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Abstract: In this paper, we present a new method for the estimation and characte-
rization of the expected teletraffic in mobile communication networks. The method
considers the teletraffic from the network viewpoint. Its traffic estimation is based
on the geographic traffic model, which obeys the geographical and demographical
factors for the demand for mobile communication services. For the spatial teletraf-
fic characterization, a novel representation technique is introduced which uses the
notion of discrete demand nodes. We show how the information in geographical in-
formation systems can be used to estimate the teletraffic demand and validate the
results by a real cellular design. Additionally, we outline how the discrete demand
node representation enables the application of automatic mobile network design al-
gorithms.
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1 Introduction

The design of third generation mobile communication networks faces three major
challenges: first, there is the tremendous world wide increase in the demand for mobi-
le communication services. Second, the main resource in wireless systems, i.e. the fre-
quency spectrum, is extremely limited. And third, new access technologies like Space
Division Multiple Access (SDMA) and Code Division Multiple Access (CDMA) re-
quire new mobile network planning methods. Since these challenges are strongly
interconnected, they can only be addressed by an integrated concept, cf. Tutschku
et al. (1996), in order to obtain an efficient, economic and optimal mobile network
configuration.

The primary task of mobile system planning is to locate and configure the facilities,
i.e. the base stations or the switching centers, and to interconnect them in an opti-
mal way. To achieve an efficient and economic system configuration, the design of a
mobile network has to be based on the analysis of the distribution of the expected
teletraffic demand in the complete service area. In contrast, the traffic models ap-
plied so far for the demand estimation, characterize the teletraffic only in a single
cell or they are too complex for practical use in the planning process. Therefore, the
demand based design of mobile communication systems requires a traffic estimation
and characterization procedure which is simple as well as accurate.

The paper is organized as follows. In Section 2 we first describe the traffic source
models used so far in mobile network design and define a geographical traffic model
which obeys the geographical and demographical factors for the expected teletraffic
in a service region. Subsequently, we introduce the demand node concept. This is a
novel technique for the representation of the spatial distribution of the teletraffic,
which uses discrete points. In Section 3 of our presentation we outline a traffic cha-
racterization procedure which can provide a demand node distribution from publicly
available geographical data. To generate the demand nodes, we introduce a recursive
partitional clustering algorithm. In Section 4 we validate the demand node concept
by data from a cell structure of an operating mobile network. Section 5 outlines how
the demand concept can be applied for locating base stations and finally Section 6
summarizes the presentation.

2 Traffic estimation

In mobile communication networks the teletraffic originating from the service area of
the system can be described mainly by two traffic models which differ by their view
of the network. a) The traffic source model, which is also often referred to as the
mobility model, describes the system as seen by the mobile unit. The traffic scenario
is represented as a population of individual traffic sources performing a random walk
through the service area and randomly generating demand for resources, i.e. the radio
channel. An overview on these models is provided in Section 2.1. b) In contrast, the



network traffic model of a mobile communication system describes the traffic as
observed from the non-moving network elements, e.g. base stations or switches. This
model characterizes the spatial and temporal distribution of the traffic intensity F,
measured in Erlangs, in the two-dimensional service area. Both traffic models are
used in mobile communication system design. Particularly the latter model is of
principal interest when determining the location of the main facilities in a mobile
network, i.e. the base stations and the switching centers. These components should
be located close to the expected traffic in order to increase the system efficiency.
Therefore, this paper will focus in Section 2.2 in greater detail on this type of models.

2.1 Traffic source models

Due to their capability to describe the user behavior in detail, traffic source models
are usually applied for the characterization of the traffic in an individual single
cell of a mobile network. Using these models, local performance measures like fresh
call blocking probability or handover blocking probability can be derived from the
mobility pattern. Additionally, these models can be used to calculate the subjective
quality-of-service values for individual users.

Overview on traffic source models

A widely used single cell model was first introduced by Hong and Rappaport (1986).
Their model assumes a uniformly distributed mobile user density and a non-directed
uniform velocity distribution of the mobiles. Under this premise, performance values
like the mean channel holding time and the average call origination rate in a cell
can be computed.

