University of Wirzburg
Institute of Computer Science
Research Report Series

An approach for the identification of
nonlinear, dynamic processes with
Kalman-Filter-trained recurrent neural
structures

Dipl. Inform. Frank Heister,
Dr. Rainer Miiller

Report No. 193 April 1999

Research and Technology (FT2/EA)
Electronic Architecture and Networking
DaimlerChrysler AG
HPC T721
D-70546 Stuttgart, Germany
[frank.heister|rainer.m.mueller|@daimlerchrysler.com

An approach for the identification of nonlinear, dynamic processes
with Kalman-Filter-trained recurrent neural structures

Dipl. Inform. Frank Heister,

Dr. Rainer Miiller
Research and Technology (FT2/EA)
Electronic Architecture and Networking
DaimlerChrysler AG
HPC T721
D-70546 Stuttgart, Germany
[frank.heister|rainer.m.mueller|@daimlerchrysler.com

Abstract

In this article we demonstrate the identification of a nonlinear, dynamic process
with recurrent neural structures. The employed network-structure is a Recurrent
Multilayer Perceptron (RMLP), which combines feedforward— and recurrent archi-
tectures. We will show that RMLPs are capable of learning the temporal behavior
and characteristic of an arbitrary, nonlinear, dynamic process. Apart from con-
ventional gradient-based algorithms, a sophisticated statistical method has been
considered for this challenging task — Global Extended Kalman Filtering (GEKF).
This powerful algorithm yields neural structures with a significantly better perfor-
mance, compared to conventional gradient-based approaches. The new element in
this work is the application of the GEKF-Algorithm for recurrent neural structures,
which are employed in the identification of nonlinear, dynamic processes. In order to
supervise the quality of network-training, appropriate performance-indexes for neu-
ral identification are introduced. The distribution of the Moving Average Squared
Error (MASE) is employed as an objective optimality-criterion, in order to survey

the actual performance of recurrent neural structures during training.

1 Introduction

Since the early 1990s, a growing interest in the field of neural processing and adaptive
algorithms could be observed, concerning their employment for the identification and
control of technical processes. Mathematical systems theory, which has evolved into a
scientific discipline with wide applicability over the past five decades, deals with the anal-

ysis and synthesis of mathematical models of dynamic processes. This theory provides

methods for the treatment of dynamic systems, using well-established techniques based
on linear algebra, complex variable theory and the theory of ordinary linear differential
equations. The drawback of conventional approaches is their potential complexity, in
particular if a high level of refinement and accuracy is required. Hence, a satisfying
solution, which describes a given process, does not necessarily need to exist; even for

apparently simple systems.

In order to provide a feasible, supplementary approach toward reducing the complexity
of analytical model- and controller-design, a new approach has been considered for this
task — adaptive, recurrent structures with a sophisticated training-algorithm, the Global
Eztended Kalman Filter (GEKF).

An outline for a typical life-time-cycle of a controller-design is depicted in Fig. 1, cf. [1].
Designing a feedback-controller requires an initial process-model. If the model proves
to be insufficient it has to be successively refined. However, if conventional methods are

used, a refinement-step results in an increased complexity of the mathematical model,
initial
process model
controller
design

controller
performance

ok 2
yes

as mentioned above.

Figure 1: Controller design.

In order to overcome the complexity of conventional methods an alternative approach
has to be chosen, which requires less background-knowledge about the process being
modeled. Adaptive structures, such as recurrent neural networks, are capable of pro-
viding an implicit representation of the dynamics of a process rather than an exact
mathematical solution. The major drawback of a neural approach is the problem of
stability, which cannot be guaranteed from the outset. However, since an exact solution
might be very expensive, sometimes even unfeasible, adaptive systems are expected to

be a good compromise to obtain an initial process-model.

Identification of the temporal behavior of a system is equivalent with the characterization
and modeling of relevant process-variables and their interaction. Ideally, identification
produces an exact image of the real process-behavior. For real-world applications, this
assumption turns out to be illusory, due to the relation between the desired degree of

accuracy and the complexity of the process-model.

