An AAL-Oriented Measurement-based Evaluation of
Different HTTP-based Data Transport Protocols

Thomas Zinner*, Stefan Geissler*, Fabian Helmschrott* Susanna Spinsantei, An Braeken?
*Institute of Computer Science, University of Wiirzburg, Am Hubland, 97074 Wiirzburg, Germany
Email: {zinner|stefan.geissler|fabian.helmschrott} @informatik.uni-wuerzburg.de
1 Universita Politecnica delle Marche, Ancona, Italy
Email: s.spinsante @univpm.it
§ Vrije Universiteit Brussl, INDI, Brussels, Belgium
Email: an.bracken@vub.ac.be

Abstract—A key requirement for Active and Assisted Living
(AAL) environments is the exchange of data between different
communication endpoints to support wide range of services and
applications. Used communication protocols need to support
the bidirectional flow of information and have to be optimized
with regard to security or latency constraints. To address these
issues, RESTful approaches have recently gained much attention
from the community. In this context, different application layer
transport protocols can be used to realize the required data
exchange. Besides HTTP/1.1, developed and standardized in
the 1990s, new protocols like HTTP/2 and the QUIC transfer
protocol my be suitable candidates. The impact of the different
protocols on the overall performance for web and AAL services
is still an open research question. This paper narrows this gap
by conducting a measurement-based comparison of the three
described protocols with regard to their performance in terms of
web page loading times for Google web services.

Keywords—AAL;ELE; QUIC; HTTP;Measurements; RESTful;

I. INTRODUCTION

Active and Assisted Living (AAL), as well as Enhanced
Living Environments (ELE), deal with a huge variety of data
types, among which, in a coarse classification, the following
ones can be mentioned: behavioral (or habits-related) data [1],
[2], physiological data [3], [4], environmental (or ambient-
related) data [5], [6], and healthcare data [7], [8]. Data are both
produced by sensors implemented in AAL and ELE systems,
and consumed by the same systems, to support services and
applications; it is possible to state that AAL and ELE systems
act as data prosumers. As a consequence, data communication
and exchange protocols play a very fundamental role in AAL
and ELE platforms, and it is necessary to analyze the per-
formance different protocols may provide, with respect to the
requirements posed by the systems and services adopting them.
In safety-related applications, such as fall detection systems
[9] or systems monitoring anomalous escapes of subjects
with dementia [10], an almost real-time delivery of the alarm
notification to the final receivers (i.e. rescue operators, nurses,
caregivers) is required to effectively support the monitoring
service. On the other hand, applications focused on long-term
monitoring, like behavioral analysis [11], require the collection
of large amounts of data. To allow the reliable and efficient
transmission of sensor data, modern application layer transfer
protocols are required.

The data variety mentioned above, the volume of data that

AAL or ELE platforms are able to collect from sensors, and the
data transmission velocity requested by AAL and ELE systems,
with some services expected to be delivered in real-time
(like emergency notifications), make AAL and ELE domains
requirements very similar to those associated to the Big Data
and Internet of Things (IoT) paradigms. At the same time,
however, AAL exhibits specific requirements and constraints
that shall be carefully accounted for, when adopting an IoT-
oriented design approach. Data handling and management in
AAL require a review of some commonly adopted strategies in
IoT, with respect to processing (that can be locally or remotely
executed), delivery format (raw data can be transmitted, or
aggregated information generated by their processing), and
sharing options (privacy and security concerns related to the
use of personal and health-related data). As an example,
research [12] demonstrated that to increase the compliance
with, and the success of a therapy, it is necessary to proactively
send reminders and feedback to the patient, according to the
so-called Closed Loop Principle. Communication protocols
for AAL shall consequently support bidirectional flows of
information. They shall be optimized to trade-off lifetime,
security level, and pre-processing of the data from the sensors.
In fact, latency possibly due to pre-processing and security
operations applied to the raw data generated by clinical sensors
may become unacceptable in applications where monitored
physiological signals are needed [13].

Many AAL and ELE architectures and platforms proposed
in the literature and prototyped in research projects rely on
the HTTP-based Representational State Transfer (REST)-based
APIs [14]-[16]. In fact, REST has gained much attention from
the community as a lighter technology compared to SOAP-
based web services. RESTful web services promote a resource-
centric conceptualization, even if the dynamic discovery and
eventing of RESTful services are yet considered a major hurdle
to a full potential use of REST-based approaches.

