
Vol.:(0123456789)

SN Computer Science (2021) 2:463
https://doi.org/10.1007/s42979-021-00851-x

SN Computer Science

ORIGINAL RESEARCH

Delivering User Experience over Networks: Towards a Quality
of Experience Centered Design Cycle for Improved Design
of Networked Applications

Anika Seufert1 · Svenja Schröder2 · Michael Seufert1

Received: 7 June 2021 / Accepted: 6 September 2021
© The Author(s) 2021

Abstract
To deliver the best user experience (UX), the human-centered design cycle (HCDC) serves as a well-established guideline
to application developers. However, it does not yet cover network-specific requirements, which become increasingly crucial,
as most applications deliver experience over the Internet. The missing network-centric view is provided by Quality of Expe-
rience (QoE), which could team up with UX towards an improved overall experience. By considering QoE aspects during
the development process, it can be achieved that applications become network-aware by design. In this paper, the Quality
of Experience Centered Design Cycle (QoE-CDC) is proposed, which provides guidelines on how to design applications
with respect to network-specific requirements and QoE. Its practical value is showcased for popular application types and
validated by outlining the design of a new smartphone application. We show that combining HCDC and QoE-CDC will
result in an application design, which reaches a high UX and avoids QoE degradation.

Keywords User experience · Quality of experience · Application design · Design cycle · Human-centered design

Introduction

To deliver the best user experience (UX), the human-cen-
tered design cycle (HCDC) [1] serves as a well-established
guideline to application developers. It provides a set of
incremental steps to ensure the incorporation of user cen-
tricity during the design and development cycle of any soft-
ware system. While the HCDC considers usability and UX
factors of software, it does not yet cover network-specific
requirements in a sufficient way. However, these network
aspects become increasingly crucial, as nowadays, most
applications rely on the Internet to provide or enhance the

delivered experience for end users. For example, in 2014,
already 83% of Android applications in the Google Play
Store required the “Full Network Access” permission, and
69% of the applications required the “View Network Con-
nections” permission [2]. Any app requiring access to the
Internet to function properly would need to have one or both
of these permissions. This shows that the requirement of
Internet access is already nearly ubiquitous, and will prob-
ably become even more popular with the upcoming possi-
bilities of 5G mobile networks. Note that this requirement is
not limited to smartphone applications, but applies to most
of today’s software applications for end users. However,
applications developers usually do not pay full attention to
this aspect.

In research on communication networks, where network
performance was historically always measured in terms of
Quality of Service (QoS), i.e., with the help of technical
metrics such as throughput or packet loss, the experience
with networked applications and services was formalized
as the concept of Quality of Experience (QoE). QoE was
introduced to describe “the degree of delight or annoyance
of the user of an application or service. [...] In the context
of communication services, QoE is influenced by service,
content, network, device, application, and context of use”

 * Anika Seufert
 anika.seufert@uni-wuerzburg.de

 Svenja Schröder
 svenja.schroeder@univie.ac.at

 Michael Seufert
 michael.seufert@uni-wuerzburg.de

1 Chair of Communication Networks, University of Würzburg,
Würzburg, Germany

2 Research Group Cooperative Systems, University of Vienna,
Vienna, Austria

http://orcid.org/0000-0003-3329-9910
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00851-x&domain=pdf

 SN Computer Science (2021) 2:463 463 Page 2 of 18

SN Computer Science

[3]. In contrast to UX, where the assessment of experiential
qualities calls for the assessment of a range of qualities like,
for example, emotion, enjoyment and aesthetics [4], QoE
focuses on the experienced (media) quality of a multimedia
system [5]. In the following we will only use the term appli-
cation, but here we include both applications and services.

For network operators, QoE more and more came to the
center of industry thinking, as it was shown that a reduced
QoE results in customer churn and a reduction of application
revenues [6]. Over the last years, subjective studies were
conducted to develop models for various types of Internet
applications, which can describe relevant factors that influ-
ence the subjectively perceived quality and satisfaction with
these applications, e.g., video streaming [7]. These models
prove useful for network operators in the QoE-aware traffic
management cycle [8], in which the QoE of a networked
application is monitored using dedicated models, e.g., [9].
When QoE degradation is detected or imminent, traffic man-
agement actions are applied in the network to mitigate the
QoE degradation, e.g., [10, 11].

In addition, the perceived QoE might influence the user
behavior and lead to interactions with the application. These,
in turn, might impact the network requirements and network
traffic of that application, which again might affect the QoE.
Thus, an additional QoE cycle [8] has to be considered,
which describes the interplay between applications, net-
works, and QoE.

Although pure network management or application-aware
networks might be in place, a joint network and application
management could further enhance the experience for end
users [12, 13]. However, this would additionally require net-
work-aware applications, which also consider the network-
related aspects of experience. Thus, we clearly see a chance
here that QoE, which focuses on a network-centered view,
teams up with UX and their human-centered view towards
an improved overall experience. This can be achieved by
considering QoE aspects during the software development
process, such that applications become network-aware and
QoE-aware by design.

Having this idea in mind, this paper proposes the Qual-
ity of Experience Centered Design Cycle (QoE-CDC). This
cycle resembles and complements the HCDC, and provides
guidelines on how to design applications with respect to
network-specific requirements and QoE. Thus, the primary
goal of the QoE-CDC is to ensure that the user experience,
which was created by the HCDC, is not deteriorated by
network-related issues. To show the practical value of the
QoE-CDC, we will discuss past and potential improvements
of several popular types of applications in this paper, which
could have been resulted from employing the QoE-CDC.
Moreover, we will point to open research questions and
missing studies with respect to the subjectively perceived
experience with these applications in this context. Finally,

we will validate the QoE-CDC with an app for crowdsourced
video streaming QoE studies, which has been designed from
scratch applying both the HCDC and the QoE-CDC.

The goal of the proposed cycle is that UX designers can
follow it to learn from QoE research what network-origi-
nated degradations can occur and how they affect the user
experience. With this knowledge, developers can find spe-
cific solutions to cover or mitigate possible weaknesses by
skillfully adapting the design. For example, this could be
possible by designs, which distract users from QoE degra-
dation, which incorporate experience-friendly notifications
in case of network problems, and which implement design
concepts that weaken network requirements. Here, the UX
designers and backend developers can work hand in hand to
improve the application experience.

Figure 1 describes the overall picture and the connection
between the above presented cycles. At the network layer
at the bottom, the QoE-aware traffic management cycle [8]
formalizes an application- and QoE-aware network, which
aims at maximizing the QoE. At the application layer at
the top, usable and useful network- and QoE-aware appli-
cations reside, which can be developed following both the
HCDC and the QoE-CDC. Between these two cycles, there
are strong interactions, such that both the HCDC and the
QoE-CDC should be iterated when designing a networked
application. In the end, a combination of both cycles will
result in an application design, which reaches a high UX and
avoids QoE degradation to also reach a high QoE. Finally,
there will always be an interplay between application usage,
network usage, and the resulting QoE for the user, which
is described by the QoE cycle [8] at the right. However,
together with application-aware networks, usable and use-
ful network-aware applications could unleash the maximum
experience and satisfaction for end users, which constitutes

Fig. 1 Connection between the different cycles

SN Computer Science (2021) 2:463 Page 3 of 18 463

SN Computer Science

a win–win situation for the user, the network provider, and
the application provider.

The remainder of this work is structured as follows. The
next section provides background information and related
works on the HCDC, which our proposal complements. The
four steps of the QoE-CDC are presented in the subsequent
section followed by a demonstration of the practical value
of the QoE-CDC. For this, several popular applications,
namely, smartphone applications, video and audio stream-
ing, live video streaming, and mobile instant messaging are
discussed, and modifications to deliver improved experi-
ence are elaborated. Afterwards, the QoE-CDC is validated
by outlining the design of an app for crowdsourced video
QoE studies. The final section concludes this work.

Human‑Centered Design Cycle

Many factors influence a user’s experience with smartphone
applications and thus, have to be considered when designing
a new application [14]. A well-known paradigm for inte-
grating the user’s needs into the design process is human-
centered design. According to the ISO 9241-210:2010
standard [1], “Human-centred design is an approach to
interactive systems development that aims to make systems
usable and useful by focusing on the users, their needs and
requirements, and by applying human factors/ergonomics,
and usability knowledge and techniques.”. Thus, the aim
is to maximize the user experience (UX) by paying close
attention to the human perspective in each step of the design
process.

In human-centered design, the user is clearly placed in the
foreground, which is also reflected in the well-established
human-centered design cycle (HCDC) [1]. Here, the design
process has an initial planning stage, and is then followed
by four steps:

1. Understanding and specifying the context of use:
Identify and characterize users and stakeholders, their
goals and task as well as the conditions under they will
use it.

2. Specifying the user requirements: Identify the users’
and stakeholders’ needs, derive their requirements, and
solving trade-offs between different user requirements.

3. Producing design solutions to meet user require-
ments: Design user tasks, interactions with the appli-
cation, and the user interface.

4. Evaluate the designs against requirements: Con-
duct user-centred evaluations using user-based testing,
inspection-based evaluation, and long-term monitoring.

The HCDC approach is non-linear and iterative, meaning
that after each run through the four steps, the developer

can jump back to any other step, according to the results
of the evaluation (step 4).

Human-centered design processes are utilized in vari-
ous fields for designing applications, which require high
usability, e.g., in geography [15], aerospace [16], or
medicine [17].

Since the HCDC is widely used and is considered the
basis for usable and useful applications, extensions have
been proposed in different areas. To find a good trade-off
between security and usability, for example, an integration of
usable security and user authentication into the HCDC was
introduced in [18]. Furthermore, the application of HCDC
on software development was evaluated in [17, 19], where
the authors discussed the impact of the HCDC and how to
combine the HCDC with a software development process.
Similarly, a combination of the usability and software engi-
neering life cycles was presented in [20]. While the impor-
tance of considering software engineering requirements in
the HCDC has already been discussed in literature [21],
communication networks has not been considered in human-
centered design processes so far.

