1]). In [2] a Hopfield net is pro-
posed as scheduler in interconnection networks. In
order to estimate the throughput of the switch and
the time to perform the scheduling task the neural
states were simulated. Further, a VLSI implementa-
tion of the scheduler was described. The same sche-



duler was investigated in [3] and [4] using different
extensions of the energy function presented in [2].
The throughput of the switch and the transfer delay
were observed. Most of the papers did not investi-
gate systematically the performance measures con-
sidering stochastic traffic. In this paper we devote
attention on performance evaluation of the propo-
sed neural net controller under stochastic packet load
conditions and compare the performance to conven-
tional control schemes.

B. Neural net structure and working mode

We consider a crossbar switch with N input and N
output lines. The switch is assumed to queue the
cells at the input, each input maintains one queue
for each output (see Fig. 1). Furthermore the switch
operates in the full-duplex mode, i.e. within one time
slot only one cell can be transmitted on a particular
link in each direction.
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Figure 1: Crossbar interconnection network
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A time slot is now observed. All pending transmis-
sion requests for this slot can simply be mapped onto
a binary matrix R = (ri;)nxN, which will be referred
to as the request matrix, whereby r;; = 1 indicates
that there is at least one cell in queue j at input 7 wai-
ting for transmission. During this slot, cells will be
transmitted according to a schedule matrix S, which
has to be determined by the switch scheduler. As
mentioned above, this has to be done within a slot
duration, which is quite short in high-speed systems.
To maximize the throughput of the switch within one

slot, the schedule matrix S must be chosen in such a
way that the overlap with the request matrix is ma-
ximized. Due to the full duplex transmission mode
at most one entry s;; = 1 is allowed within each row
and each column.

For the switch scheduler, a hardware implementa-
tion of a Hopfield neural net is presented in [2]. This
net maintains one neuron for each crosspoint of the
crossbar switch and the neurons are only connected
by rows and columns via inhibitory connections (see
Fig. 2).
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Figure 2: Neural net structure

The following energy function (without bias term)
is assumed:
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The first (second) term reaches its global minimum
if at most one neuron is turned on within each row
(column). The connection strength from one neuron
to another within the same row (column) is denoted
by A (B). As the authors pointed out, the results ob-
tained for several 8 x 8 request matrices are optimal



for more than 98% of the cases. In all other cases the
Hopfield net achieved a stable final state but the so-
lutions correspond to non-optimal schedule matrices.
The authors warranted the omission of a bias term
in the energy function by the obtained results.

Note that the energy function also reaches the glo-
bal minimum in the case of all neuron outputs being
zero. Therefore in [3] the following bias term is added
to the energy function given in eqn. (1):
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This additional term forces the schedule matrices to
be permutation matrices, corresponding to final sta-
ble states with N neurons activated. Since the num-
ber of cells that can be transmitted without blocking
may be lower than N, the schedule matrices have
not always to be permutation matrices. A function
to compute this number is presented in [4] but it does
not work accurately. Moreover, the considered task
is known as a matching problem appeared in graph
theory and there are efficient methods to solve this
class of problems.

The connection strengths are determined by parti-
ally differentiation of the energy function. Another
method not taken into consideration in this paper is
presented in [1].

Assuming the energy function to be the function
given in eqn. (1) with a bias term added and applying
2
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The external bias is CN2. After the derivation of
the connection strengths it remains to evaluate the
parameters A, B and C. For reason of the symmetry
of the connections we let A = B. Through several
test runs we found that the Hopfield net performed
well for A = 100 and an external bias of value 40.
Nevertheless, it is imaginable that other parameter
configurations might perform as well or even better.
The evaluation of the parameters is right the crucial
step in applying Hopfield nets to optimization pro-
blems. This step is a trial-and-error procedure and
has to be done for each switch configuration.

As transfer function the following function was as-
sumed:

v o= 5 [1+ tenk(Buy)], (4)

where u;; is the input of neuron 7;. Following [3] we
set the gain factor § to 50 and initialize the star-
ting neuron inputs with respect to the given request
matrix:
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Simulating a Hopfield neural net with continuous
neuron outputs requires to solve the following cou-
pled set of ordinary differential equations:
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The most commonly used methods for this purpose
are explicit one-step methods. Since the eigenvalues
of the weight matrices are often distinct (cf.[3]). the
set of ordinary differential equations is characterized
as stiff. In spite of the fact that explicit methods are
not appropriate for integrating stiff differential equa-
tions, the results obtained can be used for practical
purposes. Currently we are testing more efficient me-
thods.

Since we update the neurons synchronously, the
initial values u?; are randomized to ensure the con-

ij
vergence to global minima in the following way:

a% = u; + Uniform [—-0.1 g7y 01-871,
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where Uniform[a; b] denotes the uniform distribution
over the interval [a;b].

