
Abstract

In this paper we present results from measurements of WWW-traffic, the analysis of the data
measured, and derive two simple models that could be used to describe WWW-traffic for per-
formance assessment purposes. We analyze client WWW-sessions that are characterized by the
size of the response and inter-response intervals. The samples of both categories are found to
exhibit heavy-tailed properties. Thus, we represent WWW-traffic by two models: an indepen-
dent Pareto model and a logarithmic histogram model. The models are evaluated by simulat-
ing the transmission of traffic generated by the models over an ATM link using the VBR service
category. We show that the histogram model is able to represent the properties of WWW-traf-
fic with higher accuracy while the Pareto model is able to resume the characteristics of WWW-
traffic with fewer parameters.
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1 Introduction

In the last five years, an exponential growth of the Internet is observed (c.f. [9]). Most of the
traffic volume is originated by data transfers in the WWW (World-Wide Web). Further grow-
ing bandwidth demand for WWW-applications is expected due to high resolution graphics
workstations, multimedia applications and network computers. Therefore, WWW-traffic is
considered to be an important traffic source for future ATM based B-ISDNs.

The characterization and modeling of WWW-traffic gained a lot of attention in the last years.
Numerous studies address inquiries of accumulated traffic streams. Either the data-rates of
Ethernet-traffic [5] or WWW-traffic [1, 2, 6, 7, 8] are considered as traffic sources. The main
result of these investigations is the evidence of self-similarity. Other publications deal with
modeling WWW-request traffic [3] and the locality of WWW-references [4], which is an
important measure for the performance of proxy-servers.

In this study we concentrate on traffic characteristics of single client WWW-sessions. We
derive typical characteristics from measurement of WWW-traffic in a local ethernet segment at
the Computing Center of the University of Würzburg. Currently, all WWW-traffic is inf
enced by the TCP/IP protocol stack and slow ethernet links but this impact is expected t
less importance in future networks. Abstract and simple models of single WWW-sessio
presented, based on measured data. The models can be applied for the evaluation of co
technologies that cover the last mile to the user, e.g. HFC (hybrid fiber coax) systems or
(asymmetric digital subscriber line) modems [10]. Another interesting application of the 
els is evaluating the efficiency of potential ATM service categories for the transport of W
traffic.

The paper is organized as follows: In Section 2 we describe the components of WWW-
the measurement of WWW-traffic and the analysis of the measured data. Typical chara
tics of WWW-sessions and WWW-pages are derived. Section 3 describes the Pareto 
logarithmic histogram model of the measured WWW-traffic. In the last section, both m
are evaluated in comparison to measured data by simulating the transmission over a
link utilizing the VBR service category. The paper concludes with a summary.

2 WWW-Traffic

Commonly the term WWW-traffic refers to the description of data transmitted in a comm
cation network using the HTTP-protocol [11]. In the following the structure of WWW-tra
on different protocol layers is outlined and the elements relevant for modeling WWW-t
are identified. We describe the measurement of WWW-traffic, the analysis of the mea
traces and the traffic characteristics that are important for traffic modeling.

2.1 Hierarchical Components of WWW-Traffic

On topmost protocol layer WWW-traffic is distinguished in WWW-sessions, that represe
activities of single users. Figure 1 depicts the hierarchical components of a WWW-sess
WWW-session is the period beginning at the time a user launches his WWW-browser an
ing when the user quits from the WWW-browser. Therefore, the traffic sources of a s
WWW-session include a single client and eventually a large number of WWW-servers. 
the launching and quitting of a WWW-browser causes no traffic and our measurement m
c.f. Section 2.2, is based on the recording of transmitted data, we introduce the concept
sessions. A sub-session is defined as the interval in which a users creates WWW-traffi
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out being silent for more then a period referred to as time-out. In most cases it can be assumed
that both session and sub-session are identical.

A sub-session consists of WWW-pages, that correspond to the data a user requests with a sin-
gle mouse click. A page might induce several TCP-connections to and from a server. We
define the response-size as the sum of all IP-packets sent from the server to the client in order
to display a single WWW-page. For modeling the data-flow from the server to the client, the
amount of data and the exact instant of the transport is relevant. Thus, we denote the interval
lasting from the beginning of a response to the beginning of the succeeding response by inter-
response time.

2.2 Measurement of WWW-Traffic

The investigations presented in this paper are based on the measurement of WWW-traffic in an
ethernet segment of the Computing Center at the University of Würzburg. About 45 wo
tions are connected to this segment. The equipment is used by students from all facu
public terminals. During the measurement period of one week the terminals were high
lized, enabling us to collect statistically sufficient data. 

