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Abstract This paper presents an approach to describe traf- Access (:[ Service 1 sec
fic processes in ATM environments. Using a discrete-time Point f Service 3
Markov chain to describe the cell process dynamics, we de-
rive an algorithm to calculate the correlation function of the
traffic process. As an example the correlation properties of Dialog A->B sec
the well-known two-state process are investigated. We use a B=h
hierarchical characterization of discrete-time traffic processes \

to capture the short-term and the long-term dependencies of
process segments as well as different time scales according to
cell, burst, dialog and call layers of traffic streams in ATM
systems. It is shown by comparison of the process descrip-
tion techniques using the Index of Dispersion of Count (IDC)
and using the Correlation Function (CF), that the CF gives
significant additional insight to understand the short- and
long-term dependencies of traffic processes in ATM environ-
ments.

1 Introduction

The characterization of traffic streams is an essential factor
in performance analysis of systems in ATM environments. It
forms the first step towards accurate and appropriate models
of such systems. In contrast to the conventional telephony,
where most of the models are sufficiently accurate consid-
ered in continuous-time domain offering Poisson or renewal
processes, the ATM traffic processes are different and are of
a more complex nature.

It is obvious and convenient to model ATM traffic streams
by means of discrete-time processes due to the slotted cell
transmission time. As illustrated in Fig. 1, the model can be
observed on call (or connection) layer, on burst layer or on
cell layer (see also [1]). According to this, the time resolution
differs in order of magnitude, i.e. in seconds, milliseconds or
microseconds. Thus an accurate ATM traffic model must be
characterized in discrete-time domain. Further, it must be
flexible enough to govern the time scales mentioned. Clearly,
it is a non-trivial task to develop a single description tech-
nique to characterize all properties of traffic processes on
different time resolution levels.

The work described herein was done while Prof. Phuoc Tran-Gia
was visiting Bond University.
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Figure 1: Layered ATM Traffic Stream Description

In conjunction with the time resolution problem, the depen-
dency and the correlation between process segments turn out
to be important factors influencing the accuracy of ATM
traffic models (see [11, 5, 9, 4]). Besides short-term corre-
lation effects, long-term dependencies are topics of interest
in variable-bit-rate video traffic. Two classes of models have
been introduced to describe these effects:

o Autoregressive processes and

e Markov chains in discrete- or continuous-time.

The autoregressive processes are mathematically simple to
describe, but their analytical treatment is rather difficult.
Therefore, the Markov chain models are preferable from the
analysis viewpoint. Maglaris et. al. [5] used an autoregressive
process as simulation model and a continuous-time discrete-
state Markov chain as analytical model to describe medium-
term dependencies of the bit rates of variable-bit-rate video
sources at the video-frame level.

Nomura et. al. [6] used the autoregressive process to de-
scribe the medium-term dependencies at the video-frame
level and an overlaid continuous-time Markov chain to model
scene changes with long-term dependencies. In [7] and [10]
discrete-time Markov chains have been used to model var-
iable-bit-rate video. In Zukerman and Potter [13] an au-
toregessive model on the frame level and a discrete-time two



state Markov chain on the cell level within a frame have been
employed. An approach using a discrete-time Markov chain
to model the cell traffic stream can be found in Ramaswami
and Latouche [8].

In general, discrete-time approaches can be separated in the
following categorics:

(i) Description of all-layer traffic processes using one di-
screte-time Markov chain

(ii) Considerations of the Index of Dispersion of Counts
(IDC) or Index of Dispersion of Intervals (IDI) to de-
scribe short-term and long-term process dependencies

(iif) Considerations of correlation functions to describe in-
ter-segment dependencies. They enable the graphical
recognition of the correlation structure of the traffic
process. This is one of the major objectives in this

paper.

In this paper, an approach to describe traffic processes in
ATM environments using correlation functions will be dis-
cussed. Starting with a discrete-time Markov chain char-
acterization of the cell process dynamics, we arrive at an
algorithm to calculate the Correlation Function CF of the
traffic process. The well-known two-state process (or on-off
process) is taken as an example. This correlation function
description technique is then compared to the description
technique using the Index of Dispersion of Counts IDC. Fur-
thermore, to govern the problem of time resolution differ-
ences, we use a hierarchical characterization of discrete-time
traffic processes and derive the correlation function of a two
layer process.

