
ERWIN - Enabling the Reproducible Investigation of
WaItiNg Times for Arbitrary Workflows

Thomas Zinner⇤, Matthias Hirth⇤, Valentin Fischer⇤, Oliver Hohlfeld §

⇤ University of Wuerzburg, Chair of Communication Networks, Wuerzburg, Germany
§ RWTH Aachen University, Chair of Communication and Distributed Systems, Aachen, Germany

Abstract—Delay effects can impact the Quality of Experience

of interactive systems, which motivates research assessing delay

impairments, mostly for web based systems. Current studies

follow individual methodologies and typically assesses individual

and custom-made web pages, whose construction requires expert

knowledge in web technologies. Further, a range of native, non-

web applications cannot be easily modified for delay studies.

Thus, a generalized methodology for assessing delay impacts for

a broad range of applications that is accessible to researchers

without (web) development expertise is still missing. This paper

contributes to this open problem by i) presenting a new methodol-

ogy for reproducible delay assessments in a broad class of systems

and ii) presenting an open-source implementation to be used by

the community. This methodology particularly aims at making

delay assessment available to a broad range of researchers by

avoiding programming skills and thus by lowering the barrier

for setting-up delay assessments.

I. INTRODUCTION

Delay can impair the usage experience of interactive sys-
tems and thus represents a relevant class of quality aspects. Yet,
the study of delay impairments can be challenged by the broad
range of available systems and methodological challenges
such as injecting delays into existing systems. Based on their
widespread use and possibility for modifications by domain-
experts, web based systems are a widely studied class of
systems. The widespread use of web based systems, however,
requires adequate methods to understand their Quality of Ex-
perience (QoE) and to subsequently allow their improvement.

The QoE assessment of interactive—and in particular web
based—systems focuses on the study of loading delays or
waiting times. Delay can—depending on its severity and the
interaction type—impact the user interaction with a system,
prolong task completion times, and ultimately lower the QoE.
The assessed delay impacts largely focuses on web site
loading delays as assessed in controlled but small-scale user
studies (see e.g., [1]–[4]) or as assessed in open but large
measurements of web systems (see e.g., [5]–[8]). The latter
further quantified monetary effects of delay such as loss of
revenue [8], [9] or lowered system interactions [7], [9], [10].

Despite these research efforts, no standardized method-
ology for assessing the impact of delay on a broad class
of applications exists. This fact is rooted in a number of
challenges. i) Existing systems cannot always be modified
to test different delay conditions. A particularly interesting
class of such unmodifiable systems includes e-commerce and
enterprise systems that received less attention in current re-
search. For the limited class of network based applications,
network emulators can be applied to inject delays at network

level. While these emulators can provide a working solution,
the injected delays must be precisely controlled [11] and
the conducted studies tend to be non-reproducible since live
systems can change during the test. Further, in the absence
of a deep system understanding (e.g., due to missing source
code) the effects of the injected network delays can lead to
unpredictable system behavior and can thus render the obtained
results inconclusive. ii) Even if systems can be modified,
expert knowledge is required to perform the modifications.
For example, JavaScript based manipulation of a web page
loading behavior (e.g., as used in [4], [12]) requires knowledge
in web development and is thus not accessible to non-experts.
As a result, performing such tests is limited to researchers with
particular domain knowledge, while a broader accessibility
would be desired to lower the barrier for performing such
research. We therefore posit that a generalized evaluation
methodology to assess the effects of delays on the experience
of a broad range of interactive systems is required.

In this paper, we aim at closing this gap by describing a
generalized methodology for assessing delay effects in a broad
range of (interactive) systems. The goal of this methodology
is to i) lower the barrier for conducting delay assessment
studies by avoiding the need for expert knowledge in system
development and ii) to allow for reproducible studies. We
further make our methodology available to the community by
providing an open-source implementation that can be used for
lab as well as crowdsourcing studies. By this we aim at making
a generalized test methodology broadly available to stimulate
further research. The contributions of this paper are as follows.

