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Summary. In this paper we present an approximate discrete-time analysis of the machine interference problem
with generally distributed working, failure, and walking times. We analyze the corresponding asymmetric polling
system consisting of N separate closed queuing stations (buffer and server), each of which contains a single
customer. These queuing stations are attended to by a common server in a cyclic manner. The walking times
between the stations are non-zero. Upon service completion of the common server a customer requires service
by its dedicated server. Then it is routed back to its corresponding buffer where it has to wait for service by the
common server once again.The analysis is exact except for the assumption that the contributions of the queuing
stations to the cycle time of the common server are mutually independent. We first calculate the stationary
state probabilities using an iterative procedure and then derive the cycle time and waiting time distributions
and their first and second moments. Several numerical examples comparing approximate results to simulations

illustrate the accuracy of our method.
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1 Introduction

To analyze the machine interference problem (MIP,
see for example Stecke and Aronson 1985) where a
single repairman walks cyclically from one machine to
the next in non-zero time and repairs those machines
that are broken down, we consider a basic cyclic sin-
gle buffer polling system. We extend the basic polling
model by the following modifications: In addition to
the common server S, station ¢ has its own dedicated
server L;. Each station contains exactly one customer.
Upon service completion at the dedicated server this
customer is routed to the station’s buffer Q;, where
it waits for service by the common server. After ter-
mination of the service period at the common server
the customer returns to the corresponding dedicated
server. Thus, the resulting queuing system consists of
N separate closed queuing stations (buffer and server),
each of which contains a single customer and is at-
tended to by a common server. We therefore refer to
this polling model as a closed polling model or polling
model with finite population.

In the context of the MIP, the service times of the
dedicated servers correspond to machine failure times
whereas operator repair times are represented by the
service times of the common server. In the terminology
of polling systems, the walking times of the patrolling
operator are referred to as switchover times.

The contribution of this paper is as follows: based
on the discrete-time method developed by Tran-Gia
(1986) we present an approximation for the cycle time
and waiting time distribution function of the closed
polling system with a single customer per service sta-
tion where all service times are assumed to be arbi-
trarily distributed. This model corresponds exactly to
the machine interference problem with a single pa-
trolling operator. We utilize the approach presented
by Tran-Gia (1992), assuming that the contributions
by the queuing stations to the cycle time are mutually
independent. Our analysis is exact except for this as-

sumption. In contrast to Tran-Gia (1992), we do not
assume independence between the arrival process and
the scanning process of the polling server.

2 Literature

Polling systems became popular in the performance
evaluation of cyclic service systems arising out of man-
ufacturing and telecommunication systems (see Tak-
agi (1990, 1991) and Haverkort 1994).

Mack et al. (1957) and Mack (1957) analyzed the
symmetric MIP with a patrolling operator, Poisson
arrivals, constant switchover times, and either con-
stant service times or service times following dis-
crete distributions. Apart from these publications,
all other references deal with open polling systems.
Hashida and Kawashima (1981) obtained approximate
results for an asymmetric single buffer polling system
with exponentially distributed interarrival times and
generally distributed service and switchover times.
Takagi (1985) analyzed the aforementioned system
in the symmetric case. Ibe and Cheng (1989) and
Takine et al. (1988) presented an exact solution of
Hashida and Kawashima’s model. They employed
the method of station times to obtain the Laplace-
Stieltjes-transforms of both waiting time and cy-
cle time distribution functions. Tran-Gia and Raith
(1988) investigated an asymmetric polling system with
finite buffers, limited-1 service discipline, and Poisson
arrivals. Service and switchover times were generally
distributed. Their approximation yields mean wait-
ing times and the first two moments of cycle times.
Tran-Gia (1992) extended this analysis to generally
distributed interarrival times using his discrete-time
approach (see Tran-Gia 1986). Chung et al. (1994)
derived the Laplace-Stieltjes-transforms of the wait-
ing time and cycle time distribution functions for a
single buffer polling system with Markovian service
discipline. Finally, we refer to the work of Takine et al.
(1990) who investigated two different single buffer



polling systems, the conventional system and a buffer
relazation system, which are also considered by Takine
et al. (1988). In the latter a customer releases the
buffer upon beginning of service whereas in the con-
ventional system the buffer remains occupied until the
service time has elapsed. If interarrival times are ex-
ponentially distributed, the open conventional system
corresponds exactly to the finite population polling
system as described in the previous section.

