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Abstract In modeling and performance analysis of modern computer and communication
systems the class of discrete-time models takes an increasingly important part. For the analy-
sis of these models methods operating in discrete-time and discrete probability environments
are required. Discrete-time analysis methods can be subdivided into two main subclasses: 1)
analysis methods dealing directly with probability distributions in time domain and ii) anal-
yses in transform domain. For both subclasses discrete transforms like the discrete Fourier
transform (DFT) in conjunction with the fast Fourier tranform (FFT) or the Cepstrum con-
cept are often used. The purpose of this paper is to outline the use of these discrete transform
techniques, whereby the analysis of the basic queueing system of the G/G/1 type is taken as

an example.

1. Discrete-time Performance Models and Discrete Transforms

In the course of modeling modern communication systems, discrete-time model components
play an increasingly important role. On the one hand, new system structures and principles
often employ discrete or discretized basic time and data units. Examples are the concept of
cells in asynchronous transfer mode networks (ATM) or time slots in high-speed local and
metropolitan area networks (e.g., DQDB: distributed queue dual bus). On the other hand,
system parameters and input values are often based on measured data, which are given in the
form of histograms. They are discrete-time by nature. These facts lead to the development
of discrete-time models in performance analyses of computer and communication systems,
which can be observed in the recent literature.

For the analysis of this class of models, conventional methods operating in continuous time
are obviously inappropriate. Due to the lack of discrete-time methods they are used in
some cases in an approximate sense. In these studies equivalent continuous-time model
components are employed, e.g., the discrete-time stochastic arrival and service processes
are approximately described by means of random variables with well-known time-continuous
types of distribution functions. A relatively small amount of studies [1-3, 10-14, 17-18, 20-24]
deals with direct analysis approaches for discrete-time models. Mostly, these studies take
into account the discrete-time analysis of basic queueing models like single server systems
[1-3,10-13,20] or queueing networks [18]. Some other studies presented discrete-time analysis
of general polling systems [22], overload control models in communication switching systems

1parts of the studies discussed in this paper were done while the author was with Institute of Communications
Switching and Data Technique, University of Stuttgart, and IBM Zurich Research Laboratory.
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[24], routing mechanisms [21] or multiplexing schemes in modern communication system
architectures [23]. In these investigations the usc of discrete-time transforms is an essential

aspect.

In this paper we devote our attentions to the use of discrete transforms in the analysis of
discrete-time stochastic models of computer and communication systems. To illustrate the
application of transform techniques the analysis of the basic queueing system G/G/1 with
discrete-time arrival and service processes will be discussed. Section 2 deals with iteration
methods using discrete convolution algorithms. In section 3 basic functional equations and
analysis algorithms in transform domains will be outlined, where the use of the Cepstrum
concept in the waiting time analysis is taken as an example.

2. The G/G/1 Queueing System in Discrete-time
2.1 The G/G/1 Model and Discrete-time Lindley Equation

We consider in the following the discrete-time G/G/1 queueing system, which represents one
of the important basic models used in performance studies. The term discrete-time indicates
here that the time axis is slotted in equidistant time units of length At. The model consists
of a server with a generally distributed service time and an arrival process which is a general
stochastic process characterized by a generally distributed interarrival time. Arriving jobs,
which find the server in a busy state, have to join an infinite capacity queue. Waiting jobs
in the queue will be treated according to a service discipline, which is assumed here to be

first-in, first-out (FIFO).

In the literature, a number of analysis approaches in accordance with the calculation of
the waiting time distribution function of the G/G/1 queue can be found [1,8,9-14,17,19,20].
Most of these methods are related to solutions of the Lindley integral equation, which is a
special form of Wiener-Hopf equations. Most of the studies consider methods operating in
Laplace domain. They are based on techniques like spectral factorization, numerical poles
and zeros allocation of the system function, determination of quadratic factor of polynomials
[17], as well as separation of functions having convolutions in frequency domain. Ackroyd
[1] presented an efficient algorithm for the calculation of the waiting time distribution of the
discrete-time G/G/1 queue, where discrete transform techniques (e.g., the Cepstrum concept
[4-7,26,27], phase unwrapping technique [26], etc..) and fast convolution algorithms are used.
Using the same approach, a discrete-time analysis of the idle time and the interdeparture
process is given in Tran-Gia [20,25].
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Fig. 1: Sample path of the state process of the G/G/1 model
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The basic relationship for the analysis of the discrete-time G/G/1 queucing system is equiva-
lent to the well-known Lindley integral equation for the continuous-time systen (8,14,19]. It
will be briefly outlined in the following. According to the discrete-time consideration, sam-
ples of the random variables are integer multiples of At. We assume further that the discrete
distributions have finite lengths.

