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For performance analysis of modern communication systems discrete Markov modeling
techniques have become important� This paper presents a numerical framework for solving
large discrete Markov models e�ciently� The �rst part outlines the backing theory and
establishes the numerical framework� This framework is applied to a performance analysis
of the ATM Adaptation Layer type  protocol in the second part�

� INTRODUCTION

Markov models play an important role in performance evaluation of communication sys�
tems since the pioneering works of A� K� Erlang at the beginning of this century� The
digital revolution brought about communication technologies that base on a small num�
ber of �xed size data units like the cells in the Asynchronous Transfer Mode �ATM�
system� Given discrete basic time and data units in the system that is to be modeled� a
discrete model o�ers itself as the basis for performance evaluation studies�

A number of recent performance studies that base on a discrete Markov model ���
�	� exhibit the same underlying analysis pattern� The state evolution of a discrete�time
Markov chain is expressed by a recursive equation� much like the well�known Lindley
equation ���� but in the discrete domain� After having translated the recursive equation
of random variables into an iterative procedure on probability mass functions the average
state distritution is computed� Based on this distribution performance measures like loss
and delay probabilities may be calculated� The sketched method� which is referred to as
Discrete Time Analysis �DTA� by some authors� provides for numerical results only� it
does not obtain closed�form formulae�

The modelers skill consists in devising the recursive equation� Once the equation is
found� there is the problem of turning the equation into an e�cient numerical program� In
the references cited above the iterative procedure is achieved in di�erent ways involving
convolution and transformation operators�
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This paper aims at a more systematic way of deriving the numerical program from
the recursive equations� Speci�cally� it presents an e�cient numerical framework that
implements the iterative procedure directly from the recursive equation� The numerical
framework is derived by formalizing the approaches of ����	� in Section � The formaliza�
tion exhibits that all the studies utilize a backward equation for the numerical program�
It turns out that rearranging into a forward equation does the trick� Additionally� we en�
hance the discrete�time analysis method towards the solution of cyclo�stationary systems�
The enhancement is required for the analysis of the ATM adaptation layer type  protocol
in Section � by which we demonstrate the application of the framework�

� A NUMERICAL FRAMEWORK FOR SOLVING DISCRETE MARKOV
CHAINS

We illustrate the formalization of the DTA approaches ����	� by the DTA of the discrete�
time GI�X��D���S queuing system as presented by Tran�Gia and Ahmadi ��
�� We brie�y
recall their analysis in the �rst section� the details can be found in the original publication�
In the second section we formalize the DTA approach� The formalization leads to the
development of the numerical framework we aim at�

��� Example DTA� The GI�X��D���S queue

The discrete�time GI�X��D���S queuing system has a �nite queue size� a constant service
time� and general inter�arrival times of batches with a general batch size distribution� The
un�nished work process of the system is a Discrete Time Markov Chain �DTMC�� Tran�
Gia and Ahmadi ��
� represent the state evolution of the DTMC by a recursive equation
that relates the state of the un�nished work process observed immediately prior to the
arrival of a batch to the state observed upon arrival of the preceding batch�

Un�� � max�min�Un �Bn� S�� An� ���

where the following notation is employed�
Un random variable for the un�nished work immediately prior to the arrival instant of

the n�th batch�
Bn random variable for the size of the n�th batch�
An random variable for the time interval between the arrival instants of the n�th and

�n� ���th batch�
S capacity of the queue�
Note that with the discrete time unit equal to the constant service time� An customers
can be served while An time units pass by�

The iterative algorithm for calculating the successive state distributions� is stated as

un���k� � ��� �
S�un�k�� bn�k��� an��k���

�We use the term �distribution shorthand for probability mass function�



where the sweep operators ����� and �S��� are de�ned by

���z�k�� �

���
��
� k � �P�

�� z�i� k � �

z�k� k � �

�S�z�k�� �

���
��
z�k� k � SP�

S z�i� k � S

� k � S

and the ��symbol denotes the discrete convolution

z�k� � z��k�� z��k� �
�X

j���

z��k � j� � z��j��

Provided An and Bn are each independent and identically distributed� the DTMC is
homogeneous and the iterative algorithm converges to the limiting distribution u�k� �
limn�� un�k�� which equals the average state distribution �apart from pathological cases��
From u�k� the authors derive the performance measures of the system�

��� Formalization

The decisive part of any discrete�time analysis is the iterative computation of the state
distribution of the DTMC� It is this part which we are interested in formalizing it�

Strictly speaking� the required state distribution x is obtained by taking the limit of
the state distributions xn observed at discrete time instants n � �� �� � � � Usually� taking
the limit is described as x � lim

n��
xn� Equivalently ����� the limit may be expressed by

x � lim
N��

�

N

N��X
n��

xn�

the limit of the average of the successive state distributions� We will come back to the
second expression later in this section�

However� in both cases before taking the limit the successive state distributions need
to be computed� In the discrete�time analysis approach an iteration is applied to this end�
In the following we formalize this iterative procedure�

For a DTMC� we denote the discrete state range by X � fXn jn � Ng� The DTMC
satis�es the memoryless property

Pr�Xn�� � sn�� jXn � sn� Xn�� � sn��� � � � � X� � s��

� Pr�Xn�� � sn�� jXn � sn�

for all natural numbers n and all states sn� In a homogenous DTMC the �single�step�
transition probabilities pn�i� j� � Pr�Xn�� � j jXn � i� are independent of n and are
consequently written as p�i� j�� The state transition matrix is denoted by P �

�
p�i� j�

�
�

The �rst step of a discrete�time analysis consists in embedding a DTMC into the
system evolution� That means to de�ne a discrete system state X and to identify discrete
time instants where the memoryless property holds for the evolution of X� In our example
above� the DTMC is embedded at the batch arrival instants� its state is de�ned by the
un�nished work U �



The further evolution of the system state depends on the current state and on exte�
rior factors which must be independent of the predecessors of the current state for the
memoryless property to hold� We summarize the exterior factors by a system in�uencing
variable Y that has discrete range Y� In general� both the state variable X and the in�
�uencing variable Y may be composite variables� In our above example� the in�uencing
variable Y consists of two components� the inter�arrival time A and the batch size B�

Due to the memoryless property of the DTMC the state transition from Xn to Xn��

depends only onXn and Yn� The next DTA step is the representation of the state evolution
by a relation that is recursive in the state variable X� Formally� it means de�ning a
recursive state transition function f � X � Y �� X

Xn�� � f�Xn� Yn��

In our above example� the state transition function was de�ned by

Un�� � f�Un� An� Bn� � max� min�Un �Bn� S�� An� ���

Often it is possible to identify further� say k� discrete�time instants between the renewal
points used so far where the memoryless property holds� Denoting the states of the DTMC
at these time instants between instants n and n�� by X i

n� � � i � k we may derive state
transition functions

X i��
n � f i�X i

n� Y �� � � i � k

X�
n�� � fk�Xk

n� Y ��

where X�
n are the formerly used renewal points Xn� The state transition function f is the

composition of the transition functions f i

f � fk � fk�� � � � � � f ��

In our example� we can � as the authors of ��
� did � identify Markov points immedi�
ately before and immediately after the batch arrival instants� The function f � describes
what happens to the un�nished work upon arrival of a batch� i�e�� the transition from im�
mediately before to immediately after the n�th arrival instant� the function f � describes
the server working o� the un�nished work between arrivals� i�e�� the transition from im�
mediately after the n�th arrival to immediately prior to the �n� ���th arrival�

U�
n � f ��U�

n� B� � min�U�
n �B� S��

U�
n�� � f ��U�

n� A� � max�U�
n � A� ���

The advantage of introducing the additional renewal points is obvious� it simpli�es the
setup of the state transition function f � Furthermore it reduces the computational com�
plexity of the numerical program as will become apparent later�

The next step is to turn the state transition function into an e�cient numerical pro�
gram� The program computes the successive state distributions xn�k�� n � �� �� � � � � by
iteration and� thus� requires an equation which is recursive in the state distribution� The
numerical programs of the DTA studies ����	� employ the equation

xn���k� �
X

i�X �j�Y

Pr�Xn�� � k jXn � i 	 Yn � j� � x�i� � y�j��



without stating the equation explicitly� Since Pr�Xn�� � k jXn � i 	 Yn � j� equals � if
k � f�i� j� and otherwise is �� we get

xn���k� �
X

f	i�j
 j f	i�j
�kg

xn�j� � yn�i�� �
�

A good example is the use of the discrete convolution in the GI�X��D���S analysis above�

z�k� �
X

f	i�j
 j f	i�j
�kg

z��i� � z��j��

where f�i� j� � i � j� since the convolution is the numerical program that corresponds
to the sum of two independent random variables� Computing this function requires the
pre�image f�i� j�jf�i� j� � kg and� hence� the inverse f��� Setting i � k � j and varying i
from �� to � yields the usual formula of the discrete convolution�

Indeed� requiring the inverse of the transition functions is characteristic for all the
operators employed in the numerical programs of the DTA studies� For this reason we call
the approach taken a backward method� The problem with using the backward method
in a systematic derivation of the numerical program is that the pre�image needs to be
computed� That problem is hidden by employing operators like the discrete convolution�
But using these operators fails with multi�dimensional state variables as in �� or ���� The
need to avoid the computation of the pre�image provided the stimulus for our developing
of the forward method which we turn our attention to in the next section�

��� The Forward Method

In equation �
� the probability of state k is computed by summing the compound proba�
bilities of the tuples �i� j� in the pre�image of k with respect to the transition function f �
Therefore� inverting f partitions the set X �Y into sets of tuples which contribute to the
probability of a certain state k� This observation suggest the forward iteration algorithm�
After initializing the successor distribution xn���k� with �� the algorithm traverses X �Y
adding x�i� �y�j� to the probability of state f�i� j�� Since the algorithm uses the transition
function f directly we call the approach a forward method�

Algorithm� Forward Iteration

Input� state distribution xn and in�uencing distribution y
Initialize xn�� with zeros
for all i � X do
for all j � Y do
xn���f�i� j�� �� xn���f�i� j�� � xn�i� � y�j�

end for
end for

Output� xn��

Implementing the forward iteration for our above example we get the GI�X��D���S
Forward Iteration algorithm�



Algorithm� GI�X��D���S Forward Iteration

Input� state distribution un and in�uencing distributions a and b
Initialize un�� with zeros
for i �� � to S do
for j �� � to max�B� do
for k �� � to max�A� do
un���f�i� j� k�� �� un���f�i� j� k�� � un�i� � b�j� � a�k�

end for
end for

end for
Output� un��

If we employ the transition functions f � and f � for implementing the forward iteration
algorithm the resulting algorithm has two single loops instead of one double loop� It is
obviously faster than the above iteration� In general� only some components of a compos�
ite in�uencing variable Y are relevant for a speci�c transition function f i� In the above
example� f � requires only component B and f � requires only component A of the in�u�
encing variable Y � �A�B�� In the extreme case� we may decompose f into k� � transfer
functions in a system having a k�dimensional in�uence variable Y where each transfer
function depends only on a single component of Y � Then the iteration algorithm consists
of k single loops instead of a single k�fold loop� In other words� the complexity of the
algorithm reduces from O�nk� to O�n��

Algorithm� GI�X��D���S Forward Iteration with Additional Renewal Points

Input� state distribution un and in�uencing distributions a and b
Initialize distribution z with zeros
for i �� � to S do
for j �� � to max�B� do
z�f ��i� j�� �� z�f ��i� j�� � un�i� � b�j�

end for
end for
Initialize un�� with zeros
for i �� � to S do
for j �� � to max�A� do
un���f

��i� j�� �� un���f
��i� j�� � z�i� � a�j�

end for
end for

Output� un��

It is an important question how our numerical framework is related to other iterative
methods for solving a DTMC �see the thorough treatment by Stewart ����� The basis
of this class of methods to compute the limiting distribution of the DTMC is the power



iteration equation

xn�� � xnP

that requires the state transition matrix P � The algorithm for computing the transition
matrix P from the transition function reveals the relation to the power iteration�

Algorithm� Transition Matrix

Input� in�uencing distribution y
Initialize P with zeros
for all i � X do
for all j � Y do
p�i� f�i� j�� �� p�i� f�i� j�� � y�j�

end for
end for

Output� P

Employing the transition function leads to the algorithm traversing the non�zero entries
of P only� It is comparable to using a sparse storage scheme for P where storing the row
index is replaced by computing it by means of function f � By comparing both algorithms
we observe that the Forward Iteration algorithm intermingles the computation of P with
the vector�matrix multiplication of the power iteration equation� In summary� the forward
method �as well as the backward method� implements a sparse power iteration without

computing the iteration matrix explicitly�
Thus� our numerical framework combines the relatively simple derivation of the model

with the advantage of coping with huge state spaces� Each iteration step involves jX j � jYj
multiplications� for each of which the state transition function must be calculated� The
backward method spares the expense of computing the transition function at the price of
added complexity for deriving the numerical program� Apart from that� the framework in�
herits its numerical characteristics like convergence behavior etc� from the power iteration
method�

��� Coping with Periodicity

The derivation of the forward method so far proceeded from the assumption that the
model is aperiodic� Employing the transition equations only� the underlying DTMC may
well be periodic with consequences for the convergence behavior of the forward iteration�
In this section we describe the add�ons for the forward iteration to cope with periodicity�

An irreducible DTMC is said to be periodic of period p or p�cyclic if the number
of single�step transitions required on leaving any state to return to that same state by
any path is a multiple of some integer p � �� if no such p � � exists the DTMC is
called aperiodic� The state set of a p�cyclic DTMC may be partitioned into p distinctive
periodic classes� These classes are ordered such that a single step transition from a state
of class j is only possible to enter a state of class �j � �� mod p� Therefore� a path of p
steps leads always to a state of the same class� Furthermore� in the DTMC with transition
matrix P p each periodic class forms an irreducible closed set� From the last two statements



follows that the DTMC with transition matrix P p is aperiodic� Consequently� there exist
p limiting distributions� each corresponding to one class�

x	j
 � lim
n��

x�P
j�P p�n� � � j � p�

Since the stationary distribution of an irreducible aperiodic DTMC equals

x � lim
N��

�

N

N��X
n��

xn

�see ����� the average state distribution of the periodic chain is computed by

x �
�

p

pX
j��

x	j
�

See Feller ��� for proofs�
For the forward iteration to cope with periodicity� the period p of the model must

be considered when testing for convergence of the iteration� To this end� the outcome of
the j�th iteration step must be compared with the distribution of the �j � p��th iteration
step� Thus� one needs to store the distributions of p consecutive iteration steps� Once
convergence is established� one simply has to average the p stored distributions eventually
to obtain the stationary distribution�

It remains to compute the period before starting the iteration� Stewart ��� presents
an e�cient algorithm that calculates the period from the directed graph that may be
associated with the DTMC� The vertices of the graph correspond to the states of the
DTMC� and the edges correspond to transitions among states� Since the state transition
function f calculates the successors of a state it may be employed in a depth��rst�search
algorithm �� that constructs the state graph starting from an arbitrary initial state�

��	 Recipe

Given a �nite discrete Markov system� i�e�� the system�s salient features are measured
in discrete time units� the following recipe summarizes our numerical framework� �If the
system is continous the embedded Markov chain technique ���� may be employed to obtain
a discrete Markov chain��

Recipe�

�� De�ne the state variable of the system�

� Identify renewal points�

�� Conceive the state transition function�s��


� Compute the period�

�� Apply the forward iteration algorithm to obtain the state distribution within a
convergence criterion that takes the period into consideration�

Based on the state distribution performance measures may be derived� The following
section demonstrates the application of the recipe to a model of the AAL� protocol�



� APPLICATION TO THE AAL
� PROTOCOL

In order to provide bandwidth�e�cient ATM transmission to tra�c that is characterized
by low bit�rate� short and variable length packets� and delay sensitiveness� ITU�T speci�ed
the ATM Adaptation Layer Type  �AAL�� ���� The transmitting system multiplexes
packets into a protocol data unit �CPS�PDU� that is passed as ATM cell payload onto
the ATM layer� If one CPS�PDU has not enough space to accommodate the packet� the
packet is split and overlaps two CPS�PDUs� In order to ensure a maximum multiplexing
delay a timer function may be used� Each time a new CPS�PDU is started to be �lled
a timer may be started� If the timer runs out the cell is scheduled for transmission even
before the CPS�PDU is �lled�

The AAL� uses the ATM layer service to transport service data units from one end
system to another through an ATM network� For the numerical results we assume that
the ATM layer service is Constant Bit Rate� The tra�c stream must be shaped according
to the Peak Cell Rate �PCR� negotiated in the tra�c contract� A tra�c shaper ensures
that the ATM cells of the connection keep the minimum inter�cell distance T � ��PCR
by delaying cells if necessary� Figure � depicts the model we are going to analyze� Packets

ATM cell

bursty
cell
stream

shaped
cell
stream

Packet

SpacerAAL-2

Figure �� Model of AAL� combined with spacer

arriving at the AAL� are multiplexed into ATM cells� the cells are subject to spacing�

��� De�ne the state variable of the system

Employing the model we derived in a previous paper ��� we de�ne the system state
variable as

X � �U� T� S��

Component U denotes the number of data units packed already into the CPS�PDU while
T records the age of the oldest packet contained in the CPS�PDU� component S indicates
the amount of time a cell will have to wait at the shaper prior to transmission� The range
of X is ���� Lu�� ��� Lt�� ��� Ls��� where Lu denotes the size of the CPS�PDU� Lt is the
AAL� time�out value� and Ls is the maximum delay in the spacer�

��� Identify renewal points

As in the above example we can identify the arrival instants as renewal points� In par�
ticular� we use the instants immediately prior to a packet arrival and immediately after



such an event for conceiving the state transition function� The in�uencing variables are
the size of the arriving packet V and the inter�arrival time A� Thus we have