• We propose a widely applicable method for assessing
delay effects in a broad range of applications, including
web and enterprise applications. The proposed method
allows both i) the construction of test cases by using
traditional means of web development or ii) to visually
construct test cases of application screenshots and UI
overlays. Since the latter does not require any expert
knowledge in web development, it makes test construction
available to a broad audience of researchers and further
ensures repeatability.

• We exemplify our proposed method in an online web
testing framework that will be made publicly available.

• We apply our methodology to web QoE as widely used
use case to show its general applicability. The obtained re-
sults of the performed crowdsourcing study highlight that
our methodology does not bias the results as compared
to traditional methods for web QoE assessment.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works. The definitive version of this paper has been published in
Eighth International Conference on Quality of Multimedia Experience (QoMEX), 2016, DOI: 10.1109/QoMEX.2016.7498938

II. BACKGROUND AND RELATED WORK

Loading delays and waiting times denote a class of quality
indicators that is particularly relevant for interactive systems.
In this regard, a large body of research focuses on understand-
ing delay impairments in the context of web-based systems.
This trend is motivated by the fact that web based interfaces are
becoming a widespread interface solution for a wide range of
applications, ranging from classical web services to enterprise
applications. The web browsing experience is mainly impacted
by two known classes of quality indicators [1]. One class
resembles visual properties such as the time of the first visual
sign of progress [13]. The second class relates to loading
delays and loading pattern, which is in the scope of this paper.

A. Impact of Waiting Times on Interaction

Early indications for the experience of interactive systems
were provided by HCI studies on tolerable delays for user
interface interaction. These found users to tolerate short delays
of up to 0.1 sec for immediate feedback, delays of up to 1 sec
for maintaining flow, and delays of up to 10 sec for keeping
users focused on the current task [14]. The work on tolerable
delays is complemented by studies on neuronal processes and
response times. In this regard, Miller [15] observed a 2 secs
delay threshold before the information processing in the brain
is interrupted. Similarly, [16] finds that frequent users demand
response times of less than 1 sec and that productivity increases
as response time decrease. The above mentioned works provide
general guidelines for interface and interaction design.

B. Delay Perception of Web Pages

A much larger and more recent body of work concerns
assessing the quality impact of web page loading delays. In
this regard, recent work suggests a logarithmic relationship
between subjective quality and page load time (PLT) [1], [2],
[17] that is reflected in ITU-T Recommendation G.1030 [18].
The G.1030 Web-QoE model particularly focuses on informa-
tion retrieval scenarios like web search.

Additional factors have been found meanwhile that are not
captured by the G.1030 model. Strohmeier et al. [3] showed
that task-driven interaction is judged more critical than task-
free interaction. This observation introduced the notion of rel-
evant elements to Web-QoE assessment, i.e., elements needed
by a user to solve a given task. In addition, it was found that
the temporal position of a relevant element influences QoE,
leading to better quality ratings when loaded earlier. For task-
driven usage the task completition time (TCT) outperforms
PLT for quality prediction [3], which could also be shown
for multiple consecutive page requests [4]. In an extension,
Guse et al. [19] found situational factors to have no significant
impact on quality judgment (e.g., driving in public transport
vs. laboratory setting) whereas distraction using a parallel task
leads to slightly better judgments. These works on web page
loading delays are complemented by a study assessing the
impact of (partial) load failures [12]. In the presence of partial
load failures (i.e., a set of of web page components such as
CSS or images loads delayed or is never loaded), the PLT
and TCT as currently used quality indicators have been shown
to be insufficient to capture the experience quality. Beyond
delay, the impact of bandwidth fluctuations and outages has
been quantified for web QoE [20].

Web-QoE research is complemented by work in psychol-
ogy studying acceptable webpage loading delays [21]. This
study focused on the impact of a progress indicator on the
amount of time until users aborted the load process and
reloaded the webpage. It was found that the average waiting
time without progress indicator decreased from 13 sec to
3.3 sec from the first to the third non-loading webpage whereas
with progress indicator subjects waited first 38 sec and on the
third encounter 6.7 sec.

