
Universität Würzburg
Institut für Informatik
Research Report Series

RR

Lehrstuhl für Informatik III,
Universität Würzburg

Am Hubland,
97074 Würzburg

Germany
E-Mail: koehler@informatik.uni-wuerzburg.de

Fast heuristics for optimal routing in
large IP networks

LTM Berry, S. Köhler, D Staehle and P Tran-Gia

Report No. 262 July 2000

 1

Abstract

We consider the problem of computing optimal sets of paths between source-
destination pairs in large IP networks. Given the traffic demands between the pairs
of nodes, link capacities and the topological structure of the network we wish to
allocate the traffic streams to routes such that either the maximum link utilisation is
minimized, or the average link utilisation of the network is minimized. An
interesting feature of the optimisation is that the set of paths selected, for all pairs,
must be constrained to satisfy shortest path principles.
Two approaches are developed. The first, based on use of k’th shortest paths,
iteratively modifies link costs to achieve the selected objective. The second method
seeks to apply network decomposition effectively such that the LP technique of
Staehle, Köhler and Kohlhaas [11] may be implemented on each subgraph in an
iterative algorithm.

1. Introduction

The problem considered in this research report is described fully in [11].
Essentially, given a fixed network defined by its link adjacency matrix, the traffic
demands between node pairs of the network and link capacities, an optimal routing
pattern is required. The routing pattern (set of paths between the source-destination
pairs) is optimal if the carried flows meet the link capacity constraints, minimize an
objective function and satisfy shortest path principles. That is, once the paths have
been determined costs (not necessarily unique) can be assigned to the links of the
network such that application of a shortest (cheapest) path algorithm to the network
would result in the unique selection of the previously mentioned optimal routing
pattern. The objectives considered in [10] are to minimize the maximum link
utilisation, or to minimize the average network link utilisation or to minimize a
linear combination of these two values.
To solve the first problem, that is to find the optimal path allocations, the problem is
formulated as an Integer Program. Because only one path is to be selected for each
source-destination pair (an “all or nothing assignment”) and the selected paths must
correspond to shortest paths, these routing constraints imply that the solution to the
integer program can be found using Linear Programming (LP). That is, the solution
to the LP gives integer values for the decision variables.
The method for finding a set of link costs that would generate the optimal paths
using shortest path routing at each node is to also formulate and solve a second LP.
This problem is an inversion of the Dijkstra [3] shortest path problem. In this report
we will focus on the first part of the problem, that is, the determination of the
optimal set of paths.
At the present time, finding an optimal solution by the two-LP method of [11] seems
to be restricted to problems with less than 30 or so nodes.

 2

The number of constraint rows in the LP is the limiting factor.
In order to extend the range of applicability for large networks and to improve the
computational speed we consider two heuristic approaches. The first, based on use
of k’th shortest paths, iteratively modifies link costs to achieve the selected objective.
The second method seeks to apply network decomposition effectively such that the
LP technique of Staehle, Köhler and Kohlhaas [11] may be implemented on each
subgraph in an iterative algorithm.
We first define the optimal routing problem and describe the LP formulation.

2. Formulation of the Problem

The decision variables are zero-one variables uv

ijx , which take the value 1 if and only
if the link (i,j) belongs to the selected path for source-destination pair u-v. The traffic
demand from u to v is fuv and the capacity of link (i,j) is cij. The ratio of the total flow
on link (i,j) to its capacity cij gives the link’s utilization.
The objective function (see below) comprises two terms, the second being the sum of
all link utilisations for the entire network (this is proportional to the average link
utilisation) and the first is a bound on the maximum link utilisation. Minimizing the
variable t (a percentage, see the utilisation constraints below) effects the reduction
of the maximum link utilisation. The parameter at is a weight to control the
importance of the first term relative to the second term.
The routing constraints deserve special comment.
The insistence on shortest path routing means that if the path from node i to node v
includes link (s,t) then if the path from u to v passes through node i, it also must
include link (s,t).

u

i

s t

v

s

 3

The derivation of the routing constraints is illustrated below.
Other constraints in the formulation are standard network constraints.

Formulation

Minimise

 int

1 for all (for each u-v at most one link out of router may carry)
1, 0

1 (exac

uvf xuv ija tt cijij uv

Transport Constra s

N uv uvx u v i fij
j cij

uvxui

∑+ ∑

≤ −∑
= >

= tly one link from the source carries flow)
1, 0

0 (conservation equation - if there is one incoming link to node
1, 0 1, 0

N
u

i cui
N Nuv uvx x iij ji

j c j cij ji

∑
= >

− =∑ ∑
= > = >

 carrying - flow then there is exactly 1 outgoing link)

 1 (exactly one link into router carries - flow)
1, 0

u v

N uvx v u viv
i civ

∑ =
= >

1 can be formulated as

 where is an upper bound for

 as these are 0-1 variables we can take 1

Thus 1 or 1

uv iv uv
ui st st

iv uv uv
st ui st

iv uv
st st

iv uv uv iv uv uv
st ui st st ui st

x x x

x Mx M x M

x x M

x x x x x x

= ⇒ ≤

+ ≤ +

− =

+ ≤ + + − ≤

 4

As the graph is undirected, to avoid cycles from the source (or destination) to an
adjacent node and back to the same node (i.e. the existence of disconnected paths) we
set the variables and uv uv

iu vix x equal to zero. The minimization of the average utilisation
in the objective function will result in the avoidance of cycles in the connected paths
between a source and destination.
The delay constraints specify that the delay on any selected path between nodes u-v
must not exceed a multiple ra of the minimum delay path min

uvd between u and v.