Mathematical methods for the treatment of nonlinear systems are introduced by [2]
and [1]. However, the presented methods are always tied to a specific class of systems
and suffer from the lack of general applicability. The desire for a general framework,
suitable for the identification of arbitrary nonlinear, dynamic processes, motivates a new

approach — Recurrent Multilayer Perceptrons with Extended Kalman Filter Training.

This class of recurrent neural networks combines the topologies of conventional Mul-
tilayer Perceptrons with those of general recurrent network-structures, eg. Hopfield
Networks.

external recurrence

output-layer

> hidden-layers

Figure 2: Recurrent Multilayer Perceptron (RMLP).

As depicted in Fig. 2, a RMLP consists of successive layers with no recurrent weight-
connections between them. External recurrences between nodes in the output-layer
and nodes in the input-layer of a RMLP are also admissible. Since there are distinct
back— and forth-connections between two particular neurons, a particular layer could be

regarded as an ”extended Hopfield-Network”.

1.1 Representation and characterization of processes

Characterizing a process means determining all static and dynamic factors effecting its

behavior. The term dynamic refers to the temporal behavior of the process itself, as well

as to its parameters. However, dynamic systems can be divided into two major groups:

discrete-time systems and continuous-time systems.

process
i —— e ()
X (n)

Figure 3: Characterization of a process.

In Fig. 3, a discrete-time system is depicted. The vector #(n) represents the internal
state of the process. Depending on the dimensions of the vectors 4(-) and #(-), the
process is denoted a SISO-System (Single-Input-Single-Output), respectively a SIMO-,
MISO- or a MIMO-System.

Time-invariant, linear Systems

A time-invariant, linear system can be described in discrete-time [3] by the linear equa-

tions:

3

Zn+1) = AZ(n)+ Bi(n) 0
y(n) = CZ(n)+ Di(n),

in continuous-time' by the linear differential equations:
Z(t) = AZ(t)+ Bi(t)
y(t) = Cz(t) + Da(t),

where A, B, C', D are system-matrices of appropriate dimensions.

Time-invariant, nonlinear systems

Any time-invariant system which cannot be expressed using (1) or (2) is defined to be

nonlinear. Nonlinear systems are described in discrete-time by:

Zn+1) = f(

jin) = h(an) ¥

n
n

(n)),

!The variable ¢ is used in order to indicate that continuous time is assumed.

in continuous-time by:

) = f(@¢
gty = h(@)

where f(-),h(-) are nonlinear, vector-valued functions.

Time-variant, nonlinear systems

The systems described so far are time-invariant, i.e. their behavior does not change.
However, in reality some effects, e.g. ageing processes, might cause the system-behavior
to change with time. Hence, time must also be taken into account as a factor, effecting

the system-behavior.

In discrete-time Eqn. 3 becomes:

Z(n+1) = f(£(n),d(n),n)
g(n) = h(Z(n),d(n),n). (5)

In continuous-time Eqn. 4 becomes:

1.2 Identification with neural networks

Modified feedforward-structures such as tapped delay lines (TDLs), have been previously
applied for modeling nonlinear, dynamic systems by [4]. This technique allows only a
limited number of information to be considered for obtaining a suitable process-model.
Assuming the utilization of recurrent neural structures, an arrangement used for iden-
tification is depicted in Fig. 4. The resulting recurrent network implicitly represents
the relevant process-parameters, which are obtained by considering only the input— and

output-signal of a real system.

process ¥

u(n) < &(n)

/

4
identification | ¥; (n)
network

Figure 4: Identification with a neural network.

Since no thorough investigation of the intrinsics is necessary, the required amount of
expert-knowledge is reduced considerably, compared to conventional approaches. After
successful identification, the neural network is capable of imitating the real system, ie. to
behave like the original process, being exposed to the same input-sequence u(-). Obtain-
ing this identification-network is essential for further implementation of neural feedback-

controllers.

