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Abstract. In this paper the capability of neural nets to con-
trol connection admission in Asynchronous Transfer Mode
(ATM) networks is investigated. The general problem of
connection admission control (CAC) and its formulation as
a functional mapping are discussed, leading to applicati-
ons of learning algorithms to CAC problems. In particu-
lar, the use of the class of feed-forward neural nets with
back-propagation learning rule is considered, where various
architecture alternatives are presented. As example a simple
neural net structure and its use to control connection accep-
tance is discussed in detail. The neural net performance is
compared with other connection admission control mecha-
nisms like the peak bit rate, the equivalent bandwidth and
the weighted variance methods. Numerical results for both
cases, stationary load and non-stationary pulse-form over-
load patterns, illustrate the capability of neural nets to act
as connection admission controller in ATM environments.

1 Introduction

In broadband networks for integrated services developed to
operate in high-speed environments, such as ATM (Asyn-
chronous Transfer Mode) systems [2, 3], the connection ad-
mission control function (CAC) plays an increasingly im-
portant role, from both resource management and network
management viewpoints. The aim of these efforts is to de-
sign the CAC function to maximize the system throughput
while maintaining the desired quality of service. In the con-
text of ATM networks the rather classical problem of ad-
mission control gains a higher level of difficulty, due to the
diversity and the probabilistic complexity of traffic streams
offered by a source and the superimposed traffic offered to
the network. In addition the large variety of requirements
for the quality of service to be fulfilled increases the comple-
xity of the admission control problem.

The use of neural nets in the admission control context of
ATM networks is first suggested by Hiramatsu [6, 7], where
the class of back-propagation neural nets is considered. In
[12] performance aspects are taken into account and the
neural net application is discussed in a more general con-
text. The neural network is used to control admission with
different performance objectives being used for different call
classes, where additional cell level controls are recommen-
ded. In [11] a hybrid method using both stochastic approxi-
mation and back-propagation is tested for congestion control
in telecommunication networks.

The major aim of this paper is to present and to com-
pare possible neural net structures applicable to connection
admission control and to show the performance of a basic
neural net under various stationary and nonstationary load
conditions.
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In Section 2 basic principles of the use of feed-forward neural
networks with back-propagation learning in connection ad-
mission control will be discussed and different alternative
neural net structures will be compared. A simple neural
net will be selected as example in Section 3 and Section 4
to show the acceptance control performance and to discuss
numerical aspects of neural nets under considerations.

2 Neural nets for connection admission control
Depending on the informations available to the connection
admission control function and where this function is located
in communication networks, different neural net structures
can be developed. In this section we will briefly present these
alternatives and discuss in particular the basic function and
learning procedure of a back-propagation neural net used as
admission controller.

2.1 Admission control in broadband networks
The connection admission control forms an important part
belonging to resource allocation problems in ATM networks
(cf. [3]). According to CCITT [2] the connection admission
control function (CAC) is defined as:
”CAC is the set of actions taken by the network at the call
set-up phase (or during the call re-negotiation phase) in or-
der to establish whether a (virtual channel or virtual path)
connection can be accepted or rejected“.

We will first illustrate some problems arising in connection
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Figure 1: Layered ATM traffic

admission control. As shown in Fig. 1, traffic offered from
a source, corresponding to a service being used, can be ob-
served on connection (or call) layer, on burst layer or on cell
layer (see also [5]). In the high-speed environment observed,
the time resolution in these traffic layers differs in order of
magnitude, i.e. in seconds, milliseconds or microseconds for
call, burst and cell layers, respectively.

From connection admission control point of view, the
connection acceptance decision which must be made for
connection time scale should be able to guarantee quality of
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service on cell layer, e.g. keeping the resulting cell blocking
probability below a predefined threshold. In current discus-
sions in ATM system developments the range of this thres-
hold is very low (e.g., 1078 ).