Technically, the measurement was carried out with the TCPDUMP software [12] on a LI
workstation. This tool logs the headers of IP-packets. The logged information include
source address and port, destination address and port, the instant of transmission and th
the packet. Further flags indicating the initialization and termination of TCP-connection
the TCP-window size are recorded. Options of TCPDUMP allow to filter traffic with respe
the ports used. Since the well-known port number of WWW-servers is 80 packets ca
WWW-traffic can be logged separately.

In the following we describe the analysis of the trace recorded and point out the charact
of the sub-sessions and responses.
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Figure 1: Hierarchical components of WWW-sessions.
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2.3 Characteristics of WWW-Traffic

All packets recorded in our measurement correspond to the transmission of 2.6GB of data.
About 10% of the traffic was directed from the clients to WWW-servers (the requests) while
the main part of the traffic was caused by responses to these requests.

We divide the whole trace into single sub-sessions and extract the start time and the size of the
responses in the order requested by the user. We concentrate on client sub-sessions, taking into
account only data requested by local clients. Data requested from outside does not represent
complete WWW-sessions and is ignored therefore.

2.3.1  Sub-Sessions

To detect sub-sessions in the trace we assume that a single WWW-browser is launched at most
on a workstation. Since all workstations operate under a single-user operating-system it is not
possible to use browsers remotely. We can not exclude the case that some users might open
several WWW-sessions at a time. The data belonging to these WWW-sessions is therefore
assumed to belong to a single sub-session.

The following algorithm is employed for the detection of sub-sessions in the trace: The begin-
ning of a sub-session is given by the transmission of the first IP-packet from a worksta
called the client – to a WWW-server. All subsequent packets sent from the client to the 
and packets sent from the server to the client are assumed to belong to the same sub
The sub-session is assumed to end if packet transmission stops for a certain time. This t
is chosen to cover the interval a user might spend reading a document without requestin
document, but has be short enough to detect the start of new sub-sessions.

The sub-session detection algorithm shows high insensitivity with regard to the choice 
parameter time-out. For time-outs ranging from 15 to 45 minutes, the same 1194 sub-s
have been detected in our trace. The average sub-session has a size of 2.4MB with a co
of variation is 3.2. The mean sub-session duration is 32 minutes with a coefficient of va
of 3.0.

2.3.2  Response Sizes and Inter-Response Times

According to the current HTTP/1.0 standard [11] WWW-pages are typically downloade
several TCP/IP connections. For each inline graphic or object a separate connection is 
A similar algorithm as for detecting WWW-sessions can be used in order to extract the 
load-time and size of WWW-pages. The start-time of a WWW-page is initialized by the
IP-packet of a new connection. All subsequent packets of connections between the sa
of host and client are assumed to belong to the WWW-page if the time between the c
tions is less than a time-out of 3 seconds. This selection of the time-out interval show
best performance for the distinction of WWW-pages. During the 5 day measurement a t
48500 WWW-pages have been downloaded. We define the size of a response onto a 
request as the sum of the sizes of all packets that are down-loaded from a WWW-serve
client upon a request. On average a response contains 3.5 separate files comprising th
WWW-page and inline objects. Furthermore, 40.8 WWW-pages are down-loaded on a
in a single sub-session.

On the left-hand side of Figure 2 the histogram showing the response sizes gathered
bins is illustrated. The average response size is 42kB with a coefficient of variation equa
4
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The graph on the right-hand side of Figure 2 shows the histogram of the inter-response times
gathered in 10s bins. For the computation, intervals between successive sub-sessions are not
taken into account. The mean inter-response time is 43.5s and the coefficient of variation of the
inter-response times is 2.5. Both the incidence of response sizes and inter-request time
ted on double logarithmic axes – exhibit a linear decay. This is an evidence that the s
show a heavy-tailed characteristic. Clearly this property has to be taken into account 
modeling of WWW-traffic.

The density of the scatter points in Figure 3 depicts the dependence between the tim
next response and the size of the current response. The more scatter points are in a re
darker is the region marked. Again, only intervals within sub-sessions have been cons
The area covered by the pairs of inter-response time and current response size is qui
Consequently, the axes are scaled logarithmically. From Figure 3 we can conclude a we
tion between large response sizes and long inter-response times as well as small respo
and small inter-response times. Furthermore, the correlation coefficient of the samples i
Both properties indicate a weak correlation between the response-size and inter-respon
An explanation for these findings can be given by looking at user behavior and WWW ch
teristics. On the one hand, users often utilize large WWW-pages as starting point w
really reading these pages, which explains the missing relation of large responses an
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Figure 2: Response size and inter-response time histogram.

