
Data Usage in IoT: A Characterization of GTP
Tunnels in M2M Mobile Networks

Simon Raffeck∗, Stefan Geissler∗, Michael Krolikowski‡, Steffen Gebert‡, Tobias Hoßfeld∗
∗Chair of Communication Networks, University of Würzburg, Germany

Email: {firstname.lastname}@informatik.uni-wuerzburg.de
‡EMnify GmbH, Germany

Email: {firstname.lastname}@emnify.com

20
22

IE
E

E
.

Pe
rs

on
al

us
e

of
th

is
m

at
er

ia
l

is
pe

rm
itt

ed
.

Pe
rm

is
si

on
fr

om
IE

E
E

m
us

t
be

ob
ta

in
ed

fo
r

al
l

ot
he

r
us

es
,

in
an

y
cu

rr
en

t
or

fu
tu

re
m

ed
ia

,
in

cl
ud

in
g

re
pr

in
tin

g/
re

pu
bl

is
hi

ng
th

is
m

at
er

ia
l

fo
r

ad
ve

rt
is

in
g

or
pr

om
ot

io
na

l
pu

rp
os

es
,

cr
ea

tin
g

ne
w

co
lle

ct
iv

e
w

or
ks

,
fo

r
re

sa
le

or
re

di
st

ri
bu

tio
n

to
se

rv
er

s
or

lis
ts

,
or

re
us

e
of

an
y

co
py

ri
gh

te
d

co
m

po
ne

nt
of

th
is

w
or

k
in

ot
he

r
w

or
ks

.
T

he
de

fin
iti

ve
ve

rs
io

n
of

th
is

pa
pe

r
ha

s
be

en
pu

bl
is

he
d

in
N

O
M

S
20

22
-2

02
2

IE
E

E
/I

FI
P

N
et

w
or

k
O

pe
ra

tio
ns

an
d

M
an

ag
em

en
t

Sy
m

po
si

um
,

25
-2

9
A

pr
il

20
22

,
10

.1
10

9/
N

O
M

S5
42

07
.2

02
2.

97
89

90
1.

]

Abstract—Internet of Things (IoT) and Machine-to-Machine
(M2M) devices have seen a significant growth in usage and
deployment over the last years. Gaining insight into device and
data usage behavior exhibited by the participants of mobile
networks is elementary for Mobile Network Operator (MNO)
and Mobile Virtual Network Operator (MVNO) to scale their
networks and provide a reliable service. This work aims to make
use of its first of a kind dataset, spanning multiple countries
and MNOs, to provide a detailed characterization of GPRS
Tunneling Protocol (GTP) tunnels and devices. To this end,
general statistics are used to describe the observed data traffic
focusing on the distribution of the tunnel duration and volume
as well as periodic device behavior. An approximate metric is
introduced to analyze the periodicity and synchronicity of IoT
devices. Lastly, we publish the data investigated in this work and
provide a large scale dataset on the data usage behavior of IoT
devices to interested researchers.

Index Terms—dataset, data analysis, mobile network, Internet
of Things (IoT), GPRS Tunneling Protocol (GTP)

I. INTRODUCTION

The IoT and M2M environments in general have seen
impressive growth over the last years. Similarly, the number
of different verticals and use cases has grown substantially
and this increase in devices is expected to continue over the
next decade [1]. To provide these new, heterogeneous devices
with reliable, global network connectivity, a new type of IoT-
focused mobile operators has emerged. Operating in the form
of MVNOs, these operators leverage the dense infrastructure
MNOs have been building over the years to provide global
connectivity through international roaming.

This interconnection of globally distributed devices via the
Radio Access Network (RAN) and core components of a
multitude of MNOs, poses several challenges for operators.
Ensuring system resiliency, proper network dimensioning, or
the detection of anomalous or malicious devices are critical
but challenging problems, especially, since MVNOs only
control their own core network and are depending on functions
provided by other operators.