3 Analysis

The model is analyzed in the discrete-time domain,
i.e., the time axis is divided into equidistant intervals
of length At. Events can occur only at the boundaries
between these unit intervals. This implies that samples
of the random variables involved are restricted to val-
ues which are integer multiples of At. Furthermore, we
assume that arrival events are scheduled before polling
events.

For a discrete random variable (r.v.) X, we use
the following notation. The distribution of X, P{X =
k- At}, is denoted by z(k), whereas P{X <k- At}
is the distribution function of X. In each case, k is
a non-negative integer. To simplify the notation, we
use the normalized notation P{X = k:} instead of
P{X = k- At}. Further, we denote by =, z(™, and
cx the mean, the mth moment, and the coefficient
of variation (CoV) of X, respectively. The expres-
sion z1 (k) ® x2(k) is the discrete convolution of the
distributions z; (k) and z»(k). Finally, we denote by
zl®™ (k) the m-fold discrete convolution of the distri-
bution z(k) with itself.

The service times of the central server and of the
dedicated servers are denoted by B; and A;, respec-
tively. We assume that both B; and A; are i.i.d. ran-
dom variables with arbitrary distribution functions
B;(t) and A;(t), respectively. The switchover time
(walking time) U; from station i to station i + 1 is
assumed to be i.i.d. with distribution function Uj(t).
Stations are numbered cyclically such that the prede-
cessor station of station 1 is station V.

3.1 Polling Process Figure 1 depicts a sample
path of the polling process, as seen from station i.
Let ¢;(t) be the r.v. of the occupancy of buffer Q; at
time instant t. Then ¢;(t) = 0 denotes a free buffer and

¢i(t) = 1 indicates an occupied buffer. Let TI(Dn.) denote

the nth polling instant at station . Let ql( n) A £ q(T ("))

be the r.v. of the occupancy of Q; at the polling in-
stant. In addition, let =; (n) & P{q(n) = 1} the proba-
bility that S finds Q; occupied at TI(JJ).

The r.v. for the service time at station ¢ in the
nth cycle is denoted by B§">. Obviously, B;"™ is not
defined if ¢{"’ = 0. The time instant T}, at which
S leaves station i, is called server departure instant.
Hence, we have T}(,"l) T]gnz if g™ =0.

The time interval from T,gz L to T(") is called
switchover time; the correspondlng r.v. is denoted by

Ui("). The time spent by a customer in its local server
is called interarrival time (from S’s point of view). Let

Agn) denote the r.v. of the interarrival time starting

at Tl()) Let W ) denote the waiting time ending at

T}(D Z), which comprises the time from the instant at
which J; enters Q, to the subsequent polling instant
T}(,"l) Both W ) and A are not defined if q(”) =0.

The r.v. for the length of the time interval from
T[(,nl) 1 to T[(,n), the station time of station 7 in the nth

cycle, is denoted by Cs ;- The sum of the N station
times comprising a full cycle is called cycle time. Tt is
equal to the time interval from T(") to T("H) The
correspondlng random variable is given by

ZcSl +Zc"“. (1)

l=i+1
Finally, we define the intervisit time as the interval
from T(n) to T(n+1) whose r.v. is denoted by V(n)

If a station’s buffer is found empty at the polhng
instant in a particular cycle, and therefore no service
period occurs, this cycle is called an idle cycle from
this station’s point of view. If a cycle is an idle cycle,
the cycle time equals the intervisit time. The sequence
of cycles starting from the end of a service period Bl(no)
)) until
the end of Agno) is called a cycle group. A cycle group

with the arrival occurring in its kth cycle is called a

Ty,

o =

(i.e., the beginning of the interarrival time AE”U

k-cycle-group. For a k-cycle-group starting at
we define the [-polling-instants
T(”0)

D.i =0,

Tt 0<i<k.

(1>

n, l
Tiet (2)

Note that a k-cycle-group consists of k — 1 idle cycles
and one cycle in which a customer is to be served.

