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Analysis of a Finite Storage System with Batch Input
Arising out of Message Packetization

DAVID R. MANFIELD, MeMBER. iEee. AND P. TRAN-GIA, MEMBER, IEEE

Abstract—A Markovian queueing model with finite waiting space is
developed for the communications controiler which buffers the flow of
packets from a host computer to its associated packet switch. The
segmentation of messages into packets by the host is modeled by a
batch input to the communications coutroller. The probabilities of
state are determined by numerical recursion and subsequently used in
expressions developed for the blocking probabilities and waiting-time
distribution as a function of two proposed batch acceptance strategies.
Representative numerical results as would be useful in the dimen-
sioning and performance analysis of the communications controller
are presented. A more general non-Markovian model is investigated
by means of simulation, showing that the initial Markovian model is
very accurate in determining the system performance.

I. INTRODUCTION

INPUT traffic to the nodes of a packetswitching network is
directed from associated host computers located externally
to the network. The high-speed host receives messages from a
large number of terminals and remote concentrators (multi-
plexers). and these messages are subjected to a packetizing
function in the host before being sent to the associated packet
switch for transmission to the destination through the actual
packet-switching network. The packetizing function leads to
the situation where batches of packets are presented simulta-
neously to the communications controller (Fig. 1) for sending
to the packet switch. Moreover, the nature of the operation of
the system is such that the arrival of messages at the host
constitutes a random process and so the packet stream from
the host is buffered by the communications controller. In
physical realizations this buffer is finite and,due to the random
process of arrivals, it will experience conditions of overflow. It
is of fundamental interest to analyze this buffer both for
dimensioning purposes and for determining its performance
under various traffic conditions. With this motivation, the
communications controller providing the interface from the
host to the packet-switching network is modeled as a finite
queue subjected to a batch input process.

Some related problems have been considered before in the
literature, but set in different contexts. In [1]-[3], a trans-
mission buffer for a statistical multiplexer is modeled as a
vatch arrival queue with constant, synchronous output. Here
the input batches are numbers of characters in arriving mes-
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sages. Although the intent of this work is to examine finite
buffer lengths, the cases considered are all those when the
probability of blocking is so small that the buffer is essentially
infinite. This allows the use of an approximate method to find
the (very small) buffer overflow probability. The state proba-
bilities are found using a numerical technique involving fast
Fourier transforms. A number of works have included batch
arrivals in the context of the modeling of common-control
switching systems [4]-[7], but in each case, the buffer sizes
are assumed to be infinite for the sake of analysis. The moti-
vation for batch inputs in these systems is generally the accu-
mulation of customers between clocked arrival times. In [15],
the input buffer to a packet switch is analyzed for batch ar-
rivals arising from the packetizing of incoming messages, but
here, again, the treatment is for infinite buffer size.

A number of theoretical studies for infinite, batch arrival
queues have been performed [8]-[12] with results of varying
degrees of complexity. In [13], [14] are very mathematical
treatments of finite waiting systems with batch arrivals, but
it is not easily seen how the results may be used to practical
advantage. Because of the mathematical complexity of finite,
batch arrival queues, the work presented here begins with the
least complicated model to illustrate the ideas, namely, a finite
Markovian queue with batch arrivals. The rationalization of
this model is given in the next section, with a brief discussion
of the analytical difficulties. In Sections III and IV are given,
respectively, the development of the buffer overflow proba-
bilities and waiting-time distribution for packets, and the
numerical results for some representative examples. Finally,
in Section V, the relation of these results to those obtained
from more general models by simulation is discussed.

I1. MODELING

We proceed in a straightforward way to the modeling of the
communications controller which operates at the interface
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between the host and the packet switch. The messages arriving
at the host from the terminals are referred to as the arriving
batches, and the packets subsequently produced by the host’s
packetizing function are referred to as the customers which
constitute a batch. Each customer occupies one waiting place
in the buffer of the communications controller. The following
two initial assumptions are made.