In this context, understanding the behavior of this hetero-
geneous fleet of IoT devices is crucial for successful network
operation. Establishing a baseline for the behavior of devices
enables operators to identify misbehaving devices and develop
accurate models of expected traffic and therefore system load.

However, the traffic generated by IoT devices differs from
conventional mobile network usage patterns [2]. These traffic
patterns, however, are crucial regarding the operation of IoT-
focused networks.

To this end, we provide a first step towards understanding
the data usage behavior of a large number of IoT devices in
mobile networks. We present a characterization of a large scale
dataset obtained at the ingress of an MVNO core network,
where we monitored the establishment and destruction events
of data tunnels in the a global 2G/3G deployment as well
as the total amount of data exchanged in both receive and
transmit direction over these tunnels. Our dataset contains
tunnel data over 30 days in October 2021 and encompasses
more than 500 000 unique devices that establish over 155
million data tunnels. We characterize the full set of observed
tunnels regarding their data volume and duration. Further, we
show that the time synchronous behavior of some devices
leads to peaks in the creation of new tunnels and introduce
an approximation for the periodicity of devices that allows
the identification of these time synchronous devices.

The remainder of this paper is structured as follows. Related
work is listed and discussed in Section II. Afterwards in
Section III the system and network used to capture the data is
introduced alongside a brief overview of the dataset itself. A
short presentation of the captured data and its characteristics
is given in Section IV. For a more detailed perspective, the
innate behavior of the GTP tunnels is further analyzed in
Section V. Afterwards, in Section VI the device behavior itself
is investigated in more detail, with a focus on periodicity of
the observed nodes. Lastly, in Section VII the observations
and studies are brought together and conclusions are drawn.

II. RELATED WORK

Related work in this area has a variety of focus points.
Classification and characterization of IoT devices and traffic
modeling are the two main fields of research, and while both
have been investigated in a number of related works, these
often lack a detailed and large scale dataset with a multitude
of MNOs and global networks, limiting their applicability to
real world scenarios.

Characterization of data plane traffic in M2M environments
is investigated in [3], [4], however the datasets used are
limited, either in scale or granularity or stem from emulated978-1-6654-0601-7/22/$31.00 © 2022 IEEE



traffic [5]. Further classification and characterization mecha-
nisms concentrate on IoT devices using Wireless Local Area
Network (WLAN) [6], [7] or on communication networks in
general [8]. Signaling traffic is investigated on a comparable
dataset in [9], however neglecting the data traffic. In [10] the
authors provide a characterization of traffic patterns obtained
from IoT networks and study the Poisson approximation
for IoT traffic. Further traffic models for IoT networks are
presented in [11] and for M2M traffic in [12]. To the best of
our knowledge, this is the first large scale dataset containing
real world data on the data usage behavior of IoT devices.

III. SYSTEM ARCHITECTURE AND DATASET DESCRIPTION

The dataset discussed in this work has been obtained by
monitoring the GTP create and delete events responsible for
managing data tunnels in 2G/3G environments. The data has
then been augmented with the total volume of data received
and transmitted in each observed tunnel. For confidentiality
reasons, specific details on the contents of the traffic are made
unavailable.

Figure 1 shows a simplified structure of the system in
which the dataset has been monitored. On the left, devices
connect to the RAN of operators all over the world from
where they perform inbound mobile roaming towards the
home network on the right. The Serving GPRS Support Node
(SGSN) and Gateway GPRS Support Node (GGSN) act as
the two central components when it comes to establishing
data tunnels. In between, dedicated signaling carriers transmit
signaling messages between visited and home networks. As
the specific signaling procedures are not instrumental to the
contributions made in this work, we will omit details at this
point. A more detailed description of the system as well as
the roaming procedures can be found in [9].

VPLMN HPLMN

DN

Carrier

MSC/VLR

SGSN

HLR AUC

GGSN

SCCP

GRX/IPX

GTP Measurement Point

Figure 1: Schematic representation of the system architecture
in which the data has been obtained.