El-Dolil, Wong, and Steele (1989) characterize the mobile phone traffic on vehicular
highways by assuming a one-dimensional mobility pattern. They derive the perfor-
mance values by applying a stationary flow model for the vehicular traffic. A similar
one-dimensional highway model with a non-uniform density distribution was inve-
stigated by Leung, Massey, and Whitt (1994). For the traffic characterization, fluid
flow models with time-nonhomogeneous and time-homogeneous traffic have been
used, as well as a approximative stochastic traffic model.

A limited directed two-dimensional mobility model was investigated by Foschini,
Gopinath, and Miljanic (1993). The model assumes a spatially homogeneous dis-
tribution of the demand and an isotropic mobility structure. Chlebus (1993) inve-
stigates a mobility model with a homogeneous demand distribution but assumes a
non-uniform velocity distribution. The traffic orientation is non-directed and equally
distributed.

The application of these traffic source models in real network planning cases is stron-
gly limited. Some models, like the highway model proposed by Leung, Massey, and
Whitt, give a deep insight on the impact of the terminal mobility on the cellular



system performance, however they are rather complex to be applied in real net-
work design. Other models, like the one suggested by Hong and Rappaport, due to
their simplification assumptions, can only be applied for the determination of the
parameters in an isolated cell.

2.2 Traffic intensity

Since the mobile network planning process requires a comprehensive view of the
expected load, a network teletraffic model has to be specified. Therefore, we define
the traffic intensity function E® (x, 7). This function describes the offered teletraffic,
as seen by the fixed network elements, in a unit area element at location (z, y) and at
time instant ¢. The coordinates (z,y) of the area element are integer numbers. Due
to the definition given above, the traffic intensity function is a matrix of traffic values
representing the demand from area elements in the service region, cf. Figure 1(b).
The traffic intensity £® (z,y) can be derived from the location probability of the
mobile units.

Under the premise that this probability pl(fZ(X, 1) is known, the average number of

mobile units #mob(t) (x,y) in a certain area element at time ¢ is:
) z+Az  ry+Ay )
#mob " (v,y) = / / Proc (X ¥)dy da . (1)
x y
Here, pl(fz (x,®) is the probability that, if the system is viewed from the outside,

there is a mobile unit at location (x,1)). The location (y, 1) is a coordinate in R?
and Az x Ay is the size of the unit area element.

Using the assumption that every mobile unit has the same call attempt rate r(t) at
time ¢, the traffic intensity F®(z,y) can be readily obtained:

EW(z,y) = #mob” (z,y) r(t). (2)

Since in reality it is almost impossible to directly calculate the location probability
pl(fz (X, ¥) from the mobility model, the traffic intensity has to be derived from indirect

statistical measures.

2.3 The geographic network traffic model

The offered traffic in a region can be estimated by the geographical and demogra-
phical characteristics of the service area. Such a demand model relates factors like
land use, population density, vehicular traffic, and income per capita with the cal-
ling behavior of the mobile units. The model applies statistical assumptions on the



relation of traffic and clutter type with the estimation of the demand. In the geogra-
phic network traffic model, the intensity Ef(,?o(x, y) is the aggregation of the traffic
originating from these various factors:

geo 37 y Z U 37 y) (3)
all factors %
where 7; is the traffic generated by factor 2 in an arbitrary area element of unit size,
measured in Erlangs per area unit, and 5 (x, y) is the assertion operator:

(4)

So far the planning of public communication systems uses geographic traffic models
which have a large granularity. A typical unit area size is in the order of square
kilometers, i.e. in public cellular mobile systems this is the size of location areas,
cf. Grasso et al. (1996). For the determination the positions of base stations a much
smaller value is required. The locations of these facilities have to be determined
within a spatial resolution of one hundred meters. An unit area element size in the
order of 100m x 100m is therefore indicated.

50 (z,y) = 0 : factor i is not valid at location (z,y)
Y 1 : factor ¢ is valid at location (z,y)

Traffic parameters

The values for n;, which are the traffic intensity originating from factor ¢ per area
element, can be derived from measurements in an existing mobile network and by
taking advantage of the known causal connection between the traffic and its origin.
A first approach is to assume a highly non-linear relationship. A general structure to
model this behavior is to use a parametric exponential function. In the geographic
model, proposed within this paper, the traffic-factor relationship is defined to be:

ni=a-b" (5)
where a is constant and b is the base of the exponential function. For the validation
of Eqn. 5, presented in Section 4, a value of 10 has been used for the basis b.

