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Abstract—YouTube is one of the most popular and volume-
dominant services in today’s Internet, and has changed the
Web for ever. Consequently, network operators are forced to
consider it in the design, deployment, and optimization of their
networks. Taming YouTube requires a good understanding of the
complete YouTube stack, from the network streaming service
to the application itself. Understanding the interplays between
individual YouTube functionalities and their implications for
traffic and user Quality of Experience (QoE) becomes paramount
nowadays. In this paper we characterize and model the YouTube
stack at different layers, going from the generated network traffic
to the QoE perceived by the users watching YouTube videos.
Firstly, we present a network traffic model for the YouTube flow
control mechanism, which permits to understand how YouTube
provisions video traffic flows to users. Secondly, we investigate
how traffic is consumed at the client side, deriving a simple model
for the YouTube application. Thirdly, we analyze the implications
for the end user, and present a model for the quality as perceived
by them. This model is finally integrated into a system for real
time QoE-based YouTube monitoring, highly useful to operators
to assess the performance of their networks for provisioning
YouTube videos. The central parameter for all the presented
models is the buffer level at the YouTube application layer. This
paper provides an extensive compendium of objective tools and
models for network operators to better understand the YouTube
traffic in their networks, to predict the playback behavior of the
video player, and to assess how well they are doing in practice
in delivering YouTube videos to their customers.

Index Terms—YouTube; Progressive Streaming; Flow Control;
Network Traffic Modeling; Quality of Experience Assessment;
DASH.

I. INTRODUCTION

YouTube is one of the most popular services in today’s
Internet and is responsible for more than 20% of the overall
Internet traffic [9], including mobile. Every minute, 100 hours
of video material are uploaded and more than 1 billion
unique users visit YouTube each month [10], [11]. YouTube’s
enormous popularity introduces severe challenges for network
operators, who need to design their systems properly in order
to cope with the high volume of traffic and the large number
of users. Mobile operators are particularly sensitive to these
challenges, as YouTube traffic is rapidly increasing in mobile

networks, with more than 40% of all YouTube views coming
from mobile devices today [10]. Since network operators need
to offer satisfying video quality levels to prevent clients from
churning, YouTube is an important application which has to
be considered by operators, both in current highly competitive
mobile and fixed broadband markets.

Consequently, Internet Service Providers (ISPs) do not only
try to cope with a service like YouTube in the network.
Instead, they actively include it in considerations of network
optimization and operations. Thus, Quality of Service (QoS)
provisioning is done in the network to meet requirements
and provide guarantees, primarily, in order to ensure a good
application quality. All these provisions strictly need a compre-
hensive understanding of the YouTube service in the network.
More precisely, not only bandwidth requirements or minimum
latency needs to be known, but also the impact of user inter-
action, the adaptation capabilities of the service, or possible
implications for the users are required to be known. In short,
for a specific consideration of YouTube in a network, one must
understand YouTube at all its layers.

In this paper we present three models to explain the main
features of YouTube in the network and for the user. We focus
our attention on the buffer level of YouTube at the application
layer. We show that both the flow control at the network level
and the user Quality of Experience (QoE) is directly related to
the buffer level, making it to the central point of contact for a
possible resources management or possible optimizations [8],
[12]. The other way round, this also means that with the
ability to monitor or estimate the buffer level, a key element of
YouTube is known and far-reaching conclusions can be stated
about QoE, packet flow, and application properties.

Several works have been carried out in the research commu-
nity to characterize and investigate YouTube. In [13], authors
characterize the YouTube traffic and investigate correlations
between network and user behavior; the underlying infrastruc-
ture of YouTube is studied in [6], [14]; YouTube characteristics
in mobile (cellular) networks are investigated in [15], whereas
YouTube performance degradation events are detected and
diagnosed in [16], [17]. Quality of Experience (QoE), i.e. the
quality perceived by end users of YouTube, was evaluated both



2

TABLE I
COMPARISON OF THE POTENTIAL INTERESTS OF NETWORK OPERATORS AND THE CONTRIBUTION IN THIS PAPER.

Network Operator Interests Contribution in this Work
(and reference to the relevant section)

Network Level

YouTube CDN Structure
Estimate amount of traffic and traffic flow, selective

content caching according to network
characteristics

-
(see related work in Section III, references [1]–[6])

Transport Level
YouTube Flow Control

Insights into traffic patterns, per-flow optimization
for YouTube, flow-level impact on other applications

Network Traffic Model Section VI

Application Level

Video Playback Behavior
Optimization taking into account the playout

behavior of the YouTube player, see e.g. [7], [8],
buffer management, video qualtiy optimizations

Video Player Application Model Section VII

User Level
User-Perceived Quality

Network performance monitoring, see Section VIII,
user-centric optimizations to avoid user churn

User QoE Model Section VIII

in controlled lab studies [18], [19] and in field trials [20].
We revisit in this paper the YouTube application through an

exhaustive end to end study of the service, considering every
layer from the network traffic up to the QoE as perceived by
end-users. We start by characterizing the way YouTube servers
send video flows to the end-users, describing and modeling
the flow control mechanism currently used by YouTube. An
initial view to YouTube’s flow control was provided by [14]
in 2011, but since then the mechanism used by YouTube has
much evolved, moving from a server-based control paradigm
to a client-based one. To the best of our knowledge, we are
the first in characterizing and modeling the new flow control
mechanism used by YouTube.

Going a step further from the network to the client, we
analyze how the video traffic is consumed and played-back
at the client YouTube player, additionally deriving models to
assess the quality directly perceived by the end-user from the
player state. Previous studies [19], [21] have shown that both
the number of stalling events and their duration are the most
important features influencing the final QoE undergone by
the end-user. A stalling event corresponds to the interruption
of the video playback due to the depletion of the playback
buffer at the YouTube player. When the available bandwidth
is lower than the required video bitrate, the playback buffer
becomes gradually empty, ultimately leading to the stalling of
the playback. Using both controlled lab studies [18] and field
studies [20], we conceive a model which can map stallings to
end-user QoE.

Finally, at the end of our analysis, a large-scale YouTube
QoE monitoring system based on passive traffic analysis
is presented. Once we have analyzed and understood how
YouTube works from the server to the end-user perception,
we devise a real-time monitoring system to extract YouTube
performance indicators related to the QoE perceived by end-
users, relying exclusively on packet-level measurements.

Overall, this paper provides a complete overview on how
today’s YouTube application works at both the server and the
client side. Table I lists the contributions and assigns them to
the respective layers, from transport level to the user level.
In addition, a list of potential network operational ”interests”
provides a possible application of the models for network
operators in the practice. The main objective of the study is to

provide network operators with tools to model YouTube traffic
and the client-side player for performance evaluations, and to
generally assess how good they are doing in delivering the
right QoE to their end-customers watching YouTube videos.

