Not for redistribution. The definitive Version of Record was published in Performance Evaluation.

©ACM 1987. This is the author’s version of the work. It is posted here for your personal use.

28RS

Modelling and Performance Analysis
of Inter-Processor Messaging
in Distributed Systems

David Manfield *

Telccom Australia Research Laboratories, Melbourne, Australia 3168

Phuoc Tran-Gia * ;
IBM Research Division, Ziirich Research Laboratory, Sdumerstrasse 4, CH-8803 Riischlikon, Switzerland

Herbert Jans *
Faculty of Electrical Engineering. Technical College, Landshut, Fed. Rep. Germany

Received 6 September 1984
Revised 27 January 1987

This paper addresses some performance modelling issues arising from the inter-processor messaging requirements of distributed
real-time processing systems. We consider two basic classes of message transfer protocols, namely clocked schemes where message
transfer is initiated as a periodic timed task, and event-driven schemes where the transfer mechanism is triggered by the messaging
requests themselves. The aim is to maximize system efficiency by passing messages in batches. It is shown how the classes of
protocols may be modelled by a two-stage queueing systems, which is analysed using the theory of imbedded Markov chains and
semi-Markov processes. The results are used to show how the important performance measures are derived, and how the protocol
parameters should be chosen to optimize the overall message system performance. The methods are illustrated by numerical
examples.

Keywords: Clocked Schedule, Inter-Processor Communications, Delay Analysis, Imbedded Markov Chain, Stability Analysis,
Two-Level Queucing System. ’

1. Introduction

Currently, there is a trend in real-time computer systems towards decentralized multi-processor
architectures in order to take advantage of functional divisions in the applications software, and to provide
increased processor power in a modular way. Good examples are modern telecommunication switching
systems, where there is often a clear division of tasks and the overall system has to be easily extendable.
The concurrent application programs running in the distributed processors are synchronized by the
passing of messages over some type of interconnection network (e.g., bus system) under the control of a
messaging protocol. One price to be paid for such distributed processing is the real-time overhead which is
expended to perform the inter-processor communication functions, and this can have a significant impact
on the real-time performance. The idea here is to show how a class of inter-processor messaging protocols
can be optimized from the performance point of view to minimize message delays, and minimize real-time
overhead due to the communication function.

* This work was done while the authors were at the University of Siegen, Fed. Rep. Germany.

North-Holland
Performance Evaluation 7 (1987) 285-298

0166-5316,/87/83.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

286 D. Manficld et al. / Modelling and performance analysis of inter-processor messaging

Peripheral
processors

=
K

Interconnection

network
G| — v
Jerr— ¥
= Central el 3
processor]
PP /O system cP
Fig. 1. Generic system architecture. Fig. 2. Model building block.

In this paper we want to concentrate on the modelling steps for the performance evaluation of
messaging in a distributed system with the generic architecture depicted in Fig. 1, where a number of
peripheral processors have access to a central processor via an interconnection network such as a bus
system. Tasks executing in the peripheral processors generate events which require further processing in
the central processor (CP), and these events are passed as messages via the peripheral processor (PP)
transmit queue. We assume that the peripheral queues can be reduced to a single logical queue (through

David Manfield completed his B.E. and Ph.D. degrees in Electrical Engineering at the University of
Queensland, Australia, in 1975 and 1979 respectively. His doctoral thesis was on the subject of teletraffic
engineering of telephone networks. He then spent one year as an Alexander von Humboldt post-doctoral
fellow in the Department of Communications Engineering at the University of Siegen. Fed. Rep. Germany.
working on the performance modelling of switching systems. In 1981 he joined Bell-Northern Research in
Ottawa, Canada, where he worked on the traffic and real-time design of computer controlled switching
systems, becoming the manager of product traffic design in 1984. Since March 1987, Dr. Manfield has been
with the Telecom Australia Research Laboratories in Melbourne, Australia, where he is involved in future
network planning.

