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Abstract Traffic characterization is an important means for
Internet Service Providers (ISPs) to adapt and to optimize
their networks to the requirements of the customers. Most
network measurements are performed in the backbone of
these ISPs, showing both, residential and business Inter-
net traffic. However, the traffic characteristics of business
and home users differ significantly. Therefore, we have per-
formed measurements of home users at a broadband wire-
less access service provider in order to reflect only home
user traffic characteristics.

In this paper, we present the results of these measure-
ments, showing daily traffic fluctuations, flow statistics as
well as application distributions. The results show a differ-
ence to backbone traffic characteristics. Furthermore, we ob-
served a shift from web and Peer-to-Peer (P2P) file sharing
traffic to streaming applications.
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1 Introduction

During the last years, the Internet has emerged as the key
component for business and personal communication which
is reflected by the exponential traffic increase. The German
Commercial Internet Exchange (DE-CIX) point has had for
example a peak traffic rate of 803.7 Gbps on September
6th, 2009 [1] whereas the peak traffic rate was approxi-
mately 400 Gbps 12 months before. According to Cisco
Systems [2, 3] this trend will continue. Over two third or
10,500 Petabytes (PB) of the monthly traffic is generated
by consumers. The large bandwidth demands are caused by
the fast changing application requirements. The applications
range from low bandwidth email traffic over web brows-
ing and P2P file sharing traffic to high bandwidth multime-
dia streaming. YouTube, as an example for video streaming,
generated approximately 45 PB per month in the US in 2008
which is 1.75% of the complete Internet traffic [2]. Cisco
Systems claims that 34% of the consumer Internet traffic is
generated by streaming traffic in 2009 and expects that it
increases to 55% in 2013 [2].

The total traffic increase and especially the increase of
real-time applications require a careful network planning
and optimization. This applies for fixed-line as well as for
wireless providers. Traffic measurements are one essential
part for the ISP to optimize their network. According to
the measurement results, the ISP can adapt its prioritization
strategies in order to guarantee a good perceived quality for
the end user. However, most public available measurement
data was gathered in the backbone and show the global traf-
fic characteristics but do not reveal the user and application
demands. According to Fukuda [4] there is a significant dif-
ferent traffic usage pattern in residential broadband traffic.
Therefore, we performed the measurements close to the end
user, namely at an ISP for home users who provides a broad-
band wireless Internet access.
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The measurements were performed in summer 2008 and
reflect the Internet usage of 250 households. Afterwards,
the measurement data was classified using a combination of
payload-based classification and host behavior. This paper
shows the results of these measurements like daily traffic
fluctuations, packet size distributions, flow and session sta-
tistics as well as application distributions. In contrast to our
previous publication which is based on measurement data
from 2007 [5], we have seen an immense growth of stream-
ing traffic which is also underlined by Cisco Systems [3].

The remainder of the paper is organized as follows. Sec-
tion 2 gives an overview of traffic measurements and its clas-
sification together with the related work. This is followed by
Sect. 3 introducing our measurement scenario and method-
ology. Section 4 shows the results of the measurements and
finally, conclusions are drawn in Sect. 5.

2 Background and related work

It has been a challenge for years to structure a reliable and
feasible measurement architecture. First, a measurement has
to generate detailed traffic characteristics, including global
and special statistics, like application-based or user-based
ones. Second, every measurement affects the measured data.
If you meter an attribute, you have to take part in the system
which influences the behavior of the system.

2.1 Traffic measurements

Commonly, there are two different approaches to measure a
network: active probing and passive monitoring [6, 7]. The
measuring process of the active measurements generate new
traffic and inject it into the network, while passive measure-
ments monitor and capture the network traffic. Latter sys-
tems use the recorded traffic to produce several statistics
with the help of analysis software. The following monitoring
systems use the passive approach.

Brownlee et al. [8] use RTFM [9], an Internet standard
real-time flow measurement system with its open source im-
plementation NeTraMet. It is a versatile and very general
system for collecting flow data and includes a high level
language for filtering, managing, and aggregating observed
packets into flows. However, due to the fact that it needs to
see headers for every packet through a device, it is not easy
to implement in a switch or router.

Fraleigh et al. [10] designed a passive monitoring system
to capture packet level traffic measurements on various ATM
and SONET links. It is called IPMON and is inspired by the
well-known OC3MON architecture by MCI [11] that is used
by Thompson et al. [12] and McCreary et al. [13] to monitor
optical ATM OC-3 links. IPMON has the capability to col-
lect packet traces of up to OC-48 link speeds (2.4 Gbps)

for a period of at least several hours. In addition, it uses
GPS for synchronization. The CoralReef suite [14], devel-
oped by CAIDA, is originally based on the OC3MON, too.
It is similar to IPMON, but does not support GPS timing and
allows only link speeds of up to OC-12 (622 Mbps). Tools
like CoralReef provide network card drivers, various pro-
gramming APIs, and applications for capturing and analysis.
A popular application programming interface for capturing
network traffic is libpcap. Compared to the solutions above,
it is only a computer library on top of network drivers and
not a whole architecture. Shannon et al. [15] used libpcap to
capture network traffic for further analysis.

Commercial solutions are available from Endace. First
developed at the University of Waikato in the DAG project,
the measurement cards are now able to capture Ethernet and
optical links of up to OC-192 or 10 Gigabit Ethernet link
speeds. Karagiannis et al. [16, 17] and John et al. [18] used
DAG cards for their measurements.