This work is structured as follows: Sections II and III outline
background and related work for YouTube video streaming,
and give an overview of different streaming approaches with
emphasis on progressive streaming techniques. Among other
things, the evolution of progressive streaming is shown, includ-
ing the paradigm shift and its reasons. Section IV describes
the tools and data sets used in the modeling study at the
different layers. In Section V we present an overview on
the proposed YouTube models at the network, application,
and user layers respectively, going into deeper details and
analysis of the network layer and YouTube flow control model
in Section VI. Sections VII and VIII focus on the YouTube
player and YouTube QoE models respectively; in addition,
YouTube QoE-based monitoring in real mobile networks is
also discussed in Section VIII. Finally, we draw conclusions
in Section IX.

II. STARTING FROM SCRATCH: BACKGROUND ON
YOUTUBE VIDEO STREAMING

YouTube is a streaming platform mainly offering small
to medium-sized video clips to its users. The encoding of
the video clips is done according to the H.264/MPEG-4
Advanced Video Coding (AVC) as default video compression
format. YouTube uses HTTP(S) as streaming protocol for
the videos. The client application is a precompiled Adobe
Flash player assembly which runs in the web browser.
It essentially downloads the video data over at least one
HTTP(S) connection and already starts playing the video
while the download is still ongoing. Downloaded data is
stored in the memory or in a temporary file which serves as
buffer for video playtime. In this context, YouTube employs
buffering which means that the client starts playing out data
from the buffer only after a certain level of playtime has been
stored. The time from requesting a video until the buffer is
sufficiently filled to start playing the video is called initial
delay. While the video is playing the server fills the buffer by
transmitting blocks of video data to the client. Stalling, i.e.
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an interruption of the video playback, occurs if the playtime
buffer becomes empty during video playback. The actual
data arrival at the client is governed by TCP and depends on
the available bandwidth. These two transmission phases, the
initial filling of the buffer before the video starts playing, and
the filling of the buffer while the video is already playing,
are dictated by the YouTube flow control algorithm. Video
streaming over the Internet based on HTTP(S) has evolved
considerably in recent years:

Progressive download: in the beginning, HTTP-based video
streaming was implemented using a simple file server pro-
viding the video file for the users. To avoid the resulting
waiting time for the download, the video playback was started
already during the download. It was done even though the
file was not completely available on the client device. This
principle marks the beginning of the so-called progressive
download. The advantage is that the existing, well-established
infrastructure can be used. The disadvantage is however, that
a best effort download is not always automatically sufficient
for streaming video. The download usually has to be adjusted
with complicated means by the server (server-based streaming)
to satisfy the video requirements, user demands, and network
conditions in order to carry out a useful streaming. There
are three essential requirements for a video streaming server
to consider for a useful and efficient streaming: first, it has
to adjust the download rate according to the video content
encoding. Second, it must estimate or know what capabilities
(screen size, hardware support, etc.) the client device offers.
Third, the server must estimate the current access network
conditions of the user and adjust the download accordingly.
The crucial point is that, even though the server knows the
video content, it does not directly know the conditions at the
client side, which can be very different depending on the user
preferences, the end device, and the network.

YouTube, like many video service platforms, meets these
requirements by offering videos in different bit rates, more
precisely, in different resolutions. Still, the drawback is that
the server is not aware of the user conditions, and must
estimate which quality should be delivered in order to achieve
a smooth playback. Another problem for video service
providers are users which abort the playback of a video [13],
[22]. In order to fill the client’s buffer to compensate for
changing network conditions, the server transmits video data
in advance. When the video is aborted, all data in the video
buffer is discarded, and thus, was transmitted in vain. The
video service provider can save resources by (ideally) only
transmitting video data that will eventually be watched. This
is precisely what is generally referred to as streaming.

Client-based streaming with progressive download: to
apply the streaming principle for progressive downloads,
the servers (which until then controlled the download) are
superseded by the clients, which take over control of the
streaming and request video data from the servers. Clients
only request data if their buffer is below a critical threshold.
The other way round, above this threshold, no more data
is requested. This limits the amount of video data which

is wasted in case of playback abortion, and thus, also the
amount of data that is transmitted in vain by the servers. This
results in a more efficient resource utilization for the video
service provider.

Adaptive client-based streaming (HTTP Adaptive Stream-
ing): to be more flexible and to avoid the need to estimate
the client’s network conditions, the paradigm change evolved
even more. Nowadays, video files are no longer stored as
a whole file for each quality level (i.e., bitrate). Instead,
they are stored as many files, so-called chunks or segments,
consisting only of a few seconds of playback time each. The
mapping of files to video parts is specified in a dedicated media
description file. This allows for a more fine-grained quality
selection (adaptive streaming). In combination with client-
based streaming, the benefit arises since the client directly
knows about its current network condition. It is aware of
its physical layer for data transmission. Further on, it also
knows about the video streaming options due to the media
description file. Consequently, adaptive client-based streaming
can seamlessly adapt to changing network conditions by
requesting video chunks of appropriate bit rates from the
server. This results in the highest possible playback quality and
reduced number of stalling events which increases users’ QoE
[23]. Many proprietary solutions implemented this new client-
based adaptive streaming paradigm. Recently, also YouTube
followed the current trend by integrating the standardized
adaptive streaming technology MPEG Dynamic Streaming
over HTTP (DASH) [24].

III. RELATED WORK ON YOUTUBE AND PROGRESSIVE
STREAMING

Related work for YouTube can be divided into different
areas of research. There is, first of all, work on the content
delivery infrastructure at network level of YouTube [1]–[6]. In
order to avoid bottleneck links in the networks and to bring
video content closer to end users, video service providers
federate many servers and data centers to form a content
delivery network. The videos are distributed among the servers
based on certain criteria (local popularity, time of day, etc.),
and when a user requests a video, a server close to him
transmits the video. For example, it is shown in [3], how the
YouTube video player selects the content servers. Based on
the insights about the current CDN structure, in [25], [26], it
is considered how an efficient caching for YouTube can be
achieved.

In terms of our work, particularly the transmission charac-
teristics of YouTube for the end-to-end transport is interesting.
In [27], network characteristics of the two most popular video
streaming services, Netflix and YouTube are presented. The
authors show that the streaming strategies vary with the type
of the application (web browser or native mobile application),
and the type of container (Silverlight, Flash, or HTML5). In
particular, they identify three different streaming strategies that
produce traffic patterns from non-ack clocked ON-OFF cycles
to bulk TCP transfer. Furthermore, they present an analytical
model to study the potential impact of these streaming strate-
gies. In [28], a YouTube server traffic generation model is
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proposed. The derived characterization and model are based on
experimental evaluations of traffic generated by the application
layer of YouTube servers. Another well-known paper about the
YouTube flow control is [29]. Alcock introduces here in detail
the streaming behavior of the YouTube throttling algorithm.
In [30], the characteristics of mobile YouTube traffic are
analyzed.

Going a step further, the question is how the CDN structure
and the flow control finally influences the user perceived
quality at the end device. In both works [19], [21], the authors
state that the impact on the user quality depends on the stalling
duration and the number of stalling events. Consequently, for
an optimization in the sense of the user, the focus must be on
the buffer of the video player at the individual user. In [18],
moreover, the influence of the initial waiting for filling the
buffer is discussed.