2 Training recurrent neural structures

In this section, two training-algorithms for recurrent neural networks are presented —
Real-Time-Recurrent-Learning (RTRL) and the Global-Extended-Kalman-Filter Algo-
rithm (GEKF).

2.1 Real Time Recurrent Learning

RTRL is, as well as standard Backpropagation, a pure gradient-based algorithm for

general structured neural networks, which was proposed by [5].

The output of a particular neuron is governed by the following equation:

k
oj(n + 1) =0 (Z(wi’joi(n)) + uj(n + 1)) (7)

=1

Similar to standard Backpropagation this yields for the adaption of a particular weight

wi,j:
30k dog(n)
= — Ei(
7] aw” Z K awm (8)

where M is the number of output-neurons and 1 denotes the learning rate.

Depending on the structure of the network being used, two possibilities of determining

doy(n)

the partial derivatives == are presented, which are refered to as static and dynamic
2,7

derivatives.

Static derivatives

The partial derivatives presented in Eqn. 8, denoting static derivatives, are ob-

Doy (n)
ow;;
tained by differentiating Eqn. 7 with respect to a particular weight wj ;.

dog(n) 0

8’wi7]‘ 8wi,j

d(om(n —1))
ow;

(o(neti(n)) = o' (nety(n)) |Gikoi(n — 1) + D wmk
(9)

where §; j is the Kronecker symbol:

) s
0 =: ’ Z] (10)
0 , 2#7.

When employing static derivatives, no particular network structure is required, ie. static
derivatives can be applied to networks with arbitrarily connected neurons. A less general
method, which allows spatial- and temporal dependencies between particular neurons

to be taken into account, are dynamic derivatives.

Dynamic derivatives

Using dynamic derivatives [6], requires a RMLP, depicted in Fig. 2. According to this

definition, each layer is treated as a separate subnetwork. The output y; j(n) of a neuron

4 in layer 7 is a function of the output-vector ¢;_1(n) of the preceding layer in time-step
n, the output-vector ¢;(n — 1) of the actual layer in the preceding time-step and the

weight-vector w; of the i-th subnet.

The output of neuron j in subnet ¢ is governed by:

Yi,j(n) = F (fi—1(n), §i(n — 1), 0;) , (11)
where
and
Yi—1(n) s the output vector of subnet 7 — 1 at

time-step n,
7i(n — 1) the output vector of subnet i at

time-step n — 1,

w; the weight vector of subnet i,
Yij the activation of neuron j in layer 7,
w,’;’zj the recurrent weight from neuron k to

neuron j in layer ¢ and
the feedforward weight from neuron &

in layer < — 1 to neuron j in layer 4.

Similar to Eqn. 8, the rule for adapting a particular weight wi’;’ is:

33/1, n)
Awk,g n@w ’9 - ZE p,g) (13)
Wg,j

where N; is the number of neurons in layer [(the output layer of the RMLP) and
_J r, for recurrent weights
f, for feedforward weights.

Compared to static derivatives, the overlined notation in Eqn. 13 points out the dynamic

character of this type of derivative, which is obtained by differentiating Eqn. 12 with

respect to a particular weight wk 4 and application of the general chainrule. The symbol

dg,i in the last term of Eqn. 14 denotes the Kronecker symbol.

ij(n) _ O (F(Fimr(n), gi(n — 1),) _

duif O]
9yij(n) 3yz>1,p(n)Jr

9
Oyi— l,p n 8wk,j

Ni—1

p=1
N;

N 0yig(n) Byip(n— 1)
SOy =1) Oufy

9yi,i(n)

Bw,f,’]g. g,i- (14)

The partial derivatives aZy”((ZL), aiﬁféﬂ) and dg gl Jz(g) in Eqn. 14 are found to be:

yij(n) fi
Ty) o' (net; j(n))wy (15)
Ayi,j(n) o . 7
Ty —1) o' (net;j(n))w,; and (16)
_8yi7j(n) _ 0 ,ifg#1 (17)
’ awlﬁ,}g' o' (net; j(n))yip(n) ,if g =1i.