Finally, some routers have the ability to export global per-
flow summaries including start time, flow duration, byte and
packet volume, IP addresses, and port numbers. In Cisco
routers the tool for this purpose is called Netflow [19, 20].
It is embedded within the Cisco IOS software and is widely
used to collect IP traffic information. Even though initially
implemented by Cisco, Netflow is standardized by the IETF
as Internet Protocol Flow Information Export (IPFIX) in the
Request for Comments (RFCs) 5101 [21] and 5102 [22]. Ju-
niper Networks, Nortel Networks, and Huawei Technology
provide similar features within their routers.

2.2 Traffic classification

After collecting the data, the services have to be classified.
Service classification has its own research group and with
the emergence of new services like P2P, it is getting more
and more difficult to identify packets [17]. At the network
link an unordered mix of packets is collected that should
be first grouped into connections and afterwards classified
connection-wise. Along with port-based classification, sev-
eral techniques and methods exist to classify packets:

2.2.1 Port-based classification

The assignment of port number to application type is used
as defined by the Internet Assigned Numbers Authority
(IANA). It is the simplest and most traditional method, but
has several drawbacks. The port numbers are not defined
for all applications. Especially some applications use port
ranges or they even assign the ports dynamically so that the
mapping of the ports and the applications can not be trusted.
Applications like Skype vary the ports and even use port 80
to get through firewalls. Hence, a detection with this method
is not possible. Thompson et al. [12], McCreary et al. [13],
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and Shannon et al. [15] used port-based classification and
mapped each IP packet to a named application by choosing
the first matching rule from an ordered collection of proto-
col/port patterns.

2.2.2 Payload-based classification

It is also known as content-based method. Payload-based
classification is a syntactic analysis of the applicative layers
of a packet. The classification entity is seeking determinis-
tic character strings in the IP packet payload with fast reg-
ular expressions. The problem is that a detailed knowledge
of the application as well as the format of its packets are
needed. Some disadvantages are known: Character strings
are not always available or the payload may be encrypted.
However, this method only depends on a few characteristic
packets. Karagiannis et al. [16, 23, 24] developed a heuris-
tic for transport layer identification of P2P traffic which in-
cludes payload-based methods. A Wiki devoted to the iden-
tification of network protocols is used by the Application
Layer Packet Classifier for Linux (L7-filter) [25] to allow a
real-time classification.

2.2.3 Host behavior classification

Due to the limitation above, Karagiannis et al. [26] pro-
posed another approach for traffic classification. They try
to classify the popularity and the transport layer interactions
with the help of inherent host behavior. The focus is shifted
from classifying flows to associating hosts with applications.
The flows are then classified accordingly. With this method,
Karagiannis was able to present some heuristics to detect
malware, P2P, web, chat, FTP, game, and streaming traffic.

2.2.4 Statistical classification

This is a recent method that uses statistical descriptions of
the traffic with supervised learners. A statistical parameter
can be the packet size or the inter-arrival time. First order

Markov chains or k-Nearest Neighbors, Linear or Quadratic
Discriminant Analysis are proposed by [27, 28] to calculate
the probability of a packet to the statistical data model of
an application. The statistical method is also able to detect
tunneled or encrypted traffic.

3 Measurement scenario and methodology

In this paper, we focus on traffic characteristics of home
users in a wireless network. The measurements have been
performed at a Germany-wide wireless access provider who
offers, along with business network access, private Internet
access in large housing estates. The measurement and the
classification is done according to proposals and papers in-
troduced in the related work section.

3.1 Measurement setup

The measurements were performed at an ISP switching cen-
ter which provides access for 250 households. The cus-
tomers have access over Wireless LAN at several access
points before the traffic is multiplexed at an IEEE 802.11a
radio link. The dimensioning of the radio link is done by
the provider according to the upcoming traffic of the users.
Measurements of the provider confirmed that the link almost
never operates at full capacity.

The measuring unit is set up right after the access points
in the wired network. The monitoring point for the measure-
ment is shown in Fig. 1. We measured both directions with
the help of a receive-only network tap which ensures that
the productive network is not interfered by our measure-
ment. Our meter runs on a Linux system. It observes packet
headers using two commodity 100Base-T Ethernet cards via
libpcap.

The measurement process basically consists of five steps.
First, raw traces are captured in pcap packet capture files.
Additionally, the real-time classification entity described in
the next paragraph stores detection data in log files. Sec-
ond, the traffic traces are filtered to suppress or to make sen-
sitive information anonymous. The anonymization module

Fig. 1 Measurement setup
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Fig. 2 Realtime classification

scrambles data in order to raise effort needed to obtain sen-
sitive information about the internals of an operational net-
work. Afterwards, the filtered traces are checked for errors
and submitted in a database-driven repository. The last step
is the analysis of the traces which is performed offline at
external computers. All further work is done either within
the database itself with the help of database languages or by
querying the database.

3.2 Service classification

Our classification involves two levels of detection. On the
one hand we use a payload-based detection with the Appli-
cation Layer Packet Classifier for Linux (l7-filter) [25] and
IPP2P [29]. However, this method requires the payload of
the packets, which we are not allowed to store in capture
files because of privacy concerns.

The payload-based classification is done in the following
way: First, in real-time, a connection tracking assigns the
packets to flows. If a new flow is detected, the classifica-
tion scans up to N = 20 packets of this flow until the flow
is classified, see Fig. 2. This is done online before capturing
the data. It is scanned for well-known common applications.
Thereby, it is important to use a good scanning sequence in
order to avoid false detections. Table 1 shows the used or-
der. First, the application tries to filter remote traffic, before