On the other hand, from bandwidth utilization viewpoint,
traffic offered by an active source can also be characteri-
zed by a time-dependent bit rate process. Since the source
characterization should be kept simple for the connection
acceptance process, only a few parameters are assumed to
be known in advance when a service requests a connection,
e.g. the mean and the peak bit rates a connection is allowed
to submit to the network during the connection duration.
From network viewpoint, as depicted in Fig. 2, the mul-
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Figure 2: Source traffic and multiplexed traffic

tiplexed traffic has to be carried. This traffic is the result
of the superposition of a number of bit rate processes gene-
rated by a number of sources of different types or services.
Examples for connection or service types are constant or va-
riable bit rate video connections, data transfer connections,
interactive connections, etc.. The bit rate process, as shown
in Fig. 2, is an equivalent representation of the cell arri-
val process. Due to the variation of this process and the
finite capacity of buffer in an ATM multiplexer, delay and
blocking of cells can occur and are issues of concern. The
cell blocking probability and the cell delay or delay jitter are
often used as indicator for the network quality of service.
We observe a connection establishment request of type i. In
case of acceptance the network can be thought of to have
a contract with the user: the user agrees to keep the nego-
tiated traffic characteristics during the holding time of the
connection, the network promised quality of service. The
CAC has to accept new connection in such a way that all
connections before and after the admission decision of the
new connection are treated according to the negotiated qua-
lity of service.

Given that the CAC function is able to estimate the quality
of service before and after having the requested connection,
it can make an acceptance decision, i.e. the request will be
rejected if the forecasted QOS could not be maintained.

In the following, we consider a number M of different connec-
tion types to be served by the network. We distinguish bet-
ween two cases

1) CAC based on network state :

In this case, we assume that the entire information about
the number of all connections being multiplexed is available.
The system state seen by the network will be denoted by

X = {n1,n2,..,npm} (1)

with n; is the number of active connections of type 1 being
in the system. From mathematical point of view, the main
CAC function can be represented by a mapping of the sy-
stem state X to a decision vector Z defined by

Z ={z1,22,..,2M} (2)

where z; = 1 stands for the acceptance decision of a connec-
tion establishment request of type i and z; = 0 for the rejec-
tion case. The CAC is thus reduced to the implementation
of a mapping

f: X—=2Z=fX) (3)

according to the predefined quality of service of the network.
The mapping f can further be simplified by using the state

X* ={ny,n2, ..,ni+1, ..., nm} 4)

i.e. the system state just after accepting the connection
request of type i. The decision vector is reduced to

0 connection i should be accepted
Z*:{z,.}:{1 P ()

connection i should be rejected

and the CAC mapping to
o X* = 20 = H(XY) (6)

ii) CAC based on bit rate process :

In this case, only the superimposed bit rate process is availa-
ble or measurable to the connection admission control func-
tion. This is e.g. the case where an intermediate ATM
switching node does not have the whole system information
but sees only bit rate processes to be transferred. Denoting
the observed total bit rate function during the time interval
(t,t+ At) by Y the CAC function can again be represented
by the mapping

g Y —Z=g(Y) (7)

2.2 Neural network as admission controller

As discussed in the previous subsection, the connection ad-
mission control function can be interpreted as a mapping
of e.g. the state vector X into the acceptance decision vec-
tor Z. This functional mapping divides the M-dimensional
state space into two regions: the accept region and the
reject region. In other words, the CAC problem can be
formulated like a pattern recognition problem: upon reco-
gnition of the load pattern X, a yes/no decision has to be
made to accept/reject the connection request. The use of
a neural net for connection control purposes in ATM sy-
stems is thus quite obvious. In this paper we will restrict
the description to the class of feed-forward neural nets with
back-propagation learning algorithm [14]. The basic struc-
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Figure 3: Feedforward neural nets with backpropagation
learning

ture of a feedforward neural net is depicted in Fig. 3, where
a three-layer net is chosen. The neural net consists of a num-
ber of neurons connected by weight vectors W;. As shown
in Fig. 3, it contains an input layer, one (or more) hid-
den layer and an output layer, connected in a fully meshed,
feed-forward manner. Each neuron is a simplified model of
a natural neuron. It is the basic processing element of the
neural net, where the output v; is computed as a weighted
sum of inputs according to the sigmoidal function

v; = Tre s with  z; = Z Wij Vi, (8)
3

wj;j is the weight of the connection from neuron ¢ to neuron
j. For numerical reasons a bias is often added to each z;.
There are two operation modes: learning mode and recall
mode. In the learning mode, pairs of input/output vectors
are presented to the net. It computes its own output vector
according to the equations mentioned above and compares
the computed output vector with the presented input vector.
The comparison results in an error vector, which will be used
to change the weight matrices according to a learning rule.
The learning phase will end if all input/output-pairs to be
learned have been presented and the total error is lower then
a predefined threshold. After the completion of the learning
phase, the information about the input/output pairs, which
represents a mapping, can be seen as stored in the weight
matrices.

