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Abstract: Crowdsourced network measurements (CNMs) are becoming increasingly popular as they
assess the performance of a mobile network from the end user’s perspective on a large scale. Here,
network measurements are performed directly on the end-users’ devices, thus taking advantage of
the real-world conditions end-users encounter. However, this type of uncontrolled measurement
raises questions about its validity and reliability. The problem lies in the nature of this type of data
collection. In CNMs, mobile network subscribers are involved to a large extent in the measurement
process, and collect data themselves for the operator. The collection of data on user devices in
arbitrary locations and at uncontrolled times requires means to ensure validity and reliability. To
address this issue, our paper defines concepts and guidelines for analyzing the precision of CNMs;
specifically, the number of measurements required to make valid statements. In addition to the
formal definition of the aspect, we illustrate the problem and use an extensive sample data set to
show possible assessment approaches. This data set consists of more than 20.4 million crowdsourced
mobile measurements from across France, measured by a commercial data provider.

Keywords: mobile networks; crowdsourced measurements; statistical validity

1. Introduction

Mobile internet is increasingly used in every-day life, and end users expect to have
the same quality as when they are at home. For this reason, service and network operators
are interested in monitoring the current state of quality perceived by end users with their
service or network. While operators so far collected measurement data on the physical,
data transmission and network layers to which they have direct access, more and more
companies and operators are striving to measure network quality from a user perspective.
Measurements from the end user perspective are essential to detect or to understand
upcoming problems in networks, and are therefore essential for improving Quality of
Service (QoS) and enhancing Quality of Experience (QoE). It is, however, not possible to ask
the customers about their satisfaction every time they use an app or service. Consequently,
the measurement method of crowdsourced network measurements (CNMs) emerged.
According to [1], CNMs are defined as “[. . .] actions by an initiator who outsources tasks
to a crowd of participants to achieve the goal of gathering network measurement-related crowd
data.” Using the end user devices for gaining crowdsourced measurements on the user
side, operators can gain a much better holistic understanding of the impact of network
challenges or issues on the quality experienced by end-users. CNMs, in combination with
traditional quality measurement methods in the network layer and on a QoS basis, were
proven to be a promising approach for a comprehensive quality view of mobile networks.

In general, the term crowdsourcing includes the active participation of volunteers in
an outsourced campaign [2]. In the context of network measurements, this is the active
participation of users in measurements with deliberate user actions; for example, the use of
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a typical speed test application in the mobile network [1]. Similar mobile measurements
are carried out within an app in the background without the active involvement of end-
users, but also involve the mass of end users in a crowdsourced sense. Crowdsourced
measurements take into account a special type of crowdsourcing: the collection and
processing of data that are measured by the crowd [3].

Network operators and data provider companies (i.e., companies that collect CNM
data and then resell it, e.g., to network operators) use this approach to take large-scale
measurements of mobile networks. The measurement apps, tools, or mobile websites,
usually provided by the measurement provider such as a network operator, regulatory
agencies, or a big data company, typically measure one or more aspects of the network:
signal strength, mobile app performance such as video streaming quality, QoE ratings on a
numeric scale (e.g., 1–5), or QoS. As a result, however, a large amount of data is obtained
from uncontrolled measurements through the crowd. The density, number, and accuracy
of the measurements differs due to the uncontrolled measurement environment, which
is especially true in case of crowdsourced mobile measurements. It is typical for crowd-
sourced measurements that a lot of data originate from large cities, that measurements
are taken during the day, and that the measurements per device are at different intervals,
which can be attributed to the concentration of mobile phone users in cities and the times
when devices are commonly used. There is always the question of the validity [4] of such
measurements, i.e., is it permissible to make this statement based on the available data?
In the simplest case, an outcome is based on one measuring point that is one-year old. In
the best case, there is high temporal and spatial coverage. This raises the question of the
number of measurements required for a meaningful and generally applicable statement.

The Super Bowl 2019 can serve as an example of such a challenge. After the match,
different CNM companies, for example Ookla and Tutela, published statistics about the
mobile network speed during the Super Bowl. Ookla quantified the throughput during
the Super Bowl at about 100 Mbit/s, with T-Mobile as the fastest network [5]. In contrast,
according to Tutela, Verizon delivered the fastest average download speeds in the stadium
at around 40 Mbit/s. The evaluations of the two providers thus differ significantly. Possible
reasons for this include the different spatial distribution of the respective measurement
data, as well as the number of measurements collected and the used evaluation methods.
This shows that it is important to define guidelines on how to evaluate the validity of
CNM data. However, little research was performed in this area to date. The only works
that go towards validity of crowdsourced data are [1,6]. The authors of [6] state that, for
example, end device related issues, resource consumption, and privacy versus reliability
are challenges that CNMs bring. In [1], the authors state that validity, reliability, and
representativeness play an important role in all stages of a crowdsourcing campaign:
in the design and methodology, the data capturing and storage, and the data analysis.
Nevertheless, there is a lack of detailed discussion on the validity of crowdsourced data
and, in particular, a lack of guidelines or metrics on how to test data for validity. Hence, the
basics are needed to understand its importance, avoid errors, and carry out crowdsourced
measurements in a meaningful way.

To address this issue, in this paper a large-scale commercial CNM data set from
July 2019 to December 2019 for France with 20.4 M crowdsourced mobile measurements
throughout the country and its overseas territories is analyzed. We tackle the following
aspect for analyzing the validity of crowdsourced mobile network measurements: we
consider the precision of an evaluation, in particular, the precision of a certain metric such
as the downlink throughput. We analyze the mean mobile downlink throughput for certain
regions and derive the number of measurements required to achieve high precision. This
paper is a full extension of [7] and, to the best of the authors’ knowledge, shows for the
first time the application and definition of a comparable score to quantify the precision of a
statement from a CNM data set.

The remainder of the paper is structured as follows. In Section 2, different ways of
measuring mobile network quality are presented, and the methodology of crowdsourced
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network measurements is introduced. Section 3 summarizes related work in the field of
CNMs. Definitions for validity are summarized in Section 4, while an explanation of the
used data set is given in Section 5. The aspect of precision, including the definition of the
metric called CNM Precision Validity Score, is dealt with in Section 6. Section 7 illustrates
the importance and the applicability of the CNM Precision Validity Score by showing
some exemplary results based on the given data set. Section 8 concludes the paper and
summarizes the findings.

2. Measuring Mobile Network Quality

There are different ways how operators can monitor the quality of their network at
the user side. This starts with the collection of subjective ratings directly from the end
user, continues with monitoring mobile applications and services, and ends with network
measurements. In the following, we will present the different methods and also classify
and describe the emerging technique of CNMs.