Based on the information available at the GGSN, we obtain
an extensive dataset containing one whole month of create and
delete events as well as the total, received, and transmitted
volume of devices. Table I shows the key characteristics
of the dataset. We obtained data tunnel related events and
volume values over 30 days in October 2021. In total, we
observed over 500 000 unique devices and 150 million in-
dividual data tunnels. The dataset evaluated in this work
was obtained in close cooperation with a global MVNO and
contains information on the creation and destruction of GTP
tunnels as performed by a large fleet of IoT devices from
various verticals. The exact use cases of specific devices are

unfortunately not available. The fields included in the dataset
are briefly summarized in Table II.

The endpoint_id is a unique, anonymized identifier that
allows the tracking of a single device over the total trace
duration. time_create and time_delete provide timestamps for
the creation and destruction of tunnels. The precision of these
timestamps is one second. Hence, there exist a number of
tunnels with duration 0, meaning that the duration was lower
than one second (cf. Figure 6). The volume simply describes
the amount of payload data that was sent and transmitted
during the duration of the respective data tunnel in Megabyte.

Table I: Key characteristics of the dataset.

Scope
Timeframe 1. Oct. to 31. Oct. 2021
No. of Unique Devices > 500 000
No. of Data Tunnels > 150 000 000

Key Parameters
Mean Std. Median

Tunnel Duration [s] 4183 32139 66
Tunnel Volume [MB] 0.2 51.3 0.0012
Tunnel TX [MB] 0.054 7.27 0.0006
Tunnel RX [MB] 0.146 50.1 0.0004

Table II: Fields contained in the dataset.

Datafield Description Format
endpoint_id Anonymized identifier for specific devices.

One device keeps the same identifier over the
whole trace duration

string

time_create Timestamp for tunnel creation in seconds datetime
time_delete Timestamp for tunnel destruction in seconds datetime
duration Tunnel duration in seconds numeric
volume Total transmitted data volume (RX + TX) in

Megabyte
numeric

volume_rx Received data volume in Megabyte numeric
volume_tx Transmitted data volume in Megabyte numeric

In this work, we examine the duration and volume of tunnels
in both upstream and downstream directions. The table shows
the mean, standard deviation and median for each of the
parameters. The values immediately show the large range of
values for all four metrics with coefficients of variation of
up to 343 for the received volume. Further, in all cases the
median is significantly smaller than the mean, highlighting the
existence of extreme outliers on the high end. Interestingly,
the mean suggests that devices, receive more data than they
transmit. However, the median suggests otherwise. This is
further investigated in Section V.

Note that due to the large number of devices present in the
system over the monitoring duration and due to confidentiality
reasons, we only provide a sample of 500 000 devices. We
believe, however, that even the reduced dataset is of great
value to the community. Hence, we provide a subset of the data
discussed in this paper to interested researchers. The dataset
is provided as open access via the Zenodo platform and can
be downloaded from there [13].
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Figure 2: Number of active GTP tunnels over time.
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Figure 3: ECDF of total data volume (RX + TX) transmitted
over GTP tunnels.
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Figure 4: ECDF of ratio RX/Volume and TX/Volume over
GTP tunnels.

IV. DATASET OVERVIEW

To analyze the behavior of devices and GTP tunnels, the
dataset is investigated on a general level in this section. Firstly,
the amount of opened tunnels throughout the observed time-
span is looked into, and their behavior over the recorded days
is described.

Figure 2 illustrates the number of active tunnels over the
time in hours during the month of October, with the number
of active GTP tunnels in 100 000 on the y-axis. The peaks
presented by the figure indicate the individual days. Weekdays,
Monday to Friday, exhibit a larger number of active tunnels
than Saturday and Sunday. Furthermore, the midday peaks are
indicative of a day-night cycle in the device behavior.