The use of a neural network to control connection accep-
tance is illustrated in Fig. 4. This basic structure has been
first proposed in [6] and further developed in [7]. Traffic
streams offered by different type of sources are multiplexed
at the entry node of the high-speed communication network.
In the proposed neural net structure in [6] the bit rate func-
tion is used as input to the neural net. The current qua-
lity of service (QOS) is measured e.g. by the cell-blocking
probability Bcerr. This implies that the cell blocking pro-
bability at the multiplexer is taken as quality of service in-
dicator. During the learning phase of the neural net, the
input/output patterns are as follows. Inputs are formed by
the bit rate pattern including the bit rate process generating
by the actual connection request. The resulting QOS will
be observed and compared to the target QOS. If the target
QOS is still hold, the output of the current input/output

pair is Z=1, i.e. the connection can be accepted, the bit
rate pattern is a ”good”-pattern. If the resulting quality of
service is lower than the target one the output is then Z=0,
i.e. the connection should not be accepted in the current
load situation, the bit rate pattern is a "bad”-pattern. Af-
ter the learning phase, i.e. all input/output pairs have been
presented , the neural net can be used in the recall mode
to perform CAC function. One of the disadvantages of this
mechanism is the difficulty to generate a significant number
of good- and bad-patterns for the neural net to learn. The-
refore we decided to design a modified learning process for
the neural net. In the current study we devote attentions
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Figure 4: Neural net for admission control

to the neural net structure depicted in Fig. 5. The neural
net is designed to perform the mapping given in eq. (6), i.e.
the CAC based on network state. We consider a number M
of different classes of connections, each with different known
bit rate characteristic. The pairs of input/output patterns
for the neural net to be learned is computed as indicated in
Fig. 5. Starting with a state vector X = {ny,ns,..,np} as
the input part of a pattern the multiplexed bit rate func-
tion is determined. Having this bit rate function as traffic
stream, the cell blocking probability e.g. can be estimated
giving the actual quality of service. Upon a comparison of
this measure with the target QOS, the acceptance decision
Z can be made. This can be interpreted as the decision to
be made to accept/reject a connection request of type ¢ if
actual system state is {n1, na,..,ni—1,..,nap}. The working
mode of the neural net during the recall phase is as shown
in Fig. 5, where the net will answer with an accept/reject
decision Z* for a connection request of type ¢ when the in-
put vector X = {ny,ns,..,n;+1,..,np} is presented.

Thus, after the learning phase, the neural net performs the
CAC by separating the M-dimensional input state space in
two regions corresponding to a (M-1)-dimensional decision
surface. The decision surface, which separates the ”accept®
region from the ”reject® region in the state space, can be
thought of as stored in the weight vectors of the neural net.
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Figure 5: Working modes of a neural net based admission
controller

2.3 Alternative neural net structures for admission
control

In the previous subsection we introduced the two cases: 1)
CAC based on network state, where information about the
number of all connection being multiplexed is available, i.e.
the detailed state vector X of the system is known by the
connection admission control function and ii) CAC based on
bit rate process, i.e. only the superimposed bit rate process
is available or measurable to the connection admission con-
trol function. According to this two cases different neural
net structures can be developed, as shown in Fig. 6.

1) CAC based on network state

A simple backpropagation neural net with only one output
neuron is depicted in Fig. 6 a), which implements the map-
ping of eqn. (6). The same functionality can be obtained
using the mapping of eqn. (3) according to the neural net
structure shown in Fig. 6 b).

i1) CAC based on bit rate process

Fig. 6 c) depicts a feedforward neural net for the mapping of
a bit rate pattern to an accept/reject decision. This reflects
a communication network architecture with less signalling
efforts involved, where only the superimposed bit rate pro-
cess is available or measurable to the connection admission
control function.