2.2 Global Extended Kalman Filter

For the parameters of linear systems with white input— and observation-noise the Kalman
Filter, proposed by [7], is known to be an optimum estimator. The Global Extended
Kalman Filter, which employs a linearization around the current point of estimate, can
be used to determine the parameters of nonlinear systems, in our case the weights of

recurrent neural networks.

Conventional applications of the Global Extended Kalman Filter, eg. in radar-tracking
devices, are used for the direct estimation of actual system parameters. Regarding a
recurrent neural network as a dynamic system and its weights as the parameters to be
estimated, [6] showed the applicability of the GEKF as a training-algorithm for such
structures. Compared to conventional, gradient-based training-algorithms, the weights
are successively estimated, based on the input-vector @(n) in time-step n and the de-
viation of the network from the desired output. Estimating the weight-vector 5(77,) of
the neural network is equivalent with the problem of determining the minimum of the
expectation value of the mean squared error between the actual weight-vector w(n) and

its estimation @(n):

E [(w(n) - é(n))T .S (w(n) - @(n))] (18)

The GEKF is proved, for linear systems, to find the minimum of Eqn. 18 by calculating
@ (n) from previous estimates. The term global refers to the introduction of a covariance-
matrix P(n), which describes the dependencies of all weights with each other, based on
previous estimations and inputs. Due to the remarkable length of the derivation, only
the Global-Extended-Kalman-Filter equations are given below. A detailed mathematical

background is presented extensively in [8] and [9].

The Global-Extended-Kalman-Filter Equations are:

P(n+1) = P(n) — K(n) - H (n) - P(n) + Q(n)
K(n) = P(n) - H(n) - [(n(n) - S00)) ™ + HT(n) - P(n) - Hw)|

@(n+1) = B(n) + K(n) - (dln) = h(@(n), @(n)),

where

10

pn,l('f')

Oya(r)
w1 (1)

pn,Z(T)

Aym(r)
w1 (r)

Aym(r)
Own (1)

kl,m (T)

pn,n('f')

11

is the desired output-vector of the neural

network in time-step r.

describes the output-vector of the neu-
ral network, depending on the estimation
of the weight-vector 53(7‘) and the input-
vector #(r) in time-step 7. h(-) represents
the observation-function of the neural net-

work.

is the estimation of the weight-vector in
time-step r, comprising all weights of the

neural network.

depicts the Jacobi matrix, linearizing the
nonlinear system around the point of esti-

mate in time-step 7.

is the Kalman-gain matrix, used for up-

dating the covariance-matrix P(r).

represents the covariance-matrix. The el-
ements of P(r) describe the dependencies
of all weights with each other, based on

previous estimation— and input-data.

qi(r) 0 0 is the noise-matrix Q(r), introducing arti-

0 q272(7«) . ficial noise to prevent the estimation pro-
Qi) = 0 cess from getting stuck in local minima.
0 we 0 ppp(r) gi; € [107°%,1072] ,i=1,...,n
sur) - si2(r) e sum(r) is a user-defined, positive definite, sym-
S(r) = s1.2(r) - s22(r) e s2n(r) metric matrix. S(r) defines, in conjunc-
. ' ' tion with 7(-), the learning-rate.
sim(r) S2m(r) oo Smm(T)

3 Performance indexes for neural identification

3.1 Error-Functions

In order to supervise network-training, modifications of the standard error-functions
are used as objective optimality-criterions. Since real-time algorithms are employed,
appropriate error-functions are required. The error-functions, which are used throughout
this work are the Mazimum Squared Error (MSE) and the Moving Average Squared Error
(MASE). These functions are defined as follows:

e The Average Squared Error
LM
Easp(n) =5 Y _(tx(n) — ox(n))’ (19)

2
k=1

is the sum of the squared errors of all output neurons in time-step n.

e The Mazimum Squared Error:
Eysg(n) = max (tx(n) — op(n))?, (20)

is the maximum of the squared errors of all output neurons in time-step n with
k=1,..,M.

