(©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The definitive version of this paper has been published in proceedings

of the 7th EAI International Conference on Mobile Networks and Management (MONAMI), 2015, http://dx.doi.org/10.1109/ICCW.2015.7247428

Impact of WiF1 Offloading on Video Streaming QoE
in Urban Environments

Valentin Burger*, Michael Seufert*, Fabian KaupT, Matthias Wichtlhuber!, David Hausheer!, Phuoc Tran-Gia*

*University of Wiirzburg
Institute of Computer Science
Wiirzburg, Germany
{burger | seufert | trangia} @informatik.uni-wuerzburg.de

Abstract—Video streaming is the most popular application in
today’s mobile Internet and its growing demands and popularity
put more and more load on cellular networks. In a recent trend
to mitigate the cellular load, followed by many providers, users
are offered to offload mobile connections to WiFi hotspots, which
are predominately deployed in urban environments. In this work,
we conduct a simulative performance evaluation of the impact
of WiFi offloading on the Quality of Experience (QoE) of video
streaming. The evaluation is based on connectivity measurements
from a German city and uses a simple QoE model for estimating
the perceived quality of video streaming. Our findings show
that, despite its benefits for operators, offloading to WiFi has
a negative impact on video streaming QoE for some users when
3G/4G coverage is available. Only in the case of 2G coverage,
WiFi offloading can significantly improve the perceived quality
for users.

I. INTRODUCTION

Increasing numbers of smartphones and mobile users lead
to an immense growth of data traffic to which cellular net-
works are exposed to. Additionally, mainstream and emerging
applications, e.g., video streaming, contribute to the load by
ever-increasing demands for service and quality. According to
[1], mobile video traffic, generated by popular services like
YouTube or Netflix, was 53% of all mobile traffic (ca. 1.3
exabytes) by the end of 2013 and is expected to grow up to
11 exabytes in 2018.

WiFi offloading is a current trend to cope with the demands
of mobile users and the load on cellular networks [2]. It
allows providers to handle the traffic in well-dimensioned fixed
networks and thereby save costs. In addition, end users can
benefit from higher throughput and avoid exceeding their data
plan. In 2013, 45% of the total mobile data was offloaded
onto the fixed network through WiFi or femtocells, and this
ratio is expected to increase in the next few years [1]. This
will be possible because of increasing WiFi infrastructure,
especially in urban environments. In cities, there are not
only independently operated free public WiFi hotspots (e.g,
provided by cafes, shops, libraries), which can be found in
hotspot databases like WeFi', but also pilot projects, which
aim at establishing comprehensive outdoor coverage of WiFi
(e.g., in Berlin [3] or London [4]).
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In this work, we investigate the impact of WiFi offloading
in cities on the QoE of video streaming, which is a popular and
demanding service. We present a framework for the simulative
evaluation of video streaming performance for mobile users.
The simulation framework is based on connectivity measure-
ments from an urban environment and uses a simple QoE
model, which allows for an assessment of the perceived video
streaming quality in cities. We evaluate the impact of WiFi
offloading based on different WiFi sharing percentages, i.e.,
percentage of accessible WiFi hotspots, and different cellular
technologies. Thus, we are able to assess in which cases the
subjective quality of video streaming can be improved by WiFi
offloading or not.

We show that a slight increase of the WiFi sharing probabil-
ity can have a high impact on the offloading potential. Due to
lower throughput compared to 3G and 4G, the QoE is slightly
worse for video streaming if the request is offloaded. This is
compensated by a high potential to take load off the cellular
network.

The paper is structured as follows. In Section II, back-
ground and research on WiFi offloading and mobile video
streaming are outlined. Section III describes the measurement
setup, the resulting data set, and the simulation framework.
In Section IV, we present the results obtained through the
simulation framework, Section V concludes.

II. BACKGROUND AND RELATED WORK

Providing a fast access bandwidth and reducing the load on
stressed mobile networks, WiFi offloading is already widely
used by commercial services and is also in the focus of
research work. For example, specialized WiFi-sharing commu-
nities (e.g., Fon?) but also big telecommunication operators
(e.g., BT?) offer their users access to an alternative Internet
link via WiFi.

The research community investigated incentives and algo-
rithms for Internet access sharing [5], and the deployment
of architectures for ubiquitous WiFi access in metropolitan
areas [6], [7], [8]. Moreover, [9], [10], [11] describe systems
for trust-based WiFi password sharing via an online social
network app. WiFi onloading, which utilizes different peaks
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in mobile and fixed networks to onload data to the mobile
network to support applications on short time scales, is an
opposite concept presented in [12].