Several works propose optimization for a network, based
on the previous insights [8], [12], [31]–[34]. In [12], both
network-level resource management for YouTube as well as
content and client-based control for access network with
YouTube traffic are proposed. The authors of [8], propose
a special QoE-oriented scheduling in the air interface of
OFDMA mobile communication networks. Prerequisites for
all optimization is the knowledge of how well YouTube
currently behaves in a network. Various monitoring solutions
have been presented such as [35]–[38].

Finally, there are numerous statistics and characterizations
of the YouTube content and the usage of YouTube, both in the
cellular environment as well as for normal computers [13],
[15], [39]–[41]. For example, in [13] usage patterns, file
properties, popularity characteristics, and transfer behaviors
of YouTube are presented, and compared to traditional web
and media streaming workload characteristics. In [41], the
video traffic generated by three million users across one of
the world’s largest 3G cellular networks is measured.

General papers with guidelines about monitoring, manage-
ment of YouTube, and optimization for YouTube within the
network is presented in [7], [12], [33], [42]–[44].

As we explain in next sections, our paper builds on top of
our many previous studies on YouTube at the multiple layers,
from network traffic to QoE. While some of the results of the
individual studies presented in this paper have been partially
presented in previous work [18], [20], [43]–[45] (in particular,
the YouTube QoE models presented in Section VIII), the
additional value of this paper is to provide a single source
of information compiling all these studies into a single and
complete modeling effort of probably the greatest and more
complex Internet-scale service ever, which is changing even
the structure of the whole Internet. We expect this paper to
be highly useful for ISPs willing to provision YouTube and
future similar video streaming services through their networks,
allowing them to better understand how to dimension and
manage their networks in order to correctly provision this
surge of services.

IV. MEASUREMENT TOOLS AND DATA SETS

For the characterization of YouTube, three different types of
measurements are used. Each type of measurement operates

on different layers and measures different properties from
YouTube. First of all, network packet traces were carried
out while playing YouTube videos. Second, video and player
information during playback were retrieved at the client using
the official YouTube player API. They were stored in a second
data set. Third, the results from a set of QoE subjective tests
performed in our previous work, as well as measurements
performed at the core of a mobile network were used to model
and quantify the overall user satisfaction of YouTube. Table II
enumerates the list of conducted measurements and assigns
them to the models described in this study.

A. Packet Traces

For comprehensive packet traces, measurements in two
different time periods were performed. The first measure-
ments were carried out in November and December in 2012
(22.11.2012 - 22.12.2012) at the University of Würzburg. Here
84 videos were measured, and the packet arrival times and
packet sizes were passively monitored. In order to investigate
in this work as many, but also popular videos, the YouTube
videos were selected as follows. A YouTube search was done
according to a random dictionary entry. The first two search
results are accepted for each search. That way, only popular
videos get selected. This method is used until 100 different
videos are selected. Some of the videos did not exist anymore
when we tried to watch them or could not be replayed for
different reasons. This reduced the number of videos that are
finally measured to 84, which were replayed several times
at the Campus network of the University of Würzburg. The
network bandwidth was not limited.

The second series of measurements were carried out in
April 2015 (23.03.2015 - 15.04.2015)1. Here exactly 1060
videos were randomly selected and watched. Some videos
were selected twice, which resulted in 1002 different videos.
This data set includes approximately 13 million log items.
The network bandwidth was limited to 3 Mbit/s, 1 Mbit/s,
700 kbit/s. There are 384 videos measured with a limitation
of 3 Mbit/s, 331 videos were measured at a limit of 1 Mbit/s,
and 345 videos were measured at a limitation of 700 kbit/s.
There are about 16 GB transferred video data and about 258 h
of video content.

B. Video Player Measurements

YoMo [35], [36], [46] is a YouTube monitoring tool for
the YouTube video player developed at the University of
Würzburg. It is used to analyze the buffered playtime and the
playout behavior of YouTube. YoMo uses a Mozilla Firefox
extension which retrieves data from the YouTube player. In
general, it works as follows. Since the buffered playtime is
monitored, it knows if a video is playing or stalling. If a
new video is requested, the YouTube player opens a new TCP
connection to download the video file. A signature is contained
within the header of the video file which is detected by YoMo.
As YoMo looks also at all other TCP flows to a YouTube
server, the flow that contains the signature can be identified.

1Dataset is available at http://youtubedb.informatik.uni-wuerzburg.de.

http://youtubedb.informatik.uni-wuerzburg.de
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TABLE II
LIST OF MEASUREMENTS AND UNDERLYING DATA SETS FOR THIS STUDY.

Data Set Corresponding
Model

Transport
Level

(1) Packet Traces Network Traffic Model

Application
Level

(2) Player
Measurements [35]

[36], [46]
Video Player Model

User Level
(3) Stalling and

Performance
Monitoring Studies
[18], [20], [21], [43]

User QoE Model

YoMo then investigates all of the data of this specific TCP
stream. Since the video tags are parsed in realtime, YoMo can
return the buffered playtime of the video. For the new YouTube
algorithm, YoMo especially parses the packets that contain the
HTTP-request over a certain range of bytes. The playtime is
sent to YoMo from the plugin which in return retrieves it from
the YouTube player API. To overcome end-to-end encryption,
a simple state of the art man-in-the-middle attack was done at
the measurement client. A more detailed insight of YoMo is
given in [32], [36].

YoMo was used to study YouTube videos. The application
data were collected in conjunction with the first measurement
of the packet traces. The scope and duration of the mea-
surement corresponds exactly to the specified information in
the previous subsection. The measurement was conducted in
the period 22.11.2012 to 22.12.2012 for 84 videos. Several
samples had measurement errors, e.g., some HTTP requests for
parts of the video content were not received or were received
multiple times. We omitted these runs from the analysis and
ended with 778 measurement samples.

C. YouTube QoE and Performance Monitoring Studies

The third dataset is composed of the results obtained from
several subjective YouTube QoE studies we have conducted
between 2011 and 2014 [18], [20], [21], [43], which ad-
dress the influence of the most relevant characteristics of
the YouTube service on the quality as perceived by the end
users. This dataset is complemented with real network and
QoE-based measurements we have performed at a nationwide
mobile operator [43]. These are composed of YouTube videos
streamed through cellular connections, which are passively
captured at the packet level in the core of a mobile network,
and additionally stamped with the real QoE feedback provided
by the users actually watching the videos.

V. MODELING YOUTUBE

We now introduce first a model for YouTube considering
different layers. We describe the model components, the
variables, and the input parameters that are needed for the
overall model.

In order to take the traffic on transport layer, the YouTube
application in the browser as well as the quality perception of
the user into account, we divide our model into three parts.