12

3.2

The Moving Average Squared Error

n M
Eyasp(n)= Y Easp(k) = % S D (k) — oy(k))? (21)

k=n—N+1 k=n—N+1[=1

is the sum over all average squared errors E4gp(n) within the considered time-

horizon, where

M € IN is the number of output-neurons and
N € IN the size of the time-horizon.

Residue

In control technology, in order to gain information about the performance of a controller,

a number of caracteristic quantities are determined. The remaining, integral system-

deviation, or residue [10], is a quantity, which can be transfered to the problem of

system-identification with recurrent neural networks. It is defined in the following way:

The residue E,¢5(n) of a control system with the desired output #(n) and the actual

output o(n) is defined as:

no+7
Eres(no +7) := Y E(k), with E(k):= o(k) — t(k). (22)

k=ngo

T
Y—E=() |
TR e

Ny Iterations

Figure 5: Residue

Figure 5 shows the response t(n) and the approximation o(n) of a system, being exposed

to an input-signal of random steps. The residue E¢4(-) is determined over the interval

[ng,no + 7], where ny marks the beginning of an input-step. The constant 7 depends

on the settling-time of the neural network and specifies the number of time-steps to be

considered for the residue.

13

3.3 Statistics

In order to obtain objective means for comparing the experimental results in Section 3,
basic methods of statistics are chosen. Considering the residue defined above, its mean

value p can be calculated from the distribution of its relative frequency.

Let X be a discrete random variable and {zg, z1, ..., Zm—1},m € IN an equidistant par-
tition of the interval [Z,in, Tmaz]- The distribution of the relative frequency is described
by: P(X = z), with z := 2, if 2y < Eyes(n) < zpaq.

P(X=x)

hﬁn

TTTT”

0
Figure 6: Distibution.

Figure 6(a) depicts the distribution of the relative frequency of the residue, which has
been defined in Eqn. 22.

Let X be a discrete random variable and z1, z9, ... the realizations of X. The expected

value p of the random variable X is defined as:

E[X]= Z z;P(X = ;). (23)

14

4 Identification of a nonlinear, dynamic process

4.1 Problem-Statement

The nonlinear, dynamic process [11], which is described by the second order state-space

equations:
zi(n+1) =1.145 z1(n) — 0.549 z2(n) + 0.584 u(n),

y(n) =4 tanh (mITM)) ,

is considered for identification with a RMLP. In Eqn. 24, the variables z1(n) and z2(n)
are the internal states in time-step n, y(n) the observation or output and u(n) the input
to the process. The goal is to adjust the weights of a RMLP, according to Fig. 4, to

obtain a neural network with the same temporal behavior.

u(ﬁ)
tr y(n) — 1

.
50 100 150 200 250 300 350 400

Figure 7: Process-behavior.

Figure 7 depicts the behavior of the exemplary process described by Equations 24. The
dynamics of this process are oscillatory with unity static gain around zero. The de-
nominator in the second state-equation, along with the tanh(-) in the output-equation,
increases the damping and decreases the static gain in large amplitudes, cf. [11]. In this
example, the input-sequence to the deterministic process consists of steps of random
amplitude and a random duration of 1 to 20 time-steps. During training the neural net-
work is provided with patterns, depicted in Fig. 7, including the input-signal u(n) and

the desired output y(n). In time-step n, the identification-error e;(n) is determined from

15

the response ¢(n) of the network and the desired output y(n). This error is minimized
with a training-algorithm, by successively adjusting the weights of the recurrent neural

network.

4.2 Net-Structure and Parameters

The Recurrent Multilayer Perceptron, depicted in Fig. 8, is employed for identification

of the nonlinear, dynamic process described in Eqn. 24.