 int

 (,)

 int

100

 int

1 - , { ,

uv uv
ij c ij

uv

ijuv uv
ij

uv

uv iv uv
ui st st

Capacity Constra s

x f a c for all links i j

Utilisation Constra s
tc

x f

Routing Constra s

x x x for all flows u v routers i u

≤

≤

+ − ≤ ∉

∑

∑

min

} (,)

1 - , { , } (,)

(. . 1 1)

 int

uv uj uv
jv st st

uv iv uv uv uj uv
ui st st jv st st

uv uv
ij ij r

ij

v and links s t

x x x for all flows u v routers j u v and links s t

i e x x x and x x x

Delay Constra s

x d a d

+ − ≤ ∉

= ⇒ ≤ = ⇒ ≤

≤∑

 5

3 K Shortest Path Cost Adjustment Heuristic

We reformulate the above problem directly in terms of link costs. Denoting the cost
label on link (i,j) by wij, and the vector of link costs by w the formulation is:

()
 ()

0

uv uv
ij

t
ij uv ij

f x
Min a t

c

ω
ω

ω

+

≥

∑∑ %
%

% %

That is, the objective function is simply a function of the link costs ω

%
.

We are given the network topology, the flow demands, link capacities and delay
constraints. Once the link costs are specified the uv

ijx follow directly from the shortest
paths.
We will describe the heuristic with the aid of an example.
The first step is to allocate link costs to all links, and to then determine k’th shortest
paths for each source-destination pair u-v. From the shortest paths we can compute
the total load carried on each link and the link utilisations. The k shortest paths are
used in re-allocating flows, that is, a re-selection of new shortest paths is made with
the aim of reducing the objective function. The important question is, “How can we
alter the link costs in an iterative algorithm such that the maximum link utilisation
(and as far as possible also the average link utilization) are minim ized?” The details
of how this is done are given in section 3.1
We first recall that in [11] it was necessary (the second LP) to determine a set of link
costs consistent with a given set of shortest (cheapest) paths. This is a non-trivial
inversion of the shortest path problem. The approach adopted in the heuristic avoids
this inversion problem.

3.1 Example of the KSP Cost Adjustment Heuristic

We select the initial set of link costs such that links with large capacities have less
cost than links with smaller capacities. Specifically the initial cost associated with link
(i,j) is:

We consider the following 10 node network:

max
max[] where is the maximum link capacity for the network,

 is the capacity of link (,)

 [] denotes the sma

ij

ij

c
a c

c

c i j

x llest integer x
 and is an integer multiplier.a

≥

 6

The traffic demands between the nodes of the network and the link capacities are s
shown in the two matrices below. Our objective is to determine a set of link costs
such that under shortest path routing a minimization of the maximum link utilisation
is achieved (as the prime objective) and also a reduction in the average link
utilisation.

 Flow demands

049125387110
403249714569
93071021313108
12708724347
2410803161476
59273047935
3712140311124
814346730253
75133149112082
1610473125801
10987654321

049125387110
403249714569
93071021313108
12708724347
2410803161476
59273047935
3712140311124
814346730253
75133149112082
1610473125801
10987654321

1

3

4

6

5

109

8

7
2

3

 7

The initial set of link costs are now :

Next, we compute the k’th shortest paths for each source-destination pair. Yen’s
algorithm [12] was used for this purpose. It is described in the Appendix, together
with some observations concerning computation of k’th shortest paths.
A feature of this heuristic is that it is only necessary to compute the k’th shortest
paths once. Path cost adjustments are performed in a simple manner, thus avoiding
an O(n3) calculation at each iteration of the algorithm. For our example, the k=3
shortest paths are shown in the tables below. It is thought that it is only necessary to

05010
5002080209

20060408
600407

80060986
406005

200404
9840060403

40600302
403001

10987654321

05010
5002080209

20060408
600407

80060986
406005

200404
9840060403

40600302
403001

10987654321

Link capacities

1

3

4

6

5

109

8

7
2

3

25

17

13 20

49

33

25

10

17

25

49
17

25

Initial link costs- with a = 10

E.g. for link (1,2) its cost is [10*98/30] = 33

 8

consider a few shortest paths for each source-destination pair of nodes rather than to
generate all paths satisfying the path delay constraints. Further experimentation will
establish further information on what value of k to use; this will be a function of the
size of a network.