C. Economic Impact of Delays

A number of studies outline the economical relevance of
low delays for web browsing [7]–[10]. An increase in latency
reduces user interactions with web sites and thus reduces
revenue. For example, an increase in the processing delay of
100 ms (400 ms) reduced the daily amount of Google searches
per user by 0.2% (0.4%), respectively [9], [10]. Schurman
reports similar findings for Microsoft Bing and reports a
revenue decline of 0.6% (2.8%) for 500 ms (1000 ms) of
additional latency [9]. Sefanov reports a 5% to 9% traffic
drop for a latency increase of 400 ms at Yahoo [7]. Linden
found that a 100 ms increase in latency drops the sales rate at
Amazon by 1% [8]. These examples highlight that even small
delay increases can have a significant business impact.

D. Waiting Times for E-Commerce Applications

Pioneer works [22], [23] on e-Commerce identified exces-
sive download delays as major concern. Investigated delays
of up to 30 seconds in [22] indicate, that download delay is
a major problem second only to security. [23] highlights the
impact of anchoring processes, e.g., waiting time messages
with approximated waiting durations, on the perceived waiting
time and the assessed web page quality. Based on the results,
the authors conclude, that waiting times are perceived as
intolerable, customers tend to leave the web page and purchase
products elsewhere. Further, design guidelines for software
developers are derived. A study on key website factors in
e-business is conducted in [24]. Besides non-technical im-
pact factors like popularity, usability and website content the
authors also identify the download speed as key influence
factor for an successful e-business. Details on delay thresholds,
however, are not provided by this study.

Synthesis: With respect to the above mentioned related
work the following conclusions can be drawn:

• From the point of psychological research, it takes at
least one, probably two seconds until waiting delays are
perceived as interruption, i.e., opinion scores should be
high for these delays. Delays larger than 10 seconds are
expected to result in a low user ratings.

• A large body of research focused on assessing web page
loading delay of web pages. E-commerce or enterprise
applications have been so far neglected. Thus, future
delay studies should be assessing a broader range of
applications.

• Testing live systems is a challenging task and can easily
yield non-reproducible results since live systems tend to
change during the test session.

• User studies are typically of small scale, follow individual
methodologies and assess individual and custom-made

web pages, whose construction requires expert knowledge
in web technologies. A range of native, non-web applica-
tions cannot be easily modified for delay studies. Thus,
a generalized methodology for assessing delay impacts
for a broad range of applications that is assessable to
researchers without (web) development expertise is still
missing.

III. METHODOLOGY FOR ASSESSING DELAY IMPACTS

To address the previously outlined challenges, we propose a
generalized methodology for assessing delay effects in a broad
range of (interactive) systems. The goal of this methodology
is to i) lower the barrier for conducting delay assessment
studies by avoiding the need for expert knowledge in system
development and ii) to allow for reproducible studies. By this
we aim at making a generalized test methodology broadly
available to stimulate further research. The requirements of
this methodology are as follows.

• To be accessible by a broad range of scientists, its appli-
cation should not require any domain knowledge (e.g., in
web technologies to modify web pages) for testing desired
application workflows subject to arbitrary delays.

• The generated test conditions should be easily integrable
in existing test platforms, e.g., crowdsourcing platforms
to scale-out to a large number of test subjects.

• The generated test conditions should be storable in a
persistent manner along with their configuration, e.g., to
allow archival, documentation, and repeatability of the
generated tests.