Assumption 1) The instants of batch arrivals constitute a
stationary Poisson process with rate A.

Assumption 2) The service times of individual customers
are independent, identically distributed random variables with
negative exponential distribution, mean 1/u.

The first assumption is based on the observation that the
incoming message stream is the superposition of offered traf-
fics from a large number of different terminals and users, and
it has a strong basis in traffic theory. The second assumption
is not so easily justified, and is strongly related to how the
server of the communications controller is visualized. The serv-
ice time is the time required to transmit a packet from the
host to the packet switch, and since the packets will generally
be of fixed length, there is an initial argument for fixed
(deterministic) service times as in [1], [11], [15]. However,
it is noted that the transmission of the packets to the packet
switch is under the control of a host-packet switch protocol
[16] and the transmission time can be affected by a number
of factors other than the packet length, such as the need for
retransmissions arising from errors, and the temporary suspen-
sion of packet acceptance at the packet switch as would re-
sult from a full receive buffer in the packet switch. In this
way, it is seen that the service time for packets in the com-
munications controller is in fact an ‘“‘effective” service time
for the transmission of packets to the packet switch, and pro-
vides the basis for the assumption of service times as random
variables with exponential distribution. The service time dis-
tribution will be discussed further in Section V. It should be
noted that the following analysis will apply to a general batch-
size distribution, although for the numerical results in Section
IV, particular forms of the batch-size distribution (eg., geo-
metric, Poisson) will be used.

Thus, it is seen that the model for the communications con-
troller is a queueing system of the type Mixl /M/1 — s where s
denotes the number of waiting places. This is the simplest
type of finite, batch queue, but although it is Markovian, it
does not seem to be possible to obtain closed form expres-
sions for the state probabilities, or even the generating func-
tion of these probabilities. Furthermore, the finite waiting
room excludes the possibility of using the so-called “‘super-
customer” approach [9] for dealing with the batch arrival
process. In the next section, the state probabilities are found
by a numerical recursion method, and form the basis for the
subsequent calculations of blocking probabilities and waiting-
time distribution.

The modeling is not yet complete, since it is necessary to
also consider the operation of the system when an arriving
batch is larger in size than the number of unoccupied waiting
places. To account for different blocking modes, the following
two batch acceptance strategies are defined.

Strategy 1) An arriving batch larger in size than the number
of available free queue positions is totally rejected.
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Strategy 2) An arriving batch larger in size than the number
of available free waiting places fills the free positions and the
remaining customers of the batch are lost.

These strategies will be referred to, respectively, as the whole
batch and part batch acceptance strategies. Finally, the follow-
ing is assumed.

Assumption 3) Blocked customers depart immediately and
no longer affect the system.

In the context of the communications controller model,
this is clearly only a starting assumption, since blocked packets
cannot be expected to simply go away. In real systems, it is
most likely that there would be some form of large secondary
storage medium, where packets blocked from the *send”
buffer of the communications controller would be kept for
later transmission. It is felt that for the analysis of such sys-
tems with secondary backup storage the finite model treated
here is an essential first step. Also, under certain network load
conditions, e.g., temporary overload, the size of the send buf-
fer of the communications controller may be made artificially
small to prevent too many new packets entering the packet-
switching network. In this case, it is necessary to know the
(large) buffer overflow probability in order to determine how
many packets are being routed to the backup storage.

III. ANALYSIS

A. State Probabilities

Since the queueing system for the model is Markovian, the
state probabilities are described by a set of Chapman-
Kolmogorov difference equations in the steady state, using
standard techniques [9]. However, since the arrivals occur in
batches, the state probabilities are not confined to simple
one-state transitions. The first requirement is to solve for the
state probabilities, which we do for the M [x] /M[m — s sys-
tem since it involves no extra difficulty. Let

N=m+s (system size)

P,, =Pr {arriving batch encounters n in system}

g; = Pr { arbitrary batch is of size i;i > 1}.