75
77
84

1,2,7,8
1,3,6,5,8
1,3,2,7,8

P1-8

P1-8

P1-8

58
67
94

1,2,7
1,3,2,7
1,3,6,5,8,7

P1-7

P1-7

P1-7

35
60
112

1,3,6
1,2,3,6
1,3,4,9,6

P1-6

P1-6

P1-6

52
77
100

1,3,6,5
1,2,3,6,5
1,2,7,8,5

P1-5

P1-5

P1-5

50
75
97

1,3,4
1,2,3,4
1,3,6,9,4

P1-4

P1-4

P1-4

25
50
127

1,3
1,2,3
1,2,7,8,5,6,3

P1-3

P1-3

P1-3

33
42
119

1,2
1,3,2
1,3,6,5,8,7,2

P1-2

P1-2

P1-2

75
77
84

1,2,7,8
1,3,6,5,8
1,3,2,7,8

P1-8

P1-8

P1-8

58
67
94

1,2,7
1,3,2,7
1,3,6,5,8,7

P1-7

P1-7

P1-7

35
60
112

1,3,6
1,2,3,6
1,3,4,9,6

P1-6

P1-6

P1-6

52
77
100

1,3,6,5
1,2,3,6,5
1,2,7,8,5

P1-5

P1-5

P1-5

50
75
97

1,3,4
1,2,3,4
1,3,6,9,4

P1-4

P1-4

P1-4

25
50
127

1,3
1,2,3
1,2,7,8,5,6,3

P1-3

P1-3

P1-3

33
42
119

1,2
1,3,2
1,3,6,5,8,7,2

P1-2

P1-2

P1-2

25
86
106

2,7
2,3,6,5,8,7
2,3,6,9,8,7

P2-7

P2-7

P2-7

27
68
84

2,3,6
2,1,3,6
2,7,8,5,6

P2-6

P2-6

P2-6

44
67
85

2,3,6,5
2,7,8,5
2,1,3,6,5

P2-5

P2-5

P2-5

42
83
89

2,3,4
2,1,3,4
2,3,6,9,4

P2-4

P2-4

P2-4

17
58
94

2,3
2,1,3
2,7,8,5,6,3

P2-3

P2-3

P2-3

68
93
119

1,3,6,9,10
1,2,3,6,9,10
1,3,4,9,10

P1-10

P1-10

P1-10

48
73
99

1,3,6,9
1,2,3,6,9
1,3,4,9

P1-9

P1-9

P1-9

25
86
106

2,7
2,3,6,5,8,7
2,3,6,9,8,7

P2-7

P2-7

P2-7

27
68
84

2,3,6
2,1,3,6
2,7,8,5,6

P2-6

P2-6

P2-6

44
67
85

2,3,6,5
2,7,8,5
2,1,3,6,5

P2-5

P2-5

P2-5

42
83
89

2,3,4
2,1,3,4
2,3,6,9,4

P2-4

P2-4

P2-4

17
58
94

2,3
2,1,3
2,7,8,5,6,3

P2-3

P2-3

P2-3

68
93
119

1,3,6,9,10
1,2,3,6,9,10
1,3,4,9,10

P1-10

P1-10

P1-10

48
73
99

1,3,6,9
1,2,3,6,9
1,3,4,9

P1-9

P1-9

P1-9

42
69
83

3,2,7
3,6,5,8,7
3,1,2,7

P3-7

P3-7

P3-7

10
87
101

3,6
3,4,9,6
3,2,7,8,5,6

P3-6

P3-6

P3-6

27
84
97

3,6,5
3,2,7,8,5
3,6,9,8,5

P3-5

P3-5

P3-5

25
72
150

3,4
3,6,9,4
3,6,5,8,9,4

P3-4

P3-4

P3-4

60
101
111

2,3,6,9,10
2,1,3,6,9,10
2,7,8,9,10

P2-10

P2-10

P2-10

40
81
91

2,3,6,9
2,1,3,6,9
2,7,8,9

P2-9

P2-9

P2-9

42
69
89

2,7,8
2,3,6,5,8
2,3,6,9,8

P2-8

P2-8

P2-8

42
69
83

3,2,7
3,6,5,8,7
3,1,2,7

P3-7

P3-7

P3-7

10
87
101

3,6
3,4,9,6
3,2,7,8,5,6

P3-6

P3-6

P3-6

27
84
97

3,6,5
3,2,7,8,5
3,6,9,8,5

P3-5

P3-5

P3-5

25
72
150

3,4
3,6,9,4
3,6,5,8,9,4

P3-4

P3-4

P3-4

60
101
111

2,3,6,9,10
2,1,3,6,9,10
2,7,8,9,10

P2-10

P2-10

P2-10

40
81
91

2,3,6,9
2,1,3,6,9
2,7,8,9

P2-9

P2-9

P2-9

42
69
89

2,7,8
2,3,6,5,8
2,3,6,9,8

P2-8

P2-8

P2-8

20
-
-

9,10
-
-

P9-10

P9-10

P9-10

69
75
102

8,9,10
8,5,6,9,10
8,7,2,3,6,9,10

P8-10

P8-10

P8-10

49
55
82

8,9
8,5,6,9
8,7,2,3,6,9

P8-9

P8-9

P8-9

20
-
-

9,10
-
-

P9-10

P9-10

P9-10

69
75
102

8,9,10
8,5,6,9,10
8,7,2,3,6,9,10

P8-10

P8-10

P8-10

49
55
82

8,9
8,5,6,9
8,7,2,3,6,9

P8-9

P8-9

P8-9

 9

Having found the shortest paths, we next compute the total flow on each link and
their utilisations.