II. NEURAL NET PERFORMANCE AND
COMPARISON

In this section we first describe the model and subse-
quently present the results obtained using simulation.
A. Configuration and parameters

We take the simple example of a 8 X 8 crossbar in-
terconnection network. Packets arrive according to



an interarrival time distribution function A(t) with
mean % and a distribution function of the packet
length X (k) with mean EX. The transmission time
of a cell is equal to the length of one time slot. Thus
within every slot at most N cells can be transmit-
ted over an N X N crossbar interconnection network.
Therefore the normalized utilization p of such an
switch fabric is chosen as '\'ﬁx. The queueing stra-
tegy of the N queues at each input is assumed to be
first-come, first-served.

As major performance measures of the interconnec-

tion network, we consider the following metrics:

o the access delay D, defined as the time passing
from the packet arrival until the first appertai-
ning cell will be transmitted and

o the transmission time T, the time interval from
the arrival until the packet is completely trans-
mitted.

The influence of the packet size distribution and
the traffic intensity on the performance of the neural
net scheduler, represented by these delays, is one ob-
ject of the parameter study. The second object is
a comparison of the performance of the neural net
scheduler with a few conventional approaches, where
the following methods are chosen:

e round robin: the scheduler picks up cells to be
transmitted in a cyclic order

e Hungarian algorithm: the schedule matrix
is calculated using the Hungarian algorithm
which is well-known from graph theory [6].

The results shown in Fig. 3 - 5 below are obtained
with 97.5% confidence intervals, which are too small
to be drawn explicitly.

B. Results

First of all we devote attention to the fraction of
optimal resulting schedule matrices obtained by the
neural net scheduler under various switch utilizati-
ons, as shown in Table 1. The neural net controller
yielded optimal throughput for more than 97% of
the request matrices. The remaining schedule ma-
trices are not optimal, although the stable states of
the Hopfield net always represented global minima
of the energy function. This fact is a consequence of

p 03| 04 0.5 0.6 0.7 0.8 0.9

1 10.998 | 0.995 | 0.988 | 0.978 | 0.976 | 0.969

Table 1: Fraction of optimal schedule mairices

the choice of the starting neuron activities. The net-
work always approaches the equilibrium state being
the local minimum closest to the starting point. This
minimum does not always correspond to an optimal
solution. For that reason, the mean access delay and
mean transmission times of the neural net control-
ler are usually longer than the corresponding times
achieved by the matching algorithm which yields ma-
ximal throughput at each time slot (see Fig. 3).

In Fig. 3 the mean delay time and the mean trans-
mission time are depicted as functions of the switch
utilization. The packet size is hereby geometrically
distributed. It is known from the head of the line
blocking effect that the normalized throughput of a
crossbar switch with only one queue per input has
an upper bound of approximately 0.586 ([7]). The
round robin strategy in this case is denoted by round
robin single request. It should be mentioned that the
computation using the Hungarian algorithm is most
complex and time consuming among the three me-
thods. We can observe in Fig. 3 that the neural net
performance is practically comparable to the round-
robin scheme.

To show the dependency of the neural net perfor-
mance on the packet size and the interarrival dis-
tributions we take into account the following three
parameter sets:

(1) geometric interarrival time distribution and
constant packet length,

(2) the interarrival time and the packet length are
geometrically distributed,

(3) the interarrival time follows the hyperexponen-
tial distribution of order 2 with coefficient of
variation ¢ = 5 and the packet length is geo-
metrically distributed.

Since the matching algorithm always yields the op-
timal schedule matrix we restrict our performance
comparison in the following to the neural net sche-
duler and to the controller with round robin strategy.



In Fig. 4 the performance measures are depicted in
dependency of the switch utilization. For the para-
meter sets (1) and (2) the mean access delay achieved
by the round robin strategy is smaller. With higher
variation of the arrival process the relation turns re-
versely. Further, the results of the sets (1) and (2)
show that the mean transmission times are equal for
both of the considered controllers. In the case of set
(3) the neural net controller yields the best results.
As illustrated in Fig. 5 these observations are con-
firmed for a fixed utilization and an increasing value
of the mean packet length.

In the neural net scheduler solution discussed
above we intentionally neglect the issue of schedu-
ling fairness. The highest throughput does not al-
ways correspond to a fair schedule. While optimizing
only the switch throughput, an individual cell could
possibly be forced to wait a very long time until it
will be transmitted. The resulting delay and trans-
mission time of the affiliated packet can be very high.
From this viewpoint the round robin schedule seems
to offer an a priori fairness. It does not use the whole
switch capacity within each time slot, but each (in-
put, output)-pair is selected for transmission at least
once every 2N slots.

II1. CONCLUSION

In this paper we presented simulation results for a
switch fabric in packet switching systems controlled
by a neural network of Hopfield type. The perfor-
mance of the neural net was compared with other
conventional methods using simulation results. We
focused on the switch throughput, the mean delay
time and the mean transmission time of a packet
while paying attention to the fairness of the schedu-
ling algorithms. For the majority of request matrices
under consideration, the neural net achieved stable
states corresponding to optimal schedule matrices,
i.e the throughput was nearly maximized.
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Figure 3: Performance comparison of various controllers
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Figure 5: Influence of packet size on scheduler performance