Subjective User Studies are always required for modeling the user’s QoE. Here,
people are asked about their satisfaction with a given service under specific network
conditions. Using their results, models can be created to identify the key performance
indicators (KPIs) of a service or application. These KPIs can later be measured automatically,
and can then be mapped to an estimated QoE value. Here, the advantage is that real user
experience is included in the evaluation. Nevertheless, this method is very cost-intensive
as the participants have to be paid. Furthermore, it is not possible to conduct subjective
user studies on a larger scale. Best practices and recommendations for crowdsourced QoE
assessment are summarized in [8,9].

In-Service Monitoring is another another way of measuring the networks’ quality by
passively measure the speed of incoming and outgoing data of an application, for example,
a mobile messaging application or smartphone game. In addition, user behavior can be
monitored to get deeper insights in the QoE. Negative aspects of in-service monitoring
are that the access to use the network information has to be requested and allowed by the
smartphone holders. Furthermore, depending on the service in which the measurement
tool is included, it is not easy to reach a large number of people, and thus, monitor the
mobile network in a large scale for different purposes.

Measurement Applications are used to monitor the current status of the network
by using a standalone measurement application, which can be freely downloaded by
smartphone holders who are interested in network statistics. This kind of application offers
the possibility to the user to run network speed tests at any time they want to evaluate the
current network conditions. In addition, it is also possible to start small network tests at
regular intervals, for example daily, to to receive continuous information. Disadvantages
of this way of collecting network data is that it is hard to get results on a large scale, as the
incentive for the users is limited. It follows that only interested users download this app,
and thus, only network statistics from them are collected. The users therefore rather reflect
a nonrepresentative group of the population. Furthermore, using measurement apps, only
QoS parameters can be monitored; the user satisfaction (QoE) can only be estimated using
QoE models.

Hybrid Applications combine advantages of in-service monitoring and measurement
applications. Here, different applications like smartphone games or messaging services
can trigger active measurements in addition to passive monitoring. This is especially
interesting if the same service provider can address different target groups, e.g., people
who play online games and people who use messaging services, to collect QoS values
from a heterogeneous group of people. Using different apps, especially if widespread
applications cooperate with network measurement companies, it is relatively easy to
monitor the mobile network in a large scale.

In-network Measurements are probably the simplest measurement method for Inter-
net service providers. Here, providers do network measurements within their own network.
The biggest advantage of this way of collecting network data is that the measurements can
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be completed fully automated, and the status of the whole network can be evaluated at
regular intervals. Nevertheless, this is also the biggest disadvantage, as only statistics from
one provider can be collected, and thus, no comparison of different providers is possible.
Furthermore, for internet service providers, it is not possible to measure the network’s
quality down to the end user, but only until the last hop under their control (e.g., base
station). Thus, the QoS, and especially also the QoE, of the end users can only be estimated.

Crowdsourced Network Measurements use crowdsourcing to gather information
about the quality of the network. Crowdsourcing is the methodology of processing a task
by a large group of people instead of a designated agent [2]. For network measurements,
crowdsourcing has three major advantages: it makes it much easier to cover a wide range
of situations and users, it allows entities other than the network operator to assess the
performance and other characteristics of a network independently, with a coverage that is
not feasible using other methods such as drive testing, and it offers the possibility to collect
statistics from end-user perspective. Thus, CNMs make it possible to get insights into the
real network behavior as it is experienced by the end-user, as they use realistic hardware
and software settings with heterogeneous devices, access networks, and load situations. A
comparison of crowdsourcing with traditional measurement techniques and best practices
how to design crowdsourced network measurements issues is made in [3]. There are two
ways of doing crowdsourcing studies: active or passive measurements. Either workers are
paid to actively process a task or applications on the end users’ smartphones are used to
collect KPIs in an active way using measurement applications. In the second case, CNMs
can be seen as a special case of crowdsensing, where user devices act as environmental sen-
sors ,and thus, passively monitor the network using in-service monitoring. Crowdsourced
measurement data (crowd data) offers new possibilities and can be used for various ap-
plications, such as the benchmarking of network operators, providers, technologies, or
countries, as well as, e.g., for monitoring, planning, and optimization of the network. In
this way, crowd data provides insights beyond the network layer, that is, at the application
and user level. This makes crowd data very valuable and extends the current practice of
operators to evaluate networks. The ultimate goal is to use crowd data—combined with
other network and user data—to improve QoE, but also for regulatory purposes, e.g., to
identify issues with coverage or network settings. Challenges, drawbacks, and benefits of
CNMs are listed in [1].

3. Related Work on the Usage of CNMs

In recent years, CNMs became increasingly relevant in research and practice, as they
enable the fast and relatively cheap collection of information on network and application
level. Fundamentals on CNMs are specified in [1]. In their white paper, the authors pro-
vided definitions of the terms crowdsourced network and QoE measurements, defined use
cases for CNMs, and discussed challenges. The three main use cases the authors mention
are network planning, network monitoring, and benchmarking. Thus, the following re-
lated work is grouped into these three categories. In addition, research which focuses on
challenges of CNMs are discussed.

One area of application of CNMs is network planning, which includes, for example,
the creation of coverage maps for mobile networks. In [10], the authors analyzed different
estimation approaches for base station positions using crowdsourced data. They found
that a grid-based approach provides the best estimates when compared with that of their
real locations. Another approach to estimate base station localization using CNMs was
done by [11]. Here, the authors evaluated the applicability of crowdsourced cellular signal
measurements in this context and showed that feature clustering leads to good results.

For internet service providers (ISPs), network monitoring is essential. With the help
of CNMs, they are able to monitor network quality from a user perspective. This can, for
example, be done by collecting information during the use of specific smartphone appli-
cations. Here, different KPIs can be measured on several layers, from context parameters
such as cultural background through network parameters such as signal strength up to
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application parameters including number of stalling and user-focused parameters, such
as browser session time. Especially video streaming applications are well-used options to
collect crowd data on the smartphone of the end-users. For example, in [12], the authors
designed a smartphone application to analyzing the QoE of YouTube HTTP Adaptive
Streaming in mobile networks. Another approach was performed by the authors of [13].
Here, an active measurement framework to collect video streaming KPIs was designed
to monitor the quality of mobile networks in Europe [14]. A statistical report of the mo-
bile internet experience for Germany based on CNMs data report can be found in [15].
In addition to some scientific work in this field, the number of commercial CNM service
providers increased in the last few years. Examples of such providers are Tutela, Ookla,
Umlaut, QoSi, Opensignal, and Rohde & Schwarz, which all use the smartphones of the end
users as measurement devices. These companies regularly publish reports on the mobile
network experience, for example [16–19]. In these reports, a comprehensive evaluation
of the current state of the mobile networks is given. Furthermore, they compare network
operators, coverage, and speed of their networks.