77
84
97

4,3,6,5,8
4,3,2,7,8
4,3,6,9,8

P4-8

P4-8

P4-8

67
94
108

4,3,2,7
4,3,6,5,8,7
4,3,1,2,7

P4-7

P4-7

P4-7

35
62
126

4,3,6
4,9,6
4,3,2,7,8,5,6

P4-6

P4-6

P4-6

52
79
109

4,3,6,5
4,9,6,5
4,3,2,7,8,5

P4-5

P4-5

P4-5

43
94
121

3,6,9,10
3,4,9,10
3,6,5,8,9,10

P3-10

P3-10

P3-10

23
74
101

3,6,9
3,4,9
3,6,5,8,9

P3-9

P3-9

P3-9

52
59
72

3,6,5,8
3,2,7,8
3,6,9,8

P3-8

P3-8

P3-8

77
84
97

4,3,6,5,8
4,3,2,7,8
4,3,6,9,8

P4-8

P4-8

P4-8

67
94
108

4,3,2,7
4,3,6,5,8,7
4,3,1,2,7

P4-7

P4-7

P4-7

35
62
126

4,3,6
4,9,6
4,3,2,7,8,5,6

P4-6

P4-6

P4-6

52
79
109

4,3,6,5
4,9,6,5
4,3,2,7,8,5

P4-5

P4-5

P4-5

43
94
121

3,6,9,10
3,4,9,10
3,6,5,8,9,10

P3-10

P3-10

P3-10

23
74
101

3,6,9
3,4,9
3,6,5,8,9

P3-9

P3-9

P3-9

52
59
72

3,6,5,8
3,2,7,8
3,6,9,8

P3-8

P3-8

P3-8

50
94
121

5,6,9,10
5,8,9,10
5,6,3,4,9,10

P5-10

P5-10

P5-10

30
74
101

5,6,9
5,8,9
5,6,3,4,9

P5-9

P5-9

P5-9

25
79
86

5,8
5,6,9,8
5,6,3,2,7,8

P5-8

P5-8

P5-8

42
69
96

5,8,7
5,6,3,2,7
5,6,9,8,7

P5-7

P5-7

P5-7

17
87
94

5,6
5,8,9,6
5,8,7,2,3,6

P5-6

P5-6

P5-6

68
69
146

4,3,6,9,10
4,9,10
4,3,6,5,8,9,10

P4-10

P4-10

P4-10

48
49
126

4,3,6,9
4,9
4,3,6,5,8,9

P4-9

P4-9

P4-9

50
94
121

5,6,9,10
5,8,9,10
5,6,3,4,9,10

P5-10

P5-10

P5-10

30
74
101

5,6,9
5,8,9
5,6,3,4,9

P5-9

P5-9

P5-9

25
79
86

5,8
5,6,9,8
5,6,3,2,7,8

P5-8

P5-8

P5-8

42
69
96

5,8,7
5,6,3,2,7
5,6,9,8,7

P5-7

P5-7

P5-7

17
87
94

5,6
5,8,9,6
5,8,7,2,3,6

P5-6

P5-6

P5-6

68
69
146

4,3,6,9,10
4,9,10
4,3,6,5,8,9,10

P4-10

P4-10

P4-10

48
49
126

4,3,6,9
4,9
4,3,6,5,8,9

P4-9

P4-9

P4-9

85
86
92

7,2,3,6,9,10
7,8,9,10
7,8,5,6,9,10

P7-10

P7-10

P7-10

65
66
72

7,2,3,6,9
7,8,9
7,8,5,6,9

P7-9

P7-9

P7-9

17
94
114

7,8
7,2,3,6,5,8
7,2,3,6,9,8

P7-8

P7-8

P7-8

33
104
111

6,9,10
6,3,4,9,10
6,5,8,9,10

P6-10

P6-10

P6-10

13
84
91

6,9
6,3,4,9
6,5,8,9

P6-9

P6-9

P6-9

42
62
69

6,5,8
6,9,8
6,3,2,7,8

P6-8

P6-8

P6-8

52
59
79

6,3,2,7
6,5,8,7
6,9,8,7

P6-7

P6-7

P6-7

85
86
92

7,2,3,6,9,10
7,8,9,10
7,8,5,6,9,10

P7-10

P7-10

P7-10

65
66
72

7,2,3,6,9
7,8,9
7,8,5,6,9

P7-9

P7-9

P7-9

17
94
114

7,8
7,2,3,6,5,8
7,2,3,6,9,8

P7-8

P7-8

P7-8

33
104
111

6,9,10
6,3,4,9,10
6,5,8,9,10

P6-10

P6-10

P6-10

13
84
91

6,9
6,3,4,9
6,5,8,9

P6-9

P6-9

P6-9

42
62
69

6,5,8
6,9,8
6,3,2,7,8

P6-8

P6-8

P6-8

52
59
79

6,3,2,7
6,5,8,7
6,9,8,7

P6-7

P6-7

P6-7

 10

We note that the initial feasible solution has a lower average utilisation for the
network than that of the optimal solution found by the method described in [11], but
the maximum utilisation is greater. We also note that the link with the greatest
utilisation is link (3,6). Our initial strategy is to increase the cost of link (3,6). In order
to describe the manner in which this is done, we introduce some notation.