A major drawback of the HCDC is that it does not explic-
itly consider network-specific requirements although most
applications connect to the Internet nowadays. This is espe-
cially evident in mobile networks, where video streaming,
as well as social and messaging applications dominate the
traffic volume according to [22]. With the advent of 5G,
applications will increasingly rely on Internet access and
require high network throughput and low latency. However,
perfect network conditions cannot always be guaranteed,
which can cause serious performance and experience issues.
Thus, application developers of networked applications need
to be aware which experience is actually delivered over the
network.

Network operators and communications researchers have
already acknowledged that the subjectively perceived experi-
ence with networked applications is a major business factor.
The introduction of the concept of Quality of Experience
(QoE) [3, 6, 23] moved the focus from the system to the user,
putting the user and his perceived experience to the center
of the evaluation process [24]. This paradigm shift led to
the advent of so called QoE studies, i.e., studies about the
impact of technical parameters of systems and networks on
the experience of end users, which has produced an enor-
mous amount of findings. The results of these studies are
considered by network operators to avoid QoE degradation
and improve the experience with a networked application
by traffic management, e.g., [10, 11]. By also considering
these findings of the QoE community during the develop-
ment of new or improved applications, QoE degradation due
to network issues or fluctuating network conditions can be
mitigated by design, which will positively affect the user
experience.

 SN Computer Science (2021) 2:463 463 Page 4 of 18

SN Computer Science

To provide general guidelines on how to consider net-
work-specific requirements and QoE in the design process,
we propose the Quality of Experience Centered Design
Cycle (QoE-CDC). Note that the purpose of the QoE-CDC
is not to replace the HCDC, but to complement it, as this
allows to integrate both UX aspects and QoE aspects into the
developed application. However, we explicitly do not call for
an extension of the HCDC or a complete integration of both
cycles. Instead, the advantage of standalone cycles is higher
flexibility for application developers, such that both cycles
can be iterated independently, e.g., in parallel with separate
teams, one after the other with a single team, or one cycle
might be iterated multiple times before the other cycle is
triggered. For example, HCI and UX specialists could iter-
ate the HCDC for designing the human-centered frontend of
an application, while networking and QoE specialists could
apply the QoE-CDC to design the network-aware backend
of an application.

Quality of Experience Centered Design Cycle

The proposed Quality of Experience Centered Design Cycle
(QoE-CDC) is depicted in Fig. 2. It borrows the general
appearance from the HCDC defined in the ISO 9241-
210:2010 standard [1]. Moreover, it has to be noted that
there is a strong interaction between the two cycles, which
will be discussed below. However, the focus of the proposed
cycle is to consider Quality of Experience, which is under-
represented in the previous cycle, but has become a key fac-
tor for the success of networked applications [23] due to the
ubiquity of the Internet.

Similar to the HCDC, the QoE-CDC has to be well
planned before all design activities. This includes, among
others, to define responsibilities, milestones, and a schedule
for the development of a QoE-centered design. After the
planning stage, the iterative steps of the QoE-CDC start.
First, it is paramount to identify, understand, and specify
the QoE influence factors per context of use. This means
that it has to be investigated which application behavior is
influenced by the network, and how network problems will
be perceived by users. These questions need to be answered
per context of use, e.g., in mobile or fixed network access, in
business or entertainment use, or in a single user or an inter-
acting/collaborative situation with multiple users. Moreover,
the different QoE factors have to be ranked per context of
use according to the frequency and severity of potential QoE
degradation.

In the second step, the QoE requirements have to be
specified. This requires identifying the most important QoE
factors, which can and shall be controlled by the application.
This includes to defined thresholds for the QoE factors per
context of use, which can be translated into network require-
ments. These network requirements have to be specified in
an appropriate format depending on the considered applica-
tion and QoE factor, such that thresholds can range from
qualitative, high-level definitions (e.g., connectivity to cloud
server) to technical definitions via objective metrics (e.g.,
downlink bandwidth larger than 3 Mbps).

Next, design solutions have to be produced to meet
the QoE requirements. For this step, the perspective has
to be changed, such that the network and its performance
have to be considered as independent/exogenous variables.
Based on that perspective, it has to be investigated how the

Fig. 2 Quality of Experience
Centered Design Cycle

SN Computer Science (2021) 2:463 Page 5 of 18 463

SN Computer Science

previously specified network requirements can be minimized
and adapted to the current network performance for all con-
sidered contexts of use. Further, it has to be defined how the
application shall react in case the requirements are violated.
This might include to trade-off the requirements if only some
can be (partially) fulfilled at the same time. Moreover, it
might require reworking the user interface or application
feedback to mask or hide network problems.

Finally, the produced designs have to be evaluated
against the QoE requirements with a subjective QoE study.
The study has to be conducted in the previously identified
contexts of use and under typical (emulated) network condi-
tions. Traditionally, in the telecommunication community,
standard rating scales are used, such as the Absolute Cat-
egory Rating scale [25] or Technology Acceptance rating
scales [26]. The benefits of those scales are their simplicity
and their speed, while at the same time being well researched
[27]. In the HCI community, standalone rating scales are not
very popular, since crucial contextual and information inher-
ent to the user might be missed. More often, a mixture of
quantitative and qualitative research methods is used, like,
for example, questionnaires, interviews, and observations
[28]. We advise to use a combined approach, to both assess
network-related aspects of quality on well-known standard
rating scales, and to gain deeper insights from additional
qualitative or qualitative assessments.

If the QoE results fulfill the QoE requirements in every
context of use, the QoE-CDC can be terminated and an itera-
tion of the HCDC can be triggered to also fulfill remaining
user requirements, if needed. If the QoE results do not meet
the QoE requirements, further iterations of the QoE-CDC
are required.

As mentioned above, there is a strong interaction between
the HCDC and the QoE-CDC, such that the latter could be
initiated as a part of the HCDC, when designing networked-
based backend components of an application. Moreover,
there are also entry points in the other direction, such that
the HCDC could be triggered during the execution of the
QoE-CDC. For example, as part of the QoE-CDC, it might
be required to rework the frontend user interface or applica-
tion feedback to mask or hide network problems, which con-
stitutes an entry point to the HCDC. Also, when design solu-
tions are produced, it might be possible to oscillate between
both cycles to produce solutions, which meet not only QoE
requirements, but also general user requirements specified
in the HCDC. Finally, in the evaluation step, it is again pos-
sible to bridge between both cycles, such that the produced
design is evaluated against both QoE and user requirements.

In the end, the termination of both the human-centered
and QoE-CDC will result in an application design, which
reaches a high UX and avoids QoE degradation to also reach
a high QoE. This constitutes a win–win situation for the
user, the network provider, and the application provider.

To sum up, the four steps of the QoE-CDC are as follows:

1. Identify, understand and specify the QoE influence
factors per context of use.

2. Specify the QoE requirements.
3. Produce design solutions to meet QoE requirements.
4. Evaluate the designs with subjective QoE studies.

In the following, we will discuss the QoE-CDC for four
popular application types, namely smartphone applications,
as well as on-demand music/video streaming, live video
streaming/video conferencing, and mobile instant messag-
ing applications.

Use Cases

In this section, we will demonstrate potential applications
of the Quality of Experience Centered Design Cycle (QoE-
CDC) by means of applying it to typical network-centric use
cases. The interplay of the QoE-CDC and the HCDC will be
highlighted along the way. For each use case, the four steps
of the QoE-CDC will be evaluated. Note that the planning
phase of the QoE-CDC will be omitted as it will be specific
to each individual project. In the end, we will summarize
the potential results from applying the QoE-CDC for the
discussed use cases, i.e., the identified connections between
QoE requirements and UX design implications, which can
be leveraged to improve the user experience with network-
based applications.

Smartphone Applications

Smartphone applications (apps) exist for many purposes and
in huge variety, e.g., for news, social media, or web shops.
While native apps are developed for specific platforms, i.e.,
operating systems, they run locally on the device, and thus,
can run offline, in principle. Native apps can fully lever-
age the features of the device but need to be implemented
specifically for each platform. Web apps, in contrast, run
completely on a web server and are accessed over the Inter-
net through the browser of the smartphone. Thus, they can
be implemented independent of the platform, but they are
very limited with respect to the features of the device and
need a constant Internet connection. In between, there exist
hybrid apps, which consist of a simple, native app that wraps
around an internal browser, e.g., Android’s WebView, to
access a web app. These hybrid apps mix both worlds, such
that they can leverage local features of the device, but most
of the app can be implemented independent of the platform.
Since web or hybrid apps require an Internet connection to
access and interact with the app, and, in general, most of
the smartphone apps access the Internet to up- or download

 SN Computer Science (2021) 2:463 463 Page 6 of 18

SN Computer Science

content, the QoE needs to be considered when developing
a smartphone app.

In Step 1 of the Quality of Experience Centered Design
Cycle, the QoE influence factors of smartphone apps have
to be identified. As mentioned above, Internet connectivity
is a functional requirement of most smartphone apps, thus,
it is also a QoE influence factor. If the app cannot be used
when there is no Internet, the users are not satisfied and their
QoE will be bad. Apart from connectivity, loading times
have a well-known impact on QoE of web browsing related
tasks [29]. With smartphone apps, those loading times are
omnipresent, especially if large amounts of data have to be
downloaded from the Internet and displayed, e.g., in AR/
VR apps, social network apps, or mobile gaming, see Fig. 3.
However, shorter loading times might also occur in case
computations are offloaded to data centers, or when mobile
webpages are browsed in simple web or hybrid apps [30]. A
2015 report [31] found that mobile app users are impatient,
such that 61% expected apps to start in 4 seconds or less, and
49% expected apps to respond in 2 seconds or less. Moreo-
ver, 80% of the users indicated that they will only retry an
app up to three times, if they experience problems.