3 Example of a neural net for admission control
In this section, to illustrate the performance of neural nets
in connection admission control, we take the example of a
neural net according to the structure shown in Fig. 5.

3.1 Traffic assumptions and configuration parame-
ters

The parameters of the ATM multiplexer and the connection

types are as follows. The output of the multiplexer has a

capacity of 600 Mbps, the buffer space is 0.5 Mb large. To

model approximately the VBR (variable bit rate) sources we

a)
ny 3
call
request n;+1 — acceptreject
pftypei
Nm
b) accept/reject
n, —> 1
n, —> i
ny, —> M
©)
—
cell
stream — accept/reject
pattern
—
\

Figure 6: Alternative neural net structures for admission
control

consider sources with first-order Markovian bit rate proces-
ses, where the two basic types are used: a) on/off-sources
and b) binomial sources with two parameters: mean bit rate
m and peak bit rate h. The time axis is discretized by
At = 100 msec. The bit rate with random variable X will
be expressed in number of basic units AB = 1 Mbps. In
each At we assume each source to have an independent bit
rate following the distribution:

a) on/off-sources:

pon = P{X =25} =p; porr=P{X=0}=1-p;
b) binomial sources:

pi= P{X =i} = (3B)pi(1—p)@5~%, i=0,1,..,h.
We consider three connection types:

Type 1: on-off, m = 10 Mbps, h = 40 Mbps, cx = 1.73.
Type 2: binomial, m = 5 Mbps, h = 40 Mbps, cx = 0.42.
Type 3: binomial, m = 5 Mbps, h = 80 Mbps, cx = 0.19.
cx denotes the coefficient of variation of the bit rate X.

On connection traffic level, the arrival process of connection
requests is assumed to be Poisson with a mean interarrival
time chosen according to the simulated load scenario. To
obtain patterns for the neural net learning process, the cell
stream traffic is simulated. During the simulation time the
amount of lost cells is estimated by a fluid flow model. The
connection duration is assumed to be negative exponentially
distributed with mean 20 sec. This mean value is intentio-
nally chosen to be short to enable simulation runs without
loosing the qualitative significancy of the results obtained.

We simulate the traffic on burst level. The cell loss depends
accordingly only on the actual sum of the bit rates of the



sources of active connections, the capacity of the output line
and the buffer space of the multiplexer. Cells are only stored
in the buffer if the total bit rate exceeds 600 Mbps. Under
this condition the buffer is filled and cells are lost if the
buffer level exceeds the maximum.

3.2 Alternative CAC methods for performance
comparison
Since an agreement on CAC mechanisms for ATM system is
not yet available, we will select a few methods proposed in
the literature (see [1, 4, 8, 10, 13]) to compare with the neural
net CAC approach. The parameters taken into account for
CAC purpose here are the numbers of active sources with
given connection types, and for each connection the mean
bit rate m and the peak bit rate h. The CAC aim is to keep
the QOS, i.e. the cell loss rate below a given value, say 1075.

3.2.1 Peak reservation method (PR)

The most simple and robust method to limit the cell loss
probability is to reserve the peak bit rate for each accepted
connection. New connections are only admitted if the sum
of the peak bit rates of the active connections and the new
connection is smaller than the capacity of the output line.
Thus no loss will ever appear. This method reduces ATM
rather to STM. Obviously, for more bursty bit rate traffic
the ouput channel is used in an inefficient way and the multi-
plexer utilization may be intolerably low. This peak bit rate
reservation method is considered here only as a lower bound
for admission control methods aiming to high multiplexer
utilization.