For the purposes of illustration, we consider three forms
for the distribution of the {g;}, namely

0-'(1—-6), =1 (geometric)
ei—l
- e ? izl (shifted Poisson)
g=|G—D!
1
, 1 <i<Npax (uniform).
L max

By inspection, the following set of Chapman-Kolmogorov
equations may be seen to hold.
Strategy 1)

N
0='—)\EgiP0 + uPy
i=1
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Strategy 2)
0=—APg +uPy
k-1
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i=0
0<k<m)
k-1
— A+ muPy + mpPryy N D gimibi,
i=0
(m<k<N)
o——mnPNHEP S ©)

i=0 j=N-—i

From these equations, it may be seen that for either strat-
egy. the state transition matrices are triangular, and hence the
state probabilities {P,} can be found by the numerical proce-
dure of direct forward recursion by assuming a value for Py
and at the end utilizing the normalizing relation ZP, = 1.
These state probabilities form the basic requirement for the
calculations of blocking probabilities and waiting-time distri-
butions which now follow.

B. Blocking Probabilities

It is necessary to distinguish between the blocking proba-
bility for an arbitrary batch and the blocking probability of
an arbitrary customer, since in general they are not the same.
It is clear from the nature of the system that any state can be
a blocking state. The batch blocking probability under Strat-
egy 2, the part batch acceptance mechanism, is not uniquely
defined and, for our purposes, we define it to be the probabil-
ity that a batch is either partly or wholly rejected. The batch
blocking probability is found by considering an arbitrary
“test” batch and conditioning on the system state found by
this batch. The resultant expression is the same for each ac-
ceptance strategy and it is

i &i-

i=N—-k+1

N
Byatcn = E Py )

k=0
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Given the batch finds k in the system, the batch will be
blocked if it is bigger than N — k in size. Although (3) is
independent of acceptance strategy, the blocking probability
will nonetheless depend on the strategy by virtue of the dif-
fering sets of state probabilities.

The blocking probability for individual customers is not
quite so easily obtained. On consideration of an arbitrary
“test” customer, it is known from [17] that the batch con-
taining this test customer is of size i given by

Pr {arbitrary customer arrives in batch of size i}

= ig;/MBS )
where MBS is the mean batch size. That is, the test customer
is more likely to arrive in a longer batch than a shorter one.
Conditioning on the system state found by the batch contain-
ing the test customer, and noting that the test customer oc-
cupies any position in its batch with equal probability, we
obtain the following.

Strategy 1)
1 & &
Bcustomer =— E E ig; (5)
MBS x=0  i=N_k+1
Strategy 2)
1 & &
Bcustomer = T2 E E (i — N+ kg (6)
MBS =0  i=N—k+1

Equation (5) for Strategy 1 follows from the fact that
when the batch containing the test customer is larger than
the available waiting space, all the customers of this batch
are lost. Under Strategy 2, when the batch is too large for the
available space, the test customer occupies a position in the
rejected portion of the batch with probability (i — N + k)/i,
given the batch found state k, and hence, (6) follows. Equa-
tions (5) and (6) have an alternative derivation in terms of the
ratio of number of lost customers to number of arriving
customers over a long time interval. In this case, the numera-
tors of (5) and (6) are thought of as expected lengths of
blocked batches (or part batches), and the denominators as
the expected lengths of all arriving batches.

C. Waiting Time Distribution

To find the waiting time distribution function, some
further results of [17] are drawn upon, and again the idea of
an arbitrary test customer is used. The queue discipline is
assumed to be first-come, first-served. The test customer can
suffer one of three fates. It can be blocked on arrival, it can
find a free server and, hence, go directly into service, or it can
join the waiting line. In the first two cases, the test customer
is assigned a zero waiting time. The waiting time is composed
of two separate components; first, the waiting time suffered
by the firstserved customer of a batch, that is, the “residual”
waiting time caused by customers already in the system, and
second, the waiting time suffered by the test customer
caused by its position within its own batch. Both of these
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components will be a convolution of a number of exponential
distributions, and the overall waiting-time distribution is a
convolution of the two components of waiting. The condi-
tional waiting distribution for customers which actually have
to wait is then obtained by a process of normalization.