Our methodology comprises of mapping the system behav-
ior to workflows, i.e., snapshots of system behavior assessed in
the subjective test. For the generation of these workflows (test
conditions), we support two modes. In the first mode (specific
to web applications), we allow for a traditional test creation
by specifying HTML code. As this baseline mode captures the
current way or web tests, it suffers from the above mentioned
challenges of requiring domain knowledge in test creation and
is limited to web application. This motivated us to propose
a second mode that is the key of our methodology. This
mode comprises of overlaying a number of system screenshots
with invisible user interface elements (e.g., buttons and text
boxes) to interact with otherwise static screens. The utilized
screenshots show the unmodified system user interface and can
be captured by any researcher without development expertise.
This method further enables us to test a broad range of non-
web systems (e.g., SAP enterprise systems) as web app, e.g., to
allow crowdsourced tests that would otherwise not be feasible.
The system workflow can be represented as a sequence of
captured screenshots overlayed with UI elements that can
be assigned with individual actions. This allows us to link
between the steps of the process. The action triggered by
each of the UI fields can be delayed resulting in response
delays as desired. The resulting impaired workflow is placed
on a webserver and easily accessible by a large number of
subjects. Further, it can be integrated in online surveys like
surveymonkey.com or TheFragebogen.de. Persistent storage of
the overall survey is possible by archiving on the webserver.

We inject a configurable rendering delay into the generated
workflow. This allows the study of user-perceived delays in
a controlled manner. For the sake of simplicity, we omit

the explicit configuration of (implicitly included) other delay
sources such as network, input or processing delay which are
eventually perceived as rendering delays.

IV. INTRODUCING DELAYS INTO ARBITRARY PROCESSES

Current web technologies support feature-rich web appli-
cations, like word-processor, video editing or even cloud-based
operation systems. This enables us to build very detailed mock-
ups of user-interfaces (UIs), but this is time-consuming and
can become rather complex. However, in most test settings
analysing the impact of delays, it is not required that the full
functionality of the application is available to the test partic-
ipant. Thus, a trade-off needs to be made between the level
of detail of the mock-up to create an immersive experience of
the application and the required implementation effort.

The implementation of our methodology provides means
to building detailed UI mock-ups in a timely manner, based
on screenshots of existing web applications. Further, it allows
to delay UI responses to user inputs to emulate loading or
processing delays. To enable large scale QoE test, the resulting
mock-up is realized as a web page, so that it can be easily made
available to a large group of participants.

Our tool aims at creating mock-ups for two main use-cases,
the evaluation of delays in business application and in online
web applications. The business applications we consider in
the later evaluation are not web based. Consequently, it would
be required to rebuild the existing UI in HTML, CSS, and
JavaScript, or equivalent technologies to generate a full-feature
mock-up. However, this is usually not doable for complex
applications with a reasonable amount of effort. Therefore,
our tool allows building mock-ups based on screenshots of
the application. In contrast, the UI of web applications can
directly be integrated into mock-ups designed with our tool.
This allows including dynamic effects, like hovering effect of
links, which is not possible in the screenshot based approach.
However, in order to control the delayed responses to the users’
interactions it might be necessary to slightly adapt the HTML
code of the original web application, e.g., remove links, and the
JavaScript code, e.g., remove OnClick events. Still, both the
HTML and the screenshot-based mock-ups have limitations.
In both cases, the realization of dynamic content adaptations
(e.g., via Ajax) is limited. Unlike in the HTML mode, dynamic
content such as videos or animations and web-layouts scaling
to arbitrary display sizes cannot be realized with screenshots.

Figure 1 shows a screenshot of the developed mock-up
tool. To make it widely accessible, it is implemented as web
application which can easily deployed on a server. The source
code can be obtained from GitHub1.

In a first step, the screenshots of the offline application,
respectively compressed archive of web application’s fronted
UI are uploaded to the tool. Then, the screenshot and the
HTML pages can be imported into the mock-up working
frame (1) of the tool. The content of this frame is later shown to
the test participants. UI elements that can be used in the mock-
up are shown on the left side next to the working frame. These
elements can simply be dragged it the working frame and
adapted in size and functionality. In this example a button (2)

1https://github.com/lsinfo3/erwin

1

2

Fig. 1. Mock-up tool

is placed over the login element of the original web page. The
tool offers a simple drop down menu to assign different actions
to each of the added UI elements. Available actions for the
button in this case are displaying a dialog box or forwarding
to the next step in the emulated workflow. Moreover, the style
attributes of the button can be changed so that it is no longer
visible for the test participant.