All the parts are interconnected via a central parameter, the
buffer level at application layer, which is discussed below. The
input parameters and variables which are used in the model
are summarized in Table III. They are introduced in detail in
the following paragraphs.
Transport Level At the transport level, we describe the
transfer of data over time. Since YouTube uses a block-wise
transmission, we specify here when a block is transmitted and
how large it is. We consider a video of size V S which consists
of n blocks. As depicted in the upper part of Figure 1, the
following parameters are used: (1) downloaded bytes D(t), (2)
block size BBi, and (3) block inter-arrival time ∆ti between
two blocks. The downloaded bytes D(t) depend on the time
t and are shown on the y-axis in the subfigures in the upper
part of Figure 1. Furthermore, block i is BBi bytes in size
and is requested at time ti. All blocks are downloaded over a
link with capacity C in bytes per second, such that βi is the
download time of block i in seconds with βi = BBi

C .
Application Level At application level, we describe the
playout behavior of the YouTube player at the client, partic-
ularly the buffered video playtime B(t), the video thresholds
Θ0 and Θ1, and parameter α are introduced. B(t) is illustrated
on the y-axis in the middle part of Figure 1, as well as in
Figure 4 later on. In order to calculate B(t), the model takes
into account the downloaded playtime DT (t) and the video
playtime V T (t), such that the following holds at any time:

B(t) = DT (t)− V T (t) (1)

The downloaded playtime DT (t) is calculated from the sum
of downloaded playtime PTi per block i. In particular, PTi
depends on the video bit rate br(V T ), which is a continuous
function of the video playtime that determines the amount of
bytes needed to play out the video at time V T . If B(t) is larger
than Θ0 the video playback starts, cf. Figure1(a). Blocks are
requested steadily as long as the buffered playtime is smaller
than the threshold α. Then, no blocks are requested until

TABLE III
INPUT PARAMETERS AND VARIABLES USED IN THE MODEL.

Name Description Unit
V S Size of video [B]
r Resolution of video [p]
br(V T ) Video bit rate at playtime V T [B/s]
n Number of blocks -
BSr Maximum size of a block for resolution r [B]
BBi Size of block i [B]
C Bandwidth/Download capacity [B/s]
βi Download time of block i [s]
ti Request time of block i [s]
∆ti Inter-arrival time between block i and block

i+ 1
[s]

PTi Playtime of block i [s]
D(t) Downloaded bytes at time t [B]
B(t) Buffered playtime at time t [s]
DT (t) Downloaded playtime at time t [s]
V T (t) Video playtime at time t [s]
Θ0 Playing threshold [s]
Θ1 Stalling threshold [s]
α Block request threshold [s]
ψ Stalling indicator {0, 1}
N Number of stalling events -
S(t) Stalling time at time t [s]
∆Si Stalling time between ti and ti+1 [s]
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Fig. 1. Modeling of YouTube at the transport, application, and user level.

the buffered playtime drops below α again. This means the
application parameter α controls the generated network traffic.
Once the buffered playtime is lower than Θ1 the playback is
interrupted until enough data is in the buffer, i.e. stalling occurs
if Θ1 is reached.
User Level Based on the findings of [47], we use a
simplified approach in order to model the impact on the user.
We quantify the impact as number of stalling events and
total stalling duration while watching the video. We introduce
a boolean variable ψ which indicates whether the video is
playing (ψ = 0, green) or stalling (ψ = 1, red). S(t) indicates
the total stalling duration until time t. The stalling is illustrated
in the bottom subfigure of Figure 1(b).

Figure 1 illustrates two cases and outlines (1) the course
of the downloaded bytes, (2) the course of the buffer level of
the video player, and (3) whether the video is stalling or not.
Figure 1(a) shows the general case if a sufficient downloading
speed is available, i.e. the current video bit rate is smaller than
the maximum download rate. The figure shows an exemplary
download of a YouTube video over time with a fixed download
capacity C. The upper part shows the downloaded bytes D(t),
the middle part shows the buffered playtime B(t), and in the
bottom part, ψ indicates whether the video is playing. The
first blocks of the video are downloaded steadily and during
the initial delay phase, in which the video is not playing, each
block adds its contained playtime to the buffer. After a certain
amount of playtime is stored in the buffer, the video playback
starts and the buffered playtime increases more slowly, as
data is played out of the buffer at the same time. After the
download of Block 2, the buffered playtime has surpassed
α and thus no immediate block request occurs. Only after
B(t) drops down to α due to the playback, a new block
is requested at transport layer. This oscillating behavior of
B(t) continues until the end of the video. In Figure 1(b), the
contained playtime in the blocks 5-8 is lower than time needed
to download the blocks. Thus, the playout buffer empties
which eventually results in periodic stalling. Finally, Block
9 then contains enough playtime again, in order to present
the video without any interruptions. In the following sections,
each level is described in detail.

VI. YOUTUBE FLOW CONTROL: A NETWORK TRAFFIC
MODEL

Since early 2012, YouTube uses a new algorithm to transfer
videos to the users. We investigate this algorithm in the fol-
lowing as the basis for subsequent modeling for the transport
level traffic. The performed measurement is combined with a
second measurement of the buffer level at the application layer,
which gives insights into the behavior of the video player and
the quality presented to the user.

A. Download Behavior

In this section, we describe the general findings about the
YouTube player and streaming. Our results show that YouTube
employs a block-wise download behavior. First of all, we de-
fine and measure the block size. Next, we investigate the exact
points in time when blocks are requested. For this purpose, in
particular the measurement of application parameters such as
buffer level and video resolution is required.

1) Blockwise Download: The flow control algorithm man-
ages the way data is downloaded. Figure 2(a) shows the
cumulative data downloaded over time for 12 samples of two
example videos (Video1, Video2).

There are major differences compared to the download of
videos with the old algorithm [29]. For example, there is
no longer a consistent download of the video data. Instead,
Figure 2(a) shows that there are long periods where no data
is downloaded. Furthermore, there are short periods of time
where a lot of data is downloaded very fast. We call the data
that is downloaded in such a short period a block. From our
measurements, we see in Figure 2(a) that each video consists
of different blocks which are downloaded at different times.
However, the measurement curves of a specific video are
located one above the other, which means that the same block
of a video was always downloaded at approximately the same
time. In order to initiate the download of a block, a HTTP-
request for a certain range of bytes is sent to the YouTube
video server. In the following, we use the terms GET-request
or block request. No such request of the same resolution is sent
as long as a block of one resolution is still being downloaded.
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Fig. 3. Studies on the request time of the blocks.

2) Block Size: Having analyzed the blockwise download
behavior, we now discuss the size of the blocks. In Figure 2(b),
we see how the size of the blocks is distributed. For a
resolution of 240p and 360p, a block of 1.78 MB (rounded
value) is requested. For 480p, a block of 2.46 MB (rounded
value) is requested. The header of the video container, which
has a size of 13 B, is not downloaded because it is the same
for every video and the player already has this information.
Hence, the size of the first block is 13 B smaller than the
standard block size. In our measurements the last block is
always smaller than the other blocks since the size of our
selected videos is not an exact multiple of the normal block
size. Instead, the size of the last block is equal to the video
size minus all previous blocks minus 13 B. The resulting value
follows a uniform distribution as expected because all of our
videos contain more than one block.

