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Summary� In this paper we present an approximate discrete�time analysis of the machine interference problem
with generally distributed working� failure� and walking times� We analyze the corresponding asymmetric polling
system consisting of N separate closed queuing stations �bu�er and server�� each of which contains a single
customer� These queuing stations are attended to by a common server in a cyclic manner� The walking times
between the stations are non�zero� Upon service completion of the common server a customer requires service
by its dedicated server� Then it is routed back to its corresponding bu�er where it has to wait for service by the
common server once again�The analysis is exact except for the assumption that the contributions of the queuing
stations to the cycle time of the common server are mutually independent� We �rst calculate the stationary
state probabilities using an iterative procedure and then derive the cycle time and waiting time distributions
and their �rst and second moments� Several numerical examples comparing approximate results to simulations
illustrate the accuracy of our method�
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� Introduction

To analyze the machine interference problem �MIP�
see for example Stecke and Aronson �	
�� where a
single repairman walks cyclically from one machine to
the next in non�zero time and repairs those machines
that are broken down� we consider a basic cyclic sin�
gle bu�er polling system� We extend the basic polling
model by the following modi�cations� In addition to
the common server S� station i has its own dedicated
server Li� Each station contains exactly one customer�
Upon service completion at the dedicated server this
customer is routed to the stations bu�er Qi� where
it waits for service by the common server� After ter�
mination of the service period at the common server
the customer returns to the corresponding dedicated
server� Thus� the resulting queuing system consists of
N separate closed queuing stations �bu�er and server��
each of which contains a single customer and is at�
tended to by a common server� We therefore refer to
this polling model as a closed polling model or polling
model with �nite population�

In the context of the MIP� the service times of the
dedicated servers correspond to machine failure times
whereas operator repair times are represented by the
service times of the common server� In the terminology
of polling systems� the walking times of the patrolling
operator are referred to as switchover times�

The contribution of this paper is as follows� based
on the discrete�time method developed by Tran�Gia
��	
�� we present an approximation for the cycle time
and waiting time distribution function of the closed
polling system with a single customer per service sta�
tion where all service times are assumed to be arbi�
trarily distributed� This model corresponds exactly to
the machine interference problem with a single pa�
trolling operator� We utilize the approach presented
by Tran�Gia ��		��� assuming that the contributions
by the queuing stations to the cycle time are mutually
independent� Our analysis is exact except for this as�

sumption� In contrast to Tran�Gia ��		��� we do not
assume independence between the arrival process and
the scanning process of the polling server�

� Literature

Polling systems became popular in the performance
evaluation of cyclic service systems arising out of man�
ufacturing and telecommunication systems �see Tak�
agi ��		�� �		�� and Haverkort �		���

Mack et al� ��	��� and Mack ��	��� analyzed the
symmetric MIP with a patrolling operator� Poisson
arrivals� constant switchover times� and either con�
stant service times or service times following dis�
crete distributions� Apart from these publications�
all other references deal with open polling systems�
Hashida and Kawashima ��	
�� obtained approximate
results for an asymmetric single bu�er polling system
with exponentially distributed interarrival times and
generally distributed service and switchover times�
Takagi ��	
�� analyzed the aforementioned system
in the symmetric case� Ibe and Cheng ��	
	� and
Takine et al� ��	

� presented an exact solution of
Hashida and Kawashimas model� They employed
the method of station times to obtain the Laplace�
Stieltjes�transforms of both waiting time and cy�
cle time distribution functions� Tran�Gia and Raith
��	

� investigated an asymmetric polling system with
�nite bu�ers� limited�� service discipline� and Poisson
arrivals� Service and switchover times were generally
distributed� Their approximation yields mean wait�
ing times and the �rst two moments of cycle times�
Tran�Gia ��		�� extended this analysis to generally
distributed interarrival times using his discrete�time
approach �see Tran�Gia �	
��� Chung et al� ��		��
derived the Laplace�Stieltjes�transforms of the wait�
ing time and cycle time distribution functions for a
single bu�er polling system with Markovian service
discipline� Finally� we refer to the work of Takine et al�
��		�� who investigated two di�erent single bu�er



polling systems� the conventional system and a bu�er

relaxation system� which are also considered by Takine
et al� ��	

�� In the latter a customer releases the
bu�er upon beginning of service whereas in the con�
ventional system the bu�er remains occupied until the
service time has elapsed� If interarrival times are ex�
ponentially distributed� the open conventional system
corresponds exactly to the �nite population polling
system as described in the previous section�

� Analysis

The model is analyzed in the discrete�time domain�
i�e�� the time axis is divided into equidistant intervals
of length �t� Events can occur only at the boundaries
between these unit intervals� This implies that samples
of the random variables involved are restricted to val�
ues which are integer multiples of �t� Furthermore� we
assume that arrival events are scheduled before polling
events�

For a discrete random variable �r�v�� X � we use
the following notation� The distribution of X � P

�
X �

k � �t
�
� is denoted by x�k�� whereas P

�
X � k � �t

�
is the distribution function of X � In each case� k is
a non�negative integer� To simplify the notation� we
use the normalized notation P

�
X � k

�
instead of

P
�
X � k � �t

�
� Further� we denote by x� x�m�� and

cX the mean� the mth moment� and the coe�cient
of variation �CoV� of X � respectively� The expres�
sion x��k� � x��k� is the discrete convolution of the
distributions x��k� and x��k�� Finally� we denote by
x��m��k� the m�fold discrete convolution of the distri�
bution x�k� with itself�

The service times of the central server and of the
dedicated servers are denoted by Bi and Ai� respec�
tively� We assume that both Bi and Ai are i�i�d� ran�
dom variables with arbitrary distribution functions
Bi�t� and Ai�t�� respectively� The switchover time
�walking time� Ui from station i to station i � � is
assumed to be i�i�d� with distribution function Ui�t��
Stations are numbered cyclically such that the prede�
cessor station of station � is station N �

��� Polling Process Figure � depicts a sample
path of the polling process� as seen from station i�
Let qi�t� be the r�v� of the occupancy of bu�er Qi at
time instant t� Then qi�t� � � denotes a free bu�er and

qi�t� � � indicates an occupied bu�er� Let T
�n�
P�i denote

the nth polling instant at station i� Let q
�n�
i � qi�T

�n�
P�i �

be the r�v� of the occupancy of Qi at the polling in�

stant� In addition� let �
�n�
i � P

�
q
�n�
i � �

�
the proba�

bility that S �nds Qi occupied at T
�n�
P�i �

The r�v� for the service time at station i in the
nth cycle is denoted by B

�n�
i � Obviously� B

�n�
i is not

de�ned if q
�n�
i � �� The time instant T

�n�
D�i � at which

S leaves station i� is called server departure instant�

Hence� we have T
�n�
P�i � T

�n�
D�i if q

�n�
i � ��

The time interval from T
�n�
D�i�� to T

�n�
P�i is called

switchover time� the corresponding r�v� is denoted by

U
�n�
i � The time spent by a customer in its local server

is called interarrival time �from Ss point of view�� Let

A
�n�
i denote the r�v� of the interarrival time starting

at T
�n�
D�i � Let W

�n�
i denote the waiting time ending at

T
�n�
P�i � which comprises the time from the instant at

which Ji enters Qi to the subsequent polling instant

T
�n�
P�i � Both W

�n�
i and A

�n�
i are not de�ned if q

�n�
i � ��

The r�v� for the length of the time interval from

T
�n�
D�i�� to T

�n�
D�i � the station time of station i in the nth

cycle� is denoted by C
�n�
S�i � The sum of the N station

times comprising a full cycle is called cycle time� It is

equal to the time interval from T
�n�
D�i to T

�n���
D�i � The

corresponding random variable is given by

C
�n�
i �

NX
l�i��

C
�n�
S�l �

iX
l��

C
�n���
S�l � ���

Finally� we de�ne the intervisit time as the interval

from T
�n�
D�i to T

�n���
P�i � whose r�v� is denoted by V

�n�
i �

If a stations bu�er is found empty at the polling
instant in a particular cycle� and therefore no service
period occurs� this cycle is called an idle cycle from
this stations point of view� If a cycle is an idle cycle�
the cycle time equals the intervisit time� The sequence

of cycles starting from the end of a service period B
�n��
i

�i�e�� the beginning of the interarrival time A
�n��
i � until

the end of A
�n��
i is called a cycle group� A cycle group

with the arrival occurring in its kth cycle is called a

k�cycle�group� For a k�cycle�group starting at T
�n��
D�i �

we de�ne the l�polling�instants

T
�n��l�
G�i �

��
�

T
�n��
D�i � l � ��

T
�n��l�
P�i � � � l � k�

���

Note that a k�cycle�group consists of k� � idle cycles
and one cycle in which a customer is to be served�

��� State Probabilities Our approximate analy�
sis is based on the assumption that the station time

random variables C
�n�
S�i � i � �� � � � � N� n � N� are mu�

tually independent� We �rst derive the steady�state

probabilities �i � limn�� �
�n�
i � i � �� � � � � N � for a

bu�er being occupied at a polling�instant� expressed in
terms of the intervisit time distribution� Subsequently�
we obtain the reverse relationship between the in�
tervisit time distribution and the bu�er occupancy
probabilities� These two relationships can be combined
into an iterative algorithm which allows the numeri�
cal computation of these and other performance mea�
sures�

In order to establish the �rst of the two relations�
we identify an embedded Markov chain in the polling
process� The following arguments can be carried out
for each station in isolation� To simplify the notation
we will henceforth drop the station index i�

Noting that we do not assume the intervisit time to
be geometrically distributed� which consequently does
not in general exhibit the memoryless property� it be�
comes clear that the state description of the embedded
Markov chain must account for the elapsed �or the re�
maining� interarrival time� We arrive at such a state
description by extending the state space by a supple�
mentary variable �see Cox �	��� for the number of the
polling instants within a cycle group�

Let L�n� denote the r�v� for the number of the cur�



rent l�polling�instant within the current cycle group�
if q�n� � �� L�n� � � otherwise� We consider the
stochastic process f�q�n�� L�n��gn�N� �q�n�� L�n�� �
f��� ��� ��� ��� ��� ��� � � �g � embedded at polling in�

stants T
�n�
P � We will show that� under the assumption

of independent station times� the probability for an ar�
rival within the next cycle depends only on the state at
the current polling instant and not on the past devel�
opment of the process� The process f�q�n�� L�n��gn�N
is therefore a Markov process� Its state probabilities

are de�ned by �
�n�
k�l � P

�
q�n� � k� L�n� � l

�
�

Consider an arbitrary cycle group starting at

T
�n��
D � Let

PA�l � P
�
arrival in �T

�n��l�
G � T

�n��l���
G �

��
A�n�� � T

�n��l�
G � T

�n��
G

�
� l � �� ���

be the probability for an arrival within cycle l � �
of the cycle group� under the condition that no ar�
rival occurred during the previous l cycles� Then� the
following possible state transitions can be observed
during a cycle�
� from state

�
q�n� � �� L�n� � �

�
into state�

q�n��� � �� L�n��� � �
�

with prob� PA�	��
q�n��� � �� L�n��� � �

�
with prob� �� PA�	�

� from state
�
q�n� � �� L�n� � l

�
� l � �� into state�

q�n��� � �� L�n��� � �
�

with prob� PA�l��
q�n��� � �� L�n��� � l � �

�
with prob� �� PA�l�

We arrive at the following state equations for the em�
bedded Markov chain�

�
�n���
��	 � PA�	 � �

�n�
��	 �

�X
l��

PA�l � �
�n�
	�l �

�
�n���
	�� � ��� PA�	� � �

�n�
��	 � ���

�
�n���
	�l � ��� PA�l��� � �

�n�
	�l��� l � ��

Assuming the existence of the limiting probabilities

�k�l � limn�� �
�n�
k�l � and taking into account the nor�

malizing condition ���	 �
P
�

l�� �	�l � �� we obtain
the steady�state probabilities�

�	�l � ���	 �
l��Y
j�	

��� PA�j��

���

���	 �
h
� �

�X
l��

l��Y
j�	

��� PA�j�
i��

�

The only state for which q � � is state �q � �� L � ��

with q � limn�� q�n� and L � limn�� L�n�� There�
fore� the steady�state probability of a customer being
present at the polling instant is equal to ���	�

We proceed to the derivation of the conditional
arrival probability PA�l� Again� consider an arbitrary

cycle group starting at T
�n��
D � For sake of a concise no�

tation� we shift the time index so that T
�n��
D � T

�	�
D �

We start with the de�nition

PB�l � P
�
T
�l�
G � T

�	�
G � A�	� � T

�l���
G � T

�	�
G

�

of the unconditional probability for an arrival in ex�
actly the �l � ��th cycle of a cycle group �l � ��� Due
to the assumption of independent station times� con�

secutive intervisit times must be independent as well�
Thus� the length of l consecutive intervisit times is
distributed according to the l�fold convolution of the
intervisit time distribution� Hence�

P
�
T
�l�
G � T

�	�
G � k

�
� v��l��k�� ���

because the time interval from T
�	�
G to T

�l�
G is composed

of exactly l consecutive idle cycles� and thus l consec�
utive intervisit times� With an analogous argument�
after some algebraic manipulations� we obtain

PB�l � P
�
T
�l�
G � T

�	�
G � A�	� � T

�l�
G � T

�	�
G � V �l�

�

�

�X
j�	

A�j� �
	
v���l�����j� � v��l��j�



� ���

The second step follows by conditioning the result of

the �rst step on T
�l�
G � T

�	�
G � j and V �l� � k� Then�

setting n	 � � in Eqn� ��� yields

PA�l �
PB�l

�� P
�
A�	� � T

�l�
G � T

�	�
G

� � �
�

The denominator of this expression can be simpli�ed
using the same arguments as in the previous para�
graph� which results in

P
�
A�	� � T

�l�
G � T

�	�
G

�
�

�X
k�	

A�k� � v��l��k�� �	�

Combining Eqns� �
� and �	� with Eqn� ���� we �nally
obtain

PA�l �

�X
k�	

A�k� �
	
v���l�����k�� v��l��k�




��

�X
k�	

A�k� � v��l��k�

� ����

Note that PA�l is a function only of l and the dis�
tributions v�k� and a�k�� which were assumed to
be known and constant throughout this subsection�
Thus� the state transition probabilities of the process
f�q�n�� L�n��gn�N depend on the current state only
and not on its past history� Therefore� the process in�
deed possesses the Markov property�

��� Intervisit Times In the previous subsection�
we derived the steady�state probability of a customer
being present in the bu�er of a station i at polling in�
stants� under the assumption that the intervisit time
distribution is known� Recall that the calculations can
be carried out for each station separately�

We now assume in turn that the bu�er occupancy
probabilities �i� i � �� � � � � N � are known� Following
the arguments developed in Tran�Gia ��		��� we ob�
tain the station time distribution

cS�i�k� � �i � �ui�k�� bi�k�� � ��� �i� � ui�k�� ����

Due to the assumption of independent station times�
the intervisit time and cycle time distributions are
given as� respectively�

vi�k� �
i
�
j��

cS�j�k�� ui�k��
N
�

j�i��
cS�j�k��

����
c�k� � cS���k�� � � �� cS�N�k��

where
i
�
j��

cS�j�k� � cS���k�� � � �� cS�i�k�� Note that

the assumed mutual independence of station times im�



plies the independence of consecutive cycle and inter�
visit times� We used this property in the previous sub�
section�

��� Iterative Algorithm We complete the analysis
of the polling process by combining the results from
the previous two subsections into an iterative algo�
rithm �cf� Tran�Gia �		���

�� �i � initial value � ��� ��� i � �� � � � � N
�� repeat
��� ��i � �i� i � �� � � � � N
��� compute vi�k� from ��i� i � �� � � � � N
��� compute new values for �i� i � �� � � � � N
��� until termination criterion satis�ed

�� compute c�k� and further performance measures�

Step ��� uses Eqns� ���� and ����� while Step ��� em�
ploys Eqns� ���� and ���� Step � applies Eqn� ����� Ad�
ditional performance measures� in particular the wait�
ing time distribution� will be derived in the sections
below� An appropriate termination criterion would

be
PN

i�� j�i � ��ij � � with a given precision � � �
�cf� Tran�Gia and Raith �	

��

��� Waiting Time We now derive relations for the
steady�state waiting time distribution function of a
particular station� It will turn out that this function
can be expressed in terms of the distribution func�
tions of the interarrival time and the intervisit time�
taking into account the assumptions from the previ�
ous section� To achieve this goal we �rst introduce the
notion of residual interarrival times� In the following�
we again omit the subscript i referring to a particular
station in order to simplify the notation�

����� Residual Interarrival Times Consider an ar�
bitrary l�polling�instant T

�r�
G � T

�n�l�
G in steady�state

for an arbitrarily chosen l� l � �� Then the residual

interarrival time A
�r�
res is de�ned as the time interval

from this l�polling�instant until the end of the current
interarrival time� If a message arrives in a particu�
lar cycle� its waiting time corresponds exactly to the
di�erence of the intervisit time and the residual inter�
arrival time of that particular cycle� In addition to the
assumptions from Sections ��� � ��� we assume that

the limiting distribution ares�k� � limr�� a
�r�
res�k� ex�

ists� the corresponding random variable is denoted
by Ares� Let L

�r� be the r�v� for the number of the
current polling instant within a cycle group �see Sec�

tion ����� De�ne PP�l � P
�
L�r� � l

�
as the proba�

bility that� in steady�state� an arbitrary observer who

randomly selects a polling instant T
�r�
G sees the sys�

tem at a l�polling�instant� Then� using the law of total
probability� we can write

a�r�res�k� �

�X
k�	

P
�
A�r�
res � k j L�r� � l

�
� PP�l� ����

Next� we derive the conditional probabilities from

Eqn� ����� Consider an l�polling�instant T
�n�l�
G in

steady�state for a �xed l � �� At this l�polling�instant
the �l���st intervisit time V �n�l� after the beginning

of the interarrival time A�n� �starting at instant T
�n�
G �

the ��polling�instant of the cycle group under consid�

eration� is initiated� Thus�

	
A�n�l�
res

��� L�n�l� � l



� A�n� �

l��X
j�	

V �n�j�� ����

We now introduce the random variable �A�l de�ned by

�A�l � A �

l��X
j�	

Vj � ����

Here� the random variables Vj are mutually indepen�
dent and follow the same distribution as the random
variable V � Note that �A�l may have negative real�

izations for l � �� Contrarily� �A
�n�l�
res

�� L�n�l� � l� as�

sumes only non�negative values because instant T
�n�l�
G

is an l�polling�instant only if the corresponding cy�
cle group comprises at least l idle cycles� Since we
assume that successive intervisit times are mutu�
ally independent �see Section ����� in steady�state�

�A
�n�l�
res

�� L�n�l� � l� has the same distribution as

�Al �
�
�A�l
�� �A�l � �

�
� ����

According to Tran�Gia ��	

� the distribution of the
di�erence of two discrete random variables is given
by the discrete cross�correlation of their distributions�
Thus� the distributions of �A�l and

�Al are as follows�

�a�l�k� � a�k�� v��l���k�� ����

�al�k� � �a�l�k� �
�
�� �A�l���

���
� k � �� ��
�

Taking the limit for r �	 the limit of the left hand
side of Eqn� ���� results to

ares�k� �

�X
l�	

�al�k� � PP�l� ��	�

It remains to derive the probability PP�l� For this
purpose� consider an arbitrary cycle group� Since� by
Eqn� ���� a cycle group is a j�cycle�group with proba�
bility PB�j � the mean number of polling instants within
an arbitrary cycle group is

P
�

j�	�j � �� � PB�j � Note

that a j�cycle�group comprises exactly �j � �� polling
instants �including the ��polling�instant�� The mean
number of l�polling�instants within an arbitrary cycle
group is

P
�

j�l PB�j � because every cycle group com�
prising at least l cycles contains a single l�polling�

instant� Hence� in steady�state� instant T
�r�
G randomly

selected by an arbitrary observer is an l�polling�instant
with probability

PP�l �

�X
j�l

PB�j �
h �X
j�	

�j � �� � PB�j

i��
� ����

����� Waiting Time Distribution Function Using
the distribution of the residual interarrival time we are
now able to calculate the waiting time distribution� If
an arrival occurs during the intervisit time V �m��� the
random variable of the waiting time W �m� obeys the
following equation�

W �m� � V �m��� � A�m���
res �

Taking the limit for m � 	 and assuming that the
limiting distributions exist� we obtain the steady�state
probability distribution function of the waiting time

W �k� � P
�
V �Ares � k j Ares � V

�
� ����



where condition Ares � V is equivalent to the condi�
tion that an arrival occurs in an idle cycle� The waiting
time is zero if the residual interarrival time equals the
intervisit time because� by convention� arrival events
are processed before polling events if both occur at
the same discrete time instant� Using the law of total
probability and conditioning Eqn� ���� by V � j� we
obtain after some algebraic manipulations