Lo Ly Ly L3

Figure 8: Identification-network

e Network-Structure

The employed network consists of one input layer Ly with a pseudo input-node,
two hidden layers L1, Lo and an output-layer Ls. The output of the neural network
is fed back, through an external recurrent weight-connection, into a pseudo input-
node in layer Lg. According to Fig. 4, the neural network is provided only with
the input-signal u(n) and the desired output y(n), which is used with the network-

response g(n) for calculating the approximation error e;(n).

e Learning Rate

The learning rate is set to n = 0.04.

e Initialization of Weights

The values of the weight-connections are uniformly distributed over the interval
[—0.5,0.5].

16

e Training-Sequence

During training, the neural network is exposed to the sequence, consisting of 5000
training-patterns. The input-signal consists of steps of random amplitude from

[—1,1] and random duration between 50 and 100 iterations.

e Training-Algorithm

Identification is performed, using the Global Extended Kalman Filter with dynamic

derivatives.

4.3 Results

In Figure 9, the output ¢(n) of the neural network, during the first epoch of training,
is plotted along with the desired output y(n), which illustrates the extremely rapid

accommodation of the neural network.

Figure 9: Behavior during training.

After approximately 1000 patterns (0.2 training-epochs!) have been presented to a ran-
domly initialized network, its output (n) begins follow the desired trajectory y(n).

In Fig. 10, the Moving Average Squared Error and the Maximum Squared Error are
plotted against the number of iterations and training-epochs. After 25 epochs of training,
the network reaches a state of over-training and the MASE increases rapidly. The MSE
of a small number of training-patterns remains almost zero, whereas the MSE for the

majority of patterns diverges to large values, which can be observed in Fig.10.

Figure 11 and 12 depict the behavior of the neural network during recall, after 80000
iterations or 16 training-epochs have been performed. In Fig.11, the input-signal consists

of steps with random amplitude and duration of 1 to 20 iterations. Although, the network

17

‘
MASE — |
MSE

08 |

0.6

04 -

02

0 i L . i i i L I I
0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Figure 10: MASE and MSE during training.

1

"y
08 - B Y —

06
04 -

02

0

-02 -

04l [
06 K

.08 |

1 I I I I I
1200 1250 1300 1350 1400 1450 1500

Figure 11: Recall after 16 training-epochs. Input-signal: steps 1 to 20 iterations.

did not explicitly learn how to respond to this kind of input-signal, its output follows

the desired trajectory.

In turn, the neural network represents an identification of the original nonlinear, dynamic
process. In Fig. 12, steps of random amplitude and duration of 50 to 100 iterations, are
utilized as input-signal. In both cases, the input to the network, is not identical with

the training-sequence.

The results, which have been presented in this section, show the principal applicability of
recurrent neural networks for the identification of nonlinear, dynamic processes. In order
to investigate effects of different parameters on the quality of identification, parameter-

studies are carried out in the sequel.

18

1

y(m
08 - Ly —
06 ===

04

0.2

0

02
04l

-06

.08

1
1000 1100 1200 1300 1400 1500 1600 1700 1800

Figure 12: Recall after 16 training-epochs. Input-signal: steps 50 to 100 iterations.

4.4 Parameter Study

Utilization of neural structures requires various network-parameters to be chosen prop-
erly. Since no reliable methods for the determination of reasonable parameters from
scratch is available, the effects of particular parameters are investigated in this section.
In order to provide reasonable clues for successfull identification, the distributions of the

residues during an actual recall phase (Section 3.2) are compared for various parameters.

Training- Algorithms

Based on the parameters in Sec. 4.2, the learning-algorithms Real Time Recurrent Learn-
ing (RTRL) and Global Extended Kalman Filter (GEKF) are employed for identification.
RTRL is combined with static— and the GEKF with dynamic derivatives, yielding two

training-methods to be investigated.

Figure 13 depicts the Moving Average Squared Error of both algorithms. The upper
x-Axis displays the number of epochs, the lower x-Axis the number of performed it-
erations. Comparing both algorithms shows clearly better convergence results for the
GEKF network. While the MASE of the network, trained with RTRL, reaches a stable
value, the MASE of the network, trained with the GEKF, is conspicuous for its drop-off
after approximately 125000 iterations. In the sequel, recalls will be performed with both
networks, when training has been stopped around the drop-off point of the MASE.