3.2 State Probabilities Our approximate analy-
sis is based on the assumption that the station time
random variables Cg,?v t1=1,...,N, n €N, are mu-
tually independent. We first derive the steady-state
probabilities m; £ lim, o™, i = 1,... N, for a
buffer being occupied at a polling-instant, expressed in
terms of the intervisit time distribution. Subsequently,
we obtain the reverse relationship between the in-
tervisit time distribution and the buffer occupancy
probabilities. These two relationships can be combined
into an iterative algorithm which allows the numeri-
cal computation of these and other performance mea-
sures.

In order to establish the first of the two relations,
we identify an embedded Markov chain in the polling
process. The following arguments can be carried out
for each station in isolation. To simplify the notation
we will henceforth drop the station index i.

Noting that we do not assume the intervisit time to
be geometrically distributed, which consequently does
not in general exhibit the memoryless property, it be-
comes clear that the state description of the embedded
Markov chain must account for the elapsed (or the re-
maining) interarrival time. We arrive at such a state
description by extending the state space by a supple-
mentary variable (see Cox 1955) for the number of the
polling instants within a cycle group.

Let L(™ denote the r.v. for the number of the cur-



rent l—polling—instant within the current cycle group,
if ¢ = 0; LW = 0 0therw1se We consider the
stochastlc process {( ), L) }en, (¢, LMW €
{(1,0),(0,1),(0,2),...}, embedded at polling in-
stants TI(Dn). We will show that, under the assumption
of independent station times, the probability for an ar-
rival within the next cycle depends only on the state at
the current polling instant and not on the past devel-
opment of the process. The process {(¢\™, L(™)} en
is therefore a Markov process. Its state probabilities
are defined by 7r(") 2 P{q™ =k, LW =1}.

Consider an arbltrary cycle group starting at
T Let

Ps; £ P{arrival in (TénOH),TC(;nOHH)] |

Almo) 5 Tén0+l) _ T((;m))}, 1>0, (3)

be the probability for an arrival within cycle [ + 1
of the cycle group, under the condition that no ar-
rival occurred during the previous [ cycles. Then, the
following possible state transitions can be observed
during a cycle:
o from state (¢ = 1, L(") = 0) into state

(¢t =1, L") = 0)  with prob. Pap,

(¢t =0, L™ = 1)  with prob. 1 — Py,
o from state (¢ =0, L(™ =1), [ > 1, into state

(q(n+1) =1, L(n*th) = 0)
(¢"*tY =0, LD =7 4 1)

We arrive at the following state equations for the em-
bedded Markov chain:

with prob. Py,
with prob. 1 — P4 .

W£n0+1) Pay .wgflo) + ZPAJ '”(()Z)a

=1
7r[()n1+1) = (1—Payp)- 7r§ 0), (4)
ﬂ'[()an) = (1—Paj-1) '71'(()3),1, I>1.

Assuming the existence of the limiting probabilities
Tkl 2 lim, o 7r,(6nl), and taking into account the nor-
malizing condition o + Zf; o, = 1, we obtain

the steady-state probabilities:

-1
Tog = Ti,0- H(l — P4 ),

"o 1 B )
71,0 = [1 + Z H(I—PA,])]

The only state for which ¢ = 1 is state (¢ = 1, L = 0)
with ¢ 2 Jim, o0 q(") and L £ lim,_, L™ . There-
fore, the steady-state probability of a customer being
present at the polling instant is equal to 7 g.

We proceed to the derivation of the conditional
arrival probability P4 ;. Again, consider an arbitrary

n .
(m0) For sake of a concise no-

(no) _ p(0)
Ty’

cycle group starting at 17,
tation, we shift the time index so that T7,
We start with the deﬁmtlon

Pg; 2 P{TY —TY < 4@ <1

of the unconditional probability for an arrlval in ex-
actly the (I + 1)th cycle of a cycle group (I > 0). Due
to the assumption of independent station times, con-

(0) }

secutive intervisit times must be independent as well.
Thus, the length of [ consecutive intervisit times is
distributed according to the I-fold convolution of the
intervisit time distribution. Hence,
l 0

P{TY - T = k) l®(k), (6)
because the time interval from T((;O) to Tc(,l ) is composed
of exactly [ consecutive idle cycles, and thus [ consec-
utive intervisit times. With an analogous argument,
after some algebraic manipulations, we obtain

P, = P{T(l) _ (0) < A0 < Tg) _Téo) _+_V(l)}
ZA (o EG) = =) (@)

The second step follows by conditioning the result of
the first step on Tg) — Téo) =jand VW = k. Then,
setting ng = 0 in Eqn. (3) yields
Pg