Table 1 Linux application layer filter sequence

Protocol Classification

1 Remote traffic payload-based

2 Operating system tools payload-based,

or services port-based

3 P2P traffic payload-based

4 Gaming traffic payload-based

5 HTTP-based protocols payload-based

6 Streaming payload-based

7 Mail, instant messenger payload-based

8 Web-traffic payload-based

9 FTP, H323 special detection with kernel modules

10 VoIP, data transfer payload-based

operating system tools or services are filtered. Thus, the last
classification rules applied are those for VoIP and data trans-
fer. If the payload does not match at all, the packet is clas-
sified as “unknown”. Especially all encrypted and new pro-
tocols cannot be detected by the Linux Application Layer
Filter and are thus classified as unknown. Afterwards, the
traffic is checked for P2P file sharing data (IPP2P) because
it may use arbitrary ports.
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Our second classification method is a host behavior
analysis similar to the proposed one by Karagiannis [26].
The connections of a host are investigated as in the func-
tional level approach. We record the usage of ports and IP
addresses per host and compare the results of unknown hosts
to already classified hosts. Thus, we are able to distinguish
between P2P file sharing, web, and streaming traffic. The
host behavior classification is done at the data repository
after the packet capturing. The major advantage is that it
is also capable to detect encrypted traffic. However, a detec-
tion of certain applications is in turn not possible. Therefore,
a traffic class called “unclassified P2P” is shown in Sect. 4
which is P2P file sharing traffic of an unrecognized applica-
tion.

3.3 Limitations

The monitoring and classification of unknown traffic has
always some difficulties and limitations which have to be
taken into account. Several issues occurred during the mea-
surement which are enumerated below for completeness.

3.3.1 Classification payload patterns

The traffic patterns tend to underestimate or overestimate the
traffic. It is difficult to find reliable packet signatures that
match only the intended protocol. In all cases, a random en-
crypted stream may fit to several patterns. The other way
round, some patterns are only able to match a part of the
whole desired traffic. Namely, in our case the Skype pattern
is one of the patterns that tend to overestimate and therefore
added to the unknown traffic. Furthermore, some badly de-
signed unimportant application patterns are simply left out
in our analysis.

3.3.2 Anonymization, packet capture length

During the capturing of packets, the capture length is set
to 96 bytes to make sure that the whole header is included
in the traces. Due to privacy issues, the IP and payload
anonymization cleared the rest of the payload in such a way
that only the packet headers remained in the trace files. Con-
sequently, we have no usable information about the payload
during the offline analysis.

3.3.3 Diverse HTTP usage

During the measurements, we noticed that the HTTP usage
statistics are varying. Some customers use extreme HTTP
downloads from large file-hosting sites like Rapidshare [30].
Although these downloads do not represent the typical web
browsing behavior, they are included in the web traffic sta-
tistics. Although HTTP video and HTTP audio traffic might
be counted to web traffic, it is added to the streaming traffic
class in Sect. 4.

3.3.4 Traffic shaping

The wireless access provider uses traffic shaping to control
the Internet traffic. Due to the fact that the Cisco router is
configured to prefer web and real-time traffic, P2P traffic
might be underestimated in the following results. Further-
more, the Cisco router blocks identified P2P traffic if its
bandwidth threshold (3 Mbps) is exceeded.

3.4 Trace description

The measurements were performed from July 11th, 2008 un-
til July 29th, 2008. The whole measurement last 19 days
and about 400 GB measurement data was collected. Further
on, the Internet service provider gave us Cisco Netflow sta-
tistics, which prove our measurements in data volume and
packet count. The billing system of the ISP is flat rate. More-
over, the packet loss during the capturing of packets in trace
files is negligible and sums up to 0.18% in downlink direc-
tion and 0.09% in uplink direction.

4 Measurement results

This section presents the results of the traffic measurements
at the broadband wireless Internet access. The general daily
traffic fluctuations and packet size distributions are included
in the first part, the second part deals with flow and session
statistics of the users, and the last part shows a detailed traf-
fic classification.

4.1 Daily traffic fluctuations

First of all, we take a look at the mean throughput varia-
tions during a day. The mean throughput is calculated by
first dividing all measurement data into days, then splitting
each day into 5 min samples, and finally calculating the
mean of all nineteen 5 min samples. The throughput fluc-
tuations during the day are shown in Fig. 3(a). The x-axis
shows the time of the day while the y-axis shows the mean
throughput. It is obvious that the throughput decreases af-
ter 1:00 o’clock down to a minimum at 6:00 o’clock. After-
wards, the throughput increases with a maximum through-
put at 19:00 o’clock. Similar daily traffic fluctuations can be
found in [4, 31].

Since the traffic is varying over the day, we distinguish
between constant and fluctuating traffic in Fig. 3(b). The fig-
ure shows the daily traffic statistics according to the three
main applications P2P file sharing, web, and streaming traf-
fic. Comparing the three different application categories, we
can see that P2P file sharing traffic is still the dominating
application during the whole day with the largest percentile
between 5:00 and 8:00 o’clock. As P2P file sharing traf-
fic does not require a user interaction like web traffic, this
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Fig. 3 Mean throughput and application distribution

high percentile at night show users running their computers
24 hours, 7 days a week.

Web and streaming traffic constitute almost the same
amount of traffic but the total throughput varies during the
day. At night, almost no web and streaming traffic is present
in contrast to P2P file sharing traffic. The high streaming
throughput is rather surprising compared to Ploumidis et
al. [32] with only 0.177% of streaming traffic measured in
2005. The reason for this streaming traffic increase is the
popularity of new video streaming services. YouTube for ex-
ample generated 1.75% [2] of the complete Internet traffic
in the US in 2008 and the platform was set up at the end of
2005.

The traffic fluctuations for a complete week are shown in
Fig. 4. The plots are generated on an hourly basis and in ad-
dition, a moving average of size 4 is applied to smooth the
curves. In contrast to our previous publication [5], the traffic
fluctuation does not differ between weekdays and weekends.
All days of the week have a similar distribution. A lower
traffic volume can only be seen for Monday evening. As
the traffic is averaged over all Mondays of the measure-
ments, this is surprising and cannot be explained. Looking at
Fig. 4(b) showing the application distribution, it can be seen
that the high percentile of P2P file sharing traffic at night is
not an exception of one night at the week.