The given example shows only a first step of a potential
test scenario, i.e., creating a delayed action when clicking
on the login button. The following steps, e.g., the display of
the login form asking for the credentials can be created in a
similar manner, by creating a screenshot or downloading the
HTML code, uploading it to the mock-up tool, and placing
appropriate UI elements. To further support long lasting and
complex workflows, the tool also allows adding instructions
for the participant that are displayed while proceeding in the
test. Here the experimenter can choose to either show the
same instructions at each step or display specific instructions,
depending on the current progress of the test participant.

After configuring the test workflow, a single HTML file
containing the CSS and JavaScript code of the mock-up can
be downloaded. While the screenshots increase the overall
page size, we avoid the otherwise prolonged loading times by
prefetching screenshots with JavaScript. To this end all data is
downloaded to the device of the test participants as soon as the
test is started (i.e., the size of the screenshots does not impact
the assessed delays). The mock-up can be easily deployed on
any web-server by placing the downloaded mock-up HTML
file, the screenshots or HTML pages, and the publicly available
jQuery library into one folder. Only a common web browser
with enabled JavaScript is required at the participants’ device.

V. EXEMPLARY USE CASE – AMAZON

In order to demonstrate the capabilities of our imple-
mentation we generate a mock-up of the rather complex
Amazon.com webpage to evaluate the impact of page loading
delays on the users’ QoE. We chose Amazon as an example
of a complex web site to demonstrate the simple applicability
of our methodology by non-web experts. In the test, users
shall purchase a specific scooter while the different process

steps, search, selection, add to cart, and checkout are delayed.
To compare our methodology to traditional means of web-
QoE testing, we generate an HTML-based (traditional) and a
screen-shot based (our method) emulation of the webpage.

A. Workflow and Survey Configuration

Pre-processing Step: We generate an HTML-based and a
screen-shot based emulation of the Amazon.com webpage. For
providing the HTML-based approach we download the specific
webpages for each step. For the screenshot-based approach,
the corresponding web pages are captured using http://web-
capture.net/.

Editor: For both approaches we assemble the workflow
based on the captured webpages as presented in Section IV.
HTML code or screenshots are uploaded in the editor and the
specific process steps are dropped to the index tabs. Invisible
input fields and buttons are placed over the relevant elements
of the webpage templates and the corresponding actions are
assigned. One the initial page we use an input field placed on
the search field matching for the keyword ”Scooter”’. After
matching the keyword, the selection page is displayed. Here,
an invisible button is placed via an specific scooter linking
to the dedicated product side. Invisible buttons placed over
the ”add to cart” button and the ”checkout button” on the
following pages finalize the desired workflow. We further
add detailed instructions explaining each single step of the
workflow. For both approaches, we generate an emulation
environment showing all instructions per step and one showing
only the specific instructions per step. The corresponding
workflows are downloaded as HTML file and used for the
user survey. Despite the complexity of the Amazon website, it
took about 25 minutes to prepare a test case, independent of
the used approach, which demonstrates the simplicity of our
methodology.

Deployment and Survey: The captured webpages, i.e., the
screenshots or the HTML code, are placed on a webserver,
together with the corresponding HTML file for the specific
workflow. Further, a jQuery bundle is added to the folder.
The workflow is then embedded in a user survey consisting
of demographic questions and questions about the participants

Filter level 0 Filter level 1 Filter level 2 Filter level 3

2

3

4

5

0 2 5 8 0 2 5 8 0 2 5 8 0 2 5 8
Delay

M
O

S

Group MW REF

(a) Impact of delay on user ratings

Filter level 0 Filter level 1 Filter level 2 Filter level 3

2

3

4

all single all single all single all single
Instruction type

M
O

S

Group MW REF

(b) Impact of instructions on user ratings

Filter level 0 Filter level 1 Filter level 2 Filter level 3

2

3

4

5

html screen html screen html screen html screen
Background type

M
O

S

Group MW REF

(c) Impact of implementation approach on user ratings

Fig. 2. Main results of the conducted user study. The users acquired via commercial crowdsourcing are marked as MW, the voluntary participants as REF.