In this context, different transport protocols can be used to
realize the communication between AAL and ELE devices and
their respective RESTful web service endpoints. First, there is
the widely used HTTP/1.1 protocol that represents the current
defacto standard. Developed and standardized in the 1990s,
the original use case of delivering simple, text based websites
has changed drastically. In order to overcome the drawbacks
of HTTP/1.1 (e.g. head-of-line-blocking, single file requests),
HTTP/2 has been released in 2015. Although the new version

improved the performance of the HTTP protocol in many
ways, one of the main drawbacks still remains. Especially in
the IoT context, the TCP handshake required to establish a
HTTP connection reduces the performance drastically when it
comes to small and frequent requests. This problem is finally
tackled by the QUIC transfer protocol developed by Google
[17]. In contrast to HTTP, QUIC uses UDP as its underlying
transport protocol and realizes packet retransmission on appli-
cation layer. This results in much faster connection setup times
and thus improved performance.

This paper aims to compare the three described pro-
tocols, HTTP/1.1, HTTP/2 and QUIC with regard to their
performance. Since QUIC is an experimental, non-standardized
protocol, its most recent versions is not freely available. To
be able to conduct comparable measurements of the latest
protocol versions we evaluate the transmission performance
of each of the protocols using Google web services. This
allows a direct comparison of the protocol performance with
respect to various metrics like connection setup time or page
load time. Evaluation of these metrics allows to contextualize
the performance of the protocols to AAL and ELEs. In fact,
connection setup time is a critical parameter when dealing with
the fast connection establishment needed to deliver alarms and
emergency notifications in AAL. Similarly, page load time may
be used as an indication of the responsiveness of HTTP-based
user interfaces that are typically used in AAL platforms, to
enable human-system interaction. Consequently, we can use
the results to evaluate the potential of each of these protocols
for different use cases and can thus assess whether QUIC or
HTTP/2 might be suitable candidates in the AAL context.

The remainder of this paper is organized as follows: Section
I presents the related work and background, and a perfor-
mance comparison of HTTP-based Transport Protocols. The
evaluation methodology adopted in this paper is discussed in
Section III, and the related experimental results are presented
in Section IV. Concluding remarks are provided in Section V.

II. BACKGROUND AND RELATED WORK
A. HTTP-based Network Protocols

HTTP is an application level request/response protocol
running on top of TCP [18]. The first formal standardization
of HTTP was HTTP/1.1, which was released in January 1997
as RFC 2086 [19]. Common drawbacks of HTTP/1.1 are the
sequential request/response exchange and the resulting head
of line blocking on application layer, which negatively affect
web page loading times. In mid-2009, Google announced
their new experimental protocol called SPDY, which should
solve some well-known HTTP/1.1 performance issues and
therefore improve the web delivery latency. HTTP/2, which is
based on SPDY and profits from the lessons learned during
the design and operation of this protocol was standardized
in May 2015 [20]. It overcomes the outlined head of line
blocking on application level by dynamically multiplexing
requests on one TCP connections. Besides the standardized
protocols, Google designed an experimental protocol, QUIC
based on UDP. It provides a couple of new features like
faster connection establishment, connection migration, flexible
congestion control and a support of cryptographic mechanisms
by design.

HTTP/1.1 HTTP/2 QUIC

HTTP
SPDY

Quic

Application

Transport TCP

ubP

Internet IP (IPv4 / IPv6)

Host-to-
Network

Ethernet

Fig. 1: Protocols Assigned to the Network Stack

In order to illustrate the fundamental difference between
the protocols, Figure 1 shows their assignment to the network
stack. As can be seen, HTTP/x are pure application layer
protocols while QUIC is also partly located at transport layer.
The main difference, is the particular underlying transport
protocol.

Despite the obvious architectural differences, there are
also different approaches in supporting a fast data transport,
connection establishment, and encryption. HTTP/1.1 intro-
duces keepalive connections, allowing to reuse already existing
connections and hence to benefit from the properties of TCP.
To further take advantage of the TCP connection, HTTP/2 in-
troduced its binary framing layer which enables the possibility
of multiplexing several streams over the same TCP tunnel.
Even though QUIC is built on top of UDP, it uses stream
multiplexing over a single connection just like HTTP/2.