3) Request Time of Blocks: Next, we analyze the exact
time when a block is requested. Figure 3(a) shows the buffered
playtime in seconds over time for two example videos. We
observe that in the first two seconds, a big part of the video
(over half of the total playtime) is downloaded. The requests
for the remaining data are sent each time the buffered playtime
drops to approximately 50 s.

To investigate this in more detail, we measure the buffered
playtime right after the block download is completed. In
Figure 3(b), this value is compared to the time between the
end of a block download and the next request. The results
can be separated into two parts at around 50 s. If the buffered
playtime is under 50 s, the time between two downloading

periods is independent of the buffered playtime as the next
block is requested almost instantly after the previous block
download finishes. If greater than 50 s, the buffered playtime
seems to correlate linearly with the time until the next block
is requested.

In order to interpret the results at about 50 s accurately, we
further consider in the following the results in detail. After
fitting these values for videos with 240p, 360p, and 480p
separately, we notice that all resolutions return very similar
results. For a buffered playtime greater than 52 s, we fit the
values to a linear function with an average slope of a = 1.00
and an average y-intercept of b = −49.82 s. Here, only an
insignificant deviation of less than 2 % between the different
resolutions is observed. We assume that this value is pre-
configured by YouTube. Hence, it seems reasonable to accept
that the next block is requested in (buffered playtime)−50 s in
average after the previous block download. For a buffer level
of under 48 s, the average time between two requests is 0.3 s in
our measurements. Since blocks of one resolution are always
downloaded successively, it takes at least the download time
of a block until a new block is requested again. Therefore,
the time between two downloading periods is influenced by
the download speed of the Internet connection at our local
network.

4) Dynamic Adaptive Streaming over HTTP (DASH):
Since 2013, YouTube supports DASH which was first pre-
sented in [48]. With DASH, the player switches to a lower
video resolution if there is little data in the buffer and if it
is not growing quickly. Next, if the buffer contains a lot of
data or if it is growing quickly, the video resolution may be
increased. A first complete analysis of DASH in YouTube was
done in [49]. There are many possibilities on how to optimize
adaptive streaming. A comprehensive study that discusses
relevant adaptation algorithms is given in [50]. However, exact
video adaptation strategies are out of scope of this paper and
will not be discussed any further. Nevertheless, any future
adaptive approach may easily be integrated into the model
presented in this paper.

B. Flow Control Model

Finally, we create a model of the Range Algorithm for the
flow control of a YouTube video. With this model, the network
traffic can be simulated, while a video is viewed. Each video is
defined by its size V S, its resolution r ∈ {240p, 360p, 480p},
and its bit rate br(V T ). Based on these three characteristics,
we define the flow control model for YouTube traffic, i.e., we
describe when and how much traffic is generated by streaming
this video. For the sake of simplification, we assume that
the download capacity C does not change during a video
download and that the YouTube servers are always able to
saturate the users’ download capacity. Further, we consider
the bit rate to be constant within a block. Finally, we assume
that the download of the first packet of a block starts without
delay after the request. Based on these assumptions, the model
can be described in detail.

The resolution determines the maximum size BS of a block
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according to

BS =

{
1.78 MB if r = 360p or 240p,
2.45 MB if r = 480p. (2)

The maximum block size BS is the size of all blocks except
for the first and last block. This is due to the fact that the
first 13 B of a video file are always known, hence, they need
not be downloaded. The last block usually is smaller than the
maximum block size, as it contains the remaining bytes of the
video. This gives the block sizes for all n blocks of the video:

BB1 = BS − 13 B
BBi = BS for 2 ≤ i < n

BBn = V S −
∑n−1

j=1 BBj

(3)

Next to the block size, the request times ti of block i are
important to fully describe the network traffic. Therefore, we
update several variables at each block request ti. We assume
the first block is requested at time t1 = 0 and consider in
the following the time difference ∆ti = ti+1 − ti. From our
measurements, we found that the next block is downloaded if
the buffered video time B(t) is less or equal to a threshold
α. In order to compute the next block request ti+1 from the
previous request time ti it is necessary to consider the amount
of playtime PTi contained within block i. If the buffered
playtime is lower than α after the download of block i, the next
block is requested immediately. This means, the time between
block i and i + 1 is only the download time βi of block i.
If the buffered playtime is larger than α after the download
of block i, the next block request occurs when the buffered
playtime decreases down to α. Thus, the time ∆ti between
the requests of block i and block i + 1 can be computed as
described in Equation 4.

∆ti =

{
βi if B(ti) + PTi < α+ βi,
B(ti) + PTi − α otherwise,

(4)
where the download time of block i βi = BBi/C is negligible
for very high download capacities. While α lies between 48 s
and 52 s in almost any download sample, we recommend an
approximation of α = 50 s according to our investigations in
Section VI-A3.

To compute the buffered playtime, we use the formula

B(ti) = DT (ti)− V T (ti) (5)

DT (ti) refers to the sum of the playtime which is contained
in the previously downloaded blocks and can be calculated
recursively as:

DT (ti) =

{
0s if i = 1,
DT (ti−1) + PTi−1 otherwise. (6)

V T (ti) refers to the amount of time from the video that has
been played out until block i is requested. While the video time
is initially 0, at each block request ti, i ≥ 2, the video time can
be calculated by adding the time between the block requests
∆ti−1 but subtracting the time during which the video was
not playing (i.e., initial delay and stallings) in that interval.
As S(t) is the total stalling duration until time t, ∆Si−1 =

Fig. 4. Management of the playback buffer in YouTube.

S(ti)− S(ti−1) is the sum of the length of all stalling events
(including startup delay) between ti−1 and ti.

V T (ti) =

{
0 if i = 1,
V T (ti−1) + ∆ti−1 −∆Si−1 otherwise.

(7)
We consider the model for the flow control at distinct time

points when a new block is requested. Thus, stalling can only
occur if the video playtime at the next block request time ti+1

is larger than the downloaded playtime at that time DT (ti+1).
In this case, the previous stalling time can be computed as the
difference between the needed playtime V T (ti)+∆ti and the
actual available playtime DT (ti+1).

∆Si =

{
0 s if V T (ti) + ∆ti < DT (ti+1),
V T (ti) + ∆ti −DT (ti+1), otherwise. (8)

The presented model allows for a simulation setup which
computes the time and amount of traffic generated by a
YouTube video. Moreover, the occurred stalling time can be
calculated which can be used to estimate the perceived quality
of the video streaming. The needed input parameters are video
size V S, resolution r, contained video playtime per block PTi,
and download capacity C.

VII. VIDEO PLAYER APPLICATION MODEL: MEASURING
AND MODELING THE YOUTUBE PLAYER

In previous sections we explored YouTube from the network
perspective, measuring and modeling the flow control mecha-
nisms used by YouTube to deliver the videos through the net-
work. Grasping such mechanisms is paramount for ISPs, both
to understand the impact of YouTube traffic on their networks,
as well as to assess the traffic delivered to the customers’ end-
devices. With a proper assessment, traffic bottlenecks in the
network can be avoided and network issues can be resolved.
Let us now turn from the network to the application and
shed light on how the video flows are consumed at the end
devices, which ultimately defines how the customers perceive
the YouTube service. This is in fact the most important part of
the end-to-end YouTube provisioning for a network operator:
how good or bad is the YouTube quality as experienced by
the customers.
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For doing so, we measure and model the YouTube player
buffering and playback behavior. Later on in Section VIII
we investigate how to estimate the quality experienced by
YouTube users, providing a QoE model translating the behav-
ior of the YouTube player into a measure of user satisfaction.