Another use case of CNMs is benchmarking, and thus, to measure and compare
different ISPs. As previously mentioned, commercial CNMs service providers regularly
publish reports that can also include the comparison of the network quality of different
ISPs. In research, other benchmarking approaches are presented. For example, in [20],
the authors used crowd data collected from peer-to-peer BitTorrent users to compare the
performance of ISPs from end-user perspective. Using transfer rates as well as network
and geographic location information, they showed that this approach is a feasible way to
characterize the service that subscribers can expect from a particular ISP. Another model for
evaluating the performance of different ISPs using CNMs was presented by [21]. In their
work, they introduce a model which characterizes throughput as a function of signal power.

In addition to a wide range of applications, however, CNMs also involve a number
of challenges. In [1], the key challenges of CNMs are named as validity, reliability, and
representativeness, which play an important role in all stages of a crowdsourcing campaign:
in the design and methodology, the data capturing and storage, and the data analysis. Other
challenges inherent to CNMs via smartphones were presented by [6]. Here, for example,
end device related issues, resource consumption, and privacy versus reliability were
discussed and shown by the example of a CNMs data set. While these two articles describe
in detail various challenges in designing, collecting, and analyzing CNM data, they do not
provide specific solutions or guidelines. To the best of our knowledge, a detailed discussion
of the validity of crowdsourced data and a guideline on how to check data for validity is
still missing.

4. Defining Statistical Validity for CNMs

The problem of validity of measurements was generally extensively studied in various
research in different domains [4,22–24]. Validity is, in addition to reliability and objectivity,
a quality criterion for models, measurement, or test procedures [23,25].

Validity: a measurement is valid if it actually measures what it is intended to measure, and
thus, delivers credible results.

Reliability: reliability relates to whether your research produces reliable results when done
repeatedly.

Objectivity: research is objective if there are no unwanted influences from people involved.

Validity is fulfilled if the measurement method measures the characteristic with
sufficient accuracy that it is supposed to measure or that it pretends to measure [4,25]. In
empirical terms, validity denotes the agreement of the content of an empirical measurement
with the logical measurement concept in reality. In general, this is the degree of accuracy
with which the feature that is to be measured is actually measured. Definitions can be
found in [23,25]. Fundamental general work on sampling and sample theory is given, for
example, in [26].
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The accuracy of a measurement is further given by the precision and trueness of a
measurement [4,27]. The International Standard ISO 5725 [4] defines them as follows.

“The general term accuracy is used in ISO 5725 to refer to both trueness and pre-
cision. (. . .) Trueness refers to the closeness of agreement between the arithmetic
mean of a large number of test results and the true or accepted reference value.
Precision refers to the closeness of agreement between test results.”

The precision describes the spread of the results. The trueness ensures that the results
also correspond to the correct or true value and are not distorted by the measurement
concept, i.e., the representativeness must be ensured in such a way that no bias or systematic
errors occur due to the measurement concept, even if the results are already precise.

In the literature, the concept of validity is commonly further divided into several
empirical and theoretical validity aspects for measurements [23]. These include construct
validity, convergent validity, discriminant validity, or content validity [28]. In the following,
we assume that the measured values were selected in the sense of the characteristic to be
recorded (construct validity). Furthermore, in this work we only deal with questions about
the degree of precision.

In psychology [23] and medicine [24], studies on medication or treatment programs
are regularly carried out. Generalized statements are drawn there from a finite number
of observations, and in this case a sample. The studies are commonly performed (i) as
representative as possible and (ii) until the desired precision prevails. In addition, the
systematic error in election polls is kept low in electoral research [29] by a representative
selection of the surveyed citizens to satisfy the validity [22].

Given a CNM S with scope m, i.e., a measurement can be seen as a sample with
m observations. Let S ⊆ U be the CNM with U as the finite underlying population
U = {1, . . . , n} with n ∈ N. For each element i ∈ U the value of a variable y can be
measured. The vector of these values yi is denoted by yU . The aim of the measurement is
now to estimate a characteristic Θ(yU) of U with the help of a sample S. The characteristic
to be estimated is often the population mean µ = ȳU = ∑i∈U

yi
N or the absolute sum with

yU+ = ∑i∈U yi. The measurement plan p(S) on S of the possible samples S ⊆ U assigns a
measurement probability to each sample: p : S→ [0, 1].

CNMs result in uncontrolled observations without statistical certainty. The values
observed in the measurement (yi1 , . . . , yin) are denoted by yS. This means that Θ(yS), given
from the sample observations, only reproduces exactly the characteristic relating to the
sample subset. Generalized statements, i.e., conclusions in relation to the population U
can only be estimated. Thus, valid CNMs are required to have an estimation function
(estimator) T = T(yS) for a characteristic considering the fact that the evaluation is based on
samples. A pair (measurement plan, estimator), i.e., (p, T), is called a measurement strategy
or concept. A good estimator is precise and unbiased.

The quality of a CNM is defined by measurement trueness and precision according
to [4] of the concept (p, T). Precision is expressed in terms of the degree of dispersion of yS.
Trueness is expressed in terms of measurement bias [4]. Both are attributed to unavoidable
random errors inherent in every CNM measurement procedure. For precision, the degree
of dispersion indicates the spread of data when using sample observations for evaluations.
In sample theory, standard error is the measure of dispersion for an estimator T.

A measurement with no bias means that the results are representative or “true” (true-
ness), i.e., that there is no systematic error. Although sometimes the true value cannot be
known exactly, it may be possible to have an accepted reference value for the property
being measured with CNMs. The expected value of the estimator with the measurement
plan p is E[T(yS)] = ∑S p(S)T(yS). The bias of an estimator is therefore the mean deviation
from the characteristic to be estimated: E[T(yS)] − Θ(yU). An estimator with bias 0 is
called unbiased or “true”.

Hence, we can evaluate precision and trueness. In this paper, we will focus solely on
precision in the following when analyzing CNM data. Table 1 summarizes the notations.
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Table 1. Key variables and notations used in the paper.