Thus, the QoE requirements of smartphone apps (Step 2)
are permanent Internet connectivity and high bandwidth to
minimize loading times. Note that the bandwidth require-
ment heavily depends on the purpose and functionality that
a particular smartphone app offers to its users. Thus, we will
not specify these requirements here in full detail. Moreover,
due to cost aspects, network-centric use cases often face lim-
ited Internet connectivity, e.g., in terms of data caps, band-
width throttling, or network coverage in mobile networks.
These limitations suggest the QoE requirement that apps
should optimize their network usage and avoid excessive
data transmissions.

Next, a solution has to be designed, which meets these
QoE requirements (Step 3). For this, we will mainly focus

on the connectivity requirement, which is common to all
smartphone apps. In this process, we have to change the
perspective and consider that Internet connectivity is not
always available, which can lead to delays when loading
content. As the above-described studies reported, such load-
ing times significantly reduce the QoE. To avoid users star-
ing at a blank screen, it is advisable to use loading screens
[32]. Using these, users often face a load screen, e.g., a blank
screen with a spinning icon or progress bar, which indicates
that users have to wait for a specific amount of time. As
an alternative to loading screens, skeleton screens become
increasingly popular. While loading the content, here, the
outline (skeleton) of the content to come is displayed using
a simplified presentation, for example, gray boxes and lines.
Another possible solution to this problem would be to mask
or hide waiting times from the user. If the app notices that
no Internet connection is available, it could communicate
this to the user and minimize itself to the background. In
the background, the app would try to access the Internet and
send a push notification to the user as soon as connectivity
is available, and the app can be used. This way, users would
not be blocked waiting in a load screen, but they could put
their attention to something else in the meantime. As soon
as they are notified that Internet connectivity is available,
they could return and bring the app to the foreground again
to continue using it. Note that the same solution could also
mask or hide slow Internet connections, where users would
have to wait for some content to be downloaded. As a more
advanced solution, apps could monitor the mobility of the
user, and notify the user, when network coverage or Internet
connectivity was lost due to mobility. Then, the user could
decide to go back to a place with network connectivity for
some time to manually or automatically download some
content for the offline phase. Note that some apps already
offer the option to manually download content as a prepara-
tion for offline phases, e.g., episodes of series or even entire
movies in streaming apps. A last potential design solution
is caching. It allows to keep popular content in the storage
of the smartphone of the user. If the user wants to access
this content again, the app does not need an Internet con-
nection because the content is already available on the local
device. This technology is already used by so-called pro-
gressive web applications [33]. One step further, the app
could even pre-fetch content, which is potentially interesting
to the user in the future. Pre-fetching means that content
is speculatively loaded during times, in which the app has
access to the Internet, such that the content would be locally
available if the Internet connection breaks. Such pre-fetching
could be based on content popularity or typical user interac-
tion patterns. Note that pre-fetching irrelevant content will
reduce the available bandwidth and the available storage and
increase the risk for exceeding data caps, which has to be
considered when implementing this solution.

Fig. 3 Loading times in a smartphone application

SN Computer Science (2021) 2:463 Page 7 of 18 463

SN Computer Science

After design solutions have been proposed, they have
to be evaluated with subjective QoE studies in Step 4. To
increase the user experience when using progress bars, the
authors of [34] evaluated the impact of various progress
bar behaviors on user perception of process duration. They
found that it is possible to modify the progress bar in a way
that they appear faster by, for example, using non-linear but
accelerating progress. Further improvements in user satis-
faction can also be achieved by changing the design of the
loading bar. Progress bars with storytelling animations as
well as interactive games can increase user perception by
reducing users’ time perception [35]. In [36], the authors
compared the usefulness of skeleton screens as an alterna-
tive to progress bars. They found that skeleton screens are as
effective in reducing the perceived loading time for the user
as progress bars. To the best of our knowledge, no subjec-
tive QoE studies were conducted in the direction of masking
or hiding waiting times from the user. Thus, we leave this
open to future work for now. We are also not aware of any
work in the area of caching within applications. A similar
approach, which could be applied and tested in smartphone
applications, was investigated in [37]. Here, a system was
developed which could pre-fetch and cache individually rel-
evant content for each user based on social information, i.e.,
information from his online social network profile. To evalu-
ate network performance and the resulting QoE of mobile
apps, QoE Doctor [38] was implemented. Using this tool,
active measurements on network as well as application layer
can be conducted to evaluate applications.

Finally, after studying the QoE-aware design cycle for
smartphone apps, we will present some examples of popular
apps, which currently use one or more of the above men-
tioned solutions 1. For example, the popular social news
application Reddit uses loading screens to avoid users fac-
ing a blank screen while loading content. Instead of showing
a simple loading bar, the app uses an animated icon of an
alien to entertain users while waiting. The file hosting ser-
vice Google Drive takes a different approach to shorten the
perceived waiting time for the users using skeleton screens
with a moving shadow animation. A combination of both
approaches can be seen for the social networking app Insta-
gram, which not only shows a loading icon at the top of the
screen while users wait for their content to be shown, but
also presents a skeleton screen which outlines the content

to be expected. As a last example, another approach of hid-
ing waiting times can be seen when using Google’s search
engine with the Chrome browser app. When the Internet
connection of a user breaks down, the app saves the request
and asks whether the user wants to be notified as soon as the
search results are available.

On‑Demand Music/Video Streaming

Next, we look at on-demand streaming applications, espe-
cially music and video streaming. Streaming applications are
very popular nowadays and account for 62.1% mobile traffic
share worldwide [22]. Since streaming applications require
a network connection to receive the media data, which shall
be played out, QoE has to be considered here.

If streaming applications shall be improved in the QoE-
centered design process, the QoE influence factors have to be
investigated (Step 1). For video QoE, most works on video
streaming agree that initial delay, stalling, and quality adap-
tation are the most dominant QoE factors [7]. Stalling, i.e.,
playback interruptions due to buffer depletion, is considered
the worst QoE degradation [39, 40], and should be avoided,
see Fig. 4. Furthermore, video streams should be played out
with high visual quality [41]. In contrast, initial delay has
only a small impact on the QoE [29]. For music streaming,
similar trends are visible. Here again, stalling is considered
as the biggest influence factor of QoE while initial delay
plays only a minor role [42, 43]. Having a look beyond the
streaming itself, the user satisfaction can also be degraded
for increased navigation time (time between starting the app
and the actual start of the audio playback) [44].

Considering the different use cases of streaming applica-
tions, these technical QoE influence factors stay the same,
regardless if the users are on a PC and use a wired Internet
connection, or if they use a mobile app on a mobile network,
although expectations might differ. This means that, for
example, users driving on a highway with a mobile Internet

Fig. 4 Stalling during video streaming, i.e., an interruption of the
video playback due to empty buffer

1 The listed applications and their QoE-aware design approaches
were accessed and described by the authors on July 15, 2021. They
may be subject to change in the future. Note that the selection of
specific applications must not be considered an advertisement for
these apps. Our only motivation was to provide positive examples of
the implementation of the mentioned design solutions. We did not
receive any monetary or other incentives for selecting specific appli-
cations.

 SN Computer Science (2021) 2:463 463 Page 8 of 18

SN Computer Science

access might be more tolerant to degradation than users at
home with a fixed broadband Internet access. Nevertheless,
there are other non-technical effects on the QoE, which have
to be considered in some use cases, for example context
factors like used device, content, or usage [7]. For example,
mobile users might perceive a bad QoE with a streaming
app if the permanent network usage of the app exceeds their
mobile data plan. However, in the following, we will focus
on the technical QoE factors only.

After understanding the technical influence factors, the
QoE requirements have to be derived from the above find-
ings (Step 2). The most important aspect to avoid stalling is
that media data has to be downloaded faster than it is played
out. This means that the download bandwidth has to be
higher than the music/video bitrate. To reach a high visual
or audio quality, strong compression of the media should be
avoided. It has to be noted that there is a trade-off between
the visual/audio quality and the resulting bitrate, such that
less compression leads to better visual/audio quality but also
to higher media bitrate. Thus, there is a QoE requirement for
high bandwidths to support the streaming of high bitrates.
Finally, as initial delay also has some impact on the QoE,
there is a requirement that the start of the playback should
not be delayed too much.

In Step 3, a solution has to be found to meet the QoE
requirements. Therefore, it is necessary to change the per-
spective and consider that perfect network conditions are not
always given. Thus, it cannot be taken for granted that there
is always a high bandwidth, such that high visual/audio qual-
ity with a high bitrate can be streamed to the users. Instead,
the bandwidth fluctuates over time or there might even be
an outage, which is out of control of the app.

To overcome that short network outages or short-term
bandwidth fluctuations cause stalling, a playout buffer can
be used to store a few seconds of playtime ahead of the cur-
rent position. For this, the playback start can be delayed
until the buffer has filled up, which results in a trade-off
between initial delay and stalling. However, a slight increase
of the initial delay only has a small impact on the QoE and
is preferred compared to the huge impact of a possible stall-
ing by most streaming services. This shows that it might
not always be possible to fulfill all QoE requirements at the
same time. Instead, there might be the need to trade-off some
requirements.

One solution to overcome long-term bandwidth reduc-
tions is to dynamically adjust the music/video bitrate using
several representations of the media data with different
bitrates. In case the bandwidth drops, a representation with
lower bitrate can be streamed, such that stalling is avoided,
which is the worst QoE degradation. However, there is again
a trade-off as the visual/audio quality of the streamed media
will be reduced if media with lower bitrate and higher com-
pression is downloaded. This idea of adaptive streaming is

already widely used by many streaming services and the
corresponding HTTP Adaptive Streaming (HAS) or Adap-
tive Bitrate Streaming (ABR) technology has also been
standardized by MPEG Dynamic Streaming over HTTP
(MPEG-DASH) [45]. It utilizes an adaptation logic, i.e., an
algorithm on the client side, which controls the trade-offs
between measured bandwidth, buffer fill, and downloaded
bitrate.