As explained in Section V, the YouTube player works
with an internal playback buffer where the chunks of video
being downloaded are stored at and played from. During the
simultaneous downloading and playback, the buffer grows and
shrinks depending on the download bandwidth and the video
bitrate. Intuitively, when the download bandwidth is lower
than the video bitrate, the playback buffer becomes gradually
empty, ultimately leading to the stalling of the playback. When
the buffer runs empty, the video stalls and the YouTube player
state changes from ”playing” to ”stalling”, until more video
chunks are received and buffered.

The YouTube player model uses the parameters presented
in Section V: it considers the buffering-based thresholds Θ0

and Θ1 to control the way video frames are consumed from
the playback buffer. To further explain the YouTube player
behavior in the practice, Figure 4 describes an artificially gen-
erated video playback scenario, in which a video is displayed
under heavy downlink congestion, forcing the player to visit
all its states (note that this figure is a particular case of Figure
1). At time t = 0 the player buffer is empty, and video
blocks are requested to the server. The video starts playing
immediately after the buffered video playtime B(t) exceeds
the playing threshold Θ0, flagged as event (a). Video blocks
are downloaded from the server as long as B(t) is below 50 s
(see Section VI-A3 for a detailed explanation). Event (b) flags
the end of this buffering/blocks-request period. The playback
of the video continues without additional buffering activity
as long as B(t) is above the aforementioned 50 s thresh-
old. Events flagged as (c) correspond to a heavy downlink
congestion situation, in which the player requests additional
video blocks but the video content gets to the player only
sporadically, i.e., the video buffer slightly increases. The video
playback continues until B(t) falls below Θ1, flagged as event
(d). The player remains in stalling state until B(t) exceeds Θ0.

A. The Model in the Practice

To verify the applicability of the proposed model, we
compare the buffered playtime B(t) as measured for a video
watched in the desktop YouTube player with the buffered
playtime B̂(t) estimated by the model through a simulation.
For this purpose, the data set and the measuring methodology
described in Section IV-B are used. The same video is down-
loaded/replayed 14 times under perfect network conditions
(i.e., bandwidth is high enough to avoid stalling), to account
for potential network performance variations. Figure 5 shows
the buffered playtime over time. Colored in black, we see the
result of 14 measurements of the same video on top of each
other. Colored in brown, we see the result of the simulation.
To simplify the evaluation, we assume that the startup delay of
the video playback is zero in the model, i.e., we take Θ0 = 0.
Given that no stalling is observed for this video, we also set
the stalling threshold Θ1 = 0.

There is only one curve for the simulation since it is deter-
ministic. We first notice that the measurement and the simula-
tion seem to be very close to each other, as depicted in Figure
5(a). However, there are some deviations which are visible if
we look at the curves in detail in the following two figures. In
Figure 5(b), the buffered playtime over time in the initial phase
is depicted for the measured data and the simulation. Here, it
can be seen that the first blocks are requested faster in the
simulation since we ignore the waiting time between requests
in the initial phase. Therefore, data is downloaded faster in
the initial phase and the buffered playtime increases faster
as compared to the real measurements. In addition, a new
block is requested in our model when the buffered playtime
drops to 50 s. In our measurement results, these values vary
slightly, cf. Figure 5(c). Thus, the point in time when a block
is requested deviates by up to two seconds compared to the
measured values. These variations do not add up but instead,
they are memoryless. Furthermore, ignoring the startup delay
(i.e., till B(t) > Θ0) causes the playback to be started up
to one second before it starts according to our measurement.
Figure 5(d) shows a CDF of the difference in block request
time between the simulation and the measurement results,
considering different video resolutions. For 360p, the mean is
at around −0.40 s with a variance of 0.55 and a mean squared
error of 0.71. Similar values are observed for other resolutions.
The main cause for the negative offset is the zero playback
delay considered in the model parametrization. Furthermore,
the mean buffered playtime at which blocks are requested is
49.8 s for the samples, in contrast to 50 s that are used in the
model.

B. Using the Player Model To Extract Stallings

The YouTube player conditions the experience of the user
watching a video, specially because of its influence on the
stalling pattern of a video (i.e., the number and duration of
stalling events), which ultimately determines the YouTube
QoE. We therefore propose to use the described YouTube
player model to extract the stallings of a video. In [44] we have
introduced a very simple technique that permits to reconstruct
the stalling patterns of a video from the aforementioned player
model, following a similar approach to the one considered to
the YouTube flow control model as presented in Section VI-B.

The main difference we consider now wrt the flow control
model is the temporal-granularity: instead of updating the
different parameters for every new requested block at time ti,
the technique works at the packet time level, updating the state
with every new video packet TCP ACK received at time τi.
This provides a much finer granularity to estimate not only the
complete stalling time of a video, but also the individual length
and time of single stalling events during the video playback.
To work at such low temporal granularity, we resort to the
analysis of the metadata contained in the flow of YouTube
packets.

The playback times of the video frames composing the
video can be obtained by dissecting the metadata present
in the so-called video container (e.g, MP4, VP9 etc.). Each
YouTube video is compressed and encoded as a MP4, VP9,
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(a) Buffered playtime B(t).
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(b) B(t) – initial phase.
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(c) B(t) – detailed view.
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Fig. 5. Comparison of the buffered playtime for different measurements of the same video and the estimations provided by the video player model by simple
simulation. The estimation is almost perfect, but there are some small misalignments in the specific times when additional video blocks are requested, both
at the initial pre-buffering phase as well as doing the video playback. Still, differences are almost negligible, being always below 2 s.

etc. file which is a container format for media files. The
container includes the compressed video and audio, as well as
the information needed by the YouTube player to decode and
display the video content. The header of these media files starts
with a well-defined signature identifying the corresponding
container format, and contains metadata information such as
the times when the video frames have to be actually displayed.
The developed technique consists of identifying the beginning
of a new YouTube video flow as marked by the signature of its
container, and extracting the corresponding play times of the
downloaded content to estimate the accumulated video play
time at the buffer.