We observe a test job (number n) which joins the system and sees upon its arrival an amount
Uy of unfinished work in the system (cf. Fig. 1). The service time of the test job is denoted
by the random variable B, and the interarrival time, i.e. the interval until the (n+1)-st
arrival, by An. The corresponding distributions an(k) and b,(k) exist for k=0,...,Ns — 1 and
k=0,..., Ng — 1, respectively. The unfinished work U indicates the amount of time units
the server has to work out before being able to serve the test job. Assuming the first-in,
first-out (FIFO) service discipline, its waiting time W, with the corresponding distribution
(probability mass function) ' '

wa(k) = Pr{W, = k time units of length At} (1)

are identical with U and its distribution uz(k), respectively.

The following rectirsive relationship between the waiting time distributions of two successive
jobs can be found [1,9,13,20]:

ug, (k) = mo(uy, (k) * aa(—k) * bn()) ‘ (2)

uy (k) = mo(uy (k) * ca(k)), (3)

W1 (k) = wo(wn (k) * ca(K)) | (4)
with

ca(k) = an(—k) * ba(k). ' (5)

The term cn(k) is often called the system funtion of the G/G/1 system. The symbol "+
indicates the discrete convolution operation and mo(.) an operator defined as follows

z(k) k>0
k = . 6
e = {3 1D ©
Considering the service and arrival processes to be recurrent and the observed state process
of the discrete-time G/G/1 model to be in statistical equilibrium, i.e. under stationary
conditions, the index n of the test job can be suppressed. We arrive at the stationary state

equation for the analysis of the waiting time distribution of the G/G/1 system:



w(k) = mo(w(k) * c(k)). (7)

Eqns. (4) and (7) represent discrete forms of the Lindley integral equation [14], which is
well-known in the context of G/G/1 analysis.

2.2 Algorithm in Discrete-time Domain

According to eqn. (4) the waiting time distribution of the (n+1)-st job can be expressed as a
function of the waiting time distribution of the n-th job and the system function. Using this
fact (cf. [1,9,20]) the equilibrium waiting time distribution can be iteratively calculated, as
schematically depicted in Fig. 2. The iteration procedure may start, e.g., by assuming the
first customer finding an empty system.
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Fig. 2: Computational diagram of the algorithm in time domain

For large vector sizes of the arrival and service distributions, the discrete convolution opera-
tion can efficiently be implemented using discrete transforms and convolution algorithms, e.g.,
the fast Fourier transform FFT (based on the discrete Fourier transform DFT) [6,7,16]. For
the analysis of a G/G/1 system under stationary conditions, the number of iteration cycles
needed and in accordance with it, the computing efforts, depend strongly .on the parame-
ters of the system to be investigated. In comparison with algorithms in transform domain,
e.g., the spectral factorization in Laplace- or Z-domain or the separation of maximum and
minimum phase systems using the cepstrum concept (see section 3),the algorithm in prob-
ability domain (or time domain) is very robust with respect to the type of interarrival and
service processes. Furthermore, the algorithm in time domain as illustrated in Fig. 2 is also
applicable to G/G/1 systems with time- or state-dependent interarrival and service time dis-
tributions, e.g., systems with workload-oriented overload control [24] or G/G/1 queues with
alternating input processes [21].
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3. Algorithm for G/G/1 Systems in Transform Domain
3.1 Basic Relationship in Transform Domain
From eqn. (7), which was given for the waiting time distribution (the probability mass

function), an analogous form of the waiting time distribution function defined by

k

W(k)= > w(i) (8)

1=—00

can be obtained:
W (k) + W(k) = c(k) x W(k), (9)

where W~ (k) consists of components of the convolution c(k) * W(k) lying on the negative
time axis. In Z-transform domain, we obtain the following fundamental equation:

_ 1 . cZT(z) -1
WZT(")‘ wZT(Z) - 1 — -1 ’ (10)

where the transfer function of the G/G/1 system in Z-domain is contained:

Sp(z) = -l (11)

1—271

It can be shown (cf.[1,25]) that for finite length distributions a(k) and b(k), the function
W;r(z) stands for the Z-transform of a maximal phase system (cf.[16]). Further, the term
E#(z) corresponds to the Z-transform of a minimal phase system. This knowledge leads to
solutions of eqn.(10) using pole and zero allocation schemes [13] or in conjunction with the use
of the Cepstrum concept [1]. The application of the Cepstrum to the waiting time analysis

of G/G/1 queueing model will be discussed below.

3.2 Algorithm using Cepstrum Concept

In the same way as in signal processing techniques, the Cepstrum concept is employed here
to separate maximal and minimal phase systems [16]. Thus, the term ﬁ() or consecutively,
the waiting time distribution w(k) in time domain, can be filtered out of the transfer function
Sz7(2) after transforming it into the Cepstrum domain. The algorithm is illustrated in Fig.
3 containing the following major steps (cf. Ackroyd [1])

i) Calculation of the transfer function Szr(z) out of the system function ¢(k) = a(—k)* b(k).
Since c(k) is of finite length, Sz7(z) can be equivalently represented by the discrete Fourier
transform (DFT) Sppr(n).

ii) Calculation of the complex Cepstrum

SCEP(k) = DFT_I(IH[SDFT(TI)]) (12)



iii) Separation of Sfpp(k), which consists of non-negative components of Scpp(k) . The
function Sfpp(k) is the Cepstrum of the unnormalized waiting time distribution w (k)

iv) Inverse transformation of S&pp(k) to get w,(k) and normalization of w,(k) to obtain
finally the waiting time distribution w(k) of the G/G/1 system.
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Fig. 3: The Cepstrum algorithm for G/G/1 analysis
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Out of the waiting time distribution, further performance measures of interest, like the idle
time distribution of the service unit and the interdeparture distribution of the stochastic
output process can be derived [20]. To illustrate the use of the method in the case of model
parameters arising out of measurements in the form of histograms, Fig. 4 shows the dis-
tribution functions of the interarrival and the service times as well as the complementary
distribution functions of the equilibrium waiting time, the idle period and the interdeparture

time.

4. Concluding Remarks

As mentioned before, the aim of this paper is to provide a brief outline of the use of discrete-
time transforms in the performance analysis of computer and communication systems. Insuch
systems efficient discrete-time based analysis techniques are needed, to deal with models in
which the major part of components are of discrete-time nature.

Among analyses existing in the literature, we have chosen in this paper the analysis of the
basic basic G/G/1 system to illustrate the application of discrete transforms. The reason
for this choice is that in this case, a broad spectrum of methods has been developed 1n
both time and transform domains. It should be noted here that in almost all other discrete-
time performance analyses, methods and algorithms invented normally operate in time or
probability domain, due to the higher level of model complexity.

The most important advantage of discrete-time transforms is the ability to provide results
directly in the form of probability distributions or distribution functions. These often give
better insights to support performance studies compared to results given in transform do-
mains (e.g. Laplace transforms), which we often obtained using continuous-time modeling
techniques.

References

(1] Ackroyd M.H., ”Computing the Waiting Time Distribution for the G/G/1 Queue by Signal Processing
Methods“, IEEE COM-28 (1980) 52-58.

[2] Ackroyd M.H., "Iterative Computation of the M/G/1 Queue Length Distribution via the Discrete Fourier
Transform®, IEEE COM-28(1980) 1929-1932.

[3] Ackroyd M.H., ”M/M/1 Transient State Occupancy Probabilities Via the Discrete Fourier Transform*,
IEEE COM-30 (1982) 557-559. .

[4] Bednar J.B., Watt T L., ” Calculating the Complex Cepstrum Without Phase Unwrapping or Integration®,
IEEE ASSP-33(1985) 1014-1017.