Notation Description

U, n Underlying population, U = {1, . . . , n} with n ∈ N being the size of the population U
S, m Sample population, i.e., CNM data set, S ⊆ U with S = {1, . . . , m} and m ≤ n
yU Values of population U (e.g., all download throughput values in U)
yS Values of all measurements in S (e.g., all measured download throughput values in S)
Θ(yU) Characteristic to be evaluated on U (e.g., mean value)
T(yS) Estimator function of the given characteristic Θ using yS
yU , yS Population mean of U, resp. S
p(S) Measurement plan on S, assigns a measurement probability to each sample, p : S→ [0, 1]
σ(Θ) Standard deviation of a specific evaluation or characteristic Θ
σ(yU) Standard error of the mean (SEM), see Equation (1)
s Sample standard deviation, see Equation (2)
CIα Confidence interval with a significance level of α, see Equation (3)
zβ Quantile function for probability β for a given distribution (e.g., Normal or Student’s t distribution)
t∗ Target precision (e.g., δ∗ = 100 kbit/s or γ∗ = 0.01)
δ∗ Target precision as maximum absolute difference
γ∗ Target precision as maximum relative difference
nmin

abs.(δ
∗) Minimum number of measurements to achieve an absolute precision of δ∗, see Equations (4) and (5)

nmin
rel. (γ

∗) Minimum number of measurements to achieve a relative precision of γ∗, see Equations (6) and (7)
q Target precision type (q = abs. for absolute precision, resp. q = rel. for relative precision)
Val. Scoreprec.(t∗) CNM Precision Validity Score for target precision t∗, see Equation (10)

5. Data Set

For the investigation of validity of CNMs, a commercial data set from Tutela Ltd. (Vic-
toria, Canada) is used. Tutela collects data and conducts network tests through software
embedded in a variety of over 3000 consumer applications. Although started at random
times, measurements are performed in the background in regular intervals if the user is
inactive, and information about the status of the device and the activity of the network
and the operating system are collected. The data is correlated, grouped, and evaluated
according to device and network status (power saving mode, 2G/3G/4G connectivity).
Tests are conducted against the same content delivery network. Tutela measures the net-
work quality based on the real performance of the actual network user, including situations
when a network is congested, or users are throttled because they exceeded the data volume
of their contract. The results in this paper are based on throughput testing in which 2 MB
files are downloaded via Hypertext Transfer Protocol Secure (HTTPS). The chosen size
reflects the median of the web page size on the internet.

The data used were collected over six months from July 2019 to December 2019 in
France and in its overseas departments of the French territorial collectivity. Within the used
data set, 20,486,257 CNMs are included.

Figure 1 shows the location of the measurements in France. The color within the
plot represents the number of measurements per square kilometer. The more crowd-
sourced measurements were made at a location, the brighter the point. The differences
are particularly noticeable for the Paris region in the inner city, which becomes clear in the
subfigure at the bottom-left. The measurements for the region around Lyon are shown at
the bottom-right. Overall, these figures show where most of the measurements are carried
out, namely in cities or in busy places such as main roads and highways. The mean number
of measurements per square kilometer is 48.29. In addition to meta information like date
and geo-coordinates, the data set includes information on current network performance,
including, amongst other variables, download throughput. The question now arises as to
whether the number of measurements in a region of interest is sufficient to be able to make
a valid statement. This is examined in the following sections.
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44.25

66.38

88.5

Meas. count
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Paris Lyon

Figure 1. Number of crowdsourced network measurements (CNMs) per km2 from July to December 2019 in data set
of France with additional subfigures for regions Paris and Lyon at bottom-left and -right, respectively. Absence of a
measurement is indicated in gray, whereas different shades of blue show density of the measurements.

6. Precision

This part of the investigation is devoted to precision, which is the description of the
spread in values in the crowdsourcing measurement process due to the use of samples.
More precisely, it is the measurement deviation from the exact value due to the scatter of
the individual measured values. It is a measure of the statistical variability, expressed in
terms of the degree of dispersion.

6.1. Standard Error and Confidence Intervals in the Context of CNMs

The standard error (SE) is the standard deviation for a measured characteristic Θ on
the sampling distribution, i.e., it is a measure of how much an observed parameter in a
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sample deviates on average from the true parameter of the population. Speaking for CNMs,
this corresponds to the variability of the measurement results of the users evaluating
the same characteristic Θ with estimator T(yS). The variability of the characteristic is
firstly given by the spread of the values in the population U itself, i.e., the variance of
yU with Var(yU) = E

[
(yU − yU)

2
]

and, secondly due to the nonexhaustive measurement
methodology with sample observations S ⊆ U on the population U. Thus, the standard
error decreases as the population variance decreases. Furthermore, it decreases the more
individual values are measured.

SE is defined as standard deviation σ for the measured characteristic Θ with
σ(Θ) =

√
Var(Θ). Please note that we use the symbol σ in our work for the standard

deviation of a specific evaluation or characteristic Θ of CNM data. Other standard devi-
ations are indicated by lowercase letters, for example s, to distinguish between the two
standard deviations with different data. If the characteristic to be measured is the mean
value (Θ = yU), σ is called standard error of the mean (SEM).

The standard deviation of the population being sampled is seldom known. Thus, SEM
on the sampling distribution S is estimated by

σ(yU) ≈
s√
m

, (1)

where s is the standard deviation calculated by an estimator on sample S, and m = |S|
is the size of the sample. m is inversely included in the SEM, which means that the SEM
decreases with increasing sample size. The estimator, i.e., the sample standard deviation s
of the observations yi, is defined as

s =

√
1

m− 1 ∑
i∈S

(yi − yS)
2 , (2)

where yi are the measured values, yS is the sample mean, and m is the size of the sample.
1

m−1 ensures that s is an unbiased estimator. Using s, SEM σ(yU) can be estimated as
s√
m , resulting in an absolute value for the degree of dispersion for a characteristic Θ

when sampling.
Using SEM, confidence intervals (CIs) propose a range of plausible values for an un-

known parameter of the real population (e.g., the mean yU). The interval has an associated
significance level that the exact parameter yU is in the proposed range CIα. The confidence
interval for the mean is defined as

CIα = [yS − z α
2

s√
m

, yS + z α
2

s√
m
] , (3)

with yS as sample mean, z α
2

as quantile at α
2 for a given distribution, and α is the chosen

significance level.
For crowdsourced measurements, this gives the possibility to quantify how precise

a characteristic Θ can generally be determined in terms of the number of measurements
and a given significance level [30]. We use this in the following to define the minimal
number of crowdsourced measurements (i.e., CNM observations) needed to achieve a
certain precision of the data with respect to the pure number of measurements at a given
confidence level.

To maintain a precision given by the maximum absolute difference
δ∗ = |yS − yU | [30] between the estimated mean value yS of the CNM S and the ex-
act one yU of the underlying population, the minimum number of measurements nmin

abs. can
be estimated as

nmin
abs.(δ

∗) = arg min
m̂∈N

{
z α

2
· s√

m̂
≤ δ∗

}
. (4)
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For certain distributions such as the Standard Normal Distribution, this formula can
be solved to

nmin
abs.(δ

∗) =

( z α
2
· s

δ∗

)2
. (5)

Please note that this is not directly possible for the Student’s t distribution because
quantile z α

2
depends on the number of measurements, which makes the formula an estimate

that overestimates the minimum number of measurements required. For this reason, we
will later give two algorithms for the calculation: (1) the calculation with the direct trans-
formation (Equation (5)) and (2) the iterative, exact calculation for Student’s t distribution
(Equation (4)), if one does not want to use the approximation.