Let us describe the parameters which are used in this
technique, recalling their definitions from Table III. The first
and most important parameter is the total downloaded video
play time at time τi, namely DT (τi), which is updated from
every new TCP ACK received at time τi. As we said before,
the value of DT (τi) is obtained by parsing the video container
metadata. We additionally consider the video play time V T (τi)
and the stalling time S(τi), which are the user experienced
video play time and stalling time after the reception of the i-th
TCP ACK. The buffered video playtime at time τi is indicated
as B(τi), and it corresponds to the difference between the
downloaded video play time DT (τi) and the actually played
time V T (τi), i.e., B(τi) = DT (τi) − V T (τi) (cf. equation
(1)). We also consider the boolean stalling variable ψ, which
indicates whether the video is currently playing (ψ = 0) or
stalling (ψ = 1), depending on the relations between the
buffered video playtime and the playing/stalling thresholds,
Θ0 and Θ1 respectively. The measurement studies performed
in [44] revealed that these two buffer thresholds can be
reasonably taken as Θ0 = 2.2 s and Θ1 = 0.4 seconds for
YouTube players running on laptops and desktop PCs. While
these two thresholds are not strictly constant and might depend
on the specific characteristics of a video, results shown next
suggest that the estimations are highly accurate with these
approximations. Using these definitions, the stalling pattern of
a YouTube video over time can be obtained as follows:

ψi = ψi−1 ∧ (B(τi−1) < Θ0) ∨ ¬ψi−1 ∧ (B(τi−1) < Θ1)

S(τi) = S(τi−1) +

{
τi − τi−1, if ψi

0, if ¬ψi

V T (τi) = V T (τi−1) +

{
0, if ψi

τi − τi−1, if ¬ψi

B(τi) = DT (τi)− V T (τi)

Finally, the time elapsed between the previous ACK at time
τi−1 and current ACK at time τi increases the the stalling time
S(τi) or the play time V T (τi), depending on the resulting
video state (i.e., stalling or playing). Since YouTube first
starts buffering (i.e., stalling state) until the threshold Θ0 is
exceeded, the iterative computation of the different variables
is initialized with S(τ0) = V T (τ0) = 0 and ψ0 = 1.

Figure 6 reports validation results for the proposed tech-
nique. Results correspond to 386 YouTube videos streamed
from youtube.com through a bottleneck link of controlled
capacity (from 128kbps to 20Mbps). Figures 6(a) and 6(c)
show that the number and total duration of stallings per
video computed by the aforementioned technique are highly
consistent with the stallings measured at the YouTube player.
Figure 6(b) shows that for 131 videos, the number of stallings
is zero and the absolute difference between the estimated
(ne) and the real (na) number of stallings is 0. For the 255
remaining videos, the relative difference |ne−na|

na
is still 0

for 30% of the cases, and below 15% for about 90% of the
videos. Hence, for more than 93% of the 386 tested videos,
the estimation is either exact or there are errors for na > 6.
According to the QoE model we described in Section VIII
next, MOS differences for n > 4 are negligible.

These results show that the YouTube player model and the
presented technique can actually be used to extract the stalling
patterns that occur during the streaming of a YouTube video,
which can then be mapped to QoE values by applying the
models presented next. The main limitation of this estimation
technique as presented so far is that it has not been conceived
as a tool for monitoring the QoE of YouTube from the
perspective of an operator, who actually needs to run such
estimations in the core or close to it to have an idea of the
overall quality his customers are experiencing. The last step
to achieve such a monitoring system is described in the last
part of the paper.
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(c) Estimated stalling time.

Fig. 6. Estimated (a) number of stallings, (b) distribution of errors, and (c) duration of stallings for 386 YouTube videos.
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Fig. 7. MOS vs number of stallings from Lab and Crowdsourcing measure-
ments: stallings of 2 (left) and 4 (right) seconds of duration.

VIII. QUALITY OF EXPERIENCE IN YOUTUBE: FROM
PACKETS TO USER PERCEPTION

The experience of a user with any application is conditioned
by multiple influence parameters, including dimensions such
as technical characteristics of the application, user personality
and expectations, user demographics, device usability, and
usage context among others. In the case of YouTube, the
most relevant parameters defining its QoE are the stallings
of the video playback. Authors in [18] show that, while
initial playback delay has also an influence in QoE for video
streaming, most users tolerate it because they are used to them.
Stalling, on the other hand, has a huge impact as already little
stalling severely degrades the QoE.

In this section we study the relations between both the
number and the duration of these stalling events and the users’
perception. Having a model which can map stallings to QoE
has a very powerful advantage, that of becoming independent
of the underlying specific characteristics of the network in
which the YouTube QoE will be evaluated.

Figures 7 and 8 depict these relations for both controlled
studies (lab and crowdsourcing) and field experiments we have
performed in [18], [20], [21]. In the case of lab and crowd-
sourcing studies, 37 participants watched different YouTube
videos for which a fully controlled stalling pattern was applied
(i.e., number and duration of stalling events were perfectly
defined), and then rated the perceived overall quality according
to an ordinal ACR Mean Opinion Score (MOS) scale [51],
ranging from “bad” (MOS=1) to “excellent” (MOS=5). The 37
users were adults aged between 20 and 72 years (18 female,
19 male, average age of 39 years old), and about 65% had
a daily Internet usage between 1 and 5 hours. The obtained
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Fig. 8. MOS vs average number (left) and average duration (right) of stallings
per video from field measurements.

results are depicted in Figure 7.
In the case of field studies, a group of 33 participants

used mobile broadband 3.5G modems connected to the 3G
HSPA network of a mobile network operator to watch their
preferred YouTube videos on their own laptops, rating the
overall perceived quality. In this study, the average age of
participants (12 female, 21 male) was 32 years old, and more
than 70% had a daily Internet usage between 1 and 5 hour.
Stalling patterns can not be controlled in field studies; for
this reason, participants’ traffic was rate-limited to different
down-link bandwidth values, and the resulting stallings were
measured at the application layer using the aforementioned
YoMo tool. Results are depicted in Figure 8.

Both lab and field studies show that user perception of
stalling events is highly non-linear, with one single stalling
event already significantly impairing the overall experience.
In both cases, a single stalling event reduces the video quality
from excellent to fair (i.e., 1 MOS point in the scale). Note
that the maximum ratings provided by users in both Figure 7
and Figure 8 are never 5 but somewhere between 4.3 and 4.6.
This is a well known phenomenon in QoE studies, where users
hardly employ the limit values of the scale for their ratings
[52]. A second stalling event has also a strong influence on
YouTube QoE, but saturation already starts after 2 stallings,
as even getting more than 4 stallings slightly reduces the QoE
from around 2 to 1.6. Stallings duration also plays an important
role in YouTube QoE, but shows to be less critical in this
case. For example, doubling the stalling duration from 2 to 4
seconds in the lab studies has a limited impact, but increasing
its value to more than 8 seconds shows deterioration of the
user experience in the field.
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Fig. 9. MOS vs number of stallings, depending on the fraction λ of total
stalling duration.

1) Combining Models for QoE-based Traffic Monitoring:
In this section we combine the results obtained from previous
QoE studies into a single YouTube QoE model. By coupling
this model with the YouTube player model and the stalling
reconstruction technique so far presented, we have designed an
on-line passive monitoring system for assessing, in real time,
the QoE undergone by customers watching YouTube videos
in the mobile network of a major European ISP. The system
is known as YOUQMON [43].