2 Layered Characterization of ATM Traf-
fic

2.1 Multilayer Description with Discrete-Time Mar-
kov Chain

2.1.1 The Basic Single Layer Description

First we look at an ATM traffic stream on the cell layer (cf.
Fig. 2). For the characterization the general Markov chain
description proposed in [8] is used. The basic Markov chain
consists of a number n of states, which are subdivided into
v active and w silent states. The states can be grouped into
sets, e.e. A;, A; and S. The state transition behaviour is
completely described by the state transition matrix @ with
elements ¢; ;. The time is slotted by the cell duration. Af-
ter each slot a state transition will take place. During each
transition the following will occur:

(i) if the Markov chain was in an active state, a cell will
be generated,

(ii) if the Markov chain was in a silent state, the state
transition will take place without any cell generation.

Ramaswami and Latouche [8] showed that this process de-
scription technique is quite versatile and is able to charac-
terize complex processes with arbitrary short-term and long-
term dependencies and correlations. In some cases however,
the number of states required can be very large.
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Iigure 2: Description Technique on the Cell Layer

Thus, a disadvantage of this technique is, that in case of
long-term correlations the transition matrix tends to become
large in size. It is obvious that to describe correlations for
a variable-bit-rate video scene, e.g., the single-layer Markov
chain description of cell traffic is not very convenient.

2.1.2 Multilayer Déscription

To illustrate the multilayer description and cell clustering
effect we take the example in Fig. 1, where four traffic layers
are depicted: call, dialog, burst and cell layer. Without any
knowledge of the traffic layers the arrival process is observed
as a simple alternation process between the two phases: cell
generation phase and silent phase.

However, the length of these phases depend on higher layer
processes as shown in the example of Fig. 3. There ex-
ist different types of silent phases, which can be used to
describe short-, medium- and long-term dependencies and
correlations.

On cell layer with a resolution in microseconds, the cell gen-
eration phase, which is simply a cell cluster of length Ao,
consists of a number of contiguous cells. The corresponding
silent phase is So. A cluster of Ao and So constructs a cell
burst with length A;.
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Figure 3: Layered Traffic Stream Description of a Call

By observing the process on a longer time scale, longer silent
phases become recognizable, which separate the cell bursts.
These silent phases of a higher description layer are referred
to as interburst silence Sy. A process characterization using
Sy and A, will then be able to describe properties of ATM
traffic streams, which can be seen first on microsecond reso-
lution level. Continuing the layered description to dialog and
call layers we arrive at connection duration As and intercall
interval S3, which can be used to describe the subscriber
behaviour on a time resolution level of seconds.

2.2 Example

The process described above can be represented in a layered
model as depicted in Fig. 4. From this complete description
of a process the description of the layer of interest can be
derived. If the interest is on the cell layer this layered de-
scription is transformed into one Markov chain with the time
scale of the cell layer. If we assume that the silent states of
all layers have only a state transition to itself and the active
state, then the dissolution of the burst layer can be done as
depicted in Fig. 5. Following this procedure up to the call
layer we get the Markov chain description as illustrated in
Fig. 6.
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Figure 4: Markov Chain Model of a Call

Figure 6: Single Markov Chain of the Process at the Cell
Layer

3 Correlation Analysis

3.1 Correlation Function

In the next subsections we will introduce the correlation
function (auto-correlation function) of a random stationary
sequence z(k). First we restrict the values of z(k) to the
integer set [0,1] representing a present cell and a missing
cell, i.e. the states active and silent, respectively. This will
be generalized to a range of z(k) of [0,1] representing the
utilization of the line during a specified time period.



3.1.1 Cell Layer

The cell traffic stream is represented as a random stationary
sequence z(k) with the values 0 and 1 representing a cell and
a missing cell, respectively. The correlation function R(m)
is accordingly defined as :

R(m) = P{z(k) = 1,z(k+m) =1} (1)
This can be interpreted as the probability that an outside
observer sees a pair of active cells, where the cells are sepa-
rated by m —1 cells. The cell traffic stream is modelled with
a discrete-time Markov chain. The states are marked either
as active or silent. As mentioned, if the Markov chain is in
an active state then a cell is generated at the state transi-
tion. If the Markov chain is in a silent state then no cell is
generated at the state transition.