The residual waiting time component depends on the num-
ber of customers in the system and whether all the servers are
busy. If one or more servers are free then at least part of the
batch goes directly into service and the residual waiting time
is zero. If no server is free, then the residual waiting time is
the time for all the already waiting customers to be served.
For the second component of waiting caused by the position
of the test customer within its batch, the test customer in the
jth position (all positions equally probable) means it has to
wait for the j — 1 customers ahead of it to be served. Using
all these facts, and recalling (4), the following equations are
derived.

Define

W(t) = Pr {test customer waits time 7 > ¢ |

customer is accepted}.

Strategy 1)
m—1 N-k i-m+k—1 j (m ]
_ ut)
Wey=| 2 P & X > e~ mu
k=0  i=m—k+1 =0 =0 !
N-1 N-k n—-li+k—m(m !
ur)
+k=mPk i=1 & = —Z 14 ¢ mur:l
= j=0 I=0
N-—1 N-—k -1
'[ Pk igz] (7)
k=0 i=1
Strategy 2)

_ m—1 N-k i=mak=1J_ (mur)
W(r)=[2 Pk[ 2 & 2 e
k=0 i=m—k+1 j=0 =0 il
oo N-m-1 j (mut’

+ E gi E ) e MKt
i=N—k+1 =0 i=o I

i=N—-k+1

N-—-1 N-k oo -1
-[Z Pk[ gt (N—k)giﬂ . (8)

k=0 =1 i=N—-k+1

The above equations are most easily understood by noting
for example that the complementary waiting time distribution
for the test customer in the rth position of a batch of size i,
conditioned on this batch having found the system, for ex-
ample, in state kK where kK > m is

igili*(’— l+k—m)/MBS
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where A*(™) denotes the complementary distribution function
of the n-fold convolution of the service time distribution.

The conditional probability of waiting may be obtained by
putting ¢ = O in the above equations. Dividing (7) and (8)
by this probability gives the waiting time distributions for the
test customer conditioned both on its being accepted and on
its having to wait. This eliminates the zero waiting component
for directly served customers. The mean waiting times may
be also obtained from (7) and (8), but it is easier to obtain
them directly from Little’s law using effective arrival rates [9] .
If W is the mean waiting time for all customers that enter the
system, and L, is the mean queue length, then

_Lq
AI
where \' is the effective arrival rate of customers, given by the
following.
Strategy 1)
N N—k
N=ND P D s (10)
k=0 i=0
Strategy 2)
)\'=7\2Pk,:2ig,-+ > (N—k)g,»]. (11)
k=0 i=1 i=N—k+1

The queue mean length is given by

N
Ly= D (k—mPy.

k=m+1

IV. RESULTS

To demonstrate the application of the formulas of the pre-
vious section to the model of the communications controller,
some numerical results are presented for the single server sys-
tem. The curves are intended to be representative of those
used for the buffer dimensioning performance analysis with
respect to blocking and delays, and finally some throughput
considerations under overload.

Dimensioning curves are shown in Figs. 2 and 3. Fig. 2
shows the effect of batch acceptance strategy, for a selection
of dimensioned traffic loads. It may be seen that while accept-
ance strategy makes some appreciable difference for short
queues, its effect diminishes with increasing queue length.
Strategy 1 (accept only whole batches) always has higher
customer blocking probability and, hence, lower customer
throughput. The offered traffic intensity is found from

A - MBS
p= ’