Phuoc Tran-Gia received the M.S. degree (Dipl.-Ing.) from the Stuttgart University, Stuttgart, in 1977 and
the Ph.D. degree (Dr.-Ing.) from the University of Siegen, Siegen, in 1982, both in Electrical Engineering. In
1977, he joined Standard Elektrik Lorenz (ITT), Stuttgart, where he was working on software development
of digital switching systems. From 1979 until 1982 he was working as an assistant professor in the
Department of Communications, University of Siegen. From 1983 to 1986, Dr. Tran-Gia was head of a
research group at the Institute of Communications Switching and Data Technics, Stuttgart University, Fed.
Rep. Germany. The research activity was in the field of environment simulations for communication systems
and applied queueing theory, especially with focus on discrete-time methods. In 1985, he was appointed
lecturer for computer networks at the University of Wiirzburg, Fed. Rep. Germany. He joined the IBM
Zirich Research Laboratory in October 1986, where he is currently working on the architecture and
performance evaluation of computer communication systems.

Herbert Jans received the M.S. degree (Dipl.-Ing.) in Electrical Engineering from the Technical University of
Berlin, Germany, in 1975. From 1975 he was an Assistant Professor at the University of Siegen, Faculty of
Electrical Engineering, and completed his Ph.D. degree in 1983. His research activities and doctorial thesis
were in the field of queueing theory and its application in computer and communication systems. In 1983 he
joined Siemens A.G. in Miinich where he worked on the design of traffic and real-time problems of the
Siemens computer controlled switching systems EWSD. In October 1986, Dr. Herbert Jans was appointed
Professor at the Technical College (Fachhochschule) of Landshut, Fed. Rep. Germany. His main research
interests are in the area of performance analysis of communication systems

D. Manficld et al. 7 Modelling and performance analvsis of inter-processor messaging 287

the use of centrally queued agents or otherwise). The system we wish to concentrate on is depicted in Fig.
2. In principle, the message traffic is two-way, but our methodology is based on separating the flows in
each direction assuming mutual independence. This is a good assumption if only a few messages generate
correlated replies to the originating processor.

The message transfer is controlled by a communication task in the CP. Its job is to take messages from
the PP queue and load them into the CP queue where they await processing by the CP. The communica-
tion task may be scheduled a number of different ways. In real-time systems, the level of message traffic
may be very high, so significant gains may be made by passing messages in batches to minimize overhead.
It is necessary to ensure as well that no message will be delayed too long. In the following we treat two
classes of messaging protocol, the first being when the transfer is implemented by a clocked schedule, and
the second when the transfer is event-driven (triggered by the events in the PP). Our objective is to produce
queueing models for the message transfer protocols so we can make an optimal choice of the protocol
parameters to achieve our delay and robustness criteria for the message system.

2. Queueing model

The queueing model which we use for the performance analysis of the model building block of Fig. 2 is
depicted in Fig. 3. The generation of message event arrivals to the PP queue is assumed to be Poisson with
rate A, based on the observation that events are usually generated by a large number of sources (tasks,
devices). The events accumulate in the PP queue until the next scheduled occurrence of the CP
communication task when the messages may be transferred to the CP queue. The PP queue may be served
FIFO or random order of service (ROS) depending on implementation. The switch in Fig. 3 represents the
communication function. The CP queue is assumed to have a finite number of waiting places (S) with the
CP system size N=S+1. The work time for an arbitrary message in the CP is assumed to be
exponentially distributed with mean value 1/p. The overhead incurred by the communication task is
assumed to be fixed and equal to T,

The batch transfer of messages can be done in several ways, and in this paper we consider the following
schedules:

Version 1. Message transfer at clocked intervals, period T, implemented as a timed task within the CP.

Version 2. Event-driven transfer after n new messages have accumulated in the PP queue generating an
external interrupt, but with the inter-transfer interval subject to a timeout, length T, on the occurrence of
which a transfer is initiated anyway.

For either of the above versions, the message transfer protocol can be blocking or nonblocking,
depending on how messages are treated when the CP queue is full. In the blocking case, messages finding
the CP queue full are discarded and the originating task is left to recover by itself. In the nonblocking case,
messages blocked from the CP queue are allowed to remain in the PP queue until the next transfer epoch,
so that they ultimately find a place in the CP queue. Whether the transfer protocol is blocking or
nonblocking has significant implications for the system design and provisioning, depending on the
application.