The buffer approach can be further extended, such that
the app further increases the buffer in situations where high
bandwidth is available to download more high bitrate media.
In case of streaming playlists where the next song/video is
known in advance, which is especially common for listening
to music albums or binge watching of series, it even extends
to future media. This means, after the current song/video
has been completely downloaded and while the remaining
buffered playtime is played out, (parts of) the next track/
episode of the playlist can already be downloaded to lever-
age the available bandwidth and provide for a future band-
width reduction or outage. However, to reduce the server
load and avoid unnecessary transmission of media data in
case the user aborts the playback, this approach is rarely
used by current video streaming services, which instead pre-
fer to limit the playout buffer. In contrast, it is common for
music streaming platforms to already load the next songs
of a playlist.

In the end, the designed app has to be evaluated by a
subjective user study (Step 4). Since (adaptive) streaming
is well investigated, it is already known that streaming ben-
efits from employing a playout buffer and adaptive selection
of an appropriate representation [7, 42]. Nevertheless, the
implementation of an adaptation logic for different network
conditions and use cases is still subject to ongoing research.
To further improve streaming, in the future, additional (non-
technical) QoE requirements could be added, such that the
QoE-CDC needs to be repeated until the designed solution
meets the QoE requirements.

Note that the presented improvements of streaming appli-
cations were developed over many decades and are already
implemented in most applications. However, they could
have also resulted from a thoroughly executed QoE-CDC
in shorter time, if awareness had been given earlier to QoE-
centered design. Thus, it is especially important for new and
upcoming use cases to consider QoE from the start to faster
obtain designs for both high UX and high QoE.

To sum up, for on-demand music and video streaming,
different solutions are available to overcome network out-
ages or bandwidth fluctuations. The following examples
show how popular on-demand streaming applications imple-
ment these approaches 2. For example, the music streaming

2 The listed applications and their QoE-aware design approaches
were accessed and described by the authors on July 15, 2021. They
may be subject to change in the future. Note that the selection of

SN Computer Science (2021) 2:463 Page 9 of 18 463

SN Computer Science

application Spotify adapts the audio quality to the available
bandwidth and pre-buffers subsequent songs of a playlist
to avoid playback interruptions from network outages or
bandwidth fluctuations. The same approaches can also be
seen with the popular video streaming platform YouTube,
which also relies on adaptive streaming to adjust the video
and audio bitrate to the network conditions, and additionally
implements buffers to store a limited amount of playtime
ahead of the current position.

Live Video Streaming/Video Conferencing

Third, we will investigate live video streaming. Here, the
video content is streamed in or near real time, either only
unidirectional to the client, e.g., in case of live transmission
of sports events, or bidirectional to and from the client in
a so-called video conference, e.g., for a telepresence busi-
ness meeting or for a doctor-to-patient communication in
telemedicine. Since unidirectional live streaming is a sub-
problem of the bidirectional case, in the following, special
emphasis is put to the latter case of video conferencing. As
the client, which simultaneously transmit and receive audio
and video data, needs an Internet connection, QoE needs to
be considered here.

Next in the QoE-centered design process, the QoE influ-
ence factors of live video streaming have to be identified,
understood, and specified (Step 1). Since live video stream-
ing is a form of video streaming, the same QoE factors,
which were highlighted above for on-demand video stream-
ing, are relevant. This is, initial delay, stalling, and qual-
ity adaptation [46]. To reach a high QoE with live video
streaming [47], the bitrate should be maximized to reach a
high video and audio quality, and quality adaptation should
be minimized. Moreover, all video content should be played
out with a high frame rate, low stalling, and a low delay
towards the live event. Furthermore, for video conferenc-
ing, the synchronization between audio and video plays an
important role [48], see Fig. 5. The major difference to clas-
sical on-demand video streaming is that live video streaming
cannot utilize a large playout buffer as this would lead to
a large live delay. Often, UDP-based streaming is used to
further reduce the live delay, but it can lead to packet loss,
and thus, to artifacts in the transmitted video, which reduce
the QoE [49, 50]. Some special use cases might even have
more strict requirements, e.g., in the telemedicine use case,

it might be important to transmit a low compression, high
resolution video from the patient to the doctor to be able
to make medical diagnoses [51, 52]. However, in this case,
the oppositely directed video from the doctor to the patient
might not require such high visual quality, which shows that
QoE requirements might also not be equal for all clients.

In Step 2, the requirements for high QoE need to be spec-
ified. As discussed above, to satisfy the purely video stream-
ing related QoE aspects, it is sufficient that the available
bandwidth must be higher than the video bitrate. Moreover,
latency and packet loss have be low, such that live delay is
minimized, and, in case of unreliable UDP-based transmis-
sion. video artifacts can be avoided. Finally, the played-out
video and audio should be perfectly synchronized to allow
for an as natural conversation over the Internet as possible.

As the next step (Step 3), design solutions need to be
presented, which meet the QoE requirements. Here again,
quality adaption is a good method to align the bitrate of the
video to the network conditions, and thus, avoid stalling.
However, in contrast to on-demand streaming above, times
with bad or no Internet connection cannot be compensated
with a large buffer in case of live streaming or video con-
ferencing. This would increase the live delay, which has to
be minimized. Thus, solutions should limit themselves to a
small buffer and try to compensate bad network conditions
and optimize the users’ QoE by other means.

The first option is to adapt the playout speed of the video
to avoiding stalling and/or skipping of video content while
keeping live delay low. In case of a stalling event, a typical
strategy in live streaming is to skip frames or segments [47,
53] to catch up with the live event, which causes users to
miss some video content. In contrast, after a stalling event
when the buffer has filled, the video could be resumed and
played out with a higher speed to catch up with the live
event, which would avoid skipping and missing video con-
tent. The same technique can also be applied during live
streaming to keep live delay low while avoiding stalling.

Fig. 5 Poor visual quality and audio/video synchronization problems
during video conferencing

specific applications must not be considered an advertisement for
these apps. Our only motivation was to provide positive examples of
the implementation of the mentioned design solutions. We did not
receive any monetary or other incentives for selecting specific appli-
cations.

Footnote 2 (continued)

 SN Computer Science (2021) 2:463 463 Page 10 of 18

SN Computer Science

In case the playout buffer empties, the playout speed is
reduced to avoid stalling, which, however, increases the
live delay. In contrast, if the playout buffer fills, the playout
speed is increased to reduce the live delay. This strategy
of modifying the playout speed is called Adaptive Media
Playout (AMP) [54, 55], and is widely used in live stream-
ing services.

Next, users could be informed whenever a bad Internet
connection is detected. In case the network still allows a
smooth streaming but with very low visual quality or fre-
quent quality fluctuations, which could annoy the users, the
users could be asked whether they want to continue the live
streaming or video conference anyway, e.g., in case it is an
important virtual meeting that cannot be moved, or if the
streaming or call should be suspended until the connection
improves. In the latter case, the app could periodically trig-
ger measurements in the background to find when the net-
work has improved and notify the users accordingly that the
streaming or call can be resumed. If the network connection
is even worse, such that playout glitches or interruptions
of the streaming are impending, users could be given an
early warning that the streaming might be terminated at any
time soon. By this means, participants of a video conference
could prepare and be able to quickly find and agree on an
alternative communication procedure.

Another option is that the app fails gracefully, i.e., if a
video conference is not possible under the current bandwidth
conditions, the app could fall back to audio conferencing
only, which has reduced bitrate requirements. If also audio
conferencing cannot be sustained under the given network
conditions, the app could eventually offer a text-based mes-
saging communication as a last fallback to keep the conver-
sation ongoing.

Finally, in the use case of doctor-to-patient communica-
tion in telemedicine, where it is mandatory to have a high-
quality video from the patient to the doctor, other options
might need to be considered. For example, in case the net-
work condition does not support a high bitrate video stream,
the client of the player could offer to locally record impor-
tant video content in high visual quality. The high-quality
video file can be transmitted reliably while the video con-
ference is ongoing or suspended. Then, the doctor could be
notified by his client when the transmission was completed,
and the video is ready to watch. This way, important video
content does not need to be compressed to low visual quality,
but there is a trade-off when the important video becomes
available for the doctor. Note that a background transmis-
sion during an ongoing call might further strain the band-
width and negatively affect the quality of the ongoing call.
So, it might actually be better to suspend the call, such that
the doctor can turn to other patients until the transmission
is completed, and resume the video conference with this
patient afterwards.

After solutions have been designed, they have to be evalu-
ated in designated QoE studies as Step 4 of the QoE-CDC.
The QoE impact of AMP has been investigated in [56].
It was found that the QoE remained high for playout rate
changes in the range from 80 to 180% of the regular playout
speed. However, increasing or decreasing the playout speed
further caused a huge drop in the QoE. As we are not aware
of any solution, which implements the other proposed QoE-
aware designs, we leave this open to future work for now.

Well-known live video streaming and video conferencing
applications typically implement such specific QoE-aware
design solutions, often in addition to other solutions pre-
sented above, as can be seen for the following examples 3. To
avoid stalling events, for example, the live streaming service
Twitch uses adaptive media playout, and thus, adjusts the
playback speed according to the available playback time in
the buffer to reduce the live delay. When it comes to video
calls, WhatsApp and Facetime warn their users during a call
when the network connection deteriorates, and automatically
stop the video transmission to maintain an uninterrupted
voice transmission.