Figure 3: Correlation between response size and inter-response time.
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response times. On the other hand, the combination of large inter-response times and small
WWW-pages is likely to be caused by congested WWW-servers and Internet links.

3  Modeling WWW-Traffic

To model the data-flow caused by the activities of a single user, we have to take into account
the response sizes, that is the amount of data transferred towards the user, and the inter-
response times. Both measures exhibit a heavy-tailed behavior as shown in the previous sec-
tion. Thus, these characteristics are taken into account for the representation of the response
size and inter-response time. A model of WWW-traffic consists of the combination of these
two quantities.

3.1 Pareto Model

The well-known Pareto-distribution exhibits heavy-tailed behavior and has no maximum value
and infinite variance. In difference, our samples from the measured data are bounded by finite
minimum and maximum values and exhibit a high but also finite variance. Thus, we introduce
a modified Pareto-distribution matching these properties. In detail the Pareto-distribution is
normalized to cover values from a minimum  to a maximum . The gradient of the distribu-

tion is given by a parameter .

We obtain the following equation for the probability density function of the modified Pareto-
distribution:

 (1)

 and by summation the corresponding probability distribution function:

 (2)

Figure 4 shows the complementary distribution function of the inter-response time (right) and
the response size (left) for measured and modeled data. The dashed lines indicate the empirical
distribution functions while the solid lines depict the fitted modified Pareto-distribution func-
tions. The gradient parameters of the distributions were determined by a least-square optimiza-
tion and the minimum and maximum were chosen to approximate the expectation and variance
of the empirical distributions. The selection of parameters allows a high degree of freedom.
The estimation of the gradient strongly depends on the choice of the minimum of the distribu-
tion.

We used for the distribution of the response size the parameters , , and

 to obtain a expectation of  and a coefficient of variation of 10. For

the distribution of the inter-response time we used the parameter set , , and

. The expectation of the modeled distribution is 42.7 and the coefficient of vari-
ation is equal to 2.9.
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Since an optimal selection of the parameters is equivocal to the mean and variance of the distri-
bution, we decide to use a histogram model for further investigations. This model is presented
in the following section.

3.2 Logarithmic Histogram Model

Since the original data of the measured WWW-traffic trace covers several orders of magni-
tude, it is obvious that a simple linear histogram model is not capable to represent the charac-
teristics of the trace efficiently. Thus, a logarithmic histogram model is introduced.

Let  denote sample number  and  the minimum and  the maximum of the
samples. 

The granularity of the histogram model is determined by the number  of intervals over the
range of the distribution. In contradiction to a linear histogram model, the length of the inter-
vals in our model are growing exponential. The boundaries  of the intervals are given by
the following equation:

 (3)

We calculate the weight-vector  that represents the expectation of the elements in an
interval as follows:

 (4)

and the distribution vector  that represents the empirical density of the elements in an
interval by:

 (5)

Figure 4: Response size and inter-response time fitting with the pareto model.
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Results from applying the logarithmic histogram model to the trace are shown in Figure 6. The
empirical distribution functions of the response size (left) and inter-response time (right) are
represented by the dashed lines. In both cases the distributions are approximated by a histo-
gram comprising of 10 intervals. The solid step-function shows the resulting distribution func-
tion. Even for the low granularity chosen the curves fit well, but the correlation of response
size and inter-response time is not modeled.    

3.3 Conditional Logarithmic Histogram Model

.In order to represent the correlation structure of the response size and inter-response time data,
we introduce a conditional logarithmic histogram model. For each interval modeled by the glo-
bal response size distribution, c.f. Figure 5 (left), a separate conditional distribution is derived
according to corresponding the samples of inter-response times. Figure 6 shows the condi-
tional inter-response time distribution functions corresponding to the intervals

 of the response size histogram. As indicated by the cova-
riance, the distributions are different for each interval. If we apply this kind of modeling tech-
nique then we have to take into account that the total number of elements in some of the
intervals is quite low. Thus, the statistical relevance of the conditional distributions can be of
less significance. The practical effect of modeling the correlation structure as defined above is
outlined in the next section

Figure 5: Response size and inter-response time fitting with the histogram model.
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Figure 6: Conditional inter-response time distribution functions.
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4 Model Evaluation

To asses the accuracy of the models, we simulate the transmission process of both modeled
and measured WWW-pages over an ATM-link using the VBR service category. The number
of cells each page comprises is determined and submitted to the link with a PCR equal to the
link cell rate. A maximum of BT cells are buffered in a queue. The cells are served with speed
SCR and cells that can not be stored in the queue are assumed to be lost. The average data rate
of the samples is less than 9kbps. We consider two different transmission speeds: first we
observe a link served with 1Mbps and second a link which is served with 10kbps.