Peripheral Central
queue queue M,

.4 & Ti—{—_THO}—>
L---k::—f—:::::o To

Primary_’|‘_ Central _.l
delay delay

Fig. 3. Queueing model.

288 D. Manfield et al. / Modelling and performance anulysis of inter-processor messaging

In the following sections we apply the queueing model of Fig. 3 to the different versions of the transfer
protocol described above. The object is to highlight the performance issues by developing analytical
methods for the determination of the key performance measures, and indicating how the protocol
parameters need to be chosen to ensure good overall system operation. In Section 3 we look at the clocked
schedules of Version 1, and in Section 4 we look at the event-driven schedules of Version 2.

3. Clocked schedules

For a clocked schedule, we assume that the communication task is a timed task in the CP with period T.
The main question is how large T should be for best system performance. If it is too small, then many
communication interrupts will take place, often with no messages waiting in the PP, so a lot of overhead
will be incurred for no purpose. At the other extreme of large T, interrupts will come too seldom and
messaging delays will be large because messages are forced to wait a long time in the PP queue. Further
complications are induced by the finite size of the CP queue.

3.1. Imbedded Markov chain analysis

The operation of the messaging system is depicted in the time line diagram in Fig. 4. The message
events occurring randomly in the PP are stored (temporarily) in the PP queue. At the next clock epoch, the
total contents of the PP queue is presented as a batch to the CP queue and, depending on whether the
transfer protocol is blocking or nonblocking, messages not finding a place in the CP queue are either
discarded or remain in the PP queue respectively. During the active service period, the CP is available for
event processing but is not necessarily busy, even if messages are waiting in the PP queue. The number in
the CP queue is denoted by the random variable X(1) and the number in the PP queue by Y(¢). In an
arbitrary clock period, the process X(r) will count down after an initial Jump at the times {7} as the
messages are processed. Y(¢) will count up as messages arrive. At the clock period, the two queues are
momentarily joined and an appropriate number of messages transferred to the CP queue, following the
service discipline of the PP queue.

The instants {1, } are seen to form the regeneration points of an Imbedded Markov Chain (IMC) since,
at these points, the state of the system can completely be described by just a single random variable being
the total number of messages in the system. Note that, for the blocking protocol, Y(1;) is always zero,
because extra messages are discarded. Let P, be the probability of k messages being in the system

Y ¥ ¥ Arivals ¥

v
X’;‘;}T’; W?/W/// 7
W) 07,
<To§|<——Tg—-> Time
v I *Depanures

Fig. 4. Snapshot of queue fluctuations.

D. Manficld e1 al. / Modelling and performance analysis of inter-processor messaging 289

(CP + PP) at the imbedded instants, and let { 9,1) represent the one-step transition probabilities. The state
probabilities are calculated as follows:

o0 [=e]
Pk=}:q,kP,-, > P=1. (1)
Jj=0 k=0

The transition probabilities are determined jointly by the (Poisson) arrival rate and the service (departure)
process during the previous clock period. Hence, we define

8= Pr{i fresh arrivals in previous clock period }
=(AT) e it, (2)
d, = Pr{r service completions in (T, T)} = (pTs)" e~ *7s/r! (0<r<N), . (3)

where Tg=T - T,.

Note that, sometime during the clock period, the CP may become idle; equation (3) is implicitly
conditioned on there being sufficient messages to serve. The significance of this is immediately apparent in
the following analysis.

3.1.1. Nonblocking case
Here, there is no restriction on the total number in the system:

o0 Jj—1
gkzdr+ Z drgk+r—j’ Os.]SN’
r=j r=j—k
9k = o N-1 (4)
gk+N—j Z dr+ E drgk+r—j’ j>N’
r=N r=j—k

where terms with negative indices are set to zero, and summations where the upper limit is exceeded by the
lower are also zero. The infinite summations of the departure probabilities {d, } represent cases where the
server becomes idle during the clock period.

3.1.2. Blocking case
Here, the indices j and k cannot exceed N because excess messages are discarded at transfer epochs:

oo J-1
gkzdr+ E drgk+r—j’ k<N’
r=j r=j—k
9ox = © oo J-1 © (5)
Edrzgi+zdr E &i> k=N
r=j i=N r=0 Ji=N—j+r

Again, the infinite sums of the departure probabilities represent cases where the server becomes idle.
For either case of the nonblocking or blocking protocol, the state probabilities are obtained from
equation (1) with either (4) or (5) respectively, by the numerical technique of Gauss-Seidel iteration [5,7).