Mobile Instant Messaging

For mobile instant messaging (MIM) applications like What-
sApp, Facebook Messenger, or WeChat, different require-
ments apply than for streaming. The main difference is that
they are primarily used in mobile networks and the workload
is very irregularly distributed, depending on the frequency of
sending and receiving messages. Furthermore, the type of a
message has a high influence on the network requirements,
as media messages, like videos, images, or voice messages,
are significantly larger than simple text messages.

Focusing the QoE of MIM applications (Step 1), up- and
download time of messages and files are considered the most
relevant feature [57], see Fig. 6. To reduce waiting times
before audio or video playback, MIM applications often use
streaming. This means that playback of the file can start
even before it has been completely downloaded. Here, the
same QoE requirements, which were mentioned above for
on-demand video streaming, are relevant.

This means for the QoE requirements (Step 2) that, to
enable real-time communication, a permanent Internet
connection is needed and the transmission rate, i.e., both

3 The listed applications and their QoE-aware design approaches
were accessed and described by the authors on July 15, 2021. They
may be subject to change in the future. Note that the selection of
specific applications must not be considered an advertisement for
these apps. Our only motivation was to provide positive examples of
the implementation of the mentioned design solutions. We did not
receive any monetary or other incentives for selecting specific appli-
cations.

SN Computer Science (2021) 2:463 Page 11 of 18 463

SN Computer Science

sending to the application server and receiving from it, must
be as fast as possible. Therefore, the applications need low
delay and large upload and download bandwidth to quickly
transmit messages.

In Step 3, when considering the network as an exogenous
variable, several solutions can be used in case of bad or no
Internet connection. For example, in case of no Internet con-
nection, automatic retransmissions could be implemented,
such that a user does not have to manually send the message
again. When sending media files, which have a potentially
large transmission time, small thumbnails could be created
and sent beforehand, such that users can already see a pre-
view as long as the actual media file is being downloaded. To
reduce the file size, and thus, the transmission time, media
compression can additionally be used. Furthermore, instead
of uploading and downloading entire voice or video files,
messaging applications could leverage streaming. This way,
the media can already be played out as soon as sufficient data
has been downloaded, cf. initial delay of streaming, such
that users experience a shorter transmission delay. However,
the QoE requirements of streaming additionally apply as
described above, which have to be taken into account by the
designed solution. For images, MIM applications could use
interlacing, which is an encoding that transmits the most
important information of the image first. Upon reception of a
few parts of the image, a blurry preview image can be inter-
polated and displayed, and the transmission of additional
data allows to add more and more details until the image is
visually complete. This way, users do not have to wait the
full time until the image is downloaded completely before
being able to watch it, but they quickly see a preview of
the image content, which gradually improves over time, and
thus, reduces the perceived waiting time. Finally, to avoid
that the client periodically has to poll the app server whether
there are new messages for him, which is very cost intense

with respect to bandwidth and battery, messaging applica-
tions could keep a TCP sockets waiting in accept mode.
This does not use much power or data, but allows the app to
download incoming messages in the background and notify
the user quickly when a new message has arrived. Such solu-
tions are readily available to app developers, e.g., Google’s
Firebase Cloud Messaging (FCM).

Again, the last step of the QoE-CDC (Step 4) is to evalu-
ate the designed solutions in QoE studies. To the best of our
knowledge, currently no QoE studies exist, which investigate
mechanisms for QoE improvement of messaging applica-
tions. Thus, we leave such research for future work.

When looking at MIM applications, examples for QoE-
aware design solutions can be found in several popular appli-
cations 4. For example, when the user’s Internet connec-
tion is not good enough to download an image or a video,
Facebook Messenger informs its users that the file is being
downloaded, and eventually, starts showing a progress bar
for the download. Similar behavior can bee seen for the MIM
app Signal, which shows a spinner and a blurred version of
the image as a preview, indicating that an encoding format
is used, which supports interlacing. Afterwards, the spinner
is turned into a loading circle, showing the progress of the
download. In addition, both apps use image compression to
reduce the file size, and thus, the transmission time.

In this section we demonstrated potential applications of
the QoE-CDC and highlighted the interplay of the QoE-
CDC and the HCDC as well as possible UX design solu-
tions. A summary of the presented UX design implications
of the four use cases can be found in Table 1, which can
be used to improve the user experience with network-based
applications.

Validation of the QoE‑C DC: App
for Crowdsourced Video Streaming QoE
Studies

Many of the above-presented developments and improve-
ments in app design have evolved over time. This means,
although the same improvements could have been achieved
with the QoE-CDC, these examples do not suffice to vali-
date the QoE-CDC. Thus, we finally showcase a completely
different type of app, namely an app for conducting video

Fig. 6 Up- and download times of messages and files in mobile
instant messaging applications

4 The listed applications and their QoE-aware design approaches
were accessed and described by the authors on July 15, 2021. They
may be subject to change in the future. Note that the selection of
specific applications must not be considered an advertisement for
these apps. Our only motivation was to provide positive examples of
the implementation of the mentioned design solutions. We did not
receive any monetary or other incentives for selecting specific appli-
cations.

 SN Computer Science (2021) 2:463 463 Page 12 of 18

SN Computer Science

streaming QoE studies via crowdsourcing on the smart-
phones of study participants [58, 59], which we designed
from scratch using the HCDC in combination with the QoE-
CDC. This type of app is especially critical with respect to
QoE, as QoE has to be controlled for to not bias the QoE
study.

Figure 7 gives an overview of the design and development
of the app for crowdsourced QoE studies of HTTP Adap-
tive Streaming (HAS), named CroQoE [58, 59]. After the
first steps of the HCDC, we improved the initial app design
with respect to the resulting QoE by two iterations of the

QoE-CDC. In the following, we will outline the combined
application of both the HCDC and the QoE-CDC, and their
iterations and design improvements in full detail.

Application of the HCDC

First, we kicked off the CroQoE design by considering the
HCDC. This means, we identified and specified the con-
text of use (HCDC, Step 1). In our case, the stakeholders
were researchers, who want to conduct reliable and valid
videos QoE studies. The users of the app were the study

Table 1 Summary of exemplary use cases and their UX design implications

Use case QoE requirements Exemplary UX design implications

Smartphone applications Permanent Internet connection Loading and skeleton screens
High bandwidth Background download and notification

Caching/pre-fetching
On-demand music and video streaming Short initial delay Bitrate adaptation

No stalling events Playout buffer
High audio/visual quality Caching/pre-fetching song/video

Live video streaming and video conferencing Similar to video streaming Adaptive media playout (AMP)
Minimize live delay Informing users
Audio/video synchronization Graceful failing

Side channel file download
Mobile instant messaging Permanent Internet connection Automatic retransmission

Low delay Content preview (thumbnail)
High bandwidth Media compression

Streaming/interlacing
Background download and notification

Fig. 7 Overview of HCDC and QoE-CDC iterations for design and development of the CroQoE application

SN Computer Science (2021) 2:463 Page 13 of 18 463

SN Computer Science

participants, who should be using the app on their smart-
phones in an uncontrolled environment, which is typical for
crowdsourcing studies.

The derived requirements (HCDC, Step 2) specified that
CroQoE should look and feel like a typical video stream-
ing app. In addition, the app should allow to display study
instructions and it should allow to control the tested QoE
conditions, which are presented to the app users, e.g., a
certain number of stalling events or a certain video bitrate/
codec/resolution adaptation pattern. Moreover, the app
should include surveys, such that participants could sub-
mit demographic information as well as their QoE feedback
about the experienced video streaming. As crowdsourced
QoE studies are conducted in an unsupervised fashion, the
app should monitor the test execution, and allow to ask
consistency questions to the participants [60]. Finally, the
app should allow users to select the video content, which
they would like to watch during the study. Note that this a
novel feature, which makes CroQoE unique. Previously, all
content in crowdsourced video QoE study had always been
pre-selected by the researchers. However, a realistic video
streaming experience includes that users can select the video
content themselves. Thus, the following user path resulted:
first, the participants should be welcomed, and the study
instructions should be displayed. Then, participants should
select the video content, watch the video including the tested
QoE conditions, and finally, rate the QoE.

In Step 3 of the HCDC, design solutions had to be pro-
duced that meet the user requirements. For this, the frontend
of CroQoE was implemented as Android application, and
we adapted the design of a popular video streaming app to
make CroQoE look realistic. To make the app usable for
QoE studies, we included new screens for study instruc-
tions, for surveys about the demographic information and
about the experience of the participants, and for specifying
the desired video content. Additionally, we implemented a
backend server, which is responsible for preparing the QoE
test conditions and for data storage.

At app start, the app connects via REST API to the back-
end server to determine the current app state and to regis-
ter the study participant. The QoE study is presented in the
application with which users can interact as specified. This
means, participants read the study instructions, enter their
demographic information, and can then submit keywords for
video content of their interests. As soon as the user hits the
button to start the study, the backend starts to process the
sent request, i.e., the preparation of the test videos.

For this, the backend crawls a major video streaming pro-
vider for matching videos. Based on the submitted user’s
keywords, the API of a big video database is used to find
matching videos. A video matches when it fits specific
guidelines, i.e., the top five short HD videos, which are
sorted by view count. By selecting random video IDs from

the crawled video IDs, constant repetition of the same video
is avoided.

As soon as the videos are available, the QoE test condi-
tions are dynamically inserted into the videos. For this pur-
pose, FFmpeg is used. First, the video is cut to the desired
length. Then, initial delay or stalling are added to the video,
or the visual quality is modified to replicate a desired adapta-
tion pattern. For example, for stalling, the video is cut into
multiple parts. Between these consecutive parts, stalling is
emulated by creating video sequences of desired stalling
length which show a still image and an overlaid buffering
GIF. In the end, the available parts are again concatenated
to the final video.