In Fig. 14 and 15, the distributions of the residue, which are obtained during actual recall,

19

0 4 8 12 16 20 24 28 32 36 40

RTRL, stat. deriv.

i GEKF, dyn. deriv. — |

0.8
06

0.4

02+

0

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Figure 13: MASE during training.

Distribution

Figure 14: Distributions (RTRL, static deriv.).

are plotted against the number of training-epochs. As expected from the trajectory of
the MASE for the GEKF in Fig. 13, the drop-off point, after 25 training-epochs, also
appears in Fig. 15. Comparing the distributions of the residue of both algorithms, the
employment of the GEKF-Algorithm shows a clearly better quality of identification.
The GEKF-network produces smaller errors, which are distributed around zero more

frequently, compared to the RTRL-trained network.

20

Distribution

Figure 15: Distributions (EKF, dynamic deriv.).

Neurons

In this section, the effect of the number of hidden neurons on the quality of identification
is investigated. Based on the network-structure introduced in Sec. 4.2, the hidden layers

L, and Lo consist of 2x2, 4x4 or 6x6 neurons.

0 4 8 12 16 20 24 28 32 36 40

2x2
By 4x4 1
6x6
08
06

04

02

0 L L L L i n i i i
0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Figure 16: MASE during training.

In Fig. 16, the MASE is plotted against the number of training-epochs for different
sizes of hidden layers. Comparing the MASEs of the 2x2 and 6x6 networks, with the
MASE of the 4x4-network, no drop-off point is observed for the latter. This leads to
the assumption of the existence of a constellation for the hidden layer, yielding stability

during training.

Figure 17 shows a poor identification, performed by the according 2x2-network, since
the distributions of the residue are flat and highly variant. However, if a 4x4-network

is employed for identification, a stable distribution is reached after approximately 15

21

Figure 18: Distributions (4x4-network).

epochs, showing no further point of instability. The best quality of identification is ob-
tained by a 6x6-network after 16 training-epochs, although the network reaches a state
of instability after 25 epochs. The obtained results lead also to the assumption of an op-
timal structure for hidden layers, yielding stability during network-training. However, an
optimal network-size depends on the accuracy-of-approximation versus computational-
complexity trade-off and has to be chosen specifically for each problem. Furthermore,
correlations with other parameters, eg. the learning-rate n, have to be considered also

in the network-design.

22

Distribution

Figure 19: Distributions (6x6-network).

Layers

Refering to the parameters from Sec. 4.2, the influence of the number of hidden layers on
the quality of identification is investigated for one— and two hidden layers. Identification

is performed with a RMLP, comprising 6 neurons in its hidden layer(s).

0 4 8 12 16 20 24 28 32 36 40
| 1 hidden layer
1t || 2hiddenlayers -

0 L L L L L L L L L
0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Figure 20: MASE during training.

In Fig. 20, the MASEs of both networks are depicted. After approximately 27 training-
epochs, a drop-off point can be noticed, similar to the previous section. In Fig. 21 and 22,
the distributions are presented, depicting the behavior of the considered networks during
actual recalls. The neural network, incorporating only one hidden layer in its structure,

yields a poor overall performance, compared to the two-hidden-layer network.

23

Figure 21: Distributions (1 hidden layer).

Di stribution

Figure 22: Distributions (2 hidden layer).

Learning Rate

In this section, the influence of the learning-rate on the performance of the resulting
identification-network is investigated, based on the parameter-set from Sec. 4.2. Identi-

fication is performed with the learning-rate n set to 0.4, 0.04 and 0.004.

In Fig. 23, the according MASEs are plotted against the number of training-epochs.
Figure 23 clearly depicts the effect of the learning-rate n on the convergence of the
employed RMLP. Decreasing the learning-rate n postpones the drop-off point of the
MASE and yields better identification results. The neural network, with n = 0.004,
shows the best results and no point of instability is reached during training. As
expected from the trajectory of the MASE, a learning-rate of 0.4 does not yield a network,
successfully identifying the process-behavior. However, the best identification-network

is achieved by employing a lerning-rate n = 0.004.