Link Flow Capacity Utilisation (decreasing order)

3,6 117 98 1,19387755

2,7 47 40 1,175

3,4 44 40 1,1

2,3 62 60 1,03333333

6,9 74 80 0,925

5,6 54 60 0,9

1,3 34 40 0,85

9,10 40 50 0,8

1,2 22 30 0,73333333

7,8 37 60 0,61666667

8,9 12 20 0,6

5,8 23 40 0,575

4,9 0 20 0

Average utilisation 0,80786238

Maximum utilisation 1,19387755

Note: As the flow demand and
link capacity matrices are
symmetrical in this example,
the link (6,3) has the same
utilisation as link (3,6) etc.

CPLEX solution
Average utilisation 0.82894427

Maximum utilisation 0.96666666

 11

For each u-v, we identify the next cheapest path that does not contain link (3,6) (the
max. utilization link) and compute its cost difference from that of the cheapest path,

(()) ()u v u v u v u v
ij ijP Pω δ ω− − − −∆ = − .

 is the shortest path between -

() is the ' shortest path between - ((1))

(,) { : (,) } i.e. the set of shortest paths that use link (,)

 is the

u v

u v u v u v

u v u v

u v
ij

P u v

P k k th u v P P

Q i j P i j P i j

δ

−

− − −

− −

−

≡

= ∈
-

(,) ()

 smallest value of such that link (,) ()

(()) is the sum of the link costs for path ().

. . (()) ;where is the link cost for link (,)
u v

u v

u v u v

u v
ij ij

i j P k

k i j P k

P k P k

i e P k m m i j

ω

ω
−

− −

−

∈

∉

=

(()) () i.e. the increment in the cost of link (,) needed

 to equalise path costs for () and

u v u v u v u v
ij ij

u v u v
ij

P P i j

P

ω δ ω

δ

− − − −

− −

∆ = −

∑

u vP −

u-vu-v uv
3,6 3,6 f ()u v u v

iju v Pδ δ− −− ∆

1-5 3 48 3 1,2,7,8,5

1-6 3 77 7 1,3,4,9,6

1-9 3 51 6 1,3,4,9

1-10 3 51 1 1,3,4,9,10

2-5 2 23 9 2,7,8,5

2-6 3 57 14 2,7,8,5,6

2-9 3 51 5 2,7,8,9

2-10 3 51 7 2,7,8,9,10

3-5 2 57 7 3,2,7,8,5

3-6 2 77 6 3,4,9,6

3-8 2 7 3 3,2,7,8

3-9 2 51 14 3,4,9

3-10 2 51 8 3,4,9,10

4-5 2 27 4 4,9,6,5

4-6 2 27 1 4,9,6

4-8 2 7 1 4,3,2,7,8

4-9 2 1 7 4,9

4-10 2 1 3 4,9,10

7-9 2 1 2 7,8,9

7-10 2 1 1 7,8,9,10

7-6* 2 7 8 7,8,5,6i>j

First find
paths with
least u-v

3,6∆

 12

The source-destination pairs with the smallest cost difference are identified. In this
example, the smallest value of u v

ij
−∆ is equal to 1 for pairs 4-9, 4-10, 7-9 and 7-10.

By incrementing the cost of link (3,6) by 2 we remove the traffic load for these source-
destination pairs from link (3,6); thus decreasing its utilization. Formally, the next
steps of the algorithm can be described as follows:

* *

* * * * * *

* *

min

(Note t

Denote the selected link with maximum utilisation by (,).
For our example this is link (3,6).

We identify paths () for which

(()) () min =

u v u v
i j

u v u v u v u v u v
i j i j i juv

i j

P

P P

δ

ω δ ω

− −

− − − − −∆ = − = ∆ ∆

hat (()) () 0)* *

4 9 4 10 7 9 7 10The paths satisfying the above condition are: (2), (2), (2) and (2)

u v u v u vP P
i j

P P P P

ω δ ω− − −− ≥

− − − −

The next shortest
(cheapest) path between
u-v not using link (i*, j*)

The difference in
path costs

* * * *

* *

min

3,6 3,6

 Next we increment the cost for link (,)
1

For our example, 2 12

i j i j

i j
m m

m m

= + ∆ +

= + =

The effect of all this is to shift flow away from link
(3,6) onto links of the new cheapest paths:

4 9 4 10 7 9 7 10, , and P P P P− − − −

Thus the utilisation of link (3,6) will
decrease

u-v old path new path offered flow
4-9 4,3,6,9 4,9 7

4-10 4,3,6,9,10 4,9,10 3

7-9 7,2,3,6,9 7,8,9 2

7-10 7,2,3,6,9,10 7,8,9,10 1

Paths containing
link (3,6)

Paths not containing link (3,6)