Summarizing, we see that 1.6 Mbps is constantly used
by P2P file sharing traffic over the day. Web and streaming
traffic are varying over the day because they need user inter-
action. Further investigations on the traffic classes are shown
in Sect. 4.5.

Fig. 4 Mean throughput and application distribution during one week

4.2 Packet size distributions

After having shown the daily and weekly traffic and appli-
cation fluctuations, we now want to evaluate the packet size
distributions and compare them to traffic measurements in
the backbone. Thompson et al. [12] show a trimodal packet
size distribution where nearly half of the packets are 40 to
44 bytes, 20% are 576 bytes, and 10% are 1500 bytes in
length. Sean McCreary and Claffy [13] observed that about
80% of the packets are smaller than 600 bytes but have seen
the same trimodal packet size distribution as Thompson. The
newest backbone traffic packet distribution we found is pre-
sented by John and Tafvelin [18] in 2007. In contrast to the
previous two papers, they show a bimodal traffic distribution
where 40% are of size smaller than 44 bytes and another
40% of the packets are between 1400 bytes and 1500 bytes.
Their results are similar to our measurements results shown
in Fig. 5(a).

The figure displays the packet size on the x-axis and
its Cumulative Distribution Function (CDF) on the y-axis.
From the figure, we can observe several things. First, 90%
of the UDP packets are smaller than 500 bytes. This might
be P2P control or real-time streaming traffic. Second, look-
ing at the curve for all packets, we observe a bimodal packet
size distribution. The first peak occurs at around 40 bytes
and the second step at 1500 bytes. This shows that most
packets are transmitted via TCP, with the 40 bytes Acknowl-
edgments and the 1500 bytes Ethernet Maximum Transfer
Unit (MTU), which is also underlined with the TCP packet
size distribution curve. However, we can also observe three
small steps at 576 bytes, 1180 bytes, and 1300 bytes. These
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Fig. 5 Cumulative IP packet
size distribution

Table 2 Flow statistics
Mean Max. Percentile

50th 90th 99th

duration 19.12 s 24 h 0 s 17.38 s 338.67 s

packets 26.93 1.57 Mio 1 10 139

size 16.98 KB 1.01 GB 144 B 1481 B 74.24 KB

packet sizes are used by P2P file sharing protocols as shown
in Fig. 5(b).

Packets of size 1180 bytes are only used by the eDonkey
protocol which was also observed by Karagiannis et al. [16].
Furthermore, they have shown a similar packet size distribu-
tion for BitTorrent. 1300 bytes is the MTU recommended
by some ISPs for DSL connections. Therefore, we think
that these packet sizes result from downloads from clients
of such ISPs. Finally, we take a look at the protocol distri-
bution on the transport layer. Almost 88% of all measured
packets are transmitted via TCP, only 11.6% via UDP, and
less than one percent is used for ICMP control traffic. Con-
sidering the total throughput in bytes, 95% of the complete
data is transmitted via TCP.

4.3 Flow statistics

The observed packet size distributions are very similar to
the latest found publication. Let us now take a look at flow
statistics. In order to assign packets to flows, we use the
crl_flow tool from the CoralReef suite of Caida. The stan-
dard expiry timeout of a flow is thereby set to the default
64 seconds. In total, 73.4 Mio packet flows were identified
which have caused a complete traffic volume of 1.25 TB.
Table 2 shows the detailed statistics of the duration, number
of packets, and size of the flows.

The maximum duration of a flow is 24 h due to the fact
that each measurement run lasts 1 day. Comparing the re-
sults to Brownlee and Claffy [8], the percentage of dragon-
flies, flows lasting less than 2 seconds, is with 70.9% much
higher than the 45% shown in the paper. According to them,
1.5% of the flows are longer than 15 min, called tortoise, but

carry 50% to 60% of the complete traffic. In our measure-
ments, only 0.29% of the flows last longer than 15 min but
they carry 720 GB or 57.74% of the whole traffic.

These statistics reveal that by far the largest number of
flows carry a small amount of data (mice) and last only
short (dragonflies). This has to be taken into account by the
ISPs, especially when performing traffic management on a
per flow basis.

4.4 Session statistics

In order to get rid of the large number of the dragonfly flows
and to show a more general user behavior, we set up the de-
finition of a session. The parameters of a sessions are based
on experimentation with different parameters. It is defined
as follows. Several flows of one user regardless of the ap-
plication with an inter-flow-time lower than 5 min (timeout:
5 min) belong to one session. Furthermore, a session has to
last longer than 10 s and needs a minimum session volume
of 10 KB in order to distinguish between periodic signaling
and normal traffic.

4590 sessions are identified during the whole measure-
ment and the maximum online time is 24 h for the same
reason as the longest flow duration. The mean number of
sessions per user is 2.1 and the maximum number of ses-
sions 74. Further session statistics are shown in Table 3.

The weekend data is gathered at 2 weekends and the
mean session duration during the weekend is 167 min com-
pared to 129 min during the week. This is not surprising as
most home users spend more time in front of their computers
during the weekend. However, what is surprising is the me-
dian of the session volume. 1.24 MB in 24.6 min seems to be
a very low amount of data. We think that the reason for this
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Table 3 Online session
duration and session volume Mean Max. Percentile

25th 50th 90th

Session duration

All-day 136 min 24 h 6.7 min 24.6 min 395.2 min

Weekend 167 min 24 h 8.3 min 33.4 min 465.0 min

Weekday 129 min 24 h 6.5 min 23.7 min 362.9 min

Session volume

All-day 80 MB 42 GB 246 KB 1.24 MB 23.52 MB

Weekend 98 MB 22 GB 294 KB 1.74 MB 33.55 MB

Weekday 76 MB 42 GB 238 KB 1.15 MB 22.29 MB

Fig. 6 Empirical cumulative
distributions and lognormal
distributions fitting the
empirical functions

lies in instant messaging services and periodic email check-
ing. Although only 3% of the complete data volume belong
to messaging services, 10% of all traffic flows belong to this
class.