Internet usage behavior. The results are both used to identify
additional influence factors on the rating behavior of the
users, but also to enable consistency test of the participants
to estimate the reliability of the ratings [25].

We use the commercial crowdsourcing platform Mi-
croworkers.com in order to acquire a large number of test par-
ticipants (MW). Microworkers.com focuses on small-granular
crowdsourcing tasks that can be completed within a few min-
utes and are usually rewarded with a few US cent and provides
an international user base [26]. For the following evaluation
we analyse the results from 512 participants acquired via
the crowdsourcing platform. The test was conduced in two
phases, the first between 17. Feb 2016 to 18. Feb. 2016
the second between 11. Mar. 2016 and 12. Mar. 2016. Each
participant was rewarded 0.10 USD for a response. In parallel,
we performed the same test with a anonymous reference
group (REF) consisting of 80 volunteers acquired via Facebook
and university students.

B. Reliability of Participants

Both the crowdsourcing users as well as the reference
group member were completely anonymous and performed the
test in an unsupervised environment. This imposes the need for
reliability checks in order to filter unreliable participants that
submit random ratings. In accordance with the best practices
developed in [25], we apply different filters that are not based
on the subjective ratings but on disjoint objective measures.
Therefore we introduce the following filter levels for the later
evaluation:
Filter level 0: All responses are considered.
Filter level 1: This filter users the answers given in the survey
before and after the actual QoE test to filter participants. Each
participant is requested to fill in his home country in the first
survey and the continent he is living on in the second survey.
If both information do not match, it can be assumed that the
participant did not answer truthfully or clicked randomly, thus
his rating it no considered. Further, after completing the test
each user is asked to select the product was supposed to buy
from a drop-down menu. Every user selecting another option
then “scooter” is also removed.
Filter level 2: Here, the same rules as in filter level 1 are
applied and an additional plausibility test is performed. The
second survey included a question checking, if the participant
noticed a delay. This questions can be objectively answered if
no delay was induced in the test. So we filter all users who

f0 f1 f2 f3
MW 512 490 354 237
REF 80 80 71 63

TABLE I. USERS REMAINING AFTER APPLYING DIFFERENT FILTERS

claimed to notice a delay in this case. Further, a delay should
obviously be noticed for a emulated delay of 5 and 8 sec. Here,
we removed users who were not aware of a delay in these
settings. For the test setting using 2 sec, the delay experience
cannot be evaluated objectively. Thus, users judging this setting
were not considered in this filter here.
Filter level 3: This filter is based on the rules of filter
level 3 and an additional evaluation of the completion time
of the tasks. Several tests with non-anonymous volunteers
showed that the emulated shopping task without additional
delay can be completed within 40 sec. We assume that the
test settings with additional delay take about the same time
to complete, with the additional duration of the artificially
introduced delays. Therefore, we discard all ratings of users
who worked longer than 180 sec on the shopping task, after
subtracting the artificial delays. Participants taking more them
that this threshold are likely to perform additional tasks besides
the emulated shopping task. Consequently, they might not
experience the delays of the page load time and thus are
removed from the evaluation.
Impact of Filters on the Number of Participants: The
impact of the different filter on the crowdsourcing participants
and the reference group are illustrated in Table I. For both
groups, filter 1 has a negligible impact on the overall number of
participants. Filter 2, however, results in a significant reduction
of participants. After applying filter 3, the duration-based
filter criteria, less than half of the participants remain in the
crowdsourcing group, and about 78% in the reference group.

C. Evaluation

In the following we discuss the results of different factors
on the overall user ratings. This includes the impact of different
constant delays on the user perception, screenshots or HTML-
based emulation, and how instructions are displayed. The
results are depicted in Figure 2.