With respect to transmitting the final video from the back-
end to the CroQoE app, it immediately became evident that
live streaming of the video content was not an option as
the uncontrolled environment, especially, the uncontrolled
network conditions, in which users would participate in the
QoE study, could introduce arbitrary QoE degradation. This
would result in the presentation of uncontrolled QoE condi-
tions to participants, which is not acceptable in a QoE study.
Thus, we applied the QoE-CDC at this stage of the design
of CroQoE to consider and better control the delivered QoE.

First Iteration of the QoE‑CDC

In Step 1 of the QoE-CDC the QoE influence factors have
to be identified. Our app CroQoE features adaptive video
streaming, for which, as discussed above, initial delay,
stalling, and quality adaptation are the most dominant QoE
factors [7].

Step 2 demands to specify the QoE requirements. Consid-
ering an app for crowdsourced video QoE studies, the QoE
requirements follow directly from the general requirements,
which were already specified in the HDCD. This means,
CroQoE should deliver exactly the predefined video QoE as
specified in the QoE test conditions. This should be achieved
irrespective of the network conditions of the user, as they
could not be controlled in a crowdsourcing setup.

To meet the QoE requirements (Step 3) and control the
delivered QoE, we could not stream the videos from the
backend server to the app. Thus, we implemented a file
download to transmit the final video files to the frontend
app. Only after the videos are completely downloaded to the
app, CroQoE allows users to proceed to watching the locally
played out videos. This way, additional QoE degradation
introduced by fluctuating network conditions of the users can
be avoided. Note that this method of pre-download and local
playout is typical for crowdsourced video studies, e.g., [61].
Full-screen mode and landscape orientation are used for the
video playout. Also, users are not able to control the media
during playback. When a video ends, CroQoE displays the
experience survey, in which users have to submit ratings

 SN Computer Science (2021) 2:463 463 Page 14 of 18

SN Computer Science

on visual quality, streaming quality, quality acceptance, and
content liking.

Finally, the proposed design had to be evaluated. For this,
we combined both Step 4 of the QoE-CDC as well as the last
step of the HCDC. It was obvious that the application inter-
face closely resembled a video streaming app, it included
all screens needed to conduct a video QoE study, and the
presented solution could exactly replicate the technical QoE
factors within the videos by design. However, we realized
that additional waiting times were introduced by the preproc-
essing of the video content on the backend server and by the
download of the final video files from the backend server
to the CroQoE app. They again constituted an uncontrolled
factor, which could negatively influence the QoE. Thus, we
applied a second iteration of the QoE-CDC to control for the
delivered QoE, this time especially considering the newly
introduced file downloads.

Second Iteration of the QoE‑CDC

The most important QoE factor of file downloads (Step 1)
are waiting times [29, 62], which have a logarithmic rela-
tionship to the resulting QoE degradation. This is especially
detrimental for QoE studies. As shown in [63], long waiting
times during a study can result in an annoyance of the par-
ticipants which can directly influence the participant’s QoE.

The resulting QoE requirements again follow from the
general requirements of the HCDC due to the specific pur-
pose of the CroQoE app (Step 2). This means that the file
downloads, which were introduced in the first iteration of the
QoE-CDC, should have a minimal impact on the resulting
QoE. Thereby, the overall QoE of the participants should
only be affected by the tested QoE conditions within the
streamed videos.

In Step 3, we came up with the idea that participants
should be entertained with filler content while waiting for
the file downloads to finish to avoid negative bias from per-
ceived waiting times. Therefore, we changed the app’s user
path, such that the participants should select the video con-
tent first before entering demographic information. Thus,
the backend can already start to process the video requests,
while the CroQoE frontend starts to guide the participants
through a survey. As soon as the videos are prepared by the
backend server, the files are downloaded to the app in the
background, which is not visible to the user.

As the waiting time until the backend is finished strongly
depends on the complexity of the video preparation task
and the available resources, we added more filler content
to increase the time budget for backend processing and file
downloads. This means, we added another survey on video
consumption behavior, four tests for color blindness, as
well as a test for macular degeneration into CroQoE. Under
typical network conditions, the time to answer all survey

questions and vision tests is sufficient to prepare and down-
load the videos. Thus, after the last vision test, participants
can directly start to watch the videos without perceiving any
waiting time.

Technically, we implemented Google’s Firebase Cloud
Messaging (FCM) to notify the user’s device that the back-
end server has finished its task. This push notification is
processed by the CroQoE frontend in the background so
that the participant, who is busy with the survey and the
vision tests, is not aware of it. Devices are identified with
a Firebase token that registers the client app instance. This
token is also responsible for all authentication between app
and backend. Hence, content can only be downloaded from
the server when user’s app has the correct token.

Furthermore, the whole backend has been designed in a
way to make CroQoE usable by many participants simul-
taneously and still provide a reasonable server processing
time. Higher processing times result in longer tasks, which
should be avoided at any cost as stated above. To overcome
this problem, the backend server has been containerized
with Docker. On the server multiple backend instances are
started which are connected to the Internet. By adding the
mapped Android secure device ID [64] to the URL of the
HTTP requests in the app, the reverse proxy is able to redi-
rect the requests to the correct backend instances. Thus, each
smartphone communicates with a dedicated backend server
and multiple jobs can be executed in parallel. Finally, each
backend instance connects to a central database where all
collected data is stored.

If the backend processing and file downloads take longer
than users need for the survey, we allow users to leave the
app. Thereby, users are not kept waiting in CroQoE, but can
spend their time otherwise, e.g., using other applications.
As soon as the videos are ready watch, the push notification
will inform the users. In this case, users can open a new
session with CroQoE, and immediately start watching the
videos without perceiving any waiting time. At this stage,
we branched back into the HCDC to develop designs for the
newly introduced app elements, i.e., the additional survey
and vision tests, as well as the app leave and session restart
screens.

Combined Evaluation of the HCDC and the QoE‑CDC

Finally, we needed to evaluate the resulting app design
with a subjective QoE study (Step 4 of the QoE-CDC),
in which we compared video QoE results obtained with
CroQoE to a previous QoE study on desktop PCs [61]. For
the new CroQoE study [59], the app was running on four
Android smartphones (a Google Pixel XL, a Google Pixel
2 XL, and two Google Pixel 3A) in parallel. These devices
were handed to the participants at the beginning of a study.
The backend server was hosted close to the location of the

SN Computer Science (2021) 2:463 Page 15 of 18 463

SN Computer Science

study to provide high bandwidth and high CPU for video
download and video preparation. We divided the partici-
pants into two groups. The first group could not select the
video content, but it was given pre-selected test content
similar to the previous study for a better comparability
of the two studies. Only the second group of participants
could select the video content dynamically, according to
the design of CroQoE. Moreover, to fully evaluate the app
design with respect to the requirements (Step 4 of HCDC),
another survey was added at the end of the study, which
queried the satisfaction of the participants with the app
design and the time investment, as well as their overall
experience with the study.

The videos were modified with one of four stalling pat-
terns. In alignment to the previous study [61], each stalling
event had a length of four seconds and the videos showed
either zero, one, two, or four stalling events. The stalling
events occurred in a periodic pattern, i.e., the i-th stalling
event was played out after i ⋅ L

n+1
 seconds, where L is the

video length (here 30 seconds) and n is the total number of
stalling events. Further, the stalling patterns were drawn ran-
domly without replacement within each session so that a
participant did not experience the same stalling pattern
twice. When neglecting stallings, all videos have an exact
playout length of 30 seconds. The playback of the video
starts at 20% of the actual playback to avoid any introducing
scenes, e.g., the studio names in a movie trailer. All videos,
i.e., the dynamically selected videos during the study and
the pre-selected videos beforehand, are also downloaded in
the best available quality to avoid any visual bias. For the
pre-selected content, similar test content as in [61] is used,
i.e., a music video, a sports video, and a movie trailer. For
the dynamically selected video content, the matching videos
are ordered by view count and one of the five most often
watched videos is returned, as described above.

The study took place over three days in the beginning
of January 2020, in which 150 people (78 male, 70 female,
and 2 undisclosed gender) utilized the app on the cam-
pus of the University of Würzburg, Germany, resulting in
450 watched videos. During the study, 315 videos were
watched on a Google Pixel 3a, 84 videos were watched on
the Google Pixel 2 XL, and the remaining 51 videos were
watched on the Google Pixel XL. The participants were
mainly students and University employees with a mean age
of 22.5 years. The dataset was strictly filtered for outlier
sessions, similar to the previous study. This means, partici-
pants who did not pass the vision tests or submitted contra-
dictory ratings were excluded from the dataset. After the
filtering, 74 participants and 222 videos remained.

To evaluate the validity of the app in terms of the result-
ing QoE, the obtained ratings of this study are compared
to the original results of the reference QoE study [61]. In

both studies, the ratings were given on a Absolute Category
Rating (ACR) [65] scale with five categories, i.e., bad (1),
poor (2), fair (3), good (4), excellent (5). First, we analyze
the Mean Opinion Score (MOS), which is the de facto
standard QoE metric. It is computed as the average of all
numerical rating scores. Figure 8a shows the Mean Opin-
ion Scores (MOS) and 95% confidence intervals for each
stalling condition. The x-axis depicts the number of stalling
events, whereas the y-axis depicts the MOS. For each stall-
ing condition, the light blue bars on the left correspond to
the results of the previous QoE study, and the dark blue bars
on the right correspond to the results of CroQoE users with
pre-selected content. For zero stalling events, all participants
rated excellent QoE. Note that this was an instruction in both
studies, and all participants who failed on this instruction
were strictly filtered out. For the remaining test conditions,
CroQoE reaches slightly higher MOS values than the previ-
ous study. However, these differences are minor and the 95%
confidence intervals, which are depicted as black whiskers
on top of each bar, overlap.