HTTP/1.1 request pipelining was meant to allow multiple
requests sent to the server simultaneously, however, it was
never supported. Browser developers addressed this by opening
up to six different TCP connections per origin. HTTP/2 got
rid of the one request at a time constraint and introduced the
concept of stream multiplexing over one connection. Hence,
the browser can request multiple files simultaneously without
the need of additional TCP connections. This multiplexing
mechanism was also adopted by QUIC.

The main limiting factor concerning web latency is the
Round Trip Time (RTT), thus it is desirable to reduce the
required RTTs as much as possible. With the introduction of
keepalive connections as default, HTTP/1.1 was able to get rid
of additional RTTs caused by the constant re-establishment
of TCP connections after file transfers. In order to further
reduce the needed RTTs, web developers used tricks like
resource inlining, image sprites or domain sharding as men-
tioned before. With the multiplexing, HTTP/2 did not only
improve the keepalive concept, but also got rid of additional
TCP connections, which also introduced additional RTTs.
Beside the stream multiplexing, QUIC introduces two other
mechanisms which help to reduce RTTs: its ORTT connection
establishment and its connection migration. With the ORTT
connection establishment QUIC provides the ability to open an
encrypted connection in at most one RTT instead of 3 RTTs
when using TCP with TLS. QUIC’s connection migration helps
to re-establish a connection to an already known server faster,
so that the client can request new files immediately without
having to wait for the client-server handshake.

This is quite common case in AAL and ELEs, where
devices and sensors typically communicate with the same
server (usually a single server is used for an AAL system),
that can be local to the AAL platform or remotely connected.

B. Performance Comparison of HITP-based Transport Proto-
cols

In 2013, a first comparison between QUIC and HTTP/1.1
was performed [21]. The evaluations are based on a 10 MB
file download for different packet loss, bandwidth, and RTT
configurations. During the experiments, HTTP/1.1 performed
better than QUIC. This is mainly due to missing optimizations
in the early stage of the QUIC protocols at this time, and the
missing TLS integration for the HTTP/1.1 experiments.

The author of [22] picked up on the results of [21] in
2014. He repeats the measurements in order to investigate the
improvement of QUIC by comparing the results of the different
versions. Additionally, the runs are also performed using
HTTPS. In case of packet loss, the newer QUIC version clearly
prevails against HTTP/1.1 and HTTPS regarding goodput.
Looking at the increasing RTT measurements, QUIC is able
to improve its performance on low latency links yielding in a
result equal to HTTP. However, RTTs higher than 200 ms still
have a huge negative influence on QUIC’s goodput. Beside
these comparisons, the author also evaluates the multiplexing
mechanism of QUIC by requesting 10 files of 100 KB each
over a single connection. In order to compare QUIC with
HTTP/1.1 and HTTPS in this scenario, they are limited to
a single connection. Experiments with the multiplexing mech-
anisms reveal that the goodput of QUIC continues to grow
with available bandwidth, while the goodput of HTTP/1.1 and
HTTPS is capped due to the fact that they cannot request
more than one file at a time. When experiencing jitter on
packet delays, QUIC is highly negatively affected by even
small values like 0.5 ms standard deviation to the normal RTT.

In [23], the author compares the performance of QUIC,
SPDY, and HTTP/1.1 using web page emulation. The evalu-
ation of the mean page load time of all scenarios shows that
SPDY performs almost always better than HTTP/1.1. On links
with low bandwidths QUIC preveals over HTTP/1.1 due to
its multiplexing and compression features. Altogether, it can
be seen that QUIC improves as the RTT increases and for
RTTs higher than 210 ms QUIC clearly outperforms HTTP/1.1.
Nevertheless, HTTP/1.1 performs better than QUIC on low-
RTT links with high bandwidth.