Another possibility, which is often required in practice, would be the relative difference
according to the mean value instead of the absolute difference, i.e., the error to the exact
mean value relative to the population mean. Given the maximum relative error γ∗ =
|yS−yU |
|yU |

for the estimated mean value yS and the exact one yU with yS, yU 6= 0, the number
of required measurements can be estimated as follows

nmin
rel. (γ

∗) = arg min
m̂∈N

{
z α

2
· s/
√

m̂

|yS|
≤ γ∗

1 + γ∗

}
. (6)

Similar to Equation (5), it also applies here that a direct solution with

nmin
rel. (γ

∗) =

(
z α

2
· s · (1 + γ∗)

|yS| · γ∗

)2

(7)

is possible, except when using the Student’s t distribution.
The particular inequation in Equation (6) can be derived as follows. Given the condi-

tion for the absolute error δ∗ = |yS − yU | with z α
2
· s√

m ≤ δ∗ in nmin
abs.(δ

∗), it applies

z α
2
· s√

m
≤ |yS − yU | ⇐⇒

z α
2
· s/
√

m

|yS|
≤
|yS − yU |
|yS|

. (8)

With γ∗ =
|yS−yU |
|yU |

and γ∗

1+γ∗ =
|yS−yU |
|yS |

when using γ∗, the condition can be written as·

z α
2
· s/
√

m

|yS|
≤ γ∗

1 + γ∗
, (9)

which corresponds to Equation (6).

6.2. CNM Precision Validity Score

With the help of the previous definitions, a comparable score is now defined to
indicate whether sufficient measurements are available for a given criterion to meet a
certain precision. On the one hand, this helps to compare data sets of different sizes,
whether the accuracy is statistically different or not. On the other hand, the score can be
used to quantitatively indicate for a CNM what percentage of the required measurements
were already made to achieve a specified precision.

The measure is defined as follows. Given a target precision t∗, e.g., t∗ = δ∗ = 100 kbit/s
or t∗ = γ∗ = 0.01 (i.e., for the latter, the deviation of ȳS from yU corresponds to maximum
1% of the mean value yU), the CNM Precision Validity Score is defined as

Val. Scoreprec.(t∗) = min

{
m

nmin
q (t∗)

, 1

}
(10)
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with m = |S|, S ⊆ U, as the number of measurements done within the CNM S with
measurement plan p, target precision t∗ (δ∗, resp. γ∗), required number of measurements
nmin

q to meet precision of type q as q = ‘abs.’ for absolute precision, resp. q = ‘rel.’ for
relative precision, as defined in Section 6.1. It corresponds to the percentage number of
measurements in CNM S compared to the number required to achieve the desired precision.
The minimum condition within the formula with 1 (≥ 100%) ensures that the score results
in 0 < Val. Scoreprec.(t∗) ≤ 1.

In case enough measurements are contained in the CNM (≥100%), the score thus
reflects the same value with 1 (=100%). If there are too few measurements for the target
precision, it shows what percentage of the measurements are already included until the
desired precision is achieved. The validity score is intended to be mentioned additionally in
connection with a CNM result to prove the given precision and error margin, for example,
in the case of throughput calculations for a region, which are customary in practice.

With a target precision given by the maximum absolute difference, the calculated
CNM Precision Validity Score depends largely on the estimated standard deviation of the
underlying population by sample S. This means that if the sample size is small, a poor
estimate of the actual standard deviation has a significant influence on the score. In case of
a calculation of the validity score with relative target precision, the estimate of the mean
value of the underlying population also plays a role. In the case of small samples, the
estimator for the standard deviation and the mean value can therefore be poor and both
can falsify the result. Based on our experience in applying the score with our CNM data, a
sample size of at least 100 is recommended in practice to avoid falsified results. A practical
example of the influence of a small sample size and its estimators on the validity score can
be found in Section 7.

We differentiate between five different types of the CNM Precision Validity Score as
listed in Table 2. They differ in the method to estimate the distribution of the statistics
for the confidence interval, i.e., when calculating the quantile z α

2
. This means that they

stand out in terms of their requirements, such as their computational effort, the minimum
number of measurements required, and whether the data set has to be approximately
normally distributed or not.

Depending on the assumed underlying distribution for the measured parameter, z α
2

can be derived according to (1) the Standard Normal Interval, (2) the Studentized t Interval,
(3) the Basic Bootstrap Confidence Interval, (4) the Percentile Confidence Interval, or (5) the
Bias Corrected and Accelerated (BCa) Confidence Interval. Compared to that of method (1)
with the Standard Normal Interval, (2) takes into account the correction of the standardized
estimator of the sample mean of normally distributed data with a small sample size. (3),
(4), and (5) are based on the bootstrapping method. Bootstrapping is generally useful for
estimating the distribution of a statistic (e.g., mean, variance) without using normal theory.

Bootstrapping [31,32] accounts for the exact distribution of the underlying measure-
ment parameter and falls under the broader class of resampling methods. This is par-
ticularly necessary if arbitrary distributed measured values are obtained from the CNM.
Bootstrapping estimates the properties of a distribution by measuring those properties
from a sample. Bootstrapping and jackknife methods were proven to be powerful tools for
approximating the sample distribution and variance.

The bootstrap values can be determined as follows: (1) B random bootstrap samples
are generated, (2) a parameter estimate is calculated from each bootstrap sample, (3) all
B bootstrap parameter estimates are ordered from lowest to highest when calculating the
Percentile Confidence Interval, and (4) the CI is constructed accordingly.

BCa confidence intervals adjust for skewness in the bootstrap distribution, but since
CNMs in particular often have to evaluate huge amounts of data, this can be computation-
ally intensive for many users. According to our preliminary investigations and the given
the size of our data set, the results on our server, namely a Super Micro server with 96
CPU cores and 1008 GB RAM, were practically incalculable. For individual regions with
more than 100k measurements, the calculation took more than a day with results without
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any significant difference compared to the other bootstrapping methods for the downlink
throughput in France.

Table 2. Overview of the different versions of the CNM Precision Validity Score. The most relevant method for practice is
highlighted in gray.