Fig. 8 Evaluation of CroQoE app in terms of QoE and design

 SN Computer Science (2021) 2:463 463 Page 16 of 18

SN Computer Science

As the rating data are ordinal, we perform a Mann-
Whitney U test to check whether there are any differences
between the datasets. The test returns a p-value of 0.18, thus,
the hypothesis that the two datasets are obtained from the
same distribution cannot be rejected. These results indicate
that there is no difference in the resulting QoE ratings with
CroQoE compared to the previous QoE study. This also con-
firms that the application of the QoE-CDC was successful,
such that the developed design and the newly introduced
waiting times do not negatively influence the QoE, and the
QoE requirements of CroQoE are met.

Next, we evaluate the participants’ ratings of the CroQoE
app. For this, we added three questions at the end of the
study, namely

1. Do you like the app design? (no/yes)
2. Are you satisfied with the time investment for the study?

(no/yes)
3. What is your overall experience with the participation

in this study? (bad/neutral/good)

Figure 8b shows the distributions of the participants’
answers to the three questions. It can be seen that 94.59%
of participants (70 participants) liked the app design and
95.95% of participants (71 participants) were satisfied with
the time investment. The latter result again confirms that the
waiting times introduced during the second iteration of the
QoE-CDC do not negatively influence the experience of the
participants. Moreover, considering the overall experience
with the QoE study, 78.38% of participants (58 participants)
had a positive experience, while 21.62% (16 participants)
had a neutral experience. No participant had a bad experi-
ence when participating in the study. These ratings show
that the application and iterations of both the HCDC and
the QoE-CDC were successful, such that CroQoE meets all
specified requirements, and is a usable and useful app for
crowdsourced video streaming QoE studies.

To sum up, the implementation of CroQoE showcased
the practical value and validated the QoE-CDC. Moreover,
it could be seen that the proposed QoE-CDC can be easily
combined with the established HCDC, which brings syner-
gies to the design process. Resulting applications are able to
reach both a high UX and a high QoE, which is a win–win
situation for the user, the network provider, and the applica-
tion provider.

Conclusion

This paper presented the Quality of Experience Centered
Design Cycle (QoE-CDC), which gives guidelines to
application developers with respect to network-specific
requirements and QoE. The main steps of the cycle allow to

identify, understand, and specify the QoE influence factors
per context of use. Moreover, they allow to specify QoE
requirements, and produce design solutions to meet these
requirements. This way QoE aspects can be considered dur-
ing the software development process, such that applications
become network-aware and QoE-aware by design.

We showcased the practical value of the QoE-CDC by
discussing past and potential improvements of smartphone
applications, as well as on-demand music/video streaming,
live video streaming/video conferencing, and mobile instant
messaging applications. The presented improvements could
have been resulted from employing the QoE-CDC and allow
those applications to avoid QoE degradation, which would
frustrate the end users. Moreover, our analysis highlighted
open research questions and missing studies with respect
to the subjectively perceived experience with these appli-
cations. Furthermore, we demonstrated the stepwise appli-
cation of the combination of HCDC and QoE-CDC in the
development of a new video study application to validate the
usefulness of the QoE-CDC.

By further employing the QoE-CDC to existing and novel
applications, and combining it with the human-centered
design cycle (HCDC), new applications designs will evolve,
which reach a high UX and avoid QoE degradation to also
reach a high QoE. Together with QoE-aware traffic manage-
ment, QoE-aware applications could unleash the maximum
experience for end users, which constitutes a win–win situ-
ation for the user, the network provider, and the application
provider.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Availability of data and material Not applicable.

Declarations

 Funding Not applicable.

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Code availability Not applicable.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will

SN Computer Science (2021) 2:463 Page 17 of 18 463

SN Computer Science

need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Ergonomics of Human-system Interaction—Part 210: Human-
centered design for interactive systems. Standard, International
Organization for Standardization 2019

 2. Olmstead K, Atkinson M. Apps permissions in the google play
store. 2015. http:// www. pewin ternet. org/ 2015/ 11/ 10/ apps- permi
ssions- in- the- google- play- store/

 3. Le Callet P, Möller S, Perkis A, et al. Qualinet white paper on
definitions of quality of experience. European network on quality
of experience in multimedia systems and services (COST Action
IC 1003) 2012;3

 4. Bargas-Avila JA, Hornbæk K. Old wine in new bottles or novel
challenges: a critical analysis of empirical studies of user experi-
ence. In: Proceedings of the SIGCHI conference on human factors
in computing systems, 2011; pp. 2689–2698

 5. Hammer F, Egger-Lampl S, Möller S. Quality-of-user-experience:
a position paper. Qual User Exper. 2018;3(1):9.

 6. Pavic B, Anstey C, Wagner J. Why speed matters. 2020. https://
web. dev/ why- speed- matte rs/

 7. Seufert M, Egger S, Slanina M, Zinner T, Hoßfeld T, Tran-Gia P.
A survey on quality of experience of HTTP adaptive streaming.
IEEE Commun Surv Tutor. 2015a;17(1):469–92.

 8. Seufert M, Wassermann S, Casas P. Considering user behavior
in the quality of experience cycle: towards proactive QoE-aware
traffic management. IEEE Commun Lett. 2019;23(7):1145–8.

 9. Juluri P, Tamarapalli V, Medhi D. Measurement of quality of
experience of video-on-demand services: a survey. IEEE Com-
mun Surv Tutor. 2015;18(1):401–18.

 10. Baraković S, Skorin-Kapov L. Survey and challenges of QoE
management issues in wireless networks. J Comput Netw Com-
mun. 2013;2013(165146):1–28.

 11. Qadir QM, Kist AA, Zhang Z. Mechanisms for QoE optimisation
of video traffic: a review paper. Australas J Inf Commun Technol
Appl. 2015;1:1.

 12. Zinner T, Jarschel M, Blenk A, Wamser F, Kellerer W. Dynamic
application-aware resource management using software-defined
networking: implementation prospects and challenges. In: 2014
IEEE network operations and management symposium (NOMS),
IEEE 2014; pp. 1–6

 13. Schatz R, Schwarzmann S, Zinner T, Dobrijevic O, Liotou E,
Pocta P, Barakovic S, Husic JB, Skorin-Kapov L. QoE Manage-
ment for future networks. In: Autonomous control for a reliable
internet of services. Springer, Cham 2018; pp. 49–80

 14. Hartson R, Pyla PS. The UX book: process and guidelines for
ensuring a quality user experience. Amsterdam: Elsevier; 2012.

 15. Gkonos C, Iosifescu Enescu I, Hurni L. Spinning the wheel of
design: evaluating geoportal graphical user interface adaptations
in terms of human-centred design. Int J Cartogr. 2019;5(1):23–43.

 16. Hooey B, Foyle D, Andre A. Integration of cockpit displays for
surface operations—the final stage of a human-centered design
approach. In: 2000 World aviation conference 2000; p. 5521

 17. Babion JN, Ocampo W, Haubrich S, Yang C, Zuk T, Kaufman
J, Carpendale S, Ghali W, Altabbaa G. Human-centred design
processes for clinical decision support: a pulmonary embolism
case study. Int J Med Inform. 2020;147:104196.

 18. Realpe-Munoz P, Collazos CA, Hurtado J, Granollers T, Velasco-
Medina J. An integration of usable security and user authenti-
cation into the ISO 9241-210 and ISO/IEC 25010: 2011. In:

International conference on human aspects of information secu-
rity, privacy, and trust, Springer 2016; pp. 65–76

 19. Farooqui T, Rana T, Jafari F. Impact of Human-centered Design
Process (HCDP) on Software Development Process. In: 2019 2nd
international conference on communication, computing and digi-
tal systems (C-CODE), IEEE 2019; pp. 110–114

 20. Pyla PS, Pérez-Quiñones MA, Arthur JD, Hartson HR. Towards
a model-based framework for integrating usability and software
engineering life cycles. CLOSING THE GAPS: software engi-
neering and human-computer interaction 2004; p. 1

 21. Campos JC. The modelling gap between software engineering and
human-computer interaction. In: ICSE 2004 workshop: bridging
the gaps II, 2004; pp. 54–61

 22. Sandvine: the mobile internet phenomena report. Tech Rep 2020
 23. Hoßfeld T, Schatz R, Varela M, Timmerer C. Challenges of

QoE management for cloud applications. IEEE Commun Mag.
2012;50(4):28–36.

 24. Möller S, Raake A. Quality of experience: advanced concepts.
Applications and methods. Berlin: Springer; 2014.

 25. Rec I. P. 910. Subjective video quality assessment methods for
multimedia applications 2008; p. 910

 26. Davis FD. Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS quarterly 1989; pp.
319–340

 27. Brooks P, Hestnes B. User measures of quality of experience:
why being objective and quantitative is important. IEEE Netw.
2010;24(2):8–13.

 28. Kjeldskov J, Graham C. A Review of Mobile HCI Research
Methods. In: International conference on mobile human-com-
puter interaction, Springer 2003; pp. 317–335

 29. Egger S, Hoßfeld T, Schatz R, Fiedler M. Waiting times in qual-
ity of experience for web based services. In: Proceedings of the
4th international workshop on quality of multimedia experience
(QoMEX). Yarra Valley, Australia; 2012a

 30. Casas P, Schatz R, Wamser F, Seufert M, Irmer R. Exploring
QoE in cellular networks: how much bandwidth do you need for
popular smartphone apps? In: Proceedings of the 5th workshop
on all things cellular: operations, applications and challenges,
2015; pp. 13–18

 31. Research D. Failing to meet mobile app user expectations: a
mobile user survey. 2015. https:// techb eacon. com/ sites/ defau
lt/ files/ gated_ asset/ mobile- app- user- survey- faili ng- meet- user-
expec tatio ns. pdf

 32. Myers BA. The importance of percent-done progress indi-
cators for computer-human interfaces. ACM SIGCHI Bull.
1985;16(4):11–7.