[5] Bogert B.P., Healy M.J.R., Tukey J.W., »The Quefrency Alanysis of Time Series for Echoes: Cepstrum,
Pseudo-Autocovariance, Cross-Cepstrum, and Saphe Cracking®, Proc. Symp. Time Series Analysis, Ed.:
M. Rosenblatt, Wiley 1963, pp. 209-243.

[6] Cavers J.K., ”On the Fast Fourier Transform Inversion of Probability Generating Functions®, J. Inst.
Maths. Application, 22(1978) 275-282.

[7] Henrici P., ”Fast Fourier Methods in Computational Complex Analysis“, Siam Review, 21(1979) 481-527.
[8] Kingman J.F.C., "Inequalities in the Theory of Queues®, J. Roy. Stat. Soc. B32(1970) 102-110.
[9] Kleinrock L., Queueing Systems, Vol.I: Theory, Vol.IT: Computer Applications, Wiley 1975.

(10] Kobayashi H., Konheim A.G.,”Queueing Models for Computer Communications System Analysis®, IEEE
Trans.Comm., 25(1977) 2-29.



(22]
(23]
(24]

(25]

[26]
(27]

U«

Kobayashi H., ”Stochastic Modelling: Queueing Models ; Discrete-Time Queueing Systems, in : Part I,
Louchard G., Latouche G. (eds.), ” Probability Theory and Computer Science“, Academic Press 1983.

Hunter J.J., Mathematical Techniques of Applied Probability, Vol.1: Discrete Time Models: Basic Theory,
Academic Press, 1983.

Konheim A.G., ”An Elementary Solution of the Queucing System Gl/G/l"‘, SIAM J. Comp., 4(1975)
540-545.

Lindley D.V.,”The Theory of Queues with a Single Server, Proc. of the Cambridge Philosophical Society,
48(1952) 277-289.

Meisling T., ” Discrete-Time Queueing Theory *, Operations Research 6(1958) 96-105.
Oppenheim A.V., Schafer R.W., ”Digital Signal Processing“, Prentice-Hall 1975.

Ponstein J., ”Theory and Numerical Solution of a Discrete Queueing Problem*, Statistica Neerlandica,
20(1974) 139-152.

Pujolle G., Claude J.P., Seret D., ”A Discrete Queueing System with a Product Form Solution*, Proc.
Int. Seminar on Comp. Networking and Perf. Evaluation, pp.3.4, Tokyo 1985.

Smith W.L., ”On the Distribution of Queueing Times“, Proc. of the Cambridge Philosophical Society,
49(1953) 449-461.
Tran-Gia P., ”Discrete-Time Analysis for the Interdeparture Distribution of GI/G/1 Queues“, Proc.

Seminar on Teletraffic Analysis and Computer Performance Evaluation, June 1986, Amsterdam.

Tran-Gia P., Rathgeb E., ” Performance Analysis of Semidynamic Scheduling Strategies in Discrete-Time
Domain*®, Proc. INFOCOM 87, San Francisco, March/April 1987, IEEE Computer Society Press 1987,
pp- 962-970.

Tran-Gia P., ”Discrete-Time Analysis of Polling Systems with Renewal Inputs“, Proc. 3rd Int. Conf. on
Data Comm. Systems and their Performance, Rio de Janeiro, Brazil, June 1987, pp. 495-510.

Tran-Gia P., Ahmadi H., ” Analysis of a Discrete-Time G[X]/D/1-S Queueing Systems with Applications
in Packet-Switching Systems®, Proc. IEEE INFOCOM ’88, New Orleans, March 28-31,1988.

Tran-Gia P., ” Analysis of a Load-driven Overload Control Mechanism in Discrete-Time Domain“, Proc.
12th International Teletraffic Congress, Torino, Italy, June 1988.

Tran-Gia P., ”Discrete-time Analysis of Performance Models in Computer and Communication Systems*
(in german: Zeitdiskrete Analyse verkehrstheoretischer Modelle in Rechner- und Kommunikationssys-
temen), 46th Report on Studies in Congestion Theory, Institute of Switching and Data Techniques,
University of Stuttgart, 1988.

Tribolet J.M., ”A new Phase Unwrappring Algorithm, IEEE Trans. ASSP 25(1977) 170-177.
Winograd S., ”On Computing the discrete Fourier Transform®, Math. Computation 32(1978) 175-199.