Name Confidence Interval
Method Ò } Remarks

Val. Score (Norm.) Standard Normal Interval " − ¢ Version with the lowest computational com-
plexity, Normal theory must be applicable

Val. Score (Stud-t) Studentized t Interval ○ ¢ ¢ Iterative calculation with correction of the
standardized estimator of the sample mean
in order to be applicable to few data values

Val. Score (Boot Basic) Basic Bootstrap Confidence
Interval

○ − − Basic bootstrapping procedure for taking into
account any underlying distribution of the
measured values

Val. Score (Boot Perc.) Percentile Confidence Inter-
val

○ − − Bootstrapping where the bootstrap estimates
are lined up from lowest to highest

Val. Score (BCa) Bias Corrected and Acceler-
ated Confidence Interval

( − − Second-order accurate interval, adjusts for
skewness in the bootstrap distribution

Ò = Computational effort ("/○/( = low/medium/high), } = Applicable with few numbers of measurements
(¢/− = yes/no), = Normal theory must be applicable to estimate the distribution of the statistics (¢/− = yes/no).

The pseudocode for calculating the CNM Precision Validity Score can be found in
Algorithm 1. One input parameter is the type of calculation with type = {Normal|Stud-
t|Bootstrap}. Basically, this algorithm can be used for all types. If Stud-t is used, however,
the result is an estimate, as described in Section 6.1. Therefore, a further algorithm is given
in Algorithm 2, which allows the exact calculation on the basis of an iterative method.
Here, a repeat..until loop is used to calculate the exact value of the quantile of the Student’s t
distribution after every increase in m̂, since it depends on it (cf. degrees of freedom). Note
that a further extension for the practical implementation of the algorithms would be a
binary search instead of the repeat..until loop to be able to determine the parameter m̂
more quickly. The given pseudocode is intended to represent the computation in pertinent
notation to understand the basic idea for calculation.

Algorithm 1 Val. Scoreprec. with Standard Normal Interval, Studentized t Interval (approx. only), or Bootstrapping.

Input: CNM S ⊆ U, m = |S|, α (signif. level), type= {Normal|Stud-t|Bootstrap}, δ∗ or γ∗ (absolute or relative diff.)
Output: Val. Scoreprec.

1: if type==Normal then . Standard Normal Interval
2: Calculate quantile z α

2
according to Standard Normal distribution

3: else if type==Stud-t then . Approximation only, Student’s t distribution
4: Calculate quantile z α

2
according to Student’s t distribution with m degrees of freedom

5: else if type==Bootstrap then . Bootstrapping methods
6: Generate B random bootstrap samples from S ⊆ U
7: A parameter estimate is calculated from each bootstrap sample
8: Parameter estimates are ordered from low to high . If Perc. Con f . Interval
9: end if . Quantile z α

2
was calculated

10: ȳS ← ∑i∈S
yi
m . Assumption: mean value ȳS and sample standard deviation s is stable

11: s←
√

1
m−1 ∑i∈S(yi − yS)

2

12: Direct calculation of nmin
abs.(δ

∗) or nmin
rel. (γ

∗) according to Equation (5), resp. Equation (7)
13: Calculate Val. Scoreprec. with m

nmin
q (t∗)

with q ∈ {abs., rel.} according to Equation (10) . Output Val. Scoreprec.
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Algorithm 2 Val. Scoreprec. iterative approach with Studentized t Interval for CNM S.

Input: CNM S ⊆ U with m = |S|, α (significance level), δ∗ or γ∗ (max. absolute or relative difference)
Output: Val. Scoreprec.

1: ȳS ← ∑i∈S
yi
m . Assumption: mean value ȳS and sample standard deviation s is stable

2: s←
√

1
m−1 ∑i∈S(yi − yS)

2 (otherwise re-calculate it inside repeat..until with m̂ loop after incrementing m̂)

3: Temporary m̂ with m̂← 0 (or reasonable low start value m0)
4: repeat . Determine min. measurements required: nmin

rel.
5: Increment m̂ (since condition has not yet been reached)
6: Calculate z α

2
according to Student’s t distribution with m̂ degrees of freedom

7: until z α
2
· s√

m̂
≤ δ∗, resp.

z α
2
·s/
√

m̂

|yS |
≤ γ∗

1+γ∗ . Depending on or absolute (δ∗) or relative precision (γ∗)

8: nmin
q ← m̂

9: Calculate Val. Scoreprec. with m
nmin

q (t∗)
according to Equation (10) . Output Val. Scoreprec.

7. Practical Application of the CNM Precision Validity Score

To show the practical applicability of the CNM Precision Validity Score, we first discuss
the score for different sample sizes. For our data set, the mean downlink throughput is
23.83 Mbit/s, having a standard deviation of 19.56 Mbit/s and a maximum of 167.95 Mbit/s.
To precisely quantify the effect for this data set, in addition to the mean value of the sample,
the standard error of mean, the confidence interval, the required minimum number of
samples nmin

abs.(δ
∗), resp. nmin

rel. (γ
∗), and the corresponding Val. Scoreprec. are evaluated

for a confidence level of 95% (α = 0.05) of exemplary sample sizes from 10–10,000,000
measurements of the data set with Studentized t Intervals in Table 3.

If a precision of δ∗ = 1 Mbit/s is desired, the table shows how many measurements
are needed to fulfill this precision: For nmin

abs.(δ
∗) ≥ 1491⇒ z0.025 · s√

m ≤ 0.99 and thus, the
precision is higher than 1 Mbit/s. The validity score shows the number of measurements
made as a percentage of the measurements required for the desired precision. Once the
precision was reached, the validity score is ‘≥ 100%’.

If, instead, you prefer to tolerate at most a relative error of γ∗ = 1%, the following
condition must hold: z0.025·s/

√
m

y ≤ 0.01
1+0.01 = 0.0099. In our example, this condition is

fulfilled for nmin
rel. (γ

∗) ≥ 26,576. Thus, in this case, a sample with 26,576 measurements
would lead to a high accuracy of at most 1% inaccuracy relative to the exact mean value
when evaluating the mean.

Table 3. Precision of different sample sizes. Validity Scoreprec. for δ∗ = 1 Mbit/s or γ∗ = 1% with Studentized t Intervals.

Sample
Size m yS

s√
m CI0.05 z0.025

s√
m nmin

abs.(δ∗)
Val. Scoreprec.