The performance of QUIC on transport and on application
level is investigated by the authors of [24]. On transport level,
QUIC’s flow dynamics as well as the friendliness of QUIC’s
and TCP’s congestion control algorithms are evaluated. In
order to investigate the flow dynamics, the authors look at
the impact of the link capacity, random losses, and enabled
FEC on the channel utilization. Beside QUIC with and without
FEC, the measurements are also performed using TCP. It turns
out that the overhead introduced by FEC worsens the overall
performance of QUIC. Further, for 1% as well as for 2%
induced losses, the TCP goodput is significantly reduced, while
the QUIC link utilization is not. A performance evaluation
on application level is done by measuring the page load time
of websites using QUIC, SPDY over TLS, and HTTPS. The

measurements are performed for a small, a medium, and a
large web page containing only images on a 3Mbps and a
10 Mbps link, each experiencing 0 % and 2 % random losses
while having a RTT of 50 ms. The authors observe that during
the measurements, HTTPS opens six parallel TCP connec-
tions, SPDY opens one TCP connection multiplexing as many
streams as needed to request all resources simultaneously, and
QUIC opens one UDP connection multiplexing six streams.
As metric, the percentage page load time improvement with
respect to HTTPS is chosen. For the scenarios without losses,
both SPDY and QUIC outperform HTTPS. Further, SPDY
outperforms QUIC on the 10 Mbps link for large web pages.
When inducing 2 % random losses, the use of SPDY always
increases the page load time regardless of bandwidth and web
page size. Additionally, QUIC outperforms SPDY on lossy
links.

The authors of [25] examine the effects of HTTP/1.1,
SPDY and QUIC on page load time. To this aim, they deploy
four simple websites on Google Sites, a web hosting service by
Google. The authors conclude that page load time is decreased
significantly in more than 40 % of the scenarios when using
QUIC. Especially on links with high RTT, QUIC seems to help
the most, while it does not perform well when downloading
a large amount of data. Nevertheless, HTTP/1.1 performs best
for downloading large objects.

Altogether it can be said, that several aspects regarding the
performance of QUIC have been evaluated including several
metrics on transport and application level. This paper enhances
the state of the art by investigating the network transport
delay for real world deployments of these protocols using
Google web services. Further, our evaluations include a close
look on the impact of QUICS ORTT connection establishment
mechanism.

III. EVALUATION METHODOLOGY

This section highlights the implemented tools, the utilized
metrics and the measurement setup and the corresponding
course of events.

A. Browser Plugin

In order to evaluate the performance of web browsing
on application layer, we developed a plugin for the Google
Chrome browser. Since the browser itself already provides
extensive network logging and debugging capabilities, the
plugin can simply hook into the logging process by listening to
event calls provided by the browser engine. The functionality
and components of the plugin are described in the following.

The plugin uses the network analysis tool provided by
Google Chrome DevTools' in order to measure resource load-
ing times during a website request. Furthermore, the DevTools
allow the export of a JSON log containing all requests and
corresponding responses. In addition, the Navigation Timing
API? enables measurements of different latencies during the
website loading process based on browser events. The fi-
nal timestamp collected by the plugin is provided by the
browser function window.chrome.loadTimes () which

"https://developers.google.com/web/tools/chrome-devtools/
Zhttps://www.w3.org/TR/navigation-timing/

Google
Etherng m

Ja——
[\]
—J

Client NetEM C&'/\/\)/Google services

Fig. 2: Measurement Setup

represents the time at which the browser renders the first
object. Finally, the plugin uses the net-internals tool built into
Google Chrome in order to export the gathered data in JSSON
format for further processing.

B. Evaluation Metrics

A key metric regarding the performance of transfer proto-
cols in the AAL context is the Request Response Delay (RRP).
It measures the time between a request is sent and the client
receives the corresponding response. As the data volume that
needs to be transferred in most AAL scenarios are small, the
key factor influencing the RRP is the initial connection setup
time.

By measuring productive Google web services we rely on
the monitoring information provided by the browser plugin
mentioned above. The corresponding metrics available for
regular web site requests are i.e Page Load Time (PLT), Time
to First Paint (TTFP) or DOM Content Loaded (DOM CL). In
this paper, we focus on the evaluation of the PLT as it provides
a solid indication for the delay between request and response
during a web site request. The PLT is defined by the two
browser events navigationStart and loadEventEnd,
which represent the time at which the request is sent and the
page is fully loaded and presented to the user respectively. The
PLT, and especially the perceived PLT, has a relevant effect
on users [26]. As web and app design optimization pushes
the limits of fast and responsive service and content delivery,
milliseconds can make a huge difference on the perceived
responsiveness of a web or mobile application. In the AAL
context, responsiveness is a crucial performance indicator for
ensuring the usability of a web-based service. It is fundamental
for the deployed application level transfer protocol to minimize
transmission delays and thus increase the quality of service.