Finally, we can see a large gap between the 50% quantile
and the maximum session volume (1.24 MB to 42 GB). The
few large sessions belong to P2P and web file downloads.
In order to further analyze the session duration and session
volume, the CDFs of both statistics are plotted in Fig. 6.

The x-axis in Fig. 6(a) shows the logarithmic scale of
the session duration. Unfortunately, we gathered the mea-
surements on a daily basis and therefore it is not possible to
identify session longer than one day. However, we can see
that 3% of the sessions last at least one day and these ses-
sions belong to P2P file sharing traffic. The curve can be best
fitted by a lognormal distribution

f (x) = 1

x�
√

2�
e− (ln (x)−µ)2

2�2 , (1)

with µ = 2.8879 and � = 2.0577.
Looking at the CDF of the session volume in Fig. 6(b),

we can see a larger heterogeneity compared to the session
duration. About 3% of the sessions have a volume larger
than 1 GB whereas 90% of the sessions have a volume
smaller than 23.52 MB. This curve can also be well fitted by
a lognormal distribution with µ = 7.1650 and � = 2.4066.

Chlebus and Divgi presented session statistic of a Wire-
less LAN in [33, 34]. Their definition of a session slightly

differs from ours. It is created when a user logs into the
network and ends when the user logs out or is timed out
of the network. Unfortunately, the length of the timeout is
not defined. According to their statistics, a user has on aver-
age 2.16 sessions per day, consuming a mean of 12.24 MB
in about one hour. The maximum session duration was 34
hours consuming 1.5 GB of data and the maximum number
of sessions per user was measured 37. They fitted the curves
with a truncated Pareto distribution. Although their results
differ from ours, the general distribution of the session du-
ration and the session volume are similar.

In order to see the impact of each application on the ses-
sion statistics, we split the session statistics by application.
Figure 7(a) shows the online times of each application. It is
clearly visible that the overall session times are prolonged by
P2P traffic. 50% of all eDonkey sessions last longer than 50
minutes and 50% of the BitTorrent session are longer than
110 min. This is by far longer than a video streaming ses-
sion. However, what is surprising is the fact that the session
volume of P2P traffic is smaller compared to video stream-
ing sessions, cf. Fig. 7(b). The reason for this might be traf-
fic shaping of the service provider. While streaming traffic
is prioritized, P2P file sharing applications are regarded as
best effort traffic and blocked if they exceed a certain band-
width. Looking at the BitTorrent curves, we can see that the
number of BitTorrent sessions is lower compared to other
sessions. In total, about 1000 session were identified.
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Fig. 7 Session duration and
volume split by application

Fig. 8 Session volume
separated between downlink and
uplink traffic

The duration of a web surfing session is on average longer
than a video streaming session, meaning that a user normally
browses through webpages longer than watching YouTube.
In addition, the traffic volume of a web session is in gen-
eral smaller than a video streaming application. Just a few
web session can be observed with a traffic volume of several
hundred MB up to 2.9 GB. These sessions belong to HTTP
downloads like Rapidshare.

In Fig. 8, we differentiated for the session volume be-
tween downlink and uplink. As expected, the ratio between
downlink and uplink traffic volume for P2P traffic is almost
1:1, caused by the tit for tat strategy of P2P file sharing. In
contrast, streaming applications like HTTP video and Flash
video transmit mainly on the downlink and the uplink statis-
tics only reflect the TCP acknowledgments. The figures fur-
thermore reveal that the average Flash video size is 17 MB,
which can also be find in YouTube statistics.

4.5 Traffic classification

After we evaluated the flow and the session statistics and
compared them to the related work, we want to evaluate
if the application distribution differs compared to fixed-line
networks. Towards the end of 2005, P2P file-exchange ap-
plications overtook web traffic as the major contributor of
traffic on the Internet. P2P traffic was measured at 60% to
80% of the total broadband traffic [31]. Cisco Systems states
in their annual report that 60% or 1358 PB per month belong

to P2P traffic at the end of 2006 [35]. However, this percent-
age decreases and Cisco predicts a P2P traffic percentage of
40% (5192 PB per month) at the end of 2010 and an increase
of streaming traffic to 43% (5469 PB per month).

Figure 9 shows the application distribution after the
payload-based classification and after the host behavior
analysis. The figures illustrate that a payload-based classifi-
cation alone leads to a quarter of unknown traffic. After ap-
plying the host behavior, which tries to classify the popular-
ity of the transport layer interactions, the percentage of un-
known traffic was decreased down to 9 percent. This shows
that although it is not clear how trustworthy the host behav-
ior analysis is, it helps to reduce the percentage of unknown
traffic. However, both, the results after the payload-based
classification and the final application distribution after the
host behavior analysis underline the statements from Cisco
Systems.

Looking now at Fig. 9(c), 40% of the complete measured
traffic belong to P2P file sharing applications. This relatively
low percentage of P2P is only achieved with the traffic shap-
ing of the ISP which is essential in order to perceive an ac-
ceptable streaming and web quality. This shaping becomes
obvious when looking at Fig. 9(d). P2P file sharing uses 71%
of the uplink bandwidth whereas only 26% is used on the
downlink. If no shaping would be performed by the ISP, P2P
file sharing traffic would use around 60% [5] in total, which
is a higher value as in backbone measurements. This higher
percentage of P2P file sharing traffic clearly results from the
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Fig. 9 Application distribution

measurements in a residential network. Mainly, this is es-
pecially interesting for home network service providers to
optimize their services.