(abs.: δ∗) nmin
rel. (γ∗)

Val. Scoreprec.
(relative: γ∗)

10 33.54 9.26 [12.59; 54.49] 20.96 4390.61 0.002 (0.2%) 39,823.66 <0.001 (<0.1%)
100 21.20 1.84 [17.54; 24.86] 3.66 1338.36 0.074 (7.4%) 30,368.21 0.003 (0.3%)

1000 23.89 0.62 [22.67; 25.11] 1.22 1473.70 0.679 (67.9%) 26,348.74 0.038 (3.8%)
1491 23.51 0.51 [22.52; 24.50] (δ∗ = 1 Mbit/s) 0.99 1489.89 ≥100% 27,491.78 0.054 (5.4%)

10,000 23.51 0.19 [23.13; 23.89] 0.38 1462.00 ≥100% 26 976.23 0.371 (37.1%)
26,576 23.57 0.12 [23.34; 23.80] (γ∗ = 1%) 0.23 1447.80 ≥100% 26,575.75 ≥100%

100,000 23.82 0.06 [23.70; 23.94] 0.12 1473.98 ≥100% 26,495.38 ≥100%
1,000,000 23.85 0.02 [23.81; 23.89] 0.04 1473.52 ≥100% 26,431.12 ≥100%
10,000,000 23.83 0.01 [23.82; 23.84] 0.01 1470.10 ≥100% 26,405.05 ≥100%

yS, s√
m , CI0.05, z0.025

s√
m are in [Mbit/s].



Network 2021, 1 228

The values of nmin
abs.(δ

∗) and nmin
rel. (γ

∗) differ. This is especially the case with a small
sample size compared to that of a larger sample size. As described in Section 6.2, this is
due to the estimation of the standard deviation from the different samples for the absolute
case and to the estimation of the standard deviation and the mean value in the relative case.
With more than 100 measured CNM values, however, the result significantly improves
here. We therefore point out the uncertainty of the validity score for small sample sizes and
recommend its calculation for larger sample sizes. Furthermore, based on the estimation
of the parameters of the population, a certain small difference might always occur. In
practice, CNMs with a very small number of measurements are rarely carried out, so the
score should be suitable for practical use.

To illustrate the defined measure, Figure 2 shows the number of measurements,
precision in terms of the confidence interval, and validity scores for δ∗ = 100 kbit/s for
selected departments and islands of France. The subfigures are arranged according to the
number of available measurement results in the specified area. Each point in the upper
map of each subfigure represents a CNM measurement result. Below are the key figures
that correspond to the figures defined in the paper in terms of precision. The validity score
is given according to the Standard Normal Interval, Studentized t Interval, and various
bootstrapping methods to show the differences.

In the top row, departments with sufficient measurements are shown. All regions have
a validity score of ≥100% and precision according to the confidence interval of at most
yS ± 50 kbits/s for the average throughput. In the bottom row, islands and departments are
listed for which too few measurements are available to determine the average downlink
value with a precision of at least 100 kbit/s. For Île-de-France, for example, 8.5 million
measurement results are available, which is sufficient to ensure that the real average
throughput is within a confidence interval of yS ± 13.3 kbit/s. The mean value of the
measurements is 23.78 Mbit/s. More precisely, according to the statistical analysis based on
the 8.5 million samples and their distribution, the real mean of the population is actually
between 23.76 Mbit/s and 23.79 Mbit/s (confidence level α = 0.05). This range is less than
100 kbit/s, which results in a validity score of ‘≥100%’. For Brittany, 421k measurements
are available, which corresponds to a confidence interval of yS ± 52.1 kbit/s. Here, the
mean value yS is 21.61 Mbit/s but it can only be limited to 21.556 Mbit/s to 21.660 Mbit/s
according to the Studentized t Interval. This corresponds to a range of 104.20 kbit/s, which
is above the desired precision. For this reason, the subfigure has a yellow background.
The validity score shows what percentage of the measurement results were obtained to
maintain the precision. In this case, about 7–10% of the measurements are missing for
Brittany, depending on the calculation method and estimate of the standard deviation from
the sample. In the case of the bottom row, we recommend taking more measurements to
maintain the desired precision and to ensure comparability between the different regions
in terms of the average throughput.

The validity score indicates the relative number of measurements required to achieve
the desired precision. The description with the key figures below each map also shows the
differences between the individual calculation methods of the validity score. The score
varies from 89.96% for Bootstrapping Basic to 92.14% for Studentized t Intervals for Brittany,
for example. In general, it makes the most sense to trust the bootstrapping intervals, as they
provide a good estimate for the underlying variance of the distribution of the population.
However, bootstrapping methods are slower to compute. Based on our experience and
the small differences in practice, we recommend using the method with Standard Normal
Interval to calculate the validity score.

In the following, we present another practical example. We show that the calculation
of the average downlink throughput for France is (almost) possible for regions, but not
at the departmental level, based on our given data set. At the departmental level, the
calculation is only valid for large cities like Paris or Lyon if you want to maintain the
precision of δ = 100 kbit/s.
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8'522'931 meas.
26.7 kbit/s (ȳS ± 13.3 kbit/s) 

Val. (Stud-t): ≥100%

Val. (Norm.): ≥100%

Val. (Boot Basic): ≥100%

Val. (Boot Perc.): ≥100%

421'932 meas.
104.2 kbit/s (ȳS ± 52.1 kbit/s) 

Val. (Stud-t):    92.14%
Val. (Norm.):    91.94%

Val. (Boot Basic):    89.96%
Val. (Boot Perc.):    92.10%

2'114'853 meas.
53 kbit/s (ȳS ± 26.5 kbit/s) 

Val. (Stud-t): ≥100%

Val. (Norm.): ≥100%

Val. (Boot Basic): ≥100%

Val. (Boot Perc.): ≥100%

64'395 meas.
261 kbit/s (ȳS ± 130.8 kbit/s) 

Val. (Stud-t):    14.62%
Val. (Norm.):    14.60%

Val. (Boot Basic):    15.86%
Val. (Boot Perc.):    15.10%

1'830'468 meas.
53.3 kbit/s (ȳS ± 26.6 kbit/s) 

Val. (Stud-t): ≥100%

Val. (Norm.): ≥100%

Val. (Boot Basic): ≥100%

Val. (Boot Perc.): ≥100%

30'760 meas.
   386 kbit/s (ȳS ± 193.3 kbit/s)

Val. (Stud-t):     6.69%
Val. (Norm.):     6.69%

Val. (Boot Basic):     7.12%
Val. (Boot Perc.):     7.09%

1'455'260 meas.
56.8 kbit/s (ȳS ± 28.4 kbit/s) 

Val. (Stud-t): ≥100%

Val. (Norm.): ≥100%

Val. (Boot Basic): ≥100%

Val. (Boot Perc.): ≥100%

30'173 meas.
   366 kbit/s (ȳS ± 183.1 kbit/s)

Val. (Stud-t):     7.47%
Val. (Norm.):     7.46%

Val. (Boot Basic):     7.64%
Val. (Boot Perc.):     7.75%

1'303'744 meas.
63.4 kbit/s (ȳS ± 31.7 kbit/s) 

Val. (Stud-t): ≥100%

Val. (Norm.): ≥100%

Val. (Boot Basic): ≥100%

Val. (Boot Perc.): ≥100%

12'066 meas.
496 kbit/s (ȳS ± 248 kbit/s) 