In addition to that, we calculate the Speedup in order to
compare the performance of different protocols. The speedup
thereby is defined as the ratio of the average page load times
for different protocols.

C. Measurement Setup and Course of Events

The measurements performed in the context of this work
have been done in a dedicated testbed comprised of two
phyiscal machines that are directly connected to the internet.
The measurement setup is depicted in Figure 2.

The middle machine, labeled NetEM, is running the Net-
work Emulator Kernel module and shapes passing network
traffic using the tc tool. This machine is responsible for
introducing additional delay, packet loss and limit the available
bandwidth according to the respective measurement scenario.

Parameter Used Values
Bandwidth (Mbps) {2, 6, 16}
Additional RTT (ms) {20, 100, 200}
Random Packet Loss (%) {0, 1, 2}

ORTT CE of QUIC {with, without}

TABLE I: Evaluation Parameters

The evaluated influence factors and the used values for each
of the parameters are listed in Table I.

The Client machine on the left is running the Google
Chrome browser with our plugin. It generates the website
requests, monitors responses and extracts and stores relevant
metric data.

The measurement workflow itself is comprised of two
essential steps. First, the respective network parameters are
configured using network emulation via tc. This enables the
simulation of different network characteristics which influence
the performance of the evaluated network protocols.

Second, the client machine requests a set of Google web
services and measures the respective metric values mentioned
in the previous section. The services used in this measurement
step are the Google front page with averagely 212 KB, Google
Drive with averagely 812 KB and Youtube with an average
size of 1206 KB. Each of these services is queried 20 times
for each parameter combination and each of the protocols
HTTP/1.1, HTTP/2, QUIC and QUIC ORTT CE. Important
to note is that the measurements for each protocol are done in
an alternating manner. After two consecutive website requests
the used protocol is changed. This results in a spread of
the measurement points in time. Thus, the impact of varying
network and web service behavior, which cannot be controlled
or quantified, is distributed allover the different protocols thus
allowing a fair comparison.

This measurement workflow results in a dataset consisting
of about 2000 measurements in total. The data is evaluated in
detail in the following section.

IV. EVALUATION OF PAGE LOAD TIMES FOR WEB
BROWSING

Firstly, we highlight the main effects of the investigated
parameters and protocols on the page load times (PLT).

The influence two parameters may have due to an inter-
action is denoted as interaction effect. These effects provide
a first indication for the actual measured influence of the
parameters. The used results are the mean value over all
measured repetitions for the particular parameter combination.
Furthermore, the shown 90 % confidence intervals are calcu-
lated using the 7-distribution.

The main effects plot for all investigated parameters and
protocols can be seen in Figure 3. The packet loss scenarios
have no significant impact on the page loading time and have
thus not been included in this figure.

The first main effect to be evaluated is the RTT. An increase
of this parameter results in an increase of the PLT. Even though
the confidence intervals for 20 ms and 100 ms overlap, there is

15 — 20 g
10 — 100 =
5 = 0
n/'/l '\|:| = 7
8
15 — 2 =
i /!/l 4 = o 2
R =< R AN s = S
: &
215 — S 2
S B
5 10 —M 8
= 5 % ~ // I:t:i:l L =
15 -1 5
— 2 o
10 | | | 3 8
5 ./n/ \‘E / I_H\l M T

20 100 200 2 6 6 S M L 1 2 3 4

RTT (ms) Bandwidth (Mbps) Website Protocol

Fig. 3: Effects of Parameters on PLT for all Protocols.
(1) HTTP/1 (2) HTTP/2 (3) QUIC (4) QUIC /w ORTT