Let be 7 the outside observer state probabilities of the Markov
chain, which are separated into two parts: active states (1..v)
and silent states (v +1..v +w). With @ = {q,]} as the state

transition probability matrix and Q'" = {q, )} the m-step
state transition probability matrix, the cmrelatxon function
can be expressed as:

Z m Z g™ (2)

3.1.2 Burst, Dialog and Call Layer

The time is slotted due to the burst, dialog or call layer
with an appropriate slot duration. Analogously, the random
stationary sequence z(k) represents the utilization of the line
with a range [0,1]. The correlation function is defined as:

R(m) = * m yzprrem(y, 2)dydz 3

(m) /__w/yz_mJlk,u (y,2)dy (3)

with

pk,k+m(y»z) = pm(:’h’) (4)
= Pla(k) = y,alk +m) = 2}

In the Markov chain model an activity value a; is assigned
to state ¢ (:=1..n). The values a; can be obtained from the
description in conjunction with the analysis of the next lower
traffic description layer. The correlation function becomes
then :

= Zaﬂizagql(?) (5)

i=1 =1

3.2 Index of Dispersion

The index of dispersion I of a random variable T is known as
the ratio I = VAR[T]/E[T). 1t is often used as a measure of
burstiness of the traffic process. In the following we will first
focus the attention to the Number of Events in an observed
time interval of a traffic stream and then we discuss the Index
of Dispersion of Counts of the corresponding Markov chain.

3.2.1 Number of Events

Observing the traffic stream in discrete-time, each slot either
contains a cell or is empty, i.e. a cell is present or missing.
The present cells are regarded as events of the process and
are counted. The content of the counter after observing m
consecutive slots is assigned to a random variable N(m) hav-
ing the range of [Om] The corresponding distribution is
P{N(m) = k} = 2™.

For the process of counts starting in state ¢ of a Markov chain
the probabilities P{N;(m) = k} = xf’:) can be expressed
recursively by :

s, k=0
A = { D gD 0<kem O
m—1 m
A2l ke
with
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j=1 J=v+1

q,(]) are again the m-step transition probabilities with

(0) 1 1= 8
G —{ 0 ;otherwise * (8)

As mentioned above, the states 1..v indicate the active states
and v + 1..v + w the silent states. The mean and variance
are given by :

E[N;(m)] = Z k:c('") E q(J) . (9)

k_
VARN(m)] = 5 (k — E[Ni(m))*2{ o)
£ ahld



3.2.2 Index of Dispersion of Counts (IDC)

The variance of the Number of Events N(m) of a (periodic
or aperiodic) Markov chain is defined by the sum of the vari-
ances of N;(m) of each state weighted by the outside observer
state probability ;.

VAR[N(m)]
E[N(m)]
2w VAR[N;(m)]
Y mE[N;(m))
_ i3 miVAR[N;(m)) (11)

ma

Il

IDC(m)

with @ = %, ;. For a periodic Markov chain the index
of dispersion of counts will be zero, if the Markov chain has
one single route, e.g. the set of possible states at each step is
one. This property holds regardless of the complexity of the
Markov chain and the distribution of the used and unused
cells.

3.3 Examples
3.3.1 Two-State Process
In this subsection we take as example the well-known two-

state process as depicted in Fig. 7. The transition matrix @
is given by : -

qaa  4as p l-p
= = 12
(qSA ‘Iss) (t 1—t> (12)
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Figure 7: Model of the Two-State Process

Accordingly, the outside observer state probabilities are :

T
A i1—p+t#0
= (na,7s)" = (= ‘;”*‘) PRIED ()
(0.5,0.5) 1—p+t=0

The m-step transition matrix can be obtained analytically
as (see Hunter [3]) :

N YL
Q" = (m) (m)
9sa’ 9ss (14)
3 ( a4+ 7s(p—t)™ w5 —ms(p—1t)™
Ta—7ma(lp—1)" ws+malp—2t)"
This leads to the correlation function :
Rim) = ————(t+(1=p)(p—t)")
T U—ptor P
= mh+ma(l—ma)(p—t)" (15)

The limits are R(0) = 74 and for an aperiodic Markov chain
R(oc0) = n%. For a periodic Markov chain the Correlation
Function CF is as well periodic. We consider in Fig. 8 the
four cases

i) p =1t = 0.5, i.e. the two-state process represents a
Bernoulli input process with probability 0.5

ii) p=0,t =1, i.e. a cell appears every second slot

ili) p=10.9,t = 0.1, i.e. the probability to stay in the same
state is 9 times higher than to escape the current state
and

iv) p = 0.1,t = 0.9, i.e. the probability to escape the
current state in 9 times higher than to stay in the state

(see also Table 1). Note that for all four cases T4 = 75 = 0.5.

For the case 1) and ii) the Correlation Function can easily
be estimated. Case iii) indicates no oscillation, since the
tendency to stay in the current state is higher than a state
change. Case iv) leads to an oscillation of the Correlation
Function, since the probability to escape the current state is
high and the tendency to return to the same state in the sec-
ond step is dominant. As depicted, this effect of oscillation,
i.e. the periodic dependency, can be observed very clearly
using the Correlation Function rather than using the Index
of Dispersion of Counts, as we show later in this section.