3.2. Delay analysis

The mean delays in the PP and CP queues are most easily derived through mean queue lengths and
Little’s law [5,7). To do this it is necessary to know the state distribution at an arbitrary point in time,
equivalent to a time average of the queue lengths. The method is most completely illustrated by looking at
the nonblocking protocol, where we must consider the delays in both the PP and CP queues. We discuss
the blocking protocol later.

290 D. Manfield et al. / Modelling and performance analysis of inter-processor messaging

3.2.1. Nonblocking case
Define

P (x)=Pr{X(1;)=k;0<k<N}, P (y)=Pr{Y(1;)=k; k>0}. (6)

These can be calculated by conditioning on the { P, } calculated in Section 3.1.

An outside observer sees the system at an arbitrary time, which will fall in the overhead period with
probability m = To/T, or into the active service period with probability 7, =1 —=,. If the observation
instant falls in the active service period, the d.f. of the time elapsed since the end of the previous overhead
period is given by the backward recurrence time of the active service period, in this case a uniform
distribution with mean 3 Tj.

The arbitrary time state probabilities seen by the outside observer are defined as P*(x) = Pr{X(t)=k}
and P*(y)="Pr{Y(¢)=k}. In the nonblocking case, they can be calculated from

N
mP(x)+m, Y Pj(x)dj"‘_k, k>0,

j=k
Pr(x)= N o (7)
mPy(x) +m), P(x) >dx, k=0,
j=0 r=j
k
Pr(y)= X P(y)gd, (8)
j=0 :
where
d* = Pr{r service completions in (T, 1)}, g™ = Pr{i arrivals in (0, ¢)}.

Thus, the arbitrary time state probabilities can be calculated from the state probabilities of the IMC,
allowing the calculation of the time-average means EX = E[X(¢)] and EY = E[Y(¢)]. The mean queue
delays EW. and EWj for the CP and PP queues respectively are then found from Little’s law as

EW.=EX/\—1/u, EWp=EY/A. (9a, b)

The results of this sort of analysis are depicted in Fig. 5, where total mean delay is plotted as a function of
the clock period 7, with offered traffic intensity as a parameter. Clearly, the curves suggest an optimal
choice of T. At small T, too much time is lost to overhead and, at large 7, the CP is idle for part of the
clock period because work cannot get in.

40
30
3
(-]
>
gzo-
c
«©
QO
=
10
Central queue capacity = 20
Overhead time = 1
ol 1 1 1 L1 1
152 3 5 10 15 20 30 50

Clock period T
Fig. 5. Total mean delay vs. clock period—clock schedule (nonblocking).

D. Manficld et al. 7 Modelhing and performance analvsis of inter-processor messaging 291

3.2.2. Blocking case

The delay analysis of the blocking protocol is very similar, except that the delay in the peripheral queuc
is much more simple. The analysis for the delay in the CP is the same as for the nonblocking case,
requiring the calculation of the state probabilities of the number in the system at an arbitrary time, and the
application of Little’s law. Numerically, the results are also similar, except that the total average delay in
the system cannot grow without bound at high traffic (as we see in Fig. 5 for the nonblocking case).
Instead, at high traffic, the bounded delay reflects the impact of discarding excess messages.

3.3. Delay distributions

Analysis of the distribution of delays is somewhat more difficult, and details of this can be found in
[4,5,8]. The FIFO discipline is discussed in [5,7] and the ROS discipline in [4,7). More complex models
dealing with clocked transfers with priorities can be found in [2,3].

3.4. Stability analysis

In Fig. 5, upper and lower stability limits for the clock period T are apparent. These limits exist only in
the case of nonblocking message transfer because, in the blocking case, the system is finite (size N) and by
definition always stable.

For small 7, the active service period must be large enough to process the expected number of arrivals
in a clock period. Hence,

AToin = #(Thin — Tp)s Toin=To/(1 = A/p).
For large T, the mean number of arrivals in the clock period cannot exceed the CP queue size,
T,=(S+1)/A.