To further investigate the data usage of the devices, the Em-
pirical Cumulative Distribution Function (ECDF) of the total
data volume of all tunnels is shown in Figure 3. As indicated
by the red line 50% of all tunnels report a data volume of
less than 0.0014MB. Additionally, the 90%-quantile of GTP

tunnels exhibits 0.548MB of rx- and tx-data volume usage.
The mean over all tunnels is at 0.023MB.

A more detailed look into the volume and the influence
of RX and TX on its composition is given in Figure 4 as
a ECDF of the RX and TX percentage of the total volume
over all tunnels. The blue line represents the downlink traffic
and the red line the uplink. As anticipated all tunnels exhibit
more uplink traffic than downlink, with 50% of all tunnels
contributing 39.48% for downlink and 60.52% for uplink of
the total volume.

V. TUNNEL CHARACTERISTICS

To fully understand the GTP tunnel characteristics recorded
within the dataset, a close look into distinctive features ex-
hibited by the tunnels is taken. To begin, the tunnel duration
is analyzed and used to classify the connections into repre-
sentative groups. Figure 5 depicts the ECDF of how long a
GTP tunnel was open in seconds. The tunnel duration ranges
from 0 s up to 2 656 966 s, with the x-axis of the Figure being
limited to 25 000 s for readability. The 50%-quantile is at 66 s
and the 90%-quantile at 3637 s. The results are significantly
different than GTP tunnel durations of human and machine
generated traffic from a mobile operator, e.g., 90%-quantile at
11 094 s, see [14]. The majority of the tunnels contained in our
dataset are thus open for less than an hour. These key data-
points are used to classify the tunnels into four color-coded
classes:

Class 0 Tunnels opened for less than 1 s in red.
Class Q50 Tunnels open between 1 s and 66 s in blue.
Class Q90 Tunnels open between 67 s and 3637 s in yellow.
Class Q100 Tunnels opened for longer than 3637 s in green.

Class 0 is left out of the annotation in Figure 5 to maintain a
more reader-friendly picture.

For a more in-depth investigation of the different classes
Figure 6 illustrates the ECDF of the total data volume (solid
line), the RX data volume (dotted) and the TX data volume
(dashed) in MB for each of the classes, color-coded as
described above. Class 0 (red) is the only class that exhibits
more RX volume than TX for 50% of the tunnels. When it
comes to overall volume, the classes act according to their
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Figure 5: ECDF of the duration of GTP tunnels, with subdi-
vision into classes
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Figure 6: ECDF of total data volume, RX and TX transmitted
over GTP tunnels per duration class.

tunnel duration, exhibiting higher overall volume with larger
tunnel durations. The Q50 and Q90 classes show comparable
data volume values. Both these classes being relatively close
together in their tunnel durations compared to the outliers of
the Q100 class, this further collaborates the aforementioned
correlation.

Lastly, the GTP tunnels are examined in regard to their
synchronicity. To this end, the messages responsible for open-
ing up a data connection are further analyzed. Investigating
whether or not devices tend to open up GTP connections in
a synchronized, and therefore bursty, manner is crucial for a
deeper understanding of the system as a whole.

In Figure 7 the density function of the probability that a
GTP tunnel is created at a specific minute within any hour is
depicted. To this end, the probability that a PTP CREATE is
send at a specific minute is calculated and normalized. The
x-axis displays the minutes within an hour and the y-axis
the probability density. The dotted vertical lines are drawn
to visualize every 15min.

Figure 7a shows this metric over every tunnel within the
dataset. The illustration shows a significant peak at the start
of every hour, implying that devices will create tunnels in a
bursty manner, and smaller peaks at every 15min after that.
Furthermore, this implies that the devices are synchronized and
the interarrival times of their tunnel creation messages are not
negative exponentially distributed. Non-synchronized devices
exhibit memorylessness as described by the characteristics
of a Poisson process and will therefore, present uniformly
distributed interarrival times.