The Index of Dispersion of Counts can be expressed again in
a closed form :

VAR[N(m)]
E[N(m)]
(m S 904 + mzqu,qg;) -

=1 i=1

(p—t)*1—(p—t)*"
2”5(1' m 1—<p—t>2) (16)

IDC(m) =

Il
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Table 1: Parameters of the Two-State Process
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Figure 8: Correlation Function of the Two-State Process

For large m the index of dispersion of counts converges to
IDC(00) = 7s.

It should be noted here that the index of dispersion of counts
and the correlation function contain different information
and can not express each other in the general case. However,
for the two-state process it is possible to express the index
of dispersion of counts by the correlation function defined
above, which are based on the observation of present cells.
Additionally, a correlation function for the missing cells can

be derived.

In Fig. 9 the IDC is depicted for the parameters listed in
Table 1. Note that the cases iii) and iv) result in the same
IDC-function.

3.3.2 Two-Layer Process

We investigate in this subsection the two-layer process de-
picted in Fig. 10 with two different time scales. On the
higher layer (macro layer) a two-state model is defined. The
two states S,; and S, , represent an active macro-state and
a silent macro-state. Within the state S;; a two-state cell
layer model is defined with an active cell state and a silent
cell state. Within the macro state S, a single silent cell
state is defined.
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Figure 9: Index of Dispersion of Counts of the Two-State
Process
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Figure 10: Two-Layer Model

The times scales are chosen to fit a factor of =100 with
the corresponding slot durations for the macro-state and the
cell-state model time scales. The transition probabilities are
depicted in Table 2. The parameters are chosen to represent
a burst process at the macro layer and a nearly periodic
process on the cell layer in the macro state Sp,1.

This layered description can be transformed into a single
aggregated Markov chain as depicted in-Fig. 11. The transi-
tion probabilities of the macro layer are modified to the cell
layer time scale (e.g. af = 1 — (1 — a1)/(1 + ai(e — 1))) to
get the same mean time in the previous macro-states. The
macro states can then be eliminated by assuming that i) the
macro-state is left from each cell layer state with the same
probability and ii) by entering a macro-state, each state of
the cell layer is entered with the outside observer state prob-
ability. The modified transition probabilities are depicted in
Table 3.
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Table 2: Transition Probabilities of the Two Layer Model
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Figure 11: Representation of the Two-Layer Model in a Sin-
gle Markov Chain
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Two-Layer Model in a Single Markov Chain
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Figure 13:  Long-Term Correlation Function of the

Two-Layer Model in a Single Markov Chain
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Table 3: Modified Transition Probabilities of the Two Layer
Model

In Figs. 12 and 13 the correlation functions of the Markov
chain is depicted for the short-term and the long-term corre-
lations, respectively. Additionally, in Fig. 13 the Correlation
Function obtained from the macro layer description accord-
ing section 3.1.2 is depicted. The same interpretation as in
Fig. 8 case iv) can be done.

4 Conclusion and Future Research

In this paper a hierarchical modelling approach of discrete-
time traffic processes has been described, where a basic Mar-
kov chain description technique is employed in conjunction
with the correlation analysis. The approach can be used
in investigations of traffic processes, e.g. in ATM environ-
ments, where time scales at cell, burst, dialog and call traffic
description layers differ in order of magnitude. Due to the
slotted-time nature of the considered processes discrete-time
Markov chains are used. The use of the correlation function
has been compared with the process description by means
of the index of dispersion of counts, where aspects concern-
ing the visualization and the characterization of dependen-
cies and correlation structures of process segments have been
discussed. The two-state process was taken as an example.

The hierarchical modelling approach has been also demon-
strated observing a two-layer process with two time scales.
The Markov chain from the hierarchical model is derived
and the correlation function illustrating short-term and long-
term correlation is depicted.

It can be seen by the examples that the Correlation Func-
tion is able to visualize the dependencies and the correlation
structure of process segments in a better way than the In-
dex of Dispersion of Counts. Additionally, the correlation
function has the advantage that it can be measured directly
out of the process using e.g. well-developed standard signal
processing equipments.

The modelling technique has now to be applied to more com-
plex and more realistic traffic streams. A procedure has to
be developed, which is able to derive the parameters of the
Markov chain model from the measured correlation function,
e.g. of a video codec source. To complete the correlation
analysis the abilities of the spectral density function can be
inspected. Subsequent to the correlation analysis of a traf-
fic stream the multiplexing of several traffic streams with
additional change of the time scale could be considered.
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