 13

Link Flow Capacity Utilisation (decreasing) Link New flow New utilisation

3,6 117 98 1,19387755 3,6 104 1,06122449

2,7 47 40 1,175 2,7 44 1,1

3,4 44 40 1,1 3,4 34 0,85

2,3 62 60 1,03333333 2,3 59 0,98333333

6,9 74 80 0,925 6,9 61 0,7625

5,6 54 60 0,9 5,6 54 0,9

1,3 34 40 0,85 1,3 34 0,85

9,10 40 50 0,8 9,10 40 0,8

1,2 22 30 0,73333333 1,2 22 0,73333333

7,8 37 60 0,61666667 7,8 40 0,66666667

8,9 12 20 0,6 8,9 15 0,75

5,8 23 40 0,575 5,8 23 0,575

4,9 0 20 0 4,9 10

Average utilisation 0,80786238 Average utilisation 0,77169676

Maximum utilisation 1,19387755 (link (3,6)) Maximum utilisation 1,1 (link (2,7)

Results after one iteration of the KSP cost adjustment heuristic

CPLEX:

0.8289443

0.9666666

(3,6)* -7-3-2-1 = -13 104

(4,3)* -7 -3 = -10 34

(6,9) -7-3-2-1 = -13 61

(9,10) 3+3-1+1 = 0 40

(7,2)* -2-1 = -3 44

(2,3) -2-1 = -3 59

(4,9) +7+3 = +10 10

(7,8) +2+1 = +3 40

(8,9) +2+1 = +3 15

Link (4,9) now receives
flow- previously it was
unused

* similar flow values for links (6,3), (3,4) and (2,7)

Link Change in flow New flow

 14

The link costs for the start of the second iteration are as shown below.

A simple adjustment to the path costs, for those links of paths affected by the
increase in cost to link (3,6) gives the new ordering of path costs shown in the
following tables. The four cheapest paths are tabulated for each source-destination
pair.

1

3

4

6

5

109

8

7
2

3

25

17

13 20

49

33

25

12

17

25

49
17

25

New link costs

 15

75
79
84
99

1,2,7,8
1,3,6,5,8
1,3,2,7,8
1,3,6,9,8

P1-8

P1-8

P1-8

P1-8

58
67
96
116

1,2,7
1,3,2,7
1,3,6,5,8,7
1,3,6,9,8,7

P1-7

P1-7

P1-7

P1-7

35
62
112
117

1,3,6
1,2,3,6
1,3,4,9,6
1,2,7,8,5,6

P1-6

P1-6

P1-6

P1-6

54
79
100
109

1,3,6,5
1,2,3,6,5
1,2,7,8,5
1,3,2,7,8,5

P1-5

P1-5

P1-5

P1-5

50
75
99
124

1,3,4
1,2,3,4
1,3,6,9,4
1,2,3,6,9,4

P1-4

P1-4

P1-4

P1-4

25
50
129
149

1,3
1,2,3
1,2,7,8,5,6,3
1,2,7,8,9,6,3

P1-3

P1-3

P1-3

P1-3

33
42
121
141

1,2
1,3,2
1,3,6,5,8,7,2
1,3,6,9,8,7,2

P1-2

P1-2(2)
P1-2(3)
P1-2(4)

75
79
84
99

1,2,7,8
1,3,6,5,8
1,3,2,7,8
1,3,6,9,8

P1-8

P1-8

P1-8

P1-8

58
67
96
116

1,2,7
1,3,2,7
1,3,6,5,8,7
1,3,6,9,8,7

P1-7

P1-7

P1-7

P1-7

35
62
112
117

1,3,6
1,2,3,6
1,3,4,9,6
1,2,7,8,5,6

P1-6

P1-6

P1-6

P1-6

54
79
100
109

1,3,6,5
1,2,3,6,5
1,2,7,8,5
1,3,2,7,8,5

P1-5

P1-5

P1-5

P1-5

50
75
99
124

1,3,4
1,2,3,4
1,3,6,9,4
1,2,3,6,9,4

P1-4

P1-4

P1-4

P1-4

25
50
129
149

1,3
1,2,3
1,2,7,8,5,6,3
1,2,7,8,9,6,3

P1-3

P1-3

P1-3

P1-3

33
42
121
141

1,2
1,3,2
1,3,6,5,8,7,2
1,3,6,9,8,7,2

P1-2

P1-2(2)
P1-2(3)
P1-2(4)