This behavior is further analyzed in Figure 7b. The tunnel
creation probability density is drawn for each of the duration
classes defined above and color-coded accordingly. All of the
classes show the distinctive peak at the start of every hour
followed by minor peaks occurring in what appears to be
a 15min interval. Class 0 exhibits a somewhat larger peak
right before the 45min mark, but the smaller amount of
tunnels within this class, dampen it’s effect on the overall
density. It can be stated however, that the tunnel duration
has no effect on the seemingly synchronized behavior shown
within the observed data.
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(a) Density function of PDP CREATE dialogues for the probabil-
ity that tunnels are opened at a specific minute within any hour
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(b) Density function of PDP CREATE dialogues for the probabil-
ity that tunnels are opened at a specific minute within any hour
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Figure 7: Tunnel creation probability density per minute within
any hour, gathered from the probability of a PTP CREATE.

VI. TIME SYNCHRONOUS DEVICE BEHAVIOR

In this section, the device behavior is analyzed in more
detail. To this end, a metric to approximate the periodicity of
nodes in large datasets is introduced in Subsection VI-A. After
establishing a working framework to investigate if devices are
synchronized, the same approach is applied to the dataset and
used to evaluate the device behavior in Subsection VI-B.

A. Degree of Periodicity in Large Datasets

In datasets like the one examined in this work, the compu-
tation of device periodicity is a complex task, as large parts
of the analysis is done in Apache Spark to handle the number
of data points. Due to the technical properties of the applied
map-reduce mechanisms, the computation of e.g. the auto-
correlation is not efficiently possible using frameworks like
Apache Spark. The same is true for other approaches based
on transform methods of the time series data like periodicity
transform [15] searching the best periodic characterization
in the dataset. The approaches in [16], [17] require Fourier
transform and autocorrelation computation. [18] provides a
mechanisms for periodicity detection based on convolution.
[19] provides a method for detecting transmission periodicity
for IoT data based on histograms and a threshold of the
standard deviation of the histogram.



In this paper, we introduce a simple measure of the pe-
riodicity of time series based on histograms that can be
efficiently computed in map-reduce environments. The degree
of periodicity a∗ is defined as the probability of the mode of
the interarrival times (IATs) of a time series. Formally, A is
a discrete random variable (RV) reflecting the IATs of a time
series with distribution a(k) = P (A = k) for k = 0, 1, . . . .
The mode m is the value that is most likely to occur. Then,

a∗ = a(m) = P (A = m) with m = argmax
k

a(k) . (1)

The assumption is that a∗ is sufficient to approximate the
periodicity of the underlying time series. Thereby, a value of
a∗ = 1 describes a perfectly periodic time series with only a
single occurring IAT. The minimal value is assumed for a time
series with uniformly distributed IATs which is a∗ = 1

n for
a time series of n+1 time stamps and n IATs. Note that we
may normalize a∗ accordingly: â = a∗−1/n

1−1/n . This is however
negligible for large datasets as in our case.

To show the validity of the assumption, we calculate a∗

for different time series and show that its highly correlated to
the Jensen-Shannon-Divergence (JSD) DJS when comparing
A to the IAT distribution S of a perfectly periodic time series
with period m. Then, S is deterministic with s(m) = 1 and
s(k) = 0 for k ̸= m.

To this end, we introduce both the JSD as well as the
Kullback-Leibler-Divergence (KLD) which the latter is based
on. Both provide measures of similarity between two proba-
bility distributions. The KLD is defined as

DKL(P,Q) =

∞∑
k=0

p(k) · log2
(
p(k)

q(k)

)
, (2)

whereas P and Q are discrete RVs with probability mass
functions p(k) and q(k), respectively. log2 is the base 2 loga-
rithm. Hence, DKL describes the weighted sum of logarithmic
differences between P and Q. Based on that, the JSD for two
probability distributions is defined as

DJS(P,Q) =
1

2
DKL(P,M) +

1

2
DKL(Q,M) (3)

with M = 1
2 (P +Q). The advantage of DJS over DKL is

that the JSD is both symmetrical and bounded as 0 ≤ DJS ≤ 1
holds true for all P and Q. For easier comparability, we define