(12)

mu

For large s, geometric batches and using acceptance Strat-
egy 2, the results will be the same as in [3]. In Fig. 3, the
effect of batch distribution and mean batch size is shown.
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Clearly the call blocking is sensitive by orders of magnitude to
the batch size parameters, so the characteristics of the input
traffic must be carefully modeled. Geometrically distributed
batches which have a high dispersion perform worse than the
Poisson distributed batches, except in the cases of short
queues and high mean batch size, which may be attributed to
the relatively large number of short batches from the geo-
metric distribution as compared to the Poisson for large mean
batch size. Uniformly distributed batches were also considered,
but gave results very similar to those for the Poisson.
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Figs. 4-7 show performance curves for a single server
system with 20 waiting places. Fig. 4 gives the effect of batch
distribution on the customer blocking probability as a func-
tion of offered traffic intensity, and again the sensitivity to
the batch parameters is noted. Fig. 5 has a revealing com-
parison between the batch and customer blocking probabilities
for each acceptance strategy. For Strategy 1, the individual
customer blocking probability is always higher than the batch
blocking probability, since the (whole) batches rejected by
this strategy will tend to be the bigger ones containing propor-
tionally more customers. For Strategy 2, it arises that the
customer and batch blocking probabilities are identical (for
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the considered case of geometrically distributed batches).
This may be seen by a reduction of (6). The relation of the
Strategy 2 curve to the Strategy 1 curves may be understood
by noting that at low traffic equal numbers of batches tend to
be affected by blocking, whereas at high traffic, equal numbers
of customers. In [3], no distinction is made between batch
and customer blocking, but since in [3], the batches are as-
sumed to be geometrically distributed and the equivalent of
our Strategy 2 is used, fortunately no distinction is necessary.
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Fig. 6 shows the performance in terms of mean waiting
time versus offered traffic. The mean waiting time increases
with increasing offered load as expected, but an interesting
crossover effect occurs as a function of the mean batch size.
For both strategies, increasing mean batch size tends to in-
crease the mean delays at low traffic loads, but actually
decreases the mean delays at high traffic loads. At low load,
there is little blocking and the increased clustering of cus-
tomers for large mean batch sizes tends to increase the second
component of delay, that caused by calls in the same batch.
At highloads,however, the increased blocking for large batches
means that relatively fewer customers are accepted for large
mean batch size and the mean waiting times are relatively
lower. Fig. 7 gives a few representative curves for the comple-
mentary waiting time distribution function as calculated from
(7) and (8), and may be used for finding percentile delays at
particular offered loads.

Finally, a brief consideration to overload performance is
given by Fig. 8. Here, the throughput is measured against
offered load, but a customer is only considered to be a positive
part of the throughput if it belongs to a batch which was
accepted in full. Hence for Strategy 2, a certain amount of
the server’s time is wasted by customers belonging to partly
accepted batches, and leads to the situation where a saturation
characteristic (decreasing throughput with increasing offered
traffic) is exhibited by the system.

V. A MORE GENERAL MODEL

The strongest assumption used to produce the queueing
model in Section II was that of exponentially distributed times
for transmission of the (generally fixed length) packets from
the communications controller to the packet switch. Some
justification was provided by consideration of the effects of
the communications protocol governing the packet transfer
at the host-packet switch interface. In any case, the exponen-
tial server can be thought of as providing a worst case estimate
for the system performance. To determine the sensitivity of
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the batch queueing model to the service time distribution, the
more general model M [x1/G/1 — s was investigated by means
of simulation.

The results are clear in showing that all the batch queue
performance characteristics are virtually unaffected by the
service time distribution. Fig. 9 shows just a few results for
the batch and customer blocking probabilities, comparing the
simulation of the batch queue with fixed (deterministic)
service times to the previously obtained exact results for the
queue with exponential server. Each simulation result was
obtained by ten part-tests each of 10 000 batches, and is given
with its 95 percent confidence interval. The simulation pro-
gram was validated against exact results for single-arrival
queues [18] and with those for the batch queue with Markov
server. Tables I and II list some further simulation results.
Overall, it is clear that the queue performance is dominated
by the batch size statistics, and the extreme sensitivity to
service-time distribution which may be observed for single-
arrival queues [18] is lost. In single-arrival queues, the fate of
a test customer who arrives to find the server busy is heavily
dependent on the residual service time of the customer in
service, whereas for batch arrivals, the position of the test
customer in its own batch tends to overwhelm the effect of
the residual service time. The threshold of mean batch size at
which the service time distribution begins to have a significant
effect on performance was studied from extensive numerical
results. For a queue with parameters as used in this paper, it
was found that in the worst case (i.e., D-server) the error in
customer blocking by assuming an M-server is of the order of
13 percent at p = 0.6 for MBS = 3, increasing to 80 percent
at MBS = 2 (though the blocking is ten times less at MBS = 2).