Figure 7 presents the cell loss probabilities for a SCR of 1Mbps. The dashed lines indicate the
blocking probabilities of the measured response sizes and inter-response times. For small val-
ues of the BT, the Pareto model – depicted with the dash-dotted lines – exposes highe
ing probability than the measured traffic, while for large values of the BT the bloc
probabilities of the Pareto modeled traffic decays faster than the blocking probabilities 
original traffic. The histogram model – depicted with dotted lines on the left hand side 
the conditional histogram model – shown with bold lines on the right hand side – approx
the blocking probability of the measured time series well. For very large buffers the blo
probability is underestimated. Increasing the granularity of the histogram model from 10
increases the accuracy of the results. If the granularity is increased over a certain lim
number of samples in some intervals gets to low for statistical evaluation and the accura
not be further increased. Due to the comparatively high transmission rate the correlation
ture of response size and inter-response time does not effect the results.

For a SCR of 10kbps, which is close to the average rate of the samples, the results are 
in Figure 8. Since for small buffers the results are of the same quality as in the previous 
we concentrate on large buffers by scaling the x-axes linear. In this scenario the cond
histogram model (dotted lines, right side) clearly outperforms the independent histo
model (dotted lines, left side) and the Pareto model (dash-dotted lines). In this scena
exact modeling of the inter-response times in dependence of the response size plays an
tant role, since it is very likely that the buffer is not empty upon the arrival of the 
response. In the presented example the conditional histogram with 10 intervals shows th
accurate results. The model with 20 intervals underestimates the blocking probability 
measured samples, while the histogram with 40 intervals overestimates the results of th

Figure 7: Simulation of WWW-traffic over a VBR connection for model validation.
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The presented models for client based WWW-traffic show different properties. The Pareto
model is capable to represent WWW-traffic with 6 parameters. The optimal estimation of these
parameters is a demanding task and the result is not unequivocally. In difference the parameter
estimation for the logarithmic histogram model is a straightforward algorithmic task, that
depends on the granularity N of the model. The number of parameters is equal to 4·N, to repre-
sent the distribution- and weight-vector of the response size and inter-response time d
tion. Evaluated with regard to the queueing behavior the logarithmic histogram model –
adequate chosen granularity – approximates the properties of WWW-traffic better tha
Pareto model.

Both models are not capable to represent the correlation structure of the response s
inter-response time. Thus, the conditional logarithmic histogram model – an enhancem
the logarithmic histogram model – is introduced. For every interval of the response size
bution a conditional distribution of the corresponding inter-response times is derived. C

quently, the number of parameters is 2·(N+N2), assuming the same modeling granularity f
the response-size and conditional inter-response time distributions. In the case of high l
queueing behavior of the measured trace is approximated more accurate by the conditio
togram model than by the models, that do not represent the correlation structure of re
size and inter-response time.

5 Conclusion

In the future it is expected that WWW-communications will be major traffic source for em
ing broadband networks. Thus, modeling this kind of traffic is required to evaluate the ap
bility of different ATM service categories for the transmission of WWW-traffic.

In the investigation presented in this paper we have measured WWW-traffic in the local 
net segment of the Computing Center of the University of Würzburg. The measured da
analyzed and characteristics of WWW-traffic were derived. The inter-response time an
response size proof to be the most important characteristics of WWW-traffic for the mod
of client-based WWW-sessions.

The distributions of samples of the response size and the inter-response time show a
tailed characteristic. Thus, we model the inter-response time and response size as inde
and normalized Pareto-distributions. Since the parameter fitting for the Pareto model 

Figure 8: Simulation of WWW-traffic over a VBR connection for model validation.
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optimal solution we introduce a logarithmic histogram model. An extension of this model, the
conditional logarithmic histogram model is introduced. It is able to represent the correlation
structure of response size and inter-response time.

The models are validated by simulating the transmission of data over an ATM-link utilizing
the VBR service category. The Pareto model is capable to describe certain aspects of WWW-
traffic with 6 parameters but in general the histogram model performs better than the Pareto
model. For some applications it is appropriate to model the dependence of the response sizes
and inter-response times but the granularity of the model has to be considered carefully. Due to
the goal of high transmission rates in a common ATM scenario the logarithmic histogram
model is most adequate for the evaluation of the efficiency of different service categories for
the transmission of WWW-traffic. 
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