24

0 L . L
0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Figure 23: MASE during training.

- 0
Di stribution - Epochs

10

Figure 24: Distributions (n = 0.4).

The results of this section show a strong correlation between the learing-rate n and
the stability during training. The drop-off point of the MASE is postponed or even
completely suppressed, when applying small learning-rates. Refering to Fig. 26, one can

also perceive 77 to have an essential influence on the quality of identification.

25

Di stribution

Figure 26: Distributions (n = 0.004).

5 Conclusion

The main objective of this work was the investigation of recurrent neural structures for
identification of nonlinear, dynamic processes. This work was also intended to provide
a general framework for a supplementary approach toward this problem, in order to
overcome the complexity of analytical methods. Apart from conventional gradient—
based algorithms for the training of neural networks, a new method has been considered
with remarkable success — Global-Extended-Kalman-Filter training. During this work,
a library has been implemented, which provides numerous functions for the efficient

simulation and training of arbitrary recurrent neural structures.

In Section 4, a nonlinear, dynamic process could be successfully identified (Section 4)
by employing a Recurrent Multilayer Perceptron and Global-Extended-Kalman-Filter

training. Paramerter-studies have been carried out, to determine the influence of var-

26

ious parameters on the performance of resulting identification-networks. It turned out
that recurrent neural structures are suitable for identifying nonlinear, dynamic processes.
The obtained results showed that Global-Extended-Kalman-Filter training is a sophis-
ticated algorithm, yielding neural networks with significantly better performance than

conventional gradient-based algorithms.

The conclusion that can be drawn from the results of this work is that recurrent neural
networks are capable to perform identification and control of nonlinear, dynamic pro-
cesses. Furthermore, recurrent neural structures provide a general framework for the
system engineer, which allows a process to be modeled and controlled without detailed
knowledge about its intrinsic structure. However, employing recurrent neural network
without prior feasibility-study, with respect to the process to beidentified, might yield

unsatisfying results.

The application of recurrent neural networks should be understood as a supplement, not
a substitute, of conventional mathematical systems theory. It turned out that recurrent
structures are a promising approach toward the reduction of complexity during system

modeling and controller-design.

27

References

1]
2]
3]

[4]

[5]

8]

[9]

J. Raisch, Mehrgrossenregelung im Frequenzbereich. Oldenbourg—Verlag, 1994.
O. Follinger, Nichtlineare Regelungen II. Oldenbourg—Verlag, 1991.

H. Nijmeijer and A. van der Schaft, Nonlinear Dynamical Control Systems.

Springer—Verlag, 1990.

M. C. Mozer, Time Series Prediction: Forecating the Future and Understanding the
Past, pp. 243-264. Addison—Wesley, 1993.

R. J. Williams and D. Zipser, “A learning algorithm for continually running fully
recurrent neural networks,” Neural Computation, vol. 1, pp. pp. 270-280, 1989.

G. V. Puskorius and L. A. Feldkamp, “Neurocontrol of Nonlinear Dynamical Sys-
tems with Kalman Filter Trained Recurrent Networks,” IEEE Transactions on Neu-
ral Networks, vol. Vol. 5, no. No. 2, pp. pp. 279-297, 1994.

R. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” J.
Basic Eng., Trans. ASME, vol. Vol. 82, no. No. 1, pp. pp- 35-45, 1960.

C. K. Chui and G. Chen, Kalman Filtering with Real-Time Applications. Springer—
Verlag, 1987.

D. Catlin, Estimation, control and the disrecte Kalman Filter. Springer—Verlag,
1989.

F. Gausch, A. Hofer, and K. Schlachen, Digitale Regelkreise. Oldenbourg—Verlag,
1993.

I. Rivals, L. Personnaz, and G. Dreyfus, “Black—-box Modelling with State—Space
Neural Networks,” tech. rep., NACT 1 Workshop on Neural Control, 1995.

28