PAJ = ’ . 8

1-P{a® <7V TN ®
The denominator of this expression can be simplified
using the same arguments as in the previous para-
graph, which results in

10y =

P{A® <1 ZA o ®l(k). (9)

Combining Eqns. (8) and (9) Wlth Eqn. (7), we finally

obtain
ZA ( [®( H—l)](k,) _ U[®I](k‘))

1—ZA ol®1 (k)

Note that Pa; is a functlon only of [ and the dis-
tributions wv(k) and a(k), which were assumed to
be known and constant throughout this subsection.
Thus, the state transition probabilities of the process
{(¢"™, L)} ,en depend on the current state only
and not on its past history. Therefore, the process in-
deed possesses the Markov property.

Py,

(10)

3.3 Intervisit Times In the previous subsection,
we derived the steady-state probability of a customer
being present in the buffer of a station 7 at polling in-
stants, under the assumption that the intervisit time
distribution is known. Recall that the calculations can
be carried out for each station separately.

We now assume in turn that the buffer occupancy
probabilities m;, « = 1,..., N, are known. Following
the arguments developed in Tran-Gia (1992), we ob-
tain the station time distribution

CSJ'(k‘) = Ty - [’U,Z(k') ® bz(k)] + (]. - 7Ti) ’U,Z(k‘) (].].)
Due to the assumption of independent station times,

the intervisit time and cycle time distributions are
given as, respectively,

i N
vi(k) = ®ecsj(k)®ui(k)® ® cs;(k),
j=1 j=i+1

(12)

clk) = csi(k)®- - ®csn(k),

where ® cs;(k) = cs1(k) ® - ® cs.q(k). Note that
j=1

the assumed mutual independence of station times im-



plies the independence of consecutive cycle and inter-
visit times. We used this property in the previous sub-
section.

3.4 lterative Algorithm We complete the analysis
of the polling process by combining the results from
the previous two subsections into an iterative algo-
rithm (cf. Tran-Gia 1992).

1. 7 < initial value € (0,1), i=1,... N
2. repeat

2.1 e m,i=1,...,N
2.2 compute v;(k) from w}, i=1,... N
2.3 compute new values for m;, i =1,... N

2.4 until termination criterion satisfied
3. compute c(k) and further performance measures.

Step 2.2 uses Eqns. (11) and (12), while Step 2.3 em-
ploys Equs. (10) and (5). Step 3 applies Eqn. (13). Ad-
ditional performance measures, in particular the wait-
ing time distribution, will be derived in the sections
below. An appropriate termination criterion would
be Ef\;l |m; — 7w} < € with a given precision € > 0
(cf. Tran-Gia and Raith 1988).

3.5 Waiting Time We now derive relations for the
steady-state waiting time distribution function of a
particular station. It will turn out that this function
can be expressed in terms of the distribution func-
tions of the interarrival time and the intervisit time,
taking into account the assumptions from the previ-
ous section. To achieve this goal we first introduce the
notion of residual interarrival times. In the following,
we again omit the subscript i referring to a particular
station in order to simplify the notation.

3.5.1 Residual Interarrival Times Consider an ar-
bitrary [-polling-instant Tg) = T((;nH) in steady-state
for an arbitrarily chosen [, [ > 0. Then the residual
interarrival time ASJ;)S is defined as the time interval
from this [-polling-instant until the end of the current
interarrival time. If a message arrives in a particu-
lar cycle, its waiting time corresponds exactly to the
difference of the intervisit time and the residual inter-
arrival time of that particular cycle. In addition to the
assumptions from Sections 3.1 — 3.3 we assume that
the limiting distribution a,es(k) 2 lim, o alr), (k) ex-
ists; the corresponding random variable is denoted
by Ayes. Let L") be the r.v. for the number of the
current polling instant within a cycle group (see Sec-
tion 3.1). Define Pp, = P{L(T) = l} as the proba-
bility that, in steady-state, an arbitrary observer who
randomly selects a polling instant Tg) sees the sys-
tem at a [-polling-instant. Then, using the law of total
probability, we can write