25
88
108
129

2,7
2,3,6,5,8,7
2,3,6,9,8,7
2,1,3,6,5,8,7

P2-7

P2-7

P2-7

P2-7

29
70
84
104

2,3,6
2,1,3,6
2,7,8,5,6
2,7,8,9,6

P2-6

P2-6

P2-6

P2-6

46
67
87
116

2,3,6,5
2,7,8,5
2,1,3,6,5
2,3,6,9,8,5

P2-5

P2-5

P2-5

P2-5

42
83
91
121

2,3,4
2,1,3,4
2,3,6,9,4
2,7,8,5,6,3,4

P2-4

P2-4

P2-4

P2-4

17
58
96
116

2,3
2,1,3
2,7,8,5,6,3
2,7,8,9,6,3

P2-3

P2-3

P2-3

P2-3

70
95
119
144

1,3,6,9,10
1,2,3,6,9,10
1,3,4,9,10
1,2,3,4,9,10

P1-10

P1-10

P1-10

P1-10

50
75
99
124

1,3,6,9
1,2,3,6,9
1,3,4,9
1,2,3,4,9

P1-9

P1-9

P1-9

P1-9

25
88
108
129

2,7
2,3,6,5,8,7
2,3,6,9,8,7
2,1,3,6,5,8,7

P2-7

P2-7

P2-7

P2-7

29
70
84
104

2,3,6
2,1,3,6
2,7,8,5,6
2,7,8,9,6

P2-6

P2-6

P2-6

P2-6

46
67
87
116

2,3,6,5
2,7,8,5
2,1,3,6,5
2,3,6,9,8,5

P2-5

P2-5

P2-5

P2-5

42
83
91
121

2,3,4
2,1,3,4
2,3,6,9,4
2,7,8,5,6,3,4

P2-4

P2-4

P2-4

P2-4

17
58
96
116

2,3
2,1,3
2,7,8,5,6,3
2,7,8,9,6,3

P2-3

P2-3

P2-3

P2-3

70
95
119
144

1,3,6,9,10
1,2,3,6,9,10
1,3,4,9,10
1,2,3,4,9,10

P1-10

P1-10

P1-10

P1-10

50
75
99
124

1,3,6,9
1,2,3,6,9
1,3,4,9
1,2,3,4,9

P1-9

P1-9

P1-9

P1-9

42
71
83
91

3,2,7
3,6,5,8,7
3,1,2,7
3,6,9,8,7

P3-7

P3-7

P3-7

P3-7

12
87
101
121

3,6
3,4,9,6
3,2,7,8,5,6
3,2,7,8,9,6

P3-6

P3-6

P3-6

P3-6

29
84
99
104

3,6,5
3,2,7,8,5
3,6,9,8,5
3,4,9,6,4

P3-5

P3-5

P3-5

P3-5

25
74
152
157

3,4
3,6,9,4
3,6,5,8,9,4
3,2,7,8, 9,4

P3-4

P3-4

P3-4

P3-4

62
103
111
111

2,3,6,9,10
2,1,3,6,9,10
2,7,8,9,10
2,3,4,9,10

P2-10

P2-10

P2-10

P2-10

42
83
91
91

2,3,6,9
2,1,3,6,9
2,7,8,9
2,3,4,9

P2-9

P2-9

P2-9

P2-9

42
71
91
112

2,7,8
2,3,6,5,8
2,3,6,9,8
2,1,3,6,5,8

P2-8

P2-8

P2-8

P2-8

42
71
83
91

3,2,7
3,6,5,8,7
3,1,2,7
3,6,9,8,7

P3-7

P3-7

P3-7

P3-7

12
87
101
121

3,6
3,4,9,6
3,2,7,8,5,6
3,2,7,8,9,6

P3-6

P3-6

P3-6

P3-6

29
84
99
104

3,6,5
3,2,7,8,5
3,6,9,8,5
3,4,9,6,4

P3-5

P3-5

P3-5

P3-5

25
74
152
157

3,4
3,6,9,4
3,6,5,8,9,4
3,2,7,8, 9,4

P3-4

P3-4

P3-4

P3-4

62
103
111
111

2,3,6,9,10
2,1,3,6,9,10
2,7,8,9,10
2,3,4,9,10

P2-10

P2-10

P2-10

P2-10

42
83
91
91

2,3,6,9
2,1,3,6,9
2,7,8,9
2,3,4,9

P2-9

P2-9

P2-9

P2-9

42
71
91
112

2,7,8
2,3,6,5,8
2,3,6,9,8
2,1,3,6,5,8

P2-8

P2-8

P2-8

P2-8

79
84
98
99

4,3,6,5,8
4,3,2,7,8
4,9,8
4,3,6,9,8

P4-8

P4-8

P4-8

P4-8

67
96
108
115

4,3,2,7
4,3,6,5,8,7
4,3,1,2,7
4,9,8,7

P4-7

P4-7

P4-7

P4-7

37
62
126
140

4,3,6
4,9,6
4,3,2,7,8,5,6
4,9,8,5,6

P4-6

P4-6

P4-6

P4-6

54
79
109
123

4,3,6,5
4,9,6,5
4,3,2,7,8,5
4,9,8,5

P4-5

P4-5

P4-5

P4-5

45
94
123
128

3,6,9,10
3,4,9,10
3,6,5,8,9,10
3,2,7,8,9,10

P3-10

P3-10

P3-10

P3-10

25
74
103
108

3,6,9
3,4,9
3,6,5,8,9
3,2,7,8,9

P3-9

P3-9

P3-9

P3-9

54
59
74
100

3,6,5,8
3,2,7,8
3,6,9,8
3,1,2,7,8

P3-8

P3-8

P3-8

P3-8

79
84
98
99