The proposed monitoring system consists of passive data
analysis of the traffic observed in the well known Gn data
interface of a mobile operator. YouTube flows are identified
on the fly using pattern matching and deep packet inspection
techniques [43], and stalling patterns are extracted for every
observed YouTube video, producing a per-video report in a
time-slotted temporal basis (in the practice, every minute).
To map the extracted number and duration of stalling events
into MOS values, we have adapted the datasets and curves
presented before to the specific slotted time functioning of the
monitoring system. In particular, we have considered a new
mapping function where we take the ratio λ between the total
stalling time and the total video elapsed time (i.e., playing +
stalling time) in the corresponding time slot as a better image
of the impacts of stalling time on YouTube QoE. This permits
to limit the effects of videos with different durations, as we
are now considering the stalling time relative to the length of
the evaluation (i.e., the length of the time slot). The resulting
YouTube stallings–QoE mapping model depicted in Figure 9
is decomposed in five different functions, depending on the
value of λ computed in the time slot of length T (T = 60 s).
The five functions have all the same shape, in the form of:

MOS(n)i = ai · e−bi·n + ci, ∀i = 1, 2, 3, 4, 5. (9)

where n is the number of stalling events estimated on the
time slot of length T and {ai, bi, ci} depend on the computed
value for λ. At every new time slot where a YouTube video
is detected, the value of λ is obtained as follows: first, we
compute the total stalling time σ and the total play time ρ for
this time slot; then, if the total video elapsed time ρ + σ is
smaller than the length of the time slot T , then we compute
λ = σ/(σ + ρ); otherwise, λ = σ/T . The curves depicted in
Figure 9 deserve some clarifications: firstly, the MOS value
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Fig. 10. On-line QoE monitoring results. Validation with real traces from
the field trial.

computed for n = 0 stallings only makes sense for the curve
in which λ < 5%; in all the other cases, n > 0. Secondly, the
curves only show mappings for up to n = 6 stallings; this is
because a YouTube video with more than such a number of
stalling events can be directly declared as very bad quality (cf.
Figures 7 and 8), and no extra mapping is therefore required.

To validate the QoE estimation properties of the proposed
system, we replay some of the network packet traces captured
in the field trial study conducted in [20], for which we have
the MOS values declared by the users as ground truth. Figure
10 compares both the declared MOS and the predicted MOS
values for 50 different videos which experienced different
stalling patterns in the field trial. All the considered videos
have a total duration of less than 60 seconds, just to avoid any
biased comparison due to the different evaluation procedure
used in the field trial and on this evaluation. Obtained results
are very accurate and close to the MOS values actually
declared by the participants, but some strange deviations occur
at the edges of the rating scale, both at very low or very
high MOS values. This difference comes from the edge-ratings
phenomenon previously mentioned. In the field study, ratings
for 0 stallings correspond to MOS values around 4.5, while
the model depicted in Figure 9 gives a MOS value of 5 on
these situations. Similarly, the limit values for very bad quality
provided by the model are slightly higher than the actual
opinion of the users; for this reason, the model provides a
MOS value around 1.8 when users actually rate around 1.5.
In any case, the reader should note that none of both identified
differences are an issue to consider, as they occur so at the
edges of the scale.

To conclude, we present the YouTube QoE monitoring
results obtained by using this system with the real mobile
broadband traffic of of the aforementioned operator. Figure
11(a) depicts an histogram on the number of reported tickets
(a ticket reports the QoE estimation results for every video and
every time slot T ) and the total played seconds of YouTube
videos at the different estimated QoE levels, for one hour of
real traffic monitored at the live network. As reported by the
pie charts in Figures 11(b) and 11(c), the resulting YouTube
QoE in this network is excellent (i.e., MOS = 5) for about 90%
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of the issued tickets and of the video time consumed during
the analyzed hour. For 9% of the issued tickets and 4% of the
total video time, the quality achieved was average (i.e. MOS
= 3.4 in this case). Regarding bad quality events, one of the
main limitations of doing only monitoring is that the system
can not say whether bad quality events come from problems
on the network or in any other part of the end-to-end path
(the customer terminal, the YouTube servers, a bad SNR, etc).
Still, the level of visibility the operator gets by following such
an approach is solely by itself a great asset.

A. YouTube QoE in DASH

So far we have focused the QoE analysis on the fixed-quality
video streaming approach normally followed by YouTube.
Still, the massive application of YouTube DASH, as well as its
growing usage in mobile networks and end devices, introduces
some interesting aspects from the QoE perspective that we
discuss next. Indeed, whilst adaptive streaming concepts are
known for a long time, their broad commercial usage has only
risen recently, and the topic is getting more and more attention
within the research community.

Figure 12 reports the overall quality results obtained for
YouTube in mobile devices (i.e., smartphones) in subjective
lab tests we have recently conducted in [53], where we have
compared two different flavors of the YouTube smartphone
application. Whereas in one case we fix the quality of the
watched videos to constant HD quality, in the other one
we configure the application to use adaptive streaming (i.e.,
DASH). In the DASH case, videos are also requested in HD
quality, but the service itself adapts the subsequent video
quality resolutions to throughput variations.

Figures 12(a) and 12(b) compare the QoE experienced
by the participants using the fixed HD quality configuration
against the DASH configuration, assuming always a constant
downlink bandwidth value during the video display. It is quite
impressive to appreciate how the DASH approach results in a
nearly optimal QoE for all the tested conditions (from 1 Mbps
to 4 Mbps), whereas the fixed HD quality approach results
in poor QoE for downlink bandwidth values below 4 Mbps.
The main difference here is that DASH changes the video
quality without incurring in playback stallings, whereas the
fixed quality configuration definitely results in video stallings.

The main takeaway of these simple evaluations is that, what-
ever new YouTube QoE-based monitoring systems relying on
network throughput measurements, it must definitely address
the definition of new metrics considering the characteristics of
YouTube DASH. Indeed, results from the end-user perspective
in the case of DASH are completely different from the
traditional bandwidth-QoE relations observed in the past. We
have recently presented some first promising results in terms
of modeling QoE for DASH [54], but there is still a long way
to go when it comes to live monitoring systems as the one we
described before.

IX. CONCLUSION

This paper characterized and modeled YouTube, the most
popular and volume-dominant service in today’s Internet.
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Fig. 12. Overall QoE for YouTube in smartphones, considering both DASH
and non-DASH applications. Videos are UHD 4k, but due to the device
capabilities, there are re-scaled to 720p.

Going from the generated network traffic to the Quality of
Experience perceived by the users watching YouTube videos,
we have investigated and derived different models to better
understand the functioning of YouTube. In particular, we
introduced a network traffic model for the new YouTube flow
control mechanism, which permits to understand how YouTube
provisions the video traffic flows to the users. We have also
investigated how the traffic is consumed at the client side,
and derived a simple model for the YouTube application.
Finally, we analyzed the operation of YouTube from an end-
user perspective, presenting a model for the quality perceived
by them. All in all this paper provides objective tools and
models to network operators to better understand the YouTube
traffic in their networks, to predict the playback behavior of the
video player, and to assess how well they do with the YouTube
traffic in terms of the satisfaction of their customers.
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