(13)

afn(k) = Y P{AD, =k | L") =1} Ppy.
k=0

Next, we derive the conditional probabilities from
Eqn. (13). Consider an [-polling-instant T((;nH) in
steady-state for a fized | > 0. At this [-polling-instant
the (I + 1)st intervisit time V(") after the beginning
of the interarrival time A(™ (starting at instant 7",
the O-polling-instant of the cycle group under consid-

eration) is initiated. Thus,

TES

( An+D) ‘ L(n+D) — l) = AW _ li vt o (14)
j=0
We now introduce the random variable A} defined by
-1
A=V
=0
Here, the random variables V; are mutually indepen-

dent and follow the same distribution as the random
variable V. Note that A; may have negative real-

izations for { > 0. Contrarily, (Afféjl) | LD =) as-
Tén+l)

A & (15)

sumes only non-negative values because instant
is an I-polling-instant only if the corresponding cy-
cle group comprises at least [ idle cycles. Since we
assume that successive intervisit times are mutu-
ally independent (see Section 3.3), in steady-state,

(Al | L") = 1) has the same distribution as

A & (4] 4 >0). (16)
According to Tran-Gia (1988) the distribution of the
difference of two discrete random variables is given

by the discrete cross-correlation of their distributions.
Thus, the distributions of Aj and A; are as follows:

a (k) a(k) ® vl®(—k), (17)
alk) = &) -1-40] ", k>0 (18)

Taking the limit for r — oo the limit of the left hand
side of Eqn. (13) results to

ares(k) = Y ai(k) - Ppy.
=0

(19)

It remains to derive the probability Pp;. For this
purpose, consider an arbitrary cycle group. Since, by
Eqn. (6), a cycle group is a j-cycle-group with proba-
bility Pg,;, the mean number of polling instants within
an arbitrary cycle group is E;io (j +1)- Pp,j. Note
that a j-cycle-group comprises exactly (5 + 1) polling
instants (including the 0-polling-instant). The mean
number of [-polling-instants within an arbitrary cycle
group is Z;’il Pg ;, because every cycle group com-
prising at least [ cycles contains a single [-polling-
instant. Hence, in steady-state, instant Tg) randomly
selected by an arbitrary observer is an [-polling-instant
with probability

o0 o0
—1
Pei = Y Poy |36+ Pry| (20)
j=l j=0
3.5.2 Waiting Time Distribution Function Using

the distribution of the residual interarrival time we are
now able to calculate the waiting time distribution. If
an arrival occurs during the intervisit time V(™=1) the
random variable of the waiting time (™) obeys the
following equation:

wm) y(m=1)
Taking the limit for m — oo and assuming that the

limiting distributions exist, we obtain the steady-state
probability distribution function of the waiting time

W(k) = P{V— Ao <k |Apes <V}, (21)

-



where condition A,.; < V is equivalent to the condi-
tion that an arrival occurs in an idle cycle. The waiting
time is zero if the residual interarrival time equals the
intervisit time because, by convention, arrival events
are processed before polling events if both occur at
the same discrete time instant. Using the law of total
probability and conditioning Eqn. (21) by V = j, we
obtain after some algebraic manipulations

Z ares(m) - v(j)

Clearly, W(k) = 0 for £ < 0. Note that the waiting
time distribution W (k) depends only on the distribu-
tion of the interarrival time (cf. Eqn. (17)) and the
intervisit time (cf. Eqns. (17) — (18)). Furthermore, to
calculate probability Pp; from Eqn. (20) we only need
probability Pg ;. By Eqn. (7), the latter is a function
of distributions v(k) and a(k). Thus, we have shown
that, indeed, the waiting time distribution is solely a
function of the intervisit and interarrival time distri-
bution.

4 Numerical Results

To provide some insight into the approximation ac-
curacy, we apply the proposed method to several test
cases. We consider a symmetric system of N = 8 sta-
tions. Because of the symmetry, we omit the station
index from the system parameters and performance
measures. The switchover time is assumed to be de-
terministic and normalized to one unit of time, that
isu = 1 and ¢y = 0. We focus on the impact of
variations in the second moments (given through the
coefficients of variation ¢g and c4) of the service and
interarrival times on the system behavior. The mean
service time is kept fixed at b = 10, while we show
performance measures for the mean interarrival time
a € {40, 80, 120}.

The input distributions were derived from their
given first and second moments according to the mo-
ment matching method developed by Kiithn (1979)
and subsequent discretization according to Tran-Gia
(1988). In the tables below we also provide simulation
results, along with 99% student-¢ confidence intervals
for the means, and relative errors (r.e.).