3.2.2 Equivalent bandwidth method (EB)

The expression ”equivalent bandwidth“ is introduced in [3],
in conjunction with mathematical backgrounds presented in
[9]. Each source of type i has its equivalent bandwidth k;,
which depends on its mean bit rate m;, its peak bit rate h;
and the capacity of the multiplexer output line:

i(hi —my
k; = Cym; +(;2M

9)
The constants C; and C, depend on the buffer space of
the multiplexer and the maximum cell loss rate and have to
be determined empirically. If a connection request of type
i arrives the following condition is inquired: K + k; < c,
where K denotes the sum of the equivalent bandwidths of
the actual active connections. If it holds the new connection
is accepted, otherwise rejected.

3.2.3 Weighted Variance method (WYV)

The original method proposed in [15] has to be modified in
the context of this study due to simulation reasons. The ori-
ginal method works only sufficiently well if the peak bit rates
of the subscribers is less than one percent of the output line
capacity. The modified algorithm works as follows, where
m; represents the mean bit rate of connection j, h; its peak
bit rate and c the capacity of the output line. Connection
k is the new connection to be admitted, connections 1 to
k — 1 are already admitted. If E;zl h; < poc connection k

is accepted. If this inequation does not hold, the following
one is employed:

k

k
(hi — s : .
« jz_;ml( j m])+jz_:lmj+12a5xkh] <c (10)

If this inequation holds, connection k is accepted, otherwise
it is rejected. The term EX;(dj — EXj) is an estimate of the
variance of the bit rate of connection j. Thus the constant o
determines the influence of the variances of the source s on
the CAC process. The term « has to be found in advance
by simulation.

3.2.4 Neural network CAC (NN)

We use a three layered feed-forward neural net to evaluate
the CAC function. The neural net structure is the one de-
picted in Fig. 6 a).

The input consists of the vector X* of the numbers of active
sources of each class where the component of the class of
the arriving request is incremented by one. The result of
the feed-forward computations at the output unit is a real
number between 0 and 1. If the output value is less than
a threshold (say 0.5) the new connection is accepted, other-
wise rejected. The decision of the neural net depends on its
internal set of weight matrices which have to be determi-
ned in advance during the learning phase as discussed in the
previous section.

3.3 Neural net convergence and numerical issues
As mentioned before the neural net needs a learning process
to fix its weight vectors. This process uses a set of patterns
to be learned. Each pattern consists of an input vector X*
and the corresponding output value Z*, which have to be
chosen so that the network is able to learn the mapping func-
tion f* for CAC (see section 2.1). We obtain this pattern
using a simulation of the multiplexer state process, i. e. we
fix the numbers of active connections of each traffic class at
certain values and determine the corresponding loss rate at
the multiplexer buffer. If this loss rate is less than a predefi-
ned value (in this study 10~°) this set of connection can be
accepted, otherwise it should be rejected. We perform this
simulation for the vectors

XF = {irk,isk, .., ipk}  with 0<é; <

6001\{bps (11)

mj

and step size k. Thus we get an equally spaced M dimensio-
nal grid whose nodes are named with A(ccept) or R(eject).
This grid can be separated by an M —1 dimensional decision
surface in an ”accept” and a ”reject” region. As an example
Fig. 7 shows this grid for M = 2, where n; and n, denote
the numbers of active connections of class 1 and 2. In this
case the decision surface is just a line. To complete the pat-
tern each X} gets a Z¥ = 0.2 if the node name is ”A” and
a Z¥ = 0.8 if the node name is ”R”. The values 0.2 and
0.8 instead of 0 and 1 are used to obtain a more appropriate
learning algorithm.

First we transform the learning process into a function mi-
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Figure 7: Learning patterns of neural net

nimization problem. Given the set of learning patterns we
define an error function

N
EW) = 5 Y(8F = F(XE, W))? (12)
i=1

The term W denotes the vector of the weights and F'(X}, W)
the output of the neural net upon X} presented to the in-
put layer. Using the BFGS algorithm - well known from the
theory of optimization - E(W) is minimized in the weight
space.

For the recall phase the internal weights of the neural net-
work are now fixed to their final values. The neural net-
work is thought of to has learned the functional mapping
F*(X*) = Z* correctly only for the training patterns. It is
then able to perform this mapping also for all other input
patterns with the help of the learned decision surface. This
property is often referred to as ”learning by examples®.