Offloading is enabled by implementing handovers and/or
multipath connections, which are well researched. In [13]
offloading in heterogeneous networks is modelled and anal-
ysed. In [14], [15], [16] the feasibility of multipath TCP
for handovers between WiFi and mobile networks is shown
and in [17] available features for mobile traffic offloading in
the current Internet are presented. Furthermore, [18] outlines
approaches, which enable mobility and multihoming.

Still, to determine the expected QoE for individual con-
nections, the mobile network quality (WiFi/cellular) must be
known. A number of studies focuses on analyzing the mobile
network performance in terms of RTT and throughput of the
user [19], [20], [21]. The expected performance for different
network technologies can be derived with this data.

Other works particularly focus on mobile video streaming
and its QoE. In [22], the characteristics of mobile YouTube
traffic (e.g., download strategy, average bit rates) are in-
vestigated. [23] presents an architecture for optimal video
delivery in next generation cellular networks. Moreover, there
are evaluation frameworks for Android, which can evaluate
the QoE of mobile YouTube video streaming using objective
parameters [24] and additional subjective ratings [25]. This
work is based on the combination of the results of different
measurement studies and theoretical publications. It combines
the network performance data set as derived from [26] with the
WiFi location data set from [27] to build the basis for the QoE
estimation as described in [28]. To the best of our knowledge,
this is the first work that covers the impact of WiFi offloading
on mobile video streaming QoE.

III. MEASUREMENT AND MODEL

In the following the data sets derived by mobile network
measurements and existing data sets are described. Further on,
the QoE model used to assess the perceived quality of mobile
video streams is explained.

A. Network Performance Data Set

The throughput of mobile connections is evaluated by
deterministic network measurements, executed on hardware
devices in the wild. The data was gathered using the Net-
workCoverage App* [26] using 1.) a crowdsourcing based
approach and II.) during dedicated measuring studies targeted
at particular network metrics. The measurements were mostly
executed in and around Darmstadt, Germany, representing a
medium sized urban center.

Each collected data point includes time, location, cellular
and WiFi signal strength of the connected network, the location
area code (LAC), cell ID, network provider and network type.
This information is called coverage point henceforth. Further-
more, active measurements were executed to actively probe the
network. These include RTT and throughput measurements and
reference the respective coverage information. In the context of
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Fig. 1. Throughput of mobile connections for different access technologies.

the QoE analysis, only the active measurements of throughput
are evaluated.

To assure the quality of the measurements, the data was
thoroughly filtered. Data points with invalid fields were re-
moved from the data set as well as measurements with a
velocity of more than 15 m/s (i.e., 4.6 km/h ~ walking
speed). To eliminate effects of different network structures in
the backbone, only the data of one large network provider
was selected. Furthermore, the data was divided into groups
related to the underlying network technology generation (i.e.
2G/3G/4G), as these exhibit vastly different throughput per-
formance. During the course of this analysis, 4436 4G con-
nections were measured, as well as 1043 3G, 23 2G, and
173 WiFi connections. The WiFi throughput measurements
were executed at a variety of different networks, from home
networks to university networks, and public WiFi hotspots. The
measurements were taken inside and outside of buildings, and
hence reflect the variability of WiFi access rates.

Figure 1 shows the cumulative distribution function of the
download rate for various access technologies on logarithmic
scale. The 2G connections have a maximum download rate of
5100 kbps, but 90% of the connections achieve a throughput
of less than 230 kbps. The 3G connections show a maximum
throughput of 42000 kbps, with 40% of the connections
approaching this maximum value. Only 15% of the 3G connec-
tions have a lower download rate than 3000 kbps. 80% of the
4G connections show a higher throughput than the maximum
speed of 3G, ranging up to the maximum download rate of
117000 kbps. In case of WiFi access, we distinguish between
hotspots by a major German provider (i.e., Deutsche Telekom)
and other WiFi access points. It can be seen that the maximum
speed of the Telekom hotspots is comparable to the maximum
of 2@, although they usually offer a higher download rate than
2G. The maximum throughput of the other WiFi access points
comes close to the 3G maximum, and the throughputs are
usually higher than the Telekom hotspots but lower than the
throughputs of 3G connections.
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B. Access Point Location Data Set

The WiFi access point location data set was measured by
Panitzek et al. and is described in [27]. The data set consists
of 1527 AP locations in an area of approximately 1.5km?,
covering the inner city of Darmstadt, Germany. From this data
set, we use the interpolated locations of the access points as
derived from the observed WiFi beacons at street level.