To reduce the complexity of the parameter determination we introduce the norma-
lization constraint:

Etota
A 1 = Z Ux (6)

service area/aunit element

all factors ¢

where A....icc area 1S the size of the service area, a is the size of an unit area
element, and F,., is the total teletraffic in this region. The value of E,., can be
measured in an operating cellular mobile network.

unit element

The structure of the geographical traffic model given in Eqn.3 and Eqn. 5 appears
to be simple. However, it will be shown in Section 5 that this model is accurate
enough to describe the traffic in cells of an operating mobile network. Moreover, due
to its structure the model can easily be adapted to the proper traffic parameters.
This capability enables its application for mobile system planning.



Stationary geographic traffic model

The above proposed model Eé?o(x,y) includes also the temporal variation of the

traffic intensity in the service area. Since communication systems must be configured
in such a way that they can accommodate the highest expected load, the time index ¢
is usually dropped and the traffic models are reduced to stationary models describing
the peak traffic. The maximum load is the value of the traffic during the busy hour,
cf. Mouly and Pautet (1992).

A pitfall for the network designer remains: the busy hour varies over time within
the service area. In downtown areas the highest traffic usually occurs during the
business hours, whereas in suburban regions the busy hour is expected to be in the
evening. Therefore, the network engineer has to decide how to weight the different
traffic factors, i.e. how to obey the different market shares of the various user groups
in the traffic model of the network.

2.4 Traffic discretization

The core technique of the traffic characterization proposed in this paper is the repre-
sentation of the spatial distribution of the demand for teletraffic by discrete points,
called demand nodes. Demand nodes are widely used in economics for solving facility
location problems, cf. Ghosh and McLafferty (1987).

Definition: A demand node represents the center of an area that contains a quantum
of demand from teletraffic viewpoint, accounted in a fixed number of call requests
per time unit.

The notion of demand nodes introduces a discretization of the demand in both
space and demand. In consequence, the demand nodes are dense in areas of high
traffic intensity and sparse in areas of low traffic intensity. Together with the time-
independent geographic traffic model, the demand node concept constitutes a static
population model for the description of the mobile subscriber distribution.

An illustration for the demand node concept is given in Figure 1: part (a) shows
publicly available map data with land use information for the area around the city
of Wiirzburg, Germany. The information was extracted from ATKIS, the official to-
pographical cartographical data base of the Bavarian land survey office, cf. ATKIS
(1991). The depicted region has an extension of 15km x 15km. Figure 1(b) shows
the traffic intensity distribution in this area, characterized by the traffic matrix:
dark squares represent an expected high demand for mobile service, bright values
correspond to a low teletraffic intensity. Part (d) of Figure 1 depicts a simplified
result of the demand discretization. The demand nodes are dense in the city center
and on highways, whereas they are sparse in rural areas.
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Abbildung 1: Demand node concept

3 Traffic characterization

3.1 Traffic characterization procedure

Based on the estimation method introduced in the previous section, the traffic cha-
racterization has to compute the spatial traffic intensity and its discrete demand
node representation from real world data. In order to handle this type of data, the
complete characterization process comprises four sequential steps:



Step 1 Traffic model definition:

Identification of traffic factors and determination of the traffic parame-
ters in the geographical traffic model.

Step 2 Data preprocessing:

Preprocessing of the information in the geographical and demographical
data base.

Step 3 Traffic estimation:
Calculation of the spatial traffic intensity in the service region.

Step 4 Demand node generation:

Generation of the discrete demand node distribution by the application
of clustering methods.

Traffic model definition

The definition of geographical traffic model in Step 1 of the characterization proce-
dure is based on the arguments given in Section 2.3. A simple but accurate spatial
geographic traffic model is the base for system optimization in the subsequent net-
work design steps.

Data preprocessing

The data preprocessing in Step 2 is required since the data in geographical informa-
tion systems are usually not collected with respect to mobile network planning. For
example, ATKIS’ main objective is to maintain map information. It uses a vector
format for storing its drawing objects.