Web traffic was measured with up to 50% in the core [16].
In our environment only 25% web traffic was detected.
However, our web traffic fraction includes browsing and file
downloads with HTTP but not streaming over HTTP which
belong to a separate streaming traffic category. Surprisingly,
we notice a new user download behavior. Some customers
use extreme HTTP downloads from large file-hosting sites
as an alternative to P2P file sharing. Most notably, during the
prioritizing and the shaping of the traffic, this is detected as a
problem. HTTP proxies may help here to limit the outbound
traffic. Figure 9(d) shows the exact data volume of the traffic
categories and further distinguishes between downlink and
uplink volume.

Although VoIP and FTP (data transfer protocol) are pri-
oritized, the usage is very low. In case of VoIP this has sev-
eral reasons. First, the network can not meet the user ex-
pectations (relatively high delays and jitter) and second, IP
phones and VoIP devices mainly provide wired interfaces.
Besides the low usage of VoIP and FTP, we have also seen
only a few gaming traffic. One can think that this might re-
sult from the fact that gamers normally use a DSL connec-
tion with smaller delays compared to the measured multi-

Fig. 10 Application distribution of streaming media

hop broadband wireless Internet access, but Cisco Systems
has also measured less than 1% of gaming traffic in the year
2008 [2]. The low usage of VoIP and Internet games is seen
as characteristic for a wireless broadband access network at
the moment.

In contrast, streaming traffic with about 22% of the whole
traffic is now besides web and P2P file sharing traffic one of
the main traffic categories used in home environments. On
the one hand this is surprising when comparing it with pre-
vious publications from Ploumidis et al. [32] with 0.177%
and Pries et al. [5] with 4% of streaming traffic. On the
other hand, this result is conform with the values predicted
by Cisco Systems [35]. The exact distribution of the stream-
ing traffic is shown in Fig. 10.

It is rather complicated to assign specific media players to
the different protocols since most players are able to handle
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Fig. 11 Subcategory
application distribution

several protocols. The biggest portion, HTTP video are used
by Quicktime, Real Player, and the Windows Mediaplayer.
However, all players support RTP/RTSP streaming as well.
The only difference between these two groups is the way the
connection is established.

If the player is called using “rt[s]p://”, the l7-filter as-
signs the connection to the RTSP class and if the connection
is established using “http://” the connection belongs to the
HTTP video class. However, the Real Player normally uses
RTSP for streaming. Besides these two classes, another sim-
ilar streaming protocol can be used called Microsoft Media
Server Protocol (MMS), which was not detected during our
measurements.

Figure 11(a) shows the percentage of the streaming traf-
fic. Similar to VoIP traffic, real-time streaming traffic has
higher QoS requirements. Consequently, it is not surprising
that the fraction of non live streaming as Flash Videos is
measured with 31% of the whole streaming traffic.

Finally, the P2P differentiation is shown in Fig. 11(b).
This statistics differs from the latest ipoque statistics [36].
About 71% of their complete P2P traffic belongs to BitTor-
rent and only 24% to eDonkey, whereas we measured 56%
BitTorrent P2P traffic and 41% eDonkey traffic. The differ-
ence might be caused by the location of the measurement.
Schulze and Mochalski measured at 3 different universities
and we measured in 250 households. The 3% unclassified
P2P file sharing traffic shown in Fig. 11(b) has been detected
by the P2P host behavior statistics as P2P traffic but the filter
was unable to assign the traffic to eDonkey or BitTorrent.

5 Conclusion

This paper presents the results of our Internet traffic mea-
surements in a commercial broadband wireless access net-
work for residential Internet users. The presented results are
divided into general traffic statistics and application distri-
butions. The findings of the daily and weekly traffic fluc-
tuations show a similar behavior compared to the statistics
from the German Internet point DE-CIX [1]. A breakdown
of the application distribution during the day shows that P2P

file sharing traffic is used all day long whereas the amount
of web and streaming traffic increases in the evening hours
with a peak at 19:00 o’clock. The reason is that stream-
ing traffic and especially web traffic requires user interac-
tion which is not the case for P2P file sharing traffic which
means that the file sharing applications run 24 hours, 7 days
a week. The packet size distribution of all packets is similar
to the latest backbone measurements [18] and follows a bi-
modal distribution. 43% of the packets have a length of 40
bytes and 30% of the packets contain 1500 bytes of infor-
mation. This results from the 88% measured TCP packets,
containing 95% of the complete measured traffic.

Brownlee and Claffy [8] observed a large number of short
flows carrying a small amount of data. This was also mon-
itored in our measurements and the percentage of these so
called dragonflies was with 70.9% compared to 45% much
higher. In addition, the number of flows lasting more than
15 min was with 0.29% much smaller compared to 1.5%.
These few flows carry however 57.74% of the whole traf-
fic. The following session statistics reveal a similar behavior
compared to the flow statistics and although they differ from
Chlebus and Divgi [33, 34], the general distribution of the
session volume and session duration are similar.

Our traffic classification statistics showed that a combi-
nation of payload-based and host behavior classification is a
good means to perform traffic characterization. The results
affirm the predicted trends of P2P, web, and streaming traffic
with empirically determined values. The percentage of P2P
file sharing traffic is with 40% lower compared to 62% mea-
sured in 2007 [5]. The decrease is caused by the increase of
streaming traffic to 22%. Within the streaming traffic class
Flash Video increases to 31%. Furthermore, a second reason
for the decrease might be a change in the download behavior
of some customers. They use extensive HTTP downloads as
alternative to P2P and FTP file sharing. A breakdown of the
P2P file sharing traffic shows that BitTorrent is with 56% re-
sponsible for the largest portion of the P2P traffic followed
by eDonkey with 41%.