In the actual system, the service time distribution would
most probably fall between the extremes of exponential and
deterministic, so whatever the true nature of this distribution,
the exponential server may be assumed in order to analyze the
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TABLE 1
CUSTOMER BLOCKING PROBABILITY FOR MIx1/G/1-20
(GEOMETRIC BATCHES WITH MEAN SIZE = 4)

Offered Service Time Distribution
Traffic
Inte;sity M E, D
(Exact) (Simulation)
0.2 0.02602 0.0247 0.0263
+0.0023 +0.0031
0.4 0.04641 0.0479 0.0456
+0.0037 +0.0026
0.6 0.08008 0.0757 0.0763
+0.0037 +0.0039
0.8 0.12914 0.1236 0.1203
+0.0055 +0.0054
1.0 0.19157 0.1819 0.1743
+0.0049 +0.0064
1.2 0.26140 0.2592 0.2444
+0.0078 +0.0053
TABLE II

MEAN WAITING TIME FOR MIx1/G/1-20 (GEOMETRIC BATCHES
WITH MEAN SIZE = 4, ONLY FOR CUSTOMERS WHO WAIT)

Offered Service Time Distribution
Traffic
Intensity M E, D
e (Exact) (simulation)
0.2 4.5383 4.439 4.425
+0.039 +0.044
0.4 5.4169 5.314 5.163
+0.066 40.068
0.6 6.4638 6.272 6.138
+0.063 +0.061
0.8 7.6438 7.433 7.178
+0.069 +0.049
1.0 8.8905 8.705 8.461
+0.120 +0.099
1.2 10.1233 10.060 9.725
+0.111 +0.060

system, with the knowledge that the results will be close to
the true values, provided the mean batch size is not too
small.

VI. CONCLUSION

The results in Sections IV and V are clear in showing that
the most important factor affecting the system performance
is the batch size statistics of the arrival process, not only the
mean batch size, but also the batch size distribution. This
means that in terms of the system being modeled, it is critical
to measure accurately the actual size distribution of arriving
messages. Generally speaking, larger message sizes and high
message size variance worsen system performance.

The time distribution to transmit packets from the com-
munications controller to the packet switch has been shown to
have very little effect, and so we conclude that the initial
Markovian model is sufficiently accurate to determine system
performance regardless of this distribution (given that the
mean batch size is not too small). This is important because
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the general model M [x1/G/1 — s is very difficult to analyze
other than by simulation. Moreover, for Strategy 1 it seems
that even an imbedded Markov chain approach is not sufficient
for analysis since the acceptance or rejection of batches
depends not only on the sizes of arriving batches but also on
the order in which they arrive.

The batch acceptance strategy adopted by a system also
has a significant influence on performance, but the choice of
strategy depends on the application of the packet-switching
network. In the transferral of bulk data, it is not essential that
all packets of a message stay together, so Strategy 2 could be
used with its resultant higher throughput. However, for the
common channel signaling packet switch of a telephone ex-
change (using the signaling system CCITT No. 6) it is more
important that all the packets (signal units) of one message
do stay together in order to preserve the integrity of the mes-
sage, so Strategy 1 should be used.

Finally, the comment is made that the analysis is clearly
not restricted only to the communications controller model
treated here, but also to a wider class of problems involving
batch arrival processes.
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