To determine the clutter type of a certain location, one has to identify the land type
of the area surrounding this point. This requires the detection of the closed polygon
describing the shape of this area. Since maps are mostly printed on paper, the order
of drawing the lines of a closed shape doesn’t matter, see Figure 2(a). To identify
closed polygons, one has to check if every ending point of a line is a starting point of
another one. If a closed polygon has been detected, the open lines are removed from
the original base and replaced by its closed representation. Additionally, due to the
map nature of the data, two adjacent area objects can be stored by a closed and
an open polygon, see Figure 2(b). It also can happen that some data is missing, see
Figure 2(c). In this case, line closing algorithms have to applied, cf. Leskien (1997).
After the preprocessing step only closed area objects remain in the data base and
the traffic characterization can proceed with the demand estimation.
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Abbildung 2: Dirty map information data

Demand estimation

Step 3 of the traffic characterization process uses the geographical traffic model
defined in Step 1 for the estimation of the teletraffic demand per unit area element.
The computed traffic values are stored in the traffic matrix. To obtain the traffic
value on a certain unit area element, the procedure first determines the traffic factors
valid for this element and then computes the matrix entry by applying Eqn. 3.

3.2 Demand node generation

The generation of the demand nodes in Step 4 of the characterization process is
performed by a clustering method. Clustering algorithms are distinguished into two
classes, cf. Jain and Dubes (1988): a) the Partitional Clustering methods, which try
to construct taxonomies between the properties of the data points, and b) the Hier-
archical Clustering methods which derive the cluster centers by the agglomeration
of input values.

The algorithm proposed for the demand generation is a recursive partitional cluste-
ring method. It is based on the idea to divide the service area until the teletraffic
of every tessellation piece is below a threshold #. Thus, the algorithm constructs a
sequence of bisections of the service region. The demand node location is the center
of gravity of the traffic weight of the tessellation pieces.

The demand node generation algorithm is shown in Algorithm 1. The function
left_area() divides the area into two rectangles with the same teletraffic and re-
turns the left part of the bisection. The function right_area() returns the right
piece. In every recursion step, the orientation of the partitioning line is turned by
90°. The recursion stops, if every rectangle represents a traffic amount less than



Algorithm 1 (Generate Demand Nodes)

variables:
dnode_set  global variable for the set of generated demand nodes
orient orientation of partitioning line
0 traffic quantization value

algorithm:

1 proc gen dnodes(area,,orient = () =

2  begin

3 if (traffic(area) < )

4 then

5 dnode_set «+ center_traffic(area);

6 return;

7 else

8 orient + (orient + 90°) mod 180°;  /* turn partitioning line */
9 a; = left_area(area, orient);
10 a, = right_area(area, orient);
11 gen_dnodes(ay, 8, orient); /* do the recursion */
12 gen_dnodes(a,, 8, orient);
13 fi
14  end

Algorithm 1: Demand node generation

the minimal quantization value #. The function traffic() evaluates the amount of
expected teletraffic demand in the area.

An example for the bisection sequence of the algorithm is shown in Figure 1(c). The
numbers next to the partitioning lines indicate the recursion depth. To make the
example more vivid, not every partition line is depicted in the example. The upper
left quadrant of the Figure 1(c) shows only the lines until the recursion depth 3,
the lower left part the lines until the depth 4, the lower right quarter the lines until
depth 5 and the upper right quadrant of the region the lines until depth 6.

The partitional clustering algorithm of Algorithm 1 is a fast but simple clustering
method. However, its accuracy depends strongly on the quantization value #, which
gives only an upper bound for the traffic represented by a single demand node.
Moreover, since the algorithm constructs a sequence of right-angled bisections, the
shape of the tessellation pieces is always rectangular. To overcome these drawbacks,
we investigate also hierarchical agglomerative clustering algorithms. These methods
are able to obtain tessellation pieces of arbitrary shape and of a predefined traffic
value.