The system is then stable for T, < T < T,,,.

4. Event-driven schedules

The event-driven schedule is based on the idea that the event message generation process in the PP
should be used to trigger a message transfer to the CP by means of an external interrupt. The rationale for
this is that it is desirable to relate the frequency of message transfer attempts to the load generated by the
PP. The event-driven schedule we consider here is that when n new messages have accumulated in the PP,
a message transfer phase is initiated in the CP by interrupt. A major shortcoming of this strategy is that, at
low traffic, delays can be very long [5]. To overcome this, it is necessary to protect the system messaging
integrity by using a timeout, length 7, after which a transfer is initiated anyway [6,9]. Protocols with
timeouts are often very difficult to analyse from the performance point of view, and one of the major
contributions of this work is that it does provide an analytical framework for handling a timeout.

4.1. Modelling assumptions

First we define the protocol operation and parameters and then give the modelling assumptions to be
used in the subsequent performance analysis.

(a) Referring to the queueing model in Fig. 3, when n new messages have accumulated in the peripheral
queue, or the timeout of duration T occurs, whichever comes first, the switch closes and messages are
transferred to the central queue.

(b) The central queue is finite with § waiting places. The CP system size is N=S + 1.

(c) Whenever a transfer occurs, overhead time T; is incurred in the central processor as a result of the
interrupt mechanism.

292 D. Manfield et al. / Modelling and performance analysis of inter-processor messaging

(d) If n messages accumulate in the peripheral queue before the last overhead period is ended, then this
overhead period is curtailed and a new overhead period begun. This means that the transfer is ‘gated’, and
this assumption is made for analytical tractability. In practical cases, it is apparent, however, that this
assumption is not critical because there is only a remote possibility of arrivals in a time period of length
T,.

4.2. Imbedded semi-Markov chain analysis

The extra difficulty imposed by the event-driven transfer schedule is that the inter-transfer intervals are
a function of both the arrival process and a deterministic value (the timeout). Remaining with our
standard notation, the state of the system at the instants {7} are seen to constitute an IMC and,
moreover, the sequence of inter-transfer interval types (as determined by the occurrence or nonoccurrence
of the timeout) is seen to constitute an imbedded semi-Markov process.

By choosing the imbedded points just after the transfer epochs, the relationship between inter-transfer
interval type and the size of the message batch is preserved. This is the most important observation of the
modelling. The length of the inter-transfer interval and hence the batch size clearly depends on whether
the n messages or the timeout triggers the transfer. Consideration of the inter-transfer interval type is the
key to the following analysis.

As before, define the state probabilities { P, } of the number of messages in the system at the instants
{#,} and the associated one-step transition probabilities { g i« }- To determine the transition probabilities,
it is necessary to distinguish among three types of message transfer intervals.

Case 1: Timeout. The inter-transfer interval is of length 7 and less than n messages are transferred.

Case 2: n messages in the interval (T, T'), n transferred.

Case 3: n messages in (0, Ty), n transferred.

Define v; to be probability of a transfer interval of type i. Conditioning on interval type, we have

3
9= 2 74q%, (10)

i=1
where ¢{ = {k at 1},,| j in system at ¢} ; interval type i} and

n=E(T)=1-E(T), %=E()-n n=E(%), (11)
and E,(-) is the special Erlang d.f. of order n with parameter A and density e,(-). The three types of
interval have probability density functions (p.d.f.) f,(-) and d.f. F,(-), where

e,(t , Ty<t<T,
A0 =80=T), fi(n)={o/m Tost (12)
o, otherwise,
e,(t , O0<t<T,,
f3(t)={ (1)/7s fo
0, otherwise.
The number of service completions between transfers is given by the conditional departure probabilities
{d{?}, where

d\) = Pr{m service completions |interval type i, 0 < m < N }

and are determined as follows:
Case 1—Timeout: v
dyp)=(pTs)" e *Ts/m!, Ty=T-T,. (13a)
Case 2—n messages in (T, T):

m —px
d® = /TS(‘”‘%A(H T,) dx
0 .