The low fraction of VoIP and gaming traffic in our mea-
surements is seen as characteristic for broadband wireless
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access networks and isolates them from other access tech-
nologies. In case of VoIP it is on the one hand caused by
the network and on the other hand by the lack of wireless IP
phones and wireless capable VoIP devices.

Summarizing we want to point out that the general traf-
fic fluctuations remain similar to previous measurements
whereas the application distribution differs. Streaming ap-
plications become more and more important and are now re-
sponsible for one fourth of the complete traffic. With radios
connected over Wireless LAN to the Internet and new tele-
vision screens with Internet connection, it is expected that
the percentage of streaming traffic will soon overtake P2P
file sharing traffic.

References

1. DE-CIX German Internet Exchange. (2010). http://
www.de-cix.net/.

2. Cisco Systems Inc. (2009). Cisco visual networking index—
forecast and methodology, 2008–2013. White Paper.

3. Cisco Systems Inc. (2009). Hyperconnectivity and the approach-
ing zettabyte era. White Paper.

4. Fukuda, K., Cho, K., & Esaki, H. (2005). The impact of residential
broadband traffic on Japanese ISP backbones. SIGCOMM Com-
puter Communication Review, 35(1), 15–22.

5. Pries, R., Wamser, F., Staehle, D., Heck, K., & Tran-Gia, P. (2009).
Traffic measurement and analysis of a broadband wireless Internet
access. In IEEE VTC spring 09, Barcelona, Spain.

6. Paxson, V., Mahdavi, J., Adams, A., & Mathis, M. (1998). An ar-
chitecture for large-scale Internet measurement. IEEE Communi-
cations, 36(8), 48–54.

7. Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan, M., Moll,
D., Rockell, R., Seely, T., & Diot, C. (2003). Packet-level traffic
measurements from the sprint IP backbone. IEEE Network, 17(6),
6–16.

8. Brownlee, N., & Claffy, K. C. (2002). Understanding Internet
traffic streams: dragonflies and tortoises. IEEE Communications
Magazine, 40(10), 110–117.

9. Brownlee, N., Mills, C., & Ruth, G. (1999). Traffic flow measure-
ment: architecture.

10. Fraleigh, C., Diot, C., Lyles, B., Moon, S. B., Owezarski, P., Pa-
pagiannaki, D., & Tobagi, F. A. (2001). Design and deployment
of a passive monitoring infrastructure. In IWDC ’01: proceedings
of the thyrrhenian international workshop on digital communica-
tions, Taormina, Italy (pp. 556–575).

11. Apisdorf, J., Claffy, K. C., Thompson, K., & Wilder, R. (1997).
OC3MON: flexible, affordable, high performance statistics col-
lection. In Proc. of INET 97.

12. Thompson, K., Miller, G. J., & Wilder, R. (1997). Wide-area In-
ternet traffic patterns and characteristics (extended version). IEEE
Network, 11(4), 10–23.

13. McCreary, S., & Claffy, K. C. (2000). Trends in wide area IP traf-
fic patterns—a view from ames Internet exchange. In Proceedings
of the 13th ITC specialist seminar on Internet traffic measurement
and modelling, Monterey, CA.

14. Keys, K., Moore, D., Koga, R., Lagache, E., Tesch, M., & Claffy,
K. C. (2001). The architecture of CoralReef: an Internet traffic
monitoring software suite. In PAM2001—a workshop on passive
and active measurements.

15. Shannon, C., Moore, D., & Claffy, K. C. (2002). Beyond folk-
lore: observations on fragmented traffic. IEEE/ACM Transactions
on Networking (TON), 10(6), 709–720.

16. Karagiannis, T., Broido, A., Brownlee, N., Claffy, K. C., & Falout-
sos, M. (2003). File-sharing in the Internet: a characterization
of P2P traffic in the backbone (Tech. rep.). University of Califor-
nia, Riverside, University of California, Riverside Department of
Computer Science, Surge Building, Riverside, CA 92521.

17. Karagiannis, T., Faloutsos, M., Broido, A., Brownlee, N., &
Claffy, K. C. (2004). Is P2P dying or just hiding? In IEEE
global telecommunications conference, 2004, GLOBECOM’04
(pp. 1532–1538).

18. John, W., & Tafvelin, S. (2007). Analysis of internet backbone
traffic and header anomalies observed. In IMC’07: proceedings
of the 7th ACM SIGCOMM conference on Internet measurement,
New York, NY, USA (pp. 111–116).

19. Caceres, R., Duffield, N. G., Feldmann, A., Friedmann, J., Green-
berg, A., Greer, R., Johnson, T., Kalmanek, C., Krishnamurthy,
B., Lavelle, D., Mishra, P. P., Ramakrishnan, K. K., Rexford, J.,
True, F., & van der Merwe, J. E. (2000). Measurement and analysis
of IP network usage and behavior. IEEE Communications Maga-
zine, 38(5), 144–151.

20. Cisco Systems Inc. (2007). Cisco IOS NetFlow. White Paper.
21. Claise, B. (2008). Specification of the IP flow information export

(IPFIX) protocol for the exchange of IP traffic flow information.
RFC 5101. http://www.ietf.org/rfc/rfc5101.txt.

22. Quittek, J., Bryant, S., Claise, B., Aitken, P., & Meyer, J. (2008).
Information model for IP flow information export. RFC 5102.
http://www.ietf.org/rfc/rfc5102.txt.

23. Karagiannis, T., Broido, A., Faloutsos, M., & Claffy, K. C. (2004).
Transport layer identification of P2P traffic. In IMC ’04: proceed-
ings of the 4th ACM SIGCOMM conference on Internet measure-
ment, New York, NY, USA (pp. 121–134).