C. OpenStreetMaps Data Set

The probability of end-users to be at a specific location in
the Darmstadt city area is derived by a street map of Darmstadt
from OpenStreetMap [29]. The street map contains way points
that are interconnected to define streets, or that describe
buildings, facilities, local businesses or sights. The way points
are all set up by users contributing to the OpenStreetMap
platform. In that way, the way point locations provide a good
model for end-user location probabilities.

D. QoE of Mobile Video Streaming

The worst quality degradation of video streaming is stalling
[30], i.e, the playback interruption because of insufficient
downloaded video data. The authors found that users tolerate
at most one stalling event of up to three seconds length for
good QoE. In our work, a simplified QoE model is used
inspired by the work in [28]. The authors used discrete-time
Markov models for an analytic performance evaluation of
video streaming over TCP. They found that a good streaming
performance, which results in a low probability of stalling,
can be achieved if the network throughput is roughly twice
the video bit rate when allowing a few seconds of initial
delay. [31] showed that the impact of initial delays on QoE
is not severe, as users are already used to them and tolerate
them. Therefore, our simplified QoE model only considers the
received throughput of the video streaming connection:

good, if throughput > 2 - video bit rate.
bad, otherwise.

QoE = { ey

To derive the bit rate of videos streamed by mobile devices
we use the results from [22] where the video formats in
mobile networks were characterized by analysing 2000 videos
streamed from the video on demand platform YouTube. The
authors find that the format itag36 is used in 80% of the
streams. Figure 2 shows the cumulative distribution of video
bit rates for mobile videos in itag36. The majority of the videos
have a bitrate between 220 and 250 kbps.

E. Simulation

In the simulation we consider an area with a set of way
points W and a set of access points A. The location of the way
points and access points is specified by longitude and latitude.
Each access point o € A has a fixed transmission range r and
is shared with probability p.

For given transmission range r we define a function ;. :
A x W — {0,1}, where x, returns 1, only if a way point
w € W is in transmission range of an access point a € A,
else 0.

As set of way points W we use the way points from
OpenStreetMap, c.f. Sec. III-C, in the inner city area of
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Fig. 2. Bit rate of YouTube videos in itag36 format [22].

Darmstadt. As set of access points A we use the data set
described in Sec. III-B.

The procedure of one run simulating n mobile requests is
described in the following. A subset A; C A of shared access
points is randomly chosen according to the sharing probability
p. For each mobile request 1 < ¢ < n arandom way point w; €
W is determined. The mobile request ¢ can be offloaded, if a
shared WiFi access point is in range, i.e. Ja € Aq|x,(w;,a) =
1. With

1, da € Aglxr(wia) =1,

offti) = {O else. @

the WiFi offloading potential is calculated by the amount of
offloaded requests:

off =~ > off(i). 3)

If the mobile request can be offloaded, WiFi is used as
access technology. If the request cannot be offloaded the
request is served by the cellular network which uses 2G, 3G or
4G access technology. The throughput p; received for request ¢
is determined randomly according to the access technology and
its cumulative distribution function derived from the network
performance data set described in Sec. III-A.

Finally the bit rate b; of the requested video is determined
randomly according to the encoding rate of irag36 videos as
described in Sec. III-D. We determine if request ¢ received a
good QOoE, if p; > 2 - b;. With

11 pi22'bi7
0, else.

0or(i) = { @

the amount of good QOE sessions is determined by the number
of requests that received a good QoE:

_ 1 .
QoF =~ > QoE(i). 5)

1<i<n
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Fig. 3. Amount of mobile connections offloaded to WiFi dependent on sharing
probability for different access point transmission ranges.

This simple model is used to get a first assessment of the
WiFi offloading potential in an urban environment. The model
has several limitations, since it does not consider temporal and
spatial dynamics of users and cell capacities. The throughput
received for a request does not consider the cell load or the load
on the WiFi access point. However, the throughput received is
derived from real traces which mitigates these impairments.

IV. SIMULATION RESULTS

In the following we describe simulation results to show the
WiFi offloading potential in an urban environment dependent
on the WiFi sharing probability. We further show the QoE ben-
efits and degradations of WiFi offloading for different mobile
access technologies. The results can be used by operators to
assess the feasibility of establishing WiFi offloading according
to their cellular network coverage, or to estimate the amount
of users that share their access point, which is necessary to get
a good WiFi coverage.