-_”m_ye__”i_"—l("—l) n—i=1 TS m+i ~(A+p)x
yom!(n—1)! ,;0 i)T fox ¢ dx. (13b)

D. Manfield et al. / Modelling and performance analysis of inter-processor messaging 293

The type of integral in this equation occurs many times in the subsequent analysis, and can be put into a
tractable computational form by partial integration.
Case 3—n messages in (0, Tp):

3) _ 1, m= 0, .
n _{0, otherwise. (13¢)
The generation of the transition probabilities is a somewhat tedious process but is not theoretically
difficult. The set of possible transition paths between two imbedded points primarily depends on the
interval type between them. This determines the distribution of the number of departures (service
completions) represented by the coefficients d¢”, and the number of arrivals. For inter-transfer intervals of
types 2 and 3, the number of arrivals is exactly n. For an interval of type 1, the distribution of the number
of arrivals is given by the probabilities { g }.
Define

8; = Pr{arrival batch size i |interval of type 1)

=(AT) e M/Ki!, O<i<n—1, (14)

where

n—1)

K=Y (AT) e /i,

i=0
The transition probabilities also depend, of course, on whether the protocol is blocking or nonblocking.
They follow from the same general principles as in Section 3.1, except that now it is necessary to
distinguish between the transfer interval types as well.

4.2.1. Nonblocking case
Case 1— Timeout:

© J=1
g rd+ ¥ dVg.,_;, Jj<N,
r=j r=j—k
% = - Nt (15a)
gk+N-j Z dr(]) + Z dr”)gk-}-r—ja .12 N.
r=N r=j—k
Case 2—n messages in (T, T):
oo
. Ed,‘z), k=j+n—N,
aR = r=j (15b)
_,('i)n—k’ k>n. h
Case 3—n messages in (0, Tp):
g@=1, k=j+n. (15¢)

The transition probabilities are used in equation (10) in conjunction with the power method to obtain a
numerical solution to the state probabilities. While the state space is theoretically infinite, it is truncated to
a suitable large value for purposes of numerical computation, such that the probability of the largest
system state is small. It is not possible to use a more efficient Gauss—Seidel method because of the
existence of transient states.

4.2.2. Blocking case B
In the case of the blocking protocol, the state transition probabilities are expressed by terms very
similar to those in equations (15a, b, c). The chief difference is that we must consider the transitions where

294 D. Manfield et al. / Modelling and performance analysis of inter-processor messaging

the batch transfer overflows the CP queue and messages are discarded [9]. Note that the number of
messages in the system at the epochs of the imbedded Markov chain is at most N. As in the nonblocking
case, the state probabilities are found numerically by the power method, except that here the state space is
finite and truncation is not necessary.

A performance measure of interest here is the probability of message discard on transfer. The state
probabilities at the imbedded points can be used to calculate the probability of a message being lost, by
conditioning on interval type [9].

4.3. Delay analysis

4.3.1. Central queue delay

The mean delay analysis for the CP queue builds on the method used in Section 3.2, through use of the
arbitrary time state probabilities which give the distribution of the number of messages in the system at an
arbitrary observation instant. This distribution is useful in providing a quick calculation of mean delay in
the CP queue through the use of Little’s law. Define { P* ;0 <k <N} to be the arbitrary time state
probabilities. To calculate these it is necessary to know what type of transfer interval is seen by the outside
observer at an arbitrary instant. Let #; be the probability of type i. From the properties of the imbedded
semi-Markov process we have

3 o0
7,=vT,/ 3 v,T;, where 7}=f0 tf,(¢) de. (16)
j=1

The arbitrary time state probabilities require a new set of departure probabilities denoted {d()*; ;=
1, 2, 3}

Case 1: Timeout. Given that the observer is in a type 1 interval, he is in the overhead segment with
probability 7, , and the “active” service (nonoverhead) segment with the complimentary probability ,,
where

mi=Ty/T=1-m,.
The backward recurrence time for the active service segment has p.d.f.

Fi(x)/Ts=1/T;, 0<x<Tj,

so that
.« 1 (Ti(px)” e p” T -
m=* _ S = m x
d, Ts-/(; ! dx Tsm!./(; x™ e " dx. (17a)

Case 2. Given that the observer is in a type 2 interval, he is in the overhead segment with probability
7,1 and the active service segment with the complementary probability =, ,, where

M =Ty/Th=1-m,,.