 33. Biørn-Hansen A, Majchrzak TA, Grønli TM. Progressive web
apps: the possible web-native unifier for mobile development.
In: International conference on web information systems and
technologies, SCITEPRESS 2017;2:344–351

 34. Harrison C, Amento B, Kuznetsov S, Bell R. Rethinking the
progress bar. In: Proceedings of the 20th annual ACM sym-
posium on user interface software and technology, 2007; pp.
115–118

 35. Li W, Wang M, Li W, Cai B, Shi Y. An Improvement on the
progress bar: make it a story, make it a game. In: International
conference on applied human factors and ergonomics, Springer
2020;pp. 394–401

 36. Mejtoft T, Långström A, Söderström U. The effect of skeleton
screens: users’ perception of speed and ease of navigation. In:
Proceedings of the 36th European conference on cognitive ergo-
nomics, 2018;pp. 1–4

 37. Seufert M, Burger V, Hoßfeld T. HORST-home router sharing
based on trust. In: Proceedings of the 9th international conference
on network and service management (CNSM 2013), IEEE. 2013;
pp. 402–405

http://creativecommons.org/licenses/by/4.0/
http://www.pewinternet.org/2015/11/10/apps-permissions-in-the-google-play-store/
http://www.pewinternet.org/2015/11/10/apps-permissions-in-the-google-play-store/
https://web.dev/why-speed-matters/
https://web.dev/why-speed-matters/
https://techbeacon.com/sites/default/files/gated_asset/mobile-app-user-survey-failing-meet-user-expectations.pdf
https://techbeacon.com/sites/default/files/gated_asset/mobile-app-user-survey-failing-meet-user-expectations.pdf
https://techbeacon.com/sites/default/files/gated_asset/mobile-app-user-survey-failing-meet-user-expectations.pdf

 SN Computer Science (2021) 2:463 463 Page 18 of 18

SN Computer Science

 38. Chen QA, Luo H, Rosen S, Mao ZM, Iyer K, Hui J, Sontineni
K, Lau K. Qoe doctor: diagnosing mobile app QoE with auto-
mated UI control and cross-layer analysis. In: Proceedings of the
2014 conference on internet measurement conference, 2014; pp.
151–164

 39. Ghadiyaram D, Pan J, Bovik AC: A time-varying subjective qual-
ity model for mobile streaming videos with stalling events. In:
Proceedings of SPIE Applications of Digital Image Processing
XXXVIII. San Diego, CA, USA; 2015

 40. Zeng K, Yeganeh H, Wang Z. Quality-of-Experience of stream-
ing video: interactions between presentation quality and playback
stalling. In: Proceedings of the IEEE international conference on
image processing (ICIP). Phoenix, AZ, USA 2016

 41. Seufert M, Hoßfeld T, Sieber C. Impact of intermediate layer on
quality of experience of HTTP adaptive streaming. In: Proceed-
ings of the 11th international conference on network and service
management (CNSM). 2015; Barcelona, Spain

 42. Sackl A, Egger S, Schatz R. Where’s the Music? Comparing the
QoE impact of temporal impairments between music and video
streaming. In: 2013 Fifth international workshop on quality of
multimedia experience (QoMEX), IEEE 2013; pp. 64–69.

 43. Schwind A, Moldovan C, Janiak T, Dworschak ND, Hoßfeld T.
Don’t Stop the Music: Crowdsourced QoE Assessment of Music
Streaming with Stalling. In: 2020 Twelfth international conference
on quality of multimedia experience (QoMEX), IEEE 2020; pp.
1–6.

 44. Schwind A, Haberzettl L, Wamser F, Hoßfeld T. QoE analysis of
spotify audio streaming and app browsing. In: Proceedings of the
4th internet-QoE workshop on QoE-based analysis and manage-
ment of data communication networks, 2019; pp. 25–30

 45. Information technology. Dynamic adaptive streaming over HTTP
(DASH). Part 1: Media presentation description and segment for-
mats. Standard, International Organization for Standardization
2012

 46. Ahmed A, Shafiq Z, Bedi H, Khakpour A. Suffering from Buffer-
ing? Detecting QoE Impairments in Live Video Streams. In: 2017
IEEE 25th international conference on network protocols (ICNP),
IEEE, 2017; pp. 1–10

 47. Yi G, Yang D, Bentaleb A, Li W, Li Y, Zheng K, Liu J, Ooi WT,
Cui Y. The acm multimedia 2019 live video streaming grand chal-
lenge. In: Proceedings of the 27th ACM international conference
on multimedia, MM ’19, 2019; p. 2622-2626

 48. Berndtsson G, Folkesson M, Kulyk V. Subjective Quality Assess-
ment of Video Conferences and Telemeetings. In: 2012 19th Inter-
national Packet Video Workshop (PV), IEEE, 2012; pp. 25–30

 49. Zinner T, Abboud O, Hohlfeld O, Hossfeld T, Tran-Gia P. Towards
qoe management for scalable video streaming. In: 21th ITC spe-
cialist seminar on multimedia applications-traffic, performance
and QoE, 2010; pp. 64–69. Citeseer

 50. Hoßfeld T, Schatz R, Zinner T, Seufert M, Tran-Gia P. Transport
protocol influences on youtube videostreaming qoe. Tech Rep
University of Würzburg, Institute of computer science; 2011a.

 51. Skorin-Kapov L, Matijasevic M. Analysis of QoS requirements
for E-health services and mapping to evolved packet system QoS
classes. Int J Telemed Appl 2010

 52. De La Torre Díez I, Alonso SG, Hamrioui S, López-Coronado
M, Cruz EM. Systematic review about QoS and QoE in tel-
emedicine and ehealth services and applications. J Med Syst.
2018;42(10):182.

 53. Miller K, Al-Tamimi AK, Wolisz A. Qoe-based low-delay live
streaming using throughput predictions. ACM Trans Multimed
Comput Commun Appl (TOMM). 2016;13(1):1–24.

 54. Yuang MC, Liang ST, Chen YG, Shen CL. Dynamic video playout
smoothing method for multimedia applications. In: Proceedings of
ICC/SUPERCOMM’96-international conference on communica-
tions, IEEE 1996;3: 1365–1369

 55. Kalman M, Steinbach E, Girod B. Adaptive media playout for
low-delay video streaming over error-prone channels. IEEE Trans
Circ Syst Video Technol. 2004;14(6):841–51. https:// doi. org/ 10.
1109/ TCSVT. 2004. 828335.

 56. Rainer B, Timmerer C. Quality of experience of web-based
adaptive http streaming clients in real-world environments using
crowdsourcing. In: Proceedings of the 2014 workshop on design,
quality and deployment of adaptive video streaming, 2014; pp.
19–24

 57. Fiadino P, Schiavone M, Casas P. Vivisecting WhatsApp in cel-
lular networks: servers, flows, and quality of experience. In: Inter-
national workshop on traffic monitoring and analysis, Springer
2015; pp. 49–63

 58. Seufert M, Wehner N, Casas P. App for dynamic crowdsourced
qoe studies of http adaptive streaming on mobile devices. In: 2018
Network traffic measurement and analysis conference (TMA),
IEEE 2018 ;pp. 1–2

 59. Wehner N, Mertinat N, Seufert M, Hoßfeld T. Studying the impact
of the content selection method on the video qoe on mobile
devices. In: 2020 Twelfth international conference on quality of
multimedia experience (QoMEX), IEEE 2020; pp. 1–4

 60. Hoßfeld T, Hirth M, Redi J, Mazza F, Korshunov P, Naderi B,
Seufert M, Gardlo B, Egger S, Keimel C. Best practices and rec-
ommendations for crowdsourced qoe-lessons learned from the
qualinet task force crowdsourcing. COST Action IC 1003 Qualinet
Tech Rep; 2014

 61. Hoßfeld T, Seufert M, Hirth M, Zinner T, Tran-Gia P, Schatz
R. Quantification of youtube QoE via crowdsourcing. In: 2011
IEEE International symposium on multimedia, IEEE 2011b; pp.
494–499.

 62. Egger S, Reichl P, Hoßfeld T, Schatz R. “time is bandwidth”?
narrowing the gap between subjective time perception and quality
of experience. In: 2012 IEEE international conference on com-
munications (ICC), IEEE 2012b; pp. 1325–1330

 63. Strohmeier D, Jumisko-Pyykkö S, Raake A. Toward task-depend-
ent evaluation of web-qoe: Free exploration vs. who ate what?. In:
2012 IEEE globecom workshops, IEEE 2012; pp. 1309–1313

 64. Sylvain Saurel: How to retrieve an unique ID to identify android
devices? https:// medium. com/@ ssaur el/ how- to- retri eve- an-
unique- id- to- ident ify- andro id- devic es- 6f99f d5369 eb

 65. International Telecommunication Union: ITU-T Recommendation
P.910: subjective video quality assessment methods for multime-
dia applications 2008

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TCSVT.2004.828335
https://doi.org/10.1109/TCSVT.2004.828335
https://medium.com/%40ssaurel/how-to-retrieve-an-unique-id-to-identify-android-devices-6f99fd5369eb
https://medium.com/%40ssaurel/how-to-retrieve-an-unique-id-to-identify-android-devices-6f99fd5369eb

	Delivering User Experience over Networks: Towards a Quality of Experience Centered Design Cycle for Improved Design of Networked Applications
	Abstract
	Introduction
	Human-Centered Design Cycle
	Quality of Experience Centered Design Cycle
	Use Cases
	Smartphone Applications
	On-Demand MusicVideo Streaming
	Live Video StreamingVideo Conferencing
	Mobile Instant Messaging

	Validation of the QoE-C DC: App for Crowdsourced Video Streaming QoE Studies
	Application of the HCDC
	First Iteration of the QoE-CDC
	Second Iteration of the QoE-CDC
	Combined Evaluation of the HCDC and the QoE-CDC

	Conclusion
	References