Impact of Delay: Firstly, we highlight the impact of
the delay on the user rating. The results are highlighted in
Figure 2(a). The x-axis of the single plots depicts the perceived
delay, the y-axis the MOS. For the microworkers evaluations, it
can be seen that increasing delay results in lower user ratings.
For filter level 0 and 1 this behavior is not very significant,

but with increasing filter level this can be followed better.
For the reference group, the relationship between delay and
user rating is clearly visible for all filter levels. Again, for
higher levels, it gets extremer with either good or bad ratings,
i.e., intermediate ratings disappear. Differences in the ratings
between both groups may be due to additional factors like
cultural background or varying delay expectations.

Impact of Instructions: Secondly, we focus on the impact
of the placement of instructions on the user ratings. For that
we compare the ratings in case of all instructions being visible
during the delay emulations and only the specific instruction
for the current task being visible. The results are illustrated
in Figure 2(b). It can be seen that, independent of the specific
filter level, the user ratings are very similar for both parameters.
Hence, we can conclude that the type of instructions does not
have an impact for small workflows.

Webpage vs. Screenshots: Thirdly, we investigate the im-
pact of the chosen approach for generating the delay emulation.
Results are shown in Figure 2(c). For all filter level and user
group combinations it is not possible to proof a different
user-rating for screenshot and HTML-based approach. For this
experiment, we can conclude that using our screenshot based
approach for generating the test case results in similar user
ratings as compared to the traditional and more complex,
HTML-based approach. This shows that our approach does
not introduce a bias as compared to traditional means of
testing. Thus, it can be used for a simpler test design using
the screenshot based approach without a significant impact on
the outcome of the survey.

VI. CONCLUSION

To make the assessment of delay effects accessible to
a broader audience and to be applicable to a broader set
of applications, this paper introduced a generalized testing
methodology and realization as open-source tool. It enables
the reproducible investigation of delay effects in arbitrary
workflows for a general class of systems, including web based
systems and non-web based systems such as SAP enterprise
solutions. By exploiting screenshots to represent the system
under test overlayed with invisible user interface elements
composed in a visual editor, it can represent an arbitrary class
of systems as web applications. It therefore also enables testing
a broad range of non-web systems (e.g., enterprise systems)
as web app, e.g., to allow crowdsourced tests that would
otherwise not be feasible. Is is further designed such that a
broad range of scientists is able to use it without any additional
domain knowledge. It features direct deployment of the gen-
erated test cases on web-servers and crowdsourcing platforms
and the persistent storage of test conditions and configurations
in a simple way. We applied our methodology to web QoE
as widely used use case to show its general applicability.
The obtained results of the performed crowdsourcing study
highlight that our methodology does not bias the results as
compared to traditional methods for web QoE assessment.

ACKNOWLEDGMENTS

The authors express their gratitude to Andre Rentsch for
the stimulating discussions during the course of this work. This
work is supported by the Deutsche Forschungsgemeinschaft
(DFG) under Grants HO TR 257/41-1 and by kubus IT. The
authors alone are responsible for the content.

REFERENCES

[1] S. Egger, T. Hoßfeld, R. Schatz, and M. Fiedler, “Tutorial: Waiting
Times in Quality of Experience for Web based Services,” in IEEE
QoMEX, 2012.

[2] S. Egger, P. Reichl, T. Hoßfeld, and R. Schatz, “Time is bandwidth”?
narrowing the gap between subjective time perception and Quality of
Experience,” in IEEE ICC, 2012.

[3] D. Strohmeier, S. Jumisko-Pyykko, and A. Raake, “Toward task-
dependent evaluation of web-QoE: Free exploration vs. “who ate
what?”,” in IEEE Globecom Workshops, 2012.

[4] D. Strohmeier, M. Mikkola, and A. Raake, “The importance of task
completion times for modeling web-QoE of consecutive web page
requests,” in IEEE QoMEX, 2013.

[5] I. Arapakis, X. Bai, and B. B. Cambazoglu, “Impact of response latency
on user behavior in web search,” in ACM SIGIR Conference on Research
& Development in Information Retrieval, 2014.