24. Karagiannis, T., Molle, M., & Faloutsos, M. (2004). Long-range
dependence: ten years of Internet traffic modeling. IEEE Internet
Computing 8(5), 57–64.

25. Application Layer Packet Classifier for Linux (L7-filter) (2010).
URL http://l7-filter.sourceforge.net/.

26. Karagiannis, T., Papagiannaki, K., & Faloutsos, M. (2005).
BLINC: multilevel traffic classification in the dark. In SIGCOMM
’05: proceedings of the 2005 conference on applications, tech-
nologies, architectures, and protocols for computer communica-
tions, New York, NY, USA (pp. 229–240).

27. Dahmouni, H., Vaton, S., & Rosse, D. (2007). A Markovian
signature-based approach to IP traffic classification. In MineNet
’07: proceedings of the 3rd annual ACM workshop on mining net-
work data, New York, NY, USA (pp. 29–34).

28. Bernaille, L., Teixeira, R., & Salamatian, K. (2006). Early applica-
tion identification. In CoNEXT ’06: proceedings of the 2006 ACM
CoNEXT conference, New York, NY, USA.

29. IPP2P (2010). http://www.ipp2p.org.
30. Rapidshare—easy filehosting (2010). URL http://www.

rapidshare.com.
31. Perenyi, M., Dang, T. D., Gefferth, A., & Molnar, S. (2006). Iden-

tification and analysis of peer-to-peer traffic. Journal of Commu-
nications (JCM), 1(7), 36–46.

32. Ploumidis, M., Papadapouli, M., & Karagiannis, T. (2007). Multi-
level application-based traffic characterization in a large-scale
wireless network. In International symposium on a world of wire-
less, mobile and multimedia networks (WoWMoM), Helsinki, Fin-
land.

33. Chlebus, E., & Divgi, G. (2007). The Pareto or truncated Pareto
distribution? Measurement-based modeling of session traffic for
Wi-Fi wireless Internet access. In IEEE wireless communica-
tions and networking conference, 2007, WCNC 2007, Hong Kong,
China.

34. Divgi, G., & Chlebus, E. (2007). User and traffic characteristics of
a commercial nationwide Wi-Fi hotspot network. In IEEE 18th in-
ternational symposium on personal, indoor and mobile radio com-
munications, 2007, PIMRC 2007, Athens, Greece.



Traffic characterization of a residential wireless Internet access

35. Cisco Systems Inc. (2008). Cisco visual networking index—
forecast and methodology, 2007–2012. White Paper.

36. Schulze, H., & Mochalski, K. (2009). Internet study 2008/2009.
http://www.ipoque.com/resources/internet-studies/.

Florian Wamser studied in Wuerz-
burg, Germany and at the Helsinki
University of Technology, Finland.
He received his diploma degree in
computer science from the Depart-
ment of Computer Science of the
University of Wuerzburg in 2009
where he is currently a research as-
sistant. He is interested in wireless
broadband access networks and re-
lated fields as well as cellular com-
munication.

Rastin Pries graduated in com-
puter science at the University of
Wuerzburg, Germany. Since 2004
he is a research fellow at the chair
of Prof. Phuoc Tran-Gia, work-
ing towards his Ph.D. Previously
he was at academia in Wedel and
Wuerzburg (Germany) as well as in-
dustries at Computer Partner (Ham-
burg, Germany) and Infosim (Dal-
las, USA). His research interests are
performance analysis and optimiza-
tion of broadband wireless access
networks. Rastin Pries is involved in
several industry projects and takes

an active part in European Cost, Network of Excellences, and BMBF
projects. He is currently coordinating the BMBF project “G-Lab” to-
gether with Prof. Phuoc Tran-Gia.

Dirk Staehle is Assistant Professor
at the Chair of Distributed Systems
at the University of Würzburg, Ger-
many. Dirk Staehle has lead mul-
tiple industry co-operations in the
field of GPRS, UMTS, and HSPA
radio network planning with T-
Mobile International, France Tele-
com R&D, and Vodafone Nether-
lands. His research interests include
analytic modeling and simulation
of wireless networks; radio network
planning; (application layer aware)
radio resource management; and
source traffic modeling of wireless

applications. He is currently working on cellular HSPA and OFDMA
networks, as well as on mesh and sensor networks.

Klaus Heck is founder and CEO
of the Hotzone GmbH, a (Wire-
less) Internet Service Provider lo-
cated in Wuerzburg and Berlin, Ger-
many. The Hotzone uses Wireless
LAN, LAN and DSL as their access
technology. Where applicable, full
triple-play service is offered. Pre-
viously, Dr. Klaus Heck was a re-
search fellow at the chair of Prof.
Phuoc Tran-Gia at the University of
Wuerzburg and has lead different
industry cooperations. He worked
as an external consultant at InfoSim
Germany in Wuerzburg, Germany

and as a consultant at InfoSim Inc., Dallas, TX.

Phuoc Tran-Gia is professor and
director of the Institute of Com-
puter Science at the University of
Wuerzburg, Germany. Previously
he was at academia in Stuttgart,
Siegen (Germany) as well as in-
dustry at Alcatel (software develop-
ment System 12), IBM Zurich Re-
search Laboratory (Zurich, Switzer-
land, architecture and performance
evaluation of communication net-
works). He is consultant and coop-
eration project leader with Siemens
(ICN Board, Munich, ICM Berlin),
Nortel (Texas), T-Mobile Interna-

tional (Bonn), France Telecom (Belfort), European Union (European
Science Foundation, Brussels), and is coordinating the G-Lab project
“National Platform for Future Internet Studies”.