Table 1 depicts the mean waiting time w for ser-
vice time CoVs of cg = 0.2, 1, 2 and interarrival time
CoVs of ¢4 = 0.2, 2. The results exhibit that, given a
fixed mean interarrival time, the larger ¢4 and cp the
longer the mean waiting times. A comparison of the
results for c4 = 0.2 and ¢4 = 2 shows that w is mainly
determined by c4 whereas cp has less impact. The rel-
ative errors of the mean waiting time are small in most
cases. They significantly exceed the 10 % margin only
for large interarrival time CoV.

Table 2 shows the waiting time CoV for configura-
tions with ¢4 = 0.2, 1, 2 and ¢g = 0.2, 2. Again, the
approximation is fairly accurate. Observe that, for a
given interarrival mean, the waiting time CoV is much
more sensitive to changes in ¢4 in the case of cg = 0.2
than for ¢g = 2. This type of multiple dependency

between parameters and performance measures com-
plicates the prediction of their relationship. This, in
turn, underpins the need for an efficient approxima-
tion procedure.

Note that our method significantly underestimates
the CoV of the cycle time. This is due to the assump-
tion of independent station times, which does not take
into account any positive correlation between station
times. The reason for this correlation is that longer
station times at a station ¢ imply a higher probability
for an arrival at a station j in the current cycle, and
thus a longer station time at j.

5 Conclusion

The comparison of numerical examples and simulation
results showed the validity of our approximation. The
method is well suited to its application on large sym-
metrical systems since, in this case, the major equa-
tion that has to be solved reduces to an N-fold con-
volution. The only disadvantage in applying it to en-
tirely asymmetric systems is the increase in computa-
tional complexity which mainly depends on the length
of the distributions involved. However, it is also influ-
enced by their detailed characteristics, which are re-
flected in the number of iterations necessary to satisfy
a given termination criterion. For example, an increase
in the CoVs of the service or the interarrival time
tends to increase the required numerical effort. For
our case studies, the required CPU times on a Sparc20
workstation generally ranged from several seconds to
around 15 minutes. For a few extreme parameter set-
tings however, longer running times of up to four hours
were observed, in which case simulation becomes the
more economical approach (simulation times ranged
between 30 and 50 minutes in comparison). Hence, a
direction for future research is to obtain performance
measure bounds that are simple to evaluate.
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Figure 1: Sample polling process and corresponding random variables
Table 1: Mean waiting time
CBZOQ CB:]_ CB:2
al| w Weim r.e. w Wsim r.e. w Wsim r.e.
40 | 37.8 38.0+0.04 -0.6% | 38.8 40.0+0.09 -2.8% | 42.3 43.6+0.20 -2.9%
cy =02 80 |17.1 15.1+0.03 12.8% | 19.5 21.7+0.08 -10.1% | 26.1 30.4+0.21 -13.9%
120 | 10.9 10.5+0.04 3.9% | 13.2 14.9+0.08 -11.5% | 19.4 23.6+0.15 -17.5%
40 | 41.0 41.4+0.08 -1.0% | 41.7 42.5+£0.16 -1.7% | 43.0 44.3£0.23 -2.8%
ca =2 80 | 20.8 20.6+£0.10 0.9% | 22.8 23.5+0.09 -3.0% | 26.6 27.7+£0.24 -3.8%
120 | 14.1 13.240.07 7.5% | 16.4 15.9+0.08 34% | 20.9 20.4+0.18 2.5%
Table 2: Waiting time coefficient of variation
ca =0.2 ca=1 ca =2
a ¢ Csim r.e. c Csim r.e. c Csim r.e.
40 1026 0.25 12% | 048 050 -3.5% | 045 047 -4.9%
cg=02 80 | 072 074 -23%|0.70 0.77 -93% |0.65 0.76 -13.4%
120 [ 0.80 0.86 -6.9% | 0.79 0.88 -10.4% | 0.74 0.88 -15.1%
40 | 1.11 118 -6.3% | 1.07 1.14 -6.7% | 1.05 1.11 -5.7%
cg =2 80 | 1.40 1.51 -74% | 141 150 -6.0% | 135 148 -8.6%
120 | 1.62 1.74 -6.7% | 1.65 1.74 -51% | 153 1.71 -10.9%