[6] M. S. Jake D. Brutlag, Hilary Hutchinson, “User preference and search
engine latency,” in JSM Proceedings, Qualtiy and Productivity Research
Section, 2008.

[7] S. Stefanov, “Yslow 2.0,” in China Software Developers Network, 2008.
[8] G. Linden, “Make data useful,” 2006.
[9] E. Schurman and J. Brutlag, “Performance related changes and their

user impact,” in Velocity – Web Performance and Operations Confer-
ence, 2009, http://www.youtube.com/watch?v=bQSE51-gr2s.

[10] J. Brutlag, “Speed matters for Google web search,” 2009.
[11] T. Hoßfeld and M. Fiedler, “The unexpected qoe killer: When the

network emulator misshapes traffic and qoe,” in IEEE QoMEX, 2015.
[12] D. Guse, S. Schuck, O. Hohlfeld, A. Raake, and S. Möller, “Subjective

quality of webpage loading: The impact of delayed and missing
elements on quality ratings and task completion time,” in IEEE QoMEX,
2015.

[13] H. Cui and E. Biersack, “Trouble shooting interactive web sessions in a
home environment,” in ACM SIGCOMM Workshop on Home Networks,
2011.

[14] J. Nielsen, “Usability engineering,” 1993.
[15] R. B. Miller, “Response time in man-computer conversational transac-

tions,” in Proceedings of the December 9-11, 1968, fall joint computer
conference, part I. ACM, 1968, pp. 267–277.

[16] B. Shneiderman, “Response time and display rate in human performance
with computers,” ACM Computing Surveys (CSUR), vol. 16, no. 3, pp.
265–285, 1984.

[17] D. F. Galletta, R. Henry, S. McCoy, and P. Polak, “Web site delays:
How tolerant are users?” Journal of the Association for Information
Systems, vol. 5, no. 1, 2004.

[18] International Telecommunications Union, “G.1030: Estimating end-
to-end performance in IP networks for data applications (02/2014),”
2014. [Online]. Available: http://digitus.itk.ppke.hu/⇠gosztony/ITU-T%
20Ajanlasok/E.800-0809 QoS-NP-Defin.pdf

[19] D. Guse, S. Egger, A. Raake, and S. Möller, “Web-QoE under real-
world distractions: Two test cases,” in IEEE QoMEX, 2014.

[20] A. Sackl, P. Casas, R. Schatz, J. Lucjan, and R. Irmer, “Quantifying the
impact of network bandwidth fluctuations and outages on web QoE,”
in IEEE QoMEX, 2015.

[21] F. F.-H. Nah, “A study on tolerable waiting time: how long are
web users willing to wait?” Behaviour & Information Technology,
vol. 23, no. 3, pp. 153–163, 2004. [Online]. Available: http:
//www.tandfonline.com/doi/abs/10.1080/01449290410001669914

[22] G. Rose, H. Khoo, and D. W. Straub, “Current technological impedi-
ments to business-to-consumer electronic commerce,” Communications
of the AIS, vol. 1, no. 5es, p. 1, 1999.

[23] B. D. Weinberg, “Don’t keep your internet customers waiting too long
at the (virtual) front door,” Journal of Interactive Marketing, vol. 14,
no. 1, pp. 30–39, 2000.

[24] B. HernáNdez, J. JiméNez, and M. J. Martı́n, “Key website factors in
e-business strategy,” International Journal of information management,
vol. 29, no. 5, pp. 362–371, 2009.

[25] T. Hossfeld, C. Keimel, M. Hirth, B. Gardlo, J. Habigt, K. Diepold, and
P. Tran-Gia, “Best Practices for QoE Crowdtesting: QoE Assessment
with Crowdsourcing,” Transactions on Multimedia, vol. 16, Feb. 2014.

[26] M. Hirth, T. Hoßfeld, and P. Tran-Gia, “Anatomy of a crowdsourcing
platform-using the example of microworkers. com,” in Innovative Mo-
bile and Internet Services in Ubiquitous Computing (IMIS), 2011 Fifth
International Conference on. IEEE, 2011, pp. 322–329.