3.4 Performance results and discussion

The load control performance of the neural net will be dis-
cussed in this subsection, taking into account stationary and
non-stationary load conditions. The neural net operates in
the recall mode. Results are obtained by means of simulati-
ons with different mixtures of the three connection types de-
scribed in Section 3.1. For the ” Equivalent Bandwidth“ and
the ” Weighted Variance“ methods the parameters C; and
C, or respectively, a , had to be determined to guarantee a
cell loss rate smaller than the threshold 10~3. Tab. 1 shows
the multiplexer utilization for the CAC methods considered.
The column ’Mix‘ indicates the mixture of the connection
types used. Without any admission control the utilization of
the multiplexer would be about 91 %, without maintaining
the desired QOS. As expected PR is the most restrictive me-
thod and has a bad performance, whereas the other methods
perform almost on the same level. Only in the case with all
the three connection types involved a slight advantage of the
NN control can be observed. The two methods EB and WV

80

max number of type 2 sources
40

number of type 1 sources

Figure 8: Decision surface for CAC

[Mix | PR_ | EB | WV | NN |
172 [ 202% | 47.9% | 47.4% | 47.5 %
1/3 | 17.9% | 454 % | 43.6 % | 48.0 %
2/3 | 103% | 69.1% | 67.0% | 66.7 %

1/2/3 | 1568 % | 49.5 % | 50.6 % | 55.4 %

Table 1: Multiplexer utilization

have almost the same connection blocking probabilities. The
conclusion of the comparison of their performance with the
NN solution is that the NN method rejection decision de-
pends strongly on the mean bit rate of the connection type
while the decision of EB and WV depend on mean bit rate
and variance.

Fig. 8 shows the decision surfaces of the considered connec-
tion admission control methods, which separates the accept
and reject regions. The accept region lies on the left hand
side of the decision surface. The two methods EB and WV
have almost the same decision line, which again indicates the

load
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Figure 9: Comparison of overload performances



similarity of their performances. The NN decision surface is
extremely different. It can be observed that the NN algo-
rithm accepts much more sources with small mean bit rate
(type 2) and less sources with high bit rate (type 1) than
the EB and WV methods. From communication network
point of view, this results in the same multiplexer utiliza-
tion (Tab. 1, row ’1/2‘), whereas from user viewpoint the
differences for the user groups using connection type 1 or 2
are significant.

To show the overload control performance of the CAC me-
thods under consideration, it is necessary to study the CAC
response on a non-stationary overload pattern. In the dia-
grams to follow we use as overload pattern a rectangular
overload pulse as illustrated in Fig. 9 and observe the time-
dependent CAC reaction in term of cell and connection
blocking probabilities. Clearly, a better CAC mechanism
should survive the overload phase with smaller connection
blocking probability while keeping the cell loss rate on the
same level as under normal load conditions.

Fig. 9 shows a comparison of the non-stationary connec-
tion blocking probabilities of connection type 3 of the four
CAC control methods. In this case it can be seen that the
overload performance of the neural net solution is the most
efficient.

4 Conclusion and outlook

In this paper different aspects concerning possible use of
neural nets to perform connection admission control (CAC)
in broadband integrated services networks have been discus-
sed. The formulation of CAC problem as functional map-
ping and in consequence, the use of learning algorithms to
represent the required mapping were shown. Various ar-
chitecture alternatives for the CAC neural nets using the
class of feed-forward structures in conjunction with back-
propagation learning were depicted. In order to discuss
performance aspects a basic net example has been inve-
stigated. The neural net performance has been compared
with other connection admission control mechanisms like the
peak bit rate, the equivalent bandwidth and the weighted va-
riance methods. Numerical results for stationary and non-
stationary pulse-form overload patterns have been obtained
to illustrate the capability of neural nets used as connection
admission controller in ATM environments.

In most of the load scenarios under consideration the CAC
performance of the investigated neural net structure is com-
parable with and in some cases better than the CAC me-
thods mentioned above, even by using a very small and sim-
ple neural net. To improve the performance of CAC by
neural nets, other neural net structures or other input re-
presentations can be developed. One promising candidate is
a combined solution of an adaptive neural net with learning
patterns, which contain more information about the past of
the observable load situation.
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