Denote by T;' = T, — T, the mean length of the active service segment of a type 2 interval,

T
Tz’=/osxfz(x+n)dx

A\ e_>‘To n—1 n—1 . T . \
= n—i— 1 _Xd .
CET WP R A

Finally,

. , T X me_,‘_,‘_
a@ = (/1) ex) e p (o 1) ax,

D. Manficld ct al. / Modclling and performance analysis of inter-processor messaging 295

which after some manipulation comes to

n-1

@° _ p” n=1\gn-i-1 75,0 .=
Al =g .~>-:o(.)To jo ' e~™Mdi
mo n-1 n—1) I .
-y ity " To"-f—'f Spiti e gy (17b)
i=0 j=o\ J 0

Case 3. Here there is no possibility for departures.
The distribution of the number of messages in the CP queue at the last imbedded point is given by the
probabilities { P, }, where

) 0<k<N,
[(-]
Pk ZPk' k=N.
r=N

(Note that in the blocking case we simply have P; = P, for all k.) The arbitrary-time state probabilities are
found from

{ N N
N*p’ }: 2)*
Pk‘ =7Tl W11P£+7712 E dl(")l‘}?l +772 ﬂ21P1:+'”22 dj(")k})j,

+mP;, 0<k<N,

(18)
N oc N oc
I L R (N o
j=0 " r=j J=0 " r=j

+m Py (k=0).
Finally, the expected delay in the CP queue EW/, is found from Litie’s law as
EWe=W-=1/p, (19)
where W= L/\ and L=X¥_okP;. |

4.3.2. Peripheral queue delay .

The mean PP queue delay (transfer delay) is made up of two components: the mean delay from message
arrival until the next transfer epoch denoted by the expectation Wp,, and the mean delay from the first
transfer epoch until that transfer epoch the message is put into the CP queue denoted by the expectation
W,,. This decomposition is possible because, except for fresh arrivals, the number of messages in the
peripheral buffers remains constant between transfer epochs.

Here it is necessary to distinguish between the blocking and nonblocking protocols. In the blocking
case, only the term Wp, has any significance.

4.3.2.1. Nonblocking case
From Little’s law,

Wes= L (k=N)Pu/A. (20)
k=N+1

The other component depends on the interval type. Given there is no blocking of messages, we have

3
Wn=YaWy, 77 (1)
i=1

296 D. Manfield et al. / Modelling and performance analysis of inter-processor messaging

where

a; = Pr{arbitrary message arrives in interval type i}

3
= Yrsi/ Z Yij‘

j=1
n-—1
- Zkgk’ i=1,
Si={ ¥=o
n, i=2,3.

The probabilities {a,} are based on the weighted sum of the expected number of arrivals in each interval
type, according to the imbedded semi-Markov process.

W — 3T, i=1,
Ll (n=1)20, i=2,3.

The delay for interval types 2 and 3 follows from assumption (d) in Section 4.1. Finally,
EWP = WPI + sz. (22)

4.3.2.2. Blocking case
Here, only the delay until the first transfer is of interest. However, the calculation of mean delay is a

little complicated because it is most useful to find the mean peripheral delay conditional on acceptance in
the CP queue. Details of this calculation may be found in [9].

4.3.3. Numerical results

Fig. 6 depicts the total mean delay versus the timeout period for the case of the nonblocking protocol.
Results are shown for two different values of n, and the optimizing effect of the timeout is apparent. For
large timeout, the delay flattens out since it becomes limited by the batch size n. Note the relative
insensitivity of the delay to the choice of timeout (for reasonable n) as compared to the clocked transfer.
This illustrates the improved performance that can be obtained by more complex event-dependent transfer
protocols, which exhibit some adaptivity to changing traffic conditions. Comparing the clocked scheme
with the event-driven one through the results in Figs. 5 and 6, we can see the sensitivity of the clocked

15.0 20.0
15.0
>10.0

3 -
o o

s - 2100
8 3
3 €
= 50 S=10 =

To =10 50

- H= 1.0
0.0 111 el L1 1111111 0.0 1 | 1
109 10! 102 0.0 o5 1.0
Timeout period Traffic intensity
Fig. 6. Total mean delay vs. timeout period—event-driven Fig. 7. Stability limits for event-driven schedule (nonblocking).

schedule (nonblocking).