no overlapping between 20 ms and 200 ms, nor between 100 ms
and 200ms. Hence, the RTT is definitely a major influence
factor. For increasing bandwidth, the values again decrease,
even though the reduction from 2Mbps to 6 Mbps is bigger
than from 6 Mbps to 16 Mbps. Also, the confidence intervals
for 6 Mbps and 16 Mbps overlap. Therefore, an indication for
the influence of the bandwidth is existent, however a clear
statement can only be made for the change from 2 Mbps to a
higher bandwidth. Considering the size of the web pages, it
can clearly be seen that the trend follows the expectations and
the previous separate evaluations. There is no overlapping of
any of the confidence intervals. This clearly shows the major
impact of the website size on the page load time. The last
main effect is the influence of the individual protocols. Here,
HTTP/1.1 has the highest average PLT, followed by HTTP/2
and QUIC without its ORTT connection establishment. The
protocol with the lowest value is QUIC using its fast estab-
lishment mechanism. As can be seen, the confidence intervals
for all protocols overlap among each other. Due to this, a clear
statement about the influence of the protocol on the PLT cannot
be made. Nevertheless, the visible trend indicates the possible
advantage of QUIC and its ORTT connection establishment.
Furthermore, the figure indicates that the interaction of the
website size and the RTT has a real effect on the PLT for all
protocols. Besides, the interaction of the website size and the
bandwidth is noticeable.

The jump from 2Mbps to 6 Mbps results in a significant
reduction of the PLT, while the further increment to 16 Mbps
only yields a small gain. This indicates that for 6 Mbps, the
initial connection setup time is already the limiting factor when
it comes to the PLT. Hence, in the following evaluation, we will
only focus the first two bandwidth configurations. Since the
particular PLT depends on the size of the website, its speedup
with regard to the result of HTTP/1.1 is used for the rest of
this evaluation, in order to assess the performance of the other
protocols. Table II shows the speedups for all RTT scenarios
and 2 Mbps bandwidth. The listed values are the results for the
Google main page, Google Drive and YouTube, since these are
the representatives chosen for the previous main effect evalua-

TABLE II: PLT Speedup Compared to HTTP/1.1 for 2 Mbps
Bandwidth

2 Mbps
20ms RTT 50ms RTT 100ms RTT 200 ms RTT
Google Main Page
HTTP/2 3.26 % 3.36 % 12.98 % 3.10%
QUIC w/o ORTT CE —2.24% 1.55% —3.60% 14.54 %
QUIC w/ ORTT CE 9.92% 12.86 % 56.18 % 41.11%
Google Drive
HTTP/2 —1.88% 2.55% 9.23 % 1.79 %
QUIC w/o ORTT CE —1.31% 16.12% 18.99 % 43.56 %
QUIC w/ ORTT CE 1.88% 18.18 % 19.83% 39.74 %
YouTube
HTTP/2 5.22 % —2.49% —3.47 % 14.96 %
QUIC w/o ORTT CE —1.54% —15.82% 2.85% 31.25%
QUIC w/ ORTT CE 14.97 % 6.30 % 25.26 % 73.52 %

tion. Looking at the table, some clear trends are emerging. One
of these trends is, that QUIC with ORTT CE always performs
better than HTTP/2 for 2 Mbps bandwidth and regardless of the
RTT. Further, it also performs best for the PLT metric in these
scenarios except for Google Drive when experiencing 200 ms
RTT. In this particular case, QUIC without ORTT CE performs
better. A closer look at the measured data revealed, that 65 %
of the page loads performed with the ORTT CE are faster than
QUIC without the mechanism. However, page requests that
take longer than 6.906s to complete end up with a significant
longer PLT, while the page loadings using QUIC without ORTT
CE do not perceive such a deterioration. Due to this, QUIC
without ORTT CE has a higher speedup for PLT with regard
to HTTP/1.1 in this scenario. Another observable trend is that
with increasing RTT, QUIC with ORTT CE performs better.
This behavior was expected, since the main effect evaluation
indicated the influence of the RTTs, but also because the ORTT
CE of QUIC is thought to be the main performance boost. This
mechanism eliminates the RTTs required for the connection
establishment and should therefore give QUIC an advantage of
three RTTs compared to HTTP. The determined trends can also
be seen in Table III, which shows the corresponding speedup
values for the 6 Mbps scenarios. There, QUIC with ORTT CE
is always faster than HTTP/2 regardless of the RTT, as well.
Consequently, it also performs best for PLT considering these
parameter combinations. Further, the performance gain of it
tends to increase with growing RTT, too. When looking at the
results of the remaining measurements, these two trends are
throughout noticeable with a few exceptions.

Based on these observations, it can be said that the
QUIC with ORTT CE seems to perform best considering PLT
regardless of the bandwidth. Moreover, the RTT really has
an influence on the performance of QUIC, as the main and
interaction effects indicated. Although the website size does
influence the PLT as assumed due to the evaluated effects,
this effect cannot be seen in the speedup for PLT.