D(P,Q) = 1−DJS(P,Q) . (4)

From here, we now calculate D(S,A) for different distri-
butions of A. With S being defined as mentioned above and
after some algebraic transformations, DJS can be simplified
with the probability a∗ of the mode:

DJS(S,A) = 1+
1

2
(a∗ log a∗ − (1 + a∗) log(a∗ + 1)) . (5)

Hence, D(S,A) is only depending on a∗ and we can simply
calculate it for various values of a∗. Figure 8 shows the result-
ing D(S,A) values against a∗. The values result in a Spearman
correlation of 0.98, indicating the close approximation of our
proposed a∗ metric.
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Figure 8: Comparison of a∗ and D(S,A).
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Figure 9: ECDF over a∗ for all 368 787 devices with at least
10 observed tunnels.

B. Identification of Periodic Devices

We now compute a∗ for the interarrival times observed for
data tunnels in our dataset. Figure 9 shows the CDF over
all values obtained for devices with at least 10 tunnels that
have been observed over the monitoring period of 30 days.
These include 368 787 devices or about 73% of the total
population. The remaining 27% of devices are, due to their
low activity, only responsible for 0.3% of data tunnels and are
hence neglected to investigate further. Instead these devices
are considered non-periodic.

The figure shows a clear cutoff point at a∗ = 0.1. Based
on this, in combination with the results already obtained for
comparable data of IoT devices in [9], we assume devices
with a∗ values higher than the cutoff point to be periodic.
Remember that the a∗ value describes the relative frequency
of the interarrival time observed most often for a respective
device. Hence, a∗ = 0.1 means that 10% of the observed
interarrival times fall on the same value.

Finally, Figure 10 shows two exemplary devices drawn from
the dataset that exhibit a large a∗ value of 0.89 and a small
value of 0.01, respectively. We show a zoomed in version of
the first 10 minutes of the time series for each of the devices.
Thereby, the figure shows an on-off-phase diagram in which
active tunnels are indicated by on phases. Hence, tunnels of
longer duration are shown as wider bars in the plot.

The non-periodic device shown on the top exhibits very
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Figure 10: Time series of data tunnel activity for the first 10
minutes of two example devices from both classes with a∗

values of 0.01 (non-periodic) and 0.89 (periodic)

irregular behavior with tunnel creation events having uneven
spacing. In addition, the duration of tunnels varies significantly
over the shown 10 minute period.

The periodic device shown in the bottom half of the figure,
as opposed to before, behaves very regularly with evenly
spaced tunnel creation events that show a constant interarrival
time of 10 minutes. Similarly, the tunnel duration is alike for
all tunnels observed in the 10 minute period. Closer inspection
shows that the device deviates from an a∗ metric of 1 as it
starts to miss single intervals, leading to interarrival times of
20 minutes, hence reducing the degree of periodicity.

VII. CONCLUSION

In this work, we present a large scale dataset containing data
usage information of over 500 000 IoT devices. We provide an
overview of the key characteristics contained in the dataset
and establish basic facts on the behavior of devices. We
show the existence of a day-night cycle as well as weekend-
workday differences over the full duration of the dataset.
We have shown that it is possible to classify GTP tunnels
by means of their duration. These classes have been further
investigated and we have shown a correlation between the
tunnel duration and the transmitted data volume. Furthermore,
we have shown that tunnels are created in a synchronized
manner, regardless of the tunnel duration. This behavior has
been observed throughout all classes and leads to load spikes
at specific time intervals. Specifically, devices tend to create
new tunnels at every full hour and in 15 minute intervals. In
order to identify these devices, we introduce an approximation
of device periodicity that can be efficiently computed using
Apache Spark or other map-reduce applications. We show that
our approach is able to differentiate two classes of devices,
periodic and non-periodic. This work provides a first insight
into the data usage behavior of IoT devices. However, the
numerous insights through detailed analysis of the included
dataset are far from exhausted and remain for future work.
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