Val. (Stud-t):     4.07%
Val. (Norm.):     4.07%

Val. (Boot Basic):     4.25%
Val. (Boot Perc.):     4.17%

1'194'482 meas.
63.8 kbit/s (ȳS ± 31.9 kbit/s) 

Val. (Stud-t): ≥100%

Val. (Norm.): ≥100%

Val. (Boot Basic): ≥100%

Val. (Boot Perc.): ≥100%

6'411 meas.
   483 kbit/s (ȳS ± 241.7 kbit/s)

Val. (Stud-t):     4.27%
Val. (Norm.):     4.29%

Val. (Boot Basic):     4.47%
Val. (Boot Perc.):     4.36%

Brittany Corsica Martinique Guadeloupe French Guiana New Caledonia

Ile-de-France Auvergne-Rhône-Alpes Provence-Alpes-Côte d'Azur Languedoc-Roussillon-Midi-Pyrénées Nord-Pas-de-Calais-Picardie Alsace-Champagne-Ardenne-Lorraine

T
op 6 # of m

eas.
B

ottom
 6 # of m

eas.

Figure 2. Amount of measurements, precision, and validity scores for δ∗ = 100 kbit/s for selected regions and islands of
France. In the top row, regions with sufficient measurements are shown. All regions have a validity score of ≥100% and
precision according to an interval with at most yS ± 50 kbits/s for average throughput in CNM data S. In the bottom row,
islands and regions are listed for which too few measurements are available to determine average downlink value with an
precision of at least 100 kbit/s.

In Figure 3, the scores are calculated once for the larger regions (left) and once for
individual departments (right) in France. Everything is shown on two maps next to each
other to highlight where enough measurements were made for which case. The figure
depicts the average downlink throughput with different colors. All areas with sufficient
measurements are colored in blue, as the precision here corresponds to the target value
of at least δ∗ = 100 kbit/s, i.e., the actual average throughput lies within an interval of
100 kbit/s.

In this case, the Val. Scoreprec. is calculated with Bootstrapping and Percentile Confi-
dence Intervals to take into account the real distribution of all downlink measurements in
our data set for a region or department. The annotations include the number of measure-
ments and the associated validity score in percent, which shows whether enough CNM
samples were taken or whether more measurements need to be made to avoid throughput
calculations with large ranges. Especially for the investigation of the average downlink
throughput according to departments, the number of measurements is not sufficient to
guarantee the precision due to the smaller division compared to regions. As a result, there
are enough measurements available for the analysis by region, but not for the analysis by
department.

The Auvergne-Rhône-Alpes region is the third largest region, and it contains, for
example, 13 individual departments. Our data set contains 21 million throughput mea-
surements for the entire region. The validity score is ‘≥100%’ with a mean throughput
value according to the measurement samples of 25.49 Mbit/s and a calculated mean value
between 25.46 Mbit/s and 25.51 Mbit/s. For department Ain, 111k measurements are
available, with a sample average throughput of 22.37 Mbit/s. If you calculate nmin

abs.(δ
∗)

here, about 509k measurements are required to maintain the precision. The validity score
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is 21.80%, which indicates that too few measurements were made for the consideration at
the department level.

The right subfigure shows three more departments in the southwest of France that
have too few measurements; see yellow labels. Only the departments around Paris,
Lille, Lyon, and Marseilles contain enough data to maintain the target precision at the
departmental level.

1'194'482 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

1'303'744 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

1'455'260 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

1'830'468 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

2'114'853 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

421'932 meas.

Val. Score (Boot Perc.):    92.10%
→8% more data points needed

590'172 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

64'395 meas.

Val. Score (Boot Perc.):    15.10%
→ too few data points

984'301 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

By Region (prec. δ = 100 kbit/s, boot perc.)

1'055'451 meas.
Val. Score (Boot Perc.): ≥100%

→ valid 1'646'801 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

1'901'157 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

31'228 meas.

Val. Score (Boot Perc.):   8.24%
→92% more data points needed

 to meet precission

53'106 meas.

Val. Score (Boot Perc.):  13.14%
→ too few data points

607'253 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

712'402 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

713'510 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

720'452 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

861'118 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

91'791 meas.

Val. Score (Boot Perc.):  20.44%
→80% more data points needed

 to meet precission

915'149 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

963'124 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

967'502 meas.
Val. Score (Boot Perc.): ≥100%

→ valid

By Department (prec. δ = 100 kbit/s, boot perc.)

Validity Score < 100%:
→ too
few crowdsourced data to
meet precision 22 23 24 25

Average
Downlink
Tpt. (Mbit/s):

Figure 3. Depiction of the average downlink throughput for regions (left) and departments (right). All areas with
sufficient measurements are colored, as precision there corresponds to target value of at least δ∗ = 100 kbit/s, i.e., real
average throughput lies actually within an interval of 100 kbit/s. Annotations include for selected areas the number of
measurements and associated validity score in percent, which shows whether enough CNM samples were taken or whether
more measurements need to be made to avoid throughput calculations with large error margins.

8. Conclusions

When using crowdsourced network measurements (CNMs), network operators, regu-
lators, and big data companies are faced with the challenge of making valid statements out
of measurements in uncontrolled environments of the crowd. There is always the question
of validity of such measurements, as the temporal and spatial coverage as well as the total
number of measurements can fluctuate strongly. Thus, this article defines concepts and
guidelines for analyzing the validity of crowdsourced mobile network measurements with
statistical measures.

We consider CNMs to be a mathematical sampling process and, as a result, derive
from this the need for high-precision and validity. Therefore, we define a measure called
CNM Precision Validity Score to indicate whether a sufficient number of measurements
is available for a sample statistic like the mean throughput to meet a certain precision.
This score can be used to quantify what percentage of the required CNMs were already
conducted to achieve a specified precision. To satisfy different types of measurements, e.g.,
small number of samples or skewed data distributions, we present different versions of the
CNM Precision Validity Score, including different confidence interval methods, namely
Standard Normal Interval, the Studentized t Interval, the Basic Bootstrap Confidence
Interval, and the Percentile Confidence Interval. In addition to the theoretical background
of the score, we illustrate its applicability by applying it to a large CNM dataset. Using the
example of a data set from France, we showed for which regions the data are sufficient to
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achieve an accuracy of at least 100 kbit/s. We show that the measurements are sufficient for
regions, but not at the departmental level. For the consideration of individual departments,
more measurements need to be made to achieve the same precision.

In future work, we would like to further explore the methodology of evaluating
CNM data and define metrics for the representativeness, e.g., the spatial and temporal
distribution of the data. This could later be used to write comprehensive guidelines on
how to deal best with CNM data.
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