D. Manficld et al. / Modclling and performance analvsis of inter-processor messaging 297

transfer to the choice of the clock interval, whereas the ‘adaptive’ event-driven scheme is reasonable over a
broad range of timeout (the equivalent parameter). This tolerance has particular importance in real-time
systems where the traffic conditions can vary widely with time.

Numerical results for message delay for the blocking protocol are qualitatively very similar to those for
the nonblocking one where, depending on the choice of parameters. an optimum value of timeout is
perceived. From the delay performance comparison, there is no compelling reason to distinguish between
the blocking and nonblocking protocols, and the choice can be based on implementation considerations.

4.4. System stability

There are two conditions deciding system stability. First, the expected number of fresh arrivals in an
arbitrary inter-transfer interval may not exceed the expected number of service completions. Hence,

YAT +n(v; +v3) <npTs + 1opTh. (23)
Second, the expected number of fresh arrivals cannot exceed the CP system size N. Hence,
YWAT +n(y,+v,) <N. (24)

Equations (23) and (24) describe functional relations which must iteratively be solved for the protocol
parameters (n, T'). For a given value of n, equation (23) and (24) define minimum and maximum values of
T, labelled 7., and T,,,, respectively. If n becomes large, the stability limits for the clocked schedule, as
given in Section 3.3, apply. Also note that, for n < S, T, goes to infinity, and in practice this will usually

be the case. Results for the stability limits are depicted in Fig. 7.

5. Conclusions

This paper has introduced a set of queueing models and analysis techniques for the performance
analysis of two classes of inter-processor message transfer protocols in distributed systems. Numerically
tractable methods have been developed for the calculation of the important performance indices so that
different design options can be evaluated and the protocol parameters tuned for optimum system
performance (e.g., minimum message delay). The key results are the improvement in system performance
which can be obtained by passing messages in batches (to minimize the overhead associated with the
message transfer mechanism), and the improved delay performance which results by ensuring a maximum
time between successive transfer epochs. The numerical techniques presented here may be applicable to a
broader range of problems, such as the performance analysis of TDMA transmission systems.

Acknowledgment
The authors would like to thank Prof. P.J. Kuehn for useful discussions about this work, and M.
Weixler for programming support.

References

[1] P.J. Burke, Delays in single server queues with batch input,
Bell System Tech. J. 23 (1975) 830-833.

[4] D. Manfield, Scanning processes and dial tone delay in
SPC systems, Proc. 2nd G1 / NTG Technical Conf. on Mod-

[2] H. Jans, Traffic analysis of switching system control struc-
tures with clocked 1/0 and priorities, 37th Report on
Studies in Congestion Theory (Inst. of Switching and Data
Technics, Univ. Stuttgart, 1983).

[3] H. Jans, On queueing systems with clocked operation and
priorities, J0th Internat. Teletraffic Conf., Montréal (1983)
paper 4.4a 4.

elling and Performance of Computer Systems, Stuttgart
(1983) 178-188.

[5) D. Manfield and P. Tran-Gia, Queueing analysis of sched-
uled communications phases in distributed processing sys-
tems, in: F.J. Kylstra, ed., Performance '8] (North-Hol-
land, Amsterdam, 1981) 233-250.

298

[6] D. Manfield and P. Tran-Gia, Queueing analysis of an
arrival-driven message transfer protocol, [0th Internat.
Teletraffic Conf., Montréal (1983) paper 4.1.4.

[7] P. Tran-Gia and H. Jans, Clocked event transfer protocol
in distributed processing systems—a performance analysis,
Proc. ICCC, London (1982) 769-774.

[8) P. Tran-Gia and H. Jans, Delay analysis of clock-driven

message transfer in distributed processing systems, Arch.
Elektron. Ubertragungstech. 39 (1985) 285-292.

[9] P. Tran-Gia and D. Manfield, Performance analysis of
communication delay optimization in distributed processing
environments, Proc. 2nd Internat. Symp. on Performance of
Computer Communication Systems, Zirich (1984) 259-274.