V. CONCLUSION

Many AAL and ELE architectures and platforms proposed
in the literature and prototyped in research projects rely on
the HTTP-based Representational State Transfer (REST)-based

TABLE II: PLT Speedup Compared to HTTP/1.1 for 6 Mbps
Bandwidth

6 Mbps
20ms RTT 50ms RTT 100ms RTT 200ms RTT
Google Main Page
HTTP/2 —10.68 % 13.44 % 24.72% 4.10 %
QUIC w/o ORTT CE 2.25% 18.01 % 37.19% 44.62 %
QUIC w/ ORTT CE 21.41 % 36.34 % 58.99 % 63.02%
Google Drive
HTTP/2 2.27 % 14.80 % 15.94 % 16.35 %
QUIC w/o ORTT CE 4.30 % 35.93% 29.79 % 39.69 %
QUIC w/ ORTT CE 10.42 % 46.27 % 29.48 % 70.68 %
YouTube
HTTP/2 1.00 % 15.70 % 41.31% 45.63 %
QUIC w/o ORTT CE —5.62% 12.00 % 56.10 % 40.98 %
QUIC w/ ORTT CE 1.21% 33.42% 68.73 % 88.98 %

APIs. In this context, different transport protocols can be
used to realize the communication between AAL and ELE
devices and their respective RESTful web service endpoints.
Such protocols are standardized protocols like HTTP/1.1 and
HTTP/2, but also the experimental QUIC protocol, which
can already be used to access Google web services. This
paper provides a measurement-based comparison of the three
described protocols with regard to their performance in terms
of web page loading times.

The measurement results reveal QUIC with its ORTT Con-
nection Establishment outperforms the other protocols with
respect to the average page load times. Further, its perfor-
mance also improves with regard to HTTP/1.1 with increasing
RTT. Accordingly, we can conclude that the QUIC protocol,
particularly with its ORTT connection establishment feature,
significantly reduces data exchange delays for RESTful web
services. Nevertheless, this work constitutes only a first step
towards a better understanding of the enhancements provided
by the QUIC protocols. Particularly, its impact on the AAL
ecosystem remains an open research question, mainly due to
the huge variety of implementations possible for AAL and
ELEs.

ACKNOWLEDGEMENT

This work has been supported/partially supported by the
ICT COST Action IC1303 - Algorithms, Architectures and
Platforms for Enhanced Living Environments (AAPELE).

REFERENCES

[1] A. Aztiria, G. Farhadi, and H. Aghajan, “User behavior shift detection
in ambient assisted living environments,” JMIR Mhealth Uhealth, vol. 1,
no. 1, Jun 2013.

[2] K. Park, Y. Lin, V. Metsis, Z. Le, and F. Makedon, “Abnormal
human behavioral pattern detection in assisted living environments,”
in Proceedings of the 3rd International Conference on PErvasive
Technologies Related to Assistive Environments, ser. PETRA ’10.
New York, NY, USA: ACM, 2010, pp. 9:1-9:8. [Online]. Available:
http://doi.acm.org/10.1145/1839294.1839305

[3] O. Gama and R. Simoes, “A platform to emulate ambient assisted
living environments,” in e-Health Networking, Applications Services
(Healthcom), 2013 IEEE 15th International Conference on, Oct 2013,
pp. 46-50.

[4] FE. Palumbo, J. Ullberg, A. Stimec, F. Furfari, L. Karlsson, and
S. Coradeschi, “Sensor network infrastructure for a home care
monitoring system,” Sensors, vol. 14, no. 3, p. 3833, 2014. [Online].
Available: http://www.mdpi.com/1424-8220/14/3/3833

[3]

[6]

(7]

[8]

[9]

(10]

(11]

(12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]
(26]

C. Nugent, L. Galway, L. Chen, M. Donnelly, S. McClean, S. Zhang,
B. Scotney, and G. Parr, “Managing sensor data in ambient assisted
living,” Journal of Computer Science and Engineering, vol. 5, no. 3,
pp. 237-245, 2011.

F. Corno and F. Razzak, “Real-time monitoring of high-level states
in smart environments,” Journal of Ambient Intelligence and Smart
Environments, vol. 7, no. 2, pp. 133-153, 2015.