W �k� �

�X
j�	

jX
m�j�k

ares�m� � v�j�

�X
j�	

Ares�j� � v�j�

� k � ��

Clearly� W �k� � � for k � �� Note that the waiting
time distribution W �k� depends only on the distribu�
tion of the interarrival time �cf� Eqn� ����� and the
intervisit time �cf� Eqns� ���� � ��
��� Furthermore� to
calculate probability PP�l from Eqn� ���� we only need
probability PB�j � By Eqn� ���� the latter is a function
of distributions v�k� and a�k�� Thus� we have shown
that� indeed� the waiting time distribution is solely a
function of the intervisit and interarrival time distri�
bution�

� Numerical Results

To provide some insight into the approximation ac�
curacy� we apply the proposed method to several test
cases� We consider a symmetric system of N � 
 sta�
tions� Because of the symmetry� we omit the station
index from the system parameters and performance
measures� The switchover time is assumed to be de�
terministic and normalized to one unit of time� that
is u � � and cU � �� We focus on the impact of
variations in the second moments �given through the
coe�cients of variation cB and cA� of the service and
interarrival times on the system behavior� The mean
service time is kept �xed at b � ��� while we show
performance measures for the mean interarrival time
a � f��� 
�� ���g�

The input distributions were derived from their
given �rst and second moments according to the mo�
ment matching method developed by K�uhn ��	�	�
and subsequent discretization according to Tran�Gia
��	

�� In the tables below we also provide simulation
results� along with 		� student�t con�dence intervals
for the means� and relative errors �r�e���

Table � depicts the mean waiting time w for ser�
vice time CoVs of cB � ���� �� � and interarrival time
CoVs of cA � ���� �� The results exhibit that� given a
�xed mean interarrival time� the larger cA and cB the
longer the mean waiting times� A comparison of the
results for cA � ��� and cA � � shows that w is mainly
determined by cA whereas cB has less impact� The rel�
ative errors of the mean waiting time are small in most
cases� They signi�cantly exceed the ��� margin only
for large interarrival time CoV�

Table � shows the waiting time CoV for con�gura�
tions with cA � ���� �� � and cB � ���� �� Again� the
approximation is fairly accurate� Observe that� for a
given interarrival mean� the waiting time CoV is much
more sensitive to changes in cA in the case of cB � ���
than for cB � �� This type of multiple dependency

between parameters and performance measures com�
plicates the prediction of their relationship� This� in
turn� underpins the need for an e�cient approxima�
tion procedure�

Note that our method signi�cantly underestimates
the CoV of the cycle time� This is due to the assump�
tion of independent station times� which does not take
into account any positive correlation between station
times� The reason for this correlation is that longer
station times at a station i imply a higher probability
for an arrival at a station j in the current cycle� and
thus a longer station time at j�

� Conclusion

The comparison of numerical examples and simulation
results showed the validity of our approximation� The
method is well suited to its application on large sym�
metrical systems since� in this case� the major equa�
tion that has to be solved reduces to an N �fold con�
volution� The only disadvantage in applying it to en�
tirely asymmetric systems is the increase in computa�
tional complexity which mainly depends on the length
of the distributions involved� However� it is also in�u�
enced by their detailed characteristics� which are re�
�ected in the number of iterations necessary to satisfy
a given termination criterion� For example� an increase
in the CoVs of the service or the interarrival time
tends to increase the required numerical e�ort� For
our case studies� the required CPU times on a Sparc��
workstation generally ranged from several seconds to
around �� minutes� For a few extreme parameter set�
tings however� longer running times of up to four hours
were observed� in which case simulation becomes the
more economical approach �simulation times ranged
between �� and �� minutes in comparison�� Hence� a
direction for future research is to obtain performance
measure bounds that are simple to evaluate�
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Figure �� Sample polling process and corresponding random variables

Table �� Mean waiting time

cB � ��� cB � � cB � �
a w wsim r�e� w wsim r�e� w wsim r�e�
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Table �� Waiting time coe�cient of variation

cA � ��� cA � � cA � �
a c csim r�e� c csim r�e� c csim r�e�
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