Y � �V�A��

��� Conceive the state transition functions

Since we identi�ed two renewal points we have to set up two state transition functions� f �

that describes the state transition from the immediately before an arrival to immediately
after that event� and f � that covers the state transition from immediately after an arrival
to immediately before the next arrival�

In conceiving f � we must distinguish two cases depending on whether the arriving
packet completes the PDU �U�

n � Vn � Lu� or not�

f � � �U�
n� T

�
n � S

�
n� �

�
�U�

n � Vn � Lu� �� S
�
n � Ts� if U�

n � Vn � Lu

�U�
n � Vn� T

�
n � S

�
n� else�

The constant Ts is the spacing interval�
The transition function f � distinguishes three cases� there are no packets waiting� there

are packets and no time�out occurs� and there are packets and the timer runs out�

f � � �U�
n��� T

�
n��� S

�
n���

�

������
�����

�U�
n� T

�
n � �S

�
n � An���

�� if U�
n � �

�U�
n� T

�
n � An��� �S

�
n � An���

�� if U�
n � �

	 T �
n � An�� � Lt

��� �� ��S�
n � Lt � T �

n �
� � Ts � An�� � Lt � T �

n �
�� else�

where �x�� denotes the maximum of x and �� Note that a time�out possibly occurs Lt�T
�
n

time units after the last arrival and the next arrival occurs An���Lt�T �
n time units after

the time�out� During this interval the spacer state is continuously decreased one unit per
time unit�

��� Compute the period

It is easy to verify that the model is p�cyclic if the packet length is a constant c and
the timeout time is set large enough for no timeout to occur� In that case the state is
Un�k � �Un � k � c� mod Lu which is clearly periodic� Thus� depending on Y a period
p � � may result from this step and must be considered in the iteration�

��	 Apply the forward iteration algorithm

The transition functions f � and f � are used to implement a forward iteration according to
the Forward Iteration algorithm� Note that f � requires only component V while f � needs
only component A of in�uencing variable Y � �V�A� which leads to the desired reduction
in complexity�

Having obtained the state distribution our formulae in �� compute the waiting time
and packet loss probability�



��� Numerical Results

The numerical results provided in this section illustrate how the above analysis may
be used for obtaining source tra�c descriptors for CDMA tra�c carried by an AAL�
connection�

The standard �k vocoder employed in the North�American CDMA cellular standard
IS��� �
� operates at four di�erent rates according to speech activity and noise conditions�
Depending on the rate� the vocoder generates variable length speech frames� one frame
per �ms� Including �� octets of address and frame quality information� frames of ���
���� ��� and �� bit are observed with probabilities ����� ������ ���	� and ������ resp�

The base station multiplexes the vocoder packets of all ongoing connections onto a
single AAL� connection to the core network� The multiplexing is organized in such a way
that justi�es modeling the inter�arrival time of packets by a geometric distribution ���
The transport capability of the underlying ATM pipe is Mbps which is the capacity of
T��E� links that are widely used in today�s mobile network infrastructure� The overlaid
AAL� connection uses the CBR service category which requires declaring the source
tra�c descriptor PCR�

1200 2400 3600 4800
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18
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72

Figure � Source tra�c descriptors for CDMA tra�c

Figure  shows the spacing delay for the multiplexed tra�c of ��� ��� �
� and 	 voice
sources under the constraint of not exceeding a packet loss probability of ����� The time�
out was set to 
ms� The horizontal axis shows the PCR and the vertical axis gives the
expected spacing delay� The average cell rates being 
��� ���� ��� and ���� cells� s for
��� ��� �
� and 	 sources� resp�� approximately ��� times the average cell rate must be
declared the PCR if ms delay are allowed for spacing�

� CONCLUSIONS AND OUTLOOK

This paper presented a numerical framework for solving large discrete Markov models
e�ciently� The application of the framework was shown by a performance analysis of the
AAL� protocol�



The new numerical framework implements a computationally e�cient sparse power
iteration without computing the iteration matrix explicitly� To this end the method re�
quires the description of the model behavior by a recursive transition function� Devising
the transition function is not too di�cult even for complex models and may be eased by
decomposing the transition function in a couple of functions� Decomposing the transition
function has the additional bene�t of reducing the numerical complexity of the iteration�
The method lends itself to parallelization� the contribution of the various realizations of
the in�uencing variables can be computed in parallel� simply summing obtains the overall
solution� Since storing the transition matrix is not required the framework is e�cient with
respect to both the storage consumption and the running time�

The latter may be improved by incorporating techniques that accelerate the conver�
gence of the iteration� e�g�� by replacing the forward iteration by a Gauss�Seidel iteration�
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