M. M., S. Wagner, C. Pedersen, F. Beevi, and F. Hansen, “Ambient
assisted living healthcare frameworks, platforms, standards, and quality
attributes,” Sensors, vol. 14, no. 3, pp. 4312-4341, 2014.

D. Rodrigues, E. Horta, B. Silva, F. Guedes, and J. Rodrigues, “A
mobile healthcare solution for ambient assisted living environments,”
in e-Health Networking, Applications and Services (Healthcom), 2014
IEEE 16th International Conference on, Oct 2014, pp. 170-175.

S. Gasparrini, E. Cippitelli, S. Spinsante, and E. Gambi, “A
depth-based fall detection system using a kinect sensor,” Sensors,
vol. 14, no. 2, pp. 2756-2775, 2014. [Online]. Available: http:
/Iwww.mdpi.com/1424-8220/14/2/2756

L. Montanini, L. Raffaeli, A. D. Santis, A. D. Campo, C. Chiatti,
G. Rascioni, E. Gambi, and S. Spinsante, “Overnight supervision of
alzheimer’s disease patients in nursing homes - system development
and field trial,” in Proceedings of the International Conference on
Information and Communication Technologies for Ageing Well and e-
Health - Volume 1: ICT4AWE,, 2016, pp. 15-25.

S. Gasparrini, E. Cippitelli, E. Gambi, S. Spinsante, and F. Florez-
Revuelta, “Performance analysis of self-organising neural networks
tracking algorithms for intake monitoring using kinect,” in [ET Inter-
national Conference on Technologies for Active and Assisted Living
(TechAAL), Nov 2015, pp. 1-6.

L. H. and W. X., “Intervention strategies for improving patient ad-
herence to follow-up in the era of mobile information technology: A
systematic review and meta-analysis,” PLoS ONE, vol. 9, no. 8, 2014.
P. Porambage, A. Braeken, A. Gurtov, M. Ylianttila, and S. Spinsante,
“Secure end-to-end communication for constrained devices in iot-
enabled ambient assisted living systems,” in 2015 IEEE 2nd World
Forum on Internet of Things (WF-10T), Dec 2015, pp. 711-714.

S. Spinsante, E. Gambi, L. Montanini, and L. Raffaeli, “Data man-
agement in ambient assisted living platforms approaching iot: A case
study,” in 2015 IEEE Globecom Workshops (GC Wkshps), Dec 2015,
pp. 1-7.

A. D. Campo, E. Gambi, L. Montanini, D. Perla, L. Raffaeli, and
S. Spinsante, “Mqtt in aal systems for home monitoring of people
with dementia,” in 2016 IEEE 27th Annual International Symposium
on Personal, Indoor, and Mobile Radio Communications (PIMRC), Sept
2016, pp. 1-6.

A. M. de Jesus Pereira, “Special issue: Ambient assisted living (aal):
Sensors, architectures and applications,” Sensors, 2014.

Roskind, Jim, “QUIC: Design Document and Specification
Rational,” 2015. [Online]. Available: https://docs.google.com/document/
d/IRNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit

1. Grigorik, High Performance Browser Networking: What every
web developer should know about networking and web performance.
”O’Reilly Media, Inc.”, 2013.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee,
“Rfc 2068: Hypertext transfer protocol-HTTP1.1,” Status: PROPOSED
STANDARD, January 1997.

M. Belshe, M. Thomson, and R. Peon, “Rfc 7540: Hypertext transfer
protocol version 2 (HTTP/2),” 2015.

Alex Gizis (Connectify), “Taking Google’s QUIC For a Test Drive,”
07. November 2013. [Online]. Available: http://www.connectify.me/
blog/taking- google-quic-for-a-test-drive/

A. Vernersson, “Analysis of udp-based reliable transport using network
emulation.”

S. R. Das, “Evaluation of quic on web page performance,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2014.

G. Carlucci, L. De Cicco, and S. Mascolo, “Http over udp: an experi-
mental investigation of quic,” in Proceedings of the 30th Annual ACM
Symposium on Applied Computing. ACM, 2015, pp. 609-614.

P. Megyesi, Z. Kriamer, and S. Molnar, “How quick is quic?”

P. Isaas and K. Blashki, Human-Computer Interfaces and Interactivity:
Emergent Research and Applications. 1GI Global, 2014.