The results show mean values with 95% confidence in-
tervals of 10 runs with different random number seeds and
n = 100000 mobile requests in each run. We investigate
the impact of the WiFi sharing probability on the WiFi
offloading potential. As the transmission range of WiFi access
points depends on the environment, the number of active
connections and its configuration, we show results for different
transmission ranges. Figure 3 shows the amount of mobile
connections offloaded to WiFi off dependent on the WiFi
sharing probability p. The WiFi offloading potential is depicted
for different transmission ranges r. If a transmission range of
only 10m is assumed, the WiFi sharing potential is rather low
and increases almost linearly with the WiFi sharing probability.
Roughly every second mobile connection can be offloaded
for a transmission range of 25 meters if 40% of the access
points are shared and 3 of 4 connections can be offloaded if
every access point is shared. For transmission ranges 50m and
100m the WiFi sharing potential grows fast within 0% to 10%
WiFi sharing probability. For 10% WiFi sharing probability
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Fig. 4. Probability to perceive good QoE during video session.

the offloading potential is higher than 60% for 50m sending
range and almost 90% for 100m sending range. The offloading
potential increases to more than 70% for 50m and more than
90% for 100m sending range for 20% sharing probability. If all
WiFi access points in an urban environment would be available
for WiFi offloading, 73%, 88% and 96% of connections can
be offloaded for transmission ranges 25m, 50m and 100m
respectively.

If a WiFi transmission range of 50m is assumed, a decent
WiFi offloading potential is obtained if only 10% percent of
WiFi access points in an inner city area are shared. Hence, to
obtain a good WiFi coverage, incentive mechanisms have to
be designed, such that at least 10% of WiFi access points are
shared.

In the following we set the WiFi transmission range to 50m
and investigate the impact of WiFi offloading on video stream-
ing QoE based on the model described in Sec. III-D. Figure 4
shows the fraction of good QoE video sessions QoE dependent
on the WiFi sharing probability p for a WiFi transmission range
r of 50m. The dashed line depicts the probability that a video
session receives a good QoE if WiFi is used in any case, which
is about 80%. The fraction of good QoE sessions is depicted
for three alternative access technologies, which are used if the
connection cannot be offloaded to WiFi. If the alternative to
WiFi is 2G, the number of sessions with good QoE increases
with the WiFi sharing probability. This depends on the fact
that the throughput of the WiFi connection is higher than the
throughput of 2G in most cases. If more WiFi access points
are shared, the probability to offload the connection and to
receive more bandwidth increases. With a higher throughput
the fraction of good QoE sessions also increases. If no WiFi is
available and only 2G is available less than 10% of the sessions
receive a good quality of experience. If all WiFi access points
are shared, the majority of video sessions would receive a good
QoE.

In our measurements the throughput of WiFi is lower than
the throughput of 3G and 4G connections with high proba-



bility. Therefore the fraction of good QoE sessions decreases
with the WiFi sharing probability. This shows that the reason
to deploy WiFi offloading in urban environments is not to
increase the end users QoE for video streaming, but to take
load off cellular networks. 3G and 4G meet the requirements of
mobile video streaming. Hence, if no WiFi is shared and every
video session has to be streamed over 4G, the QoE is good
in 100% of the sessions. The fraction of good QoE sessions
in 3G is slightly lower than in 4G, but is still close to 100%.
For 50m transmission range, the WiFi coverage is not 100%.
With a WiFi coverage of 100% the lines would approach the
WiFi baseline for WiFi sharing probability 100%. In the worst
case from QoE perspective, hence if 4G is available and the
WiFi sharing probability is 100% and mobile connections are
offloaded if possible, still, in more than 86% of video sessions
good QoE is perceived. In this case the load on the cellular
network is mitigated to only 12%.

V. CONCLUSION

To cope with the increasing demand of mobile user and
video streaming on cellular networks, mobile connections are
offloaded to WiFi networks to take load of the cellular network.
In this work, we investigated the impact of WiFi offloading
on the QoE of video sessions streamed to mobile devices in
urban environments. We conducted bandwidth measurements
to derive the throughput of mobile access technologies 2G,
3G, 4G, and WiFi access in an urban area. Based on existing
datasets with way point distributions and WiFi access point
locations we developed a simulation model that generates
mobile video requests and evaluates the perceived quality of
the video session based on a simple QoE model considering
the received bandwidth. Our results show that a slight increase
of the WiFi sharing probability can have a high impact on the
offloading potential. For instance, if only 10% of the access
points are shared, two out of three connections can be offloaded
to WiFi. Due to lower throughput compared to 3G and 4G,
the QoE of offloaded connections is expected to be slightly
worse for video streaming, however, this is compensated by
a high potential to take load off the cellular network. It is
part of future work to enhance the simulation model with
detailed measurements that consider correlations between the
throughput and coverage of the different access technologies.
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