10



Abbildung 3: Cell boundries Abbildung 4: Demand node approximation
4 Validation of the traffic estimation

To evaluate the capability of the traffic estimation and characterization of Section 3,
the traffic approximation of this procedure was compared with the traffic distributi-
on measured in cells of the GSM-based D1 system of the German network operator
DeTeMobil. Figure 3 depicts the approximated cell boundaries of the D1 system
superimposed on the land use of the investigated area around Wiirzburg.

The traffic estimation of the demand node concept was based on the geographical
network model as defined by the Equations 3 and 5. For the validation, the model
considered as the traffic factors the five clutter types which were available for this
area in the ATKIS data base: vehicular traffic, urban, open outdoor, water, and
forest. Table 1 shows the values of the exponents used for the calculation of 7; in
Eqn. 5. The parameter a was calibrated from measurements and constant for eve-
ry traffic factor . The demand node representation of the estimated traffic in this
region, generated by Algorithm 1, is depicted in Figure 4. As expected the demand
nodes are dense in the city center and on highways and are sparse in rural areas.

‘ clutter type ‘ x; = logy (™) ‘
vehicular traffic 3
urban 2
open outdoor 1
water 0
forest -1

Tabelle 1: Parameter of the traffic clutter relationship

11



0.3

"D1"

Q
'S "estimation" -
5 0.25
o
S
© 0.2
5]
<
(]
0.15
0.1
0.05
0 1 1 1 1 1
1 2 3 4 5 6 7
cell number

Abbildung 5: Cell traffic distribution

The share of the teletraffic of the cells in this area is shown in Figure 5. The solid
line represents the proportion of each of the seven D1 cells of the measured total
teletraffic. The dotted line in Figure 5 is the estimation of the geographic network
traffic model. Both graphs are qualitatively almost the same for the cells with num-
bers 1, 2, 3, and 4. However, for the cells 5, 6, and 7 the estimation differs strongly
from the measured distribution. The cause for the wrong approximation in these
cells is the limited distinction of the traffic factors. Due to the use of ATKIS, the
model does not distinguish between “urban” and “dense urban”. However, the cells
5, 6, and 7 are located in the city center of the Wiirzburg. The high traffic demand
due to the high user density in this area is not reflected in the model.

This example demonstrate that the geographical network traffic has the ability to
estimate the traffic quite accurate (cf. cells 1, 2, 3, and 4). However, it has to be
extended in some cases (cf. cells 5, 6, and 7).

5 Demand based mobile network design

To prove the capability of the demand estimation and to show the feasibility of the
integrated design concept, ICEPT - a prototype of a planning tool for cellular mobile
networks was implemented at the University of Wiirzburg, cf. Tutschku et al. (1997).
The tools’ core components are the automatic network design algorithm SCBPA (Set
Cover Base Station Positioning Algorithm) and a traffic characterization procedure
as described in Section 3.

The SCBPA algorithm is a GREEDY heuristic which selects the optimal set of ba-
se stations that maximizes the proportion of covered traffic, i.e. the ration of the

12



Abbildung 6: ICEPT planning result: base station locations

demand nodes which measure a pathloss on the forward /reverse link above the thres-
hold of the link budget, cf. Tutschku et al. (1996).

SCBPA was tested again on the topography around the city center of Wiirzburg.
The task was to find the optimal locations of nine transmitters in this terrain. The
result of the algorithm is depicted in Figure 6. The base station locations are marked
by a ¢ symbol. The lines indicate the convex hull around the set of demand nodes
which are supplied by the base station. The SCBPA algorithm was able to obtain a
75% coverage of the teletraffic of the investigated area. The total computing time for
the configuration, including the traffic characterization, was 4min on a SUN Ultra
1/170.

6 Conclusion

This paper has presented a new method for the estimation and characterization of
the expected teletraffic in mobile communication networks. The method considers
the teletraffic from the network’s viewpoint. Its traffic estimation is based on the
geographic traffic model, which obeys the geographical and demographical factors
for the demand for mobile communication services. For the spatial teletraffic charac-

13



terization, a novel representation technique was introduced which uses the notion
of discrete demand nodes. We demonstrated how the information in geographical
information systems, like ATKIS, can be used to estimate the teletraffic demand in
a service region and we validated the results with measurements from a real cellu-
lar network. Additionally we outlined how the discrete demand node representation
enables the application of automatic mobile network design algorithms.
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