4,3,6,5,8
4,3,2,7,8
4,9,8
4,3,6,9,8

P4-8

P4-8

P4-8

P4-8

67
96
108
115

4,3,2,7
4,3,6,5,8,7
4,3,1,2,7
4,9,8,7

P4-7

P4-7

P4-7

P4-7

37
62
126
140

4,3,6
4,9,6
4,3,2,7,8,5,6
4,9,8,5,6

P4-6

P4-6

P4-6

P4-6

54
79
109
123

4,3,6,5
4,9,6,5
4,3,2,7,8,5
4,9,8,5

P4-5

P4-5

P4-5

P4-5

45
94
123
128

3,6,9,10
3,4,9,10
3,6,5,8,9,10
3,2,7,8,9,10

P3-10

P3-10

P3-10

P3-10

25
74
103
108

3,6,9
3,4,9
3,6,5,8,9
3,2,7,8,9

P3-9

P3-9

P3-9

P3-9

54
59
74
100

3,6,5,8
3,2,7,8
3,6,9,8
3,1,2,7,8

P3-8

P3-8

P3-8

P3-8

50
94
123
129

5,6,9,10
5,8,9,10
5,6,3,4,9,10
5,8,7,2,3,6,9,10

P5-10

P5-10

P5-10

P5-10

30
74
103
109

5,6,9
5,8,9
5,6,3,4,9
5,8,7,2,3,6,9

P5-9

P5-9

P5-9

P5-9

25
79
88
129

5,8
5,6,9,8
5,6,3,2,7,8
5,6,3,1,2,7,8

P5-8

P5-8

P5-8

P5-8

42
71
96
112

5,8,7
5,6,3,2,7
5,6,9,8,7
5,6,3,1,2,7

P5-7

P5-7

P5-7

P5-7

17
87
96
137

5,6
5,8,9,6
5,8,7,2,3,6
5,8,7,2,1,3,6

P5-6

P5-6

P5-6

P5-6

69
70
148
153

4,9,10
4,3,6,9,10
4,3,6,5,8,9,10
4,3,2,7,8,9,10

P4-10

P4-10

P4-10

P410

49
50
128
133

4,9
4,3,6,9
4,3,6,5,8,9
4,3,2,7,8,9

P4-9

P4-9

P4-9

P4-9

50
94
123
129

5,6,9,10
5,8,9,10
5,6,3,4,9,10
5,8,7,2,3,6,9,10

P5-10

P5-10

P5-10

P5-10

30
74
103
109

5,6,9
5,8,9
5,6,3,4,9
5,8,7,2,3,6,9

P5-9

P5-9

P5-9

P5-9

25
79
88
129

5,8
5,6,9,8
5,6,3,2,7,8
5,6,3,1,2,7,8

P5-8

P5-8

P5-8

P5-8

42
71
96
112

5,8,7
5,6,3,2,7
5,6,9,8,7
5,6,3,1,2,7

P5-7

P5-7

P5-7

P5-7

17
87
96
137

5,6
5,8,9,6
5,8,7,2,3,6
5,8,7,2,1,3,6

P5-6

P5-6

P5-6

P5-6

69
70
148
153

4,9,10
4,3,6,9,10
4,3,6,5,8,9,10
4,3,2,7,8,9,10

P4-10

P4-10

P4-10

P410

49
50
128
133

4,9
4,3,6,9
4,3,6,5,8,9
4,3,2,7,8,9

P4-9

P4-9

P4-9

P4-9

86
87
92
128

7,8,9,10
7,2,3,6,9,10
7,8,5,6,9,10
7,2,1,3,6,9,10

P7-10

P7-10

P7-10

P7-10

66
67
72
108

7,8,9
7,2,3,6,9
7,8,5,6,9
7,2,1,3,6,9

P7-9

P7-9

P7-9

P7-9

17
96
116
137

7,8
7,2,3,6,5,8
7,2,3,6,9,8
7,2,1,3,6,5,8

P7-8

P7-8

P7-8

P7-8

33
106
111
140

6,9,10
6,3,4,9,10
6,5,8,9,10
6,3,2,7,8,9,10

P6-10

P6-10

P6-10

P6-10

13
86
91
120

6,9
6,3,4,9
6,5,8,9
6,3,2,7,8,9

P6-9

P6-9

P6-9

P6-9

42
62
71
112

6,5,8
6,9,8
6,3,2,7,8
6,3,1,2,7,8

P6-8

P6-8

P6-8

P6-8

54
59
79
95

6,3,2,7
6,5,8,7
6,9,8,7
6,3,1,2,7

P6-7

P6-7

P6-7

P6-7

86
87
92
128

7,8,9,10
7,2,3,6,9,10
7,8,5,6,9,10
7,2,1,3,6,9,10

P7-10

P7-10

P7-10

P7-10

66
67
72
108

7,8,9
7,2,3,6,9
7,8,5,6,9
7,2,1,3,6,9

P7-9

P7-9

P7-9

P7-9

17
96
116
137

7,8
7,2,3,6,5,8
7,2,3,6,9,8
7,2,1,3,6,5,8

P7-8

P7-8

P7-8

P7-8

33
106
111
140

6,9,10
6,3,4,9,10
6,5,8,9,10
6,3,2,7,8,9,10

P6-10

P6-10

P6-10

P6-10

13
86
91
120

6,9
6,3,4,9
6,5,8,9
6,3,2,7,8,9

P6-9

P6-9

P6-9

P6-9

42
62
71
112

6,5,8
6,9,8
6,3,2,7,8
6,3,1,2,7,8

P6-8

P6-8

P6-8

P6-8

54
59
79
95

6,3,2,7
6,5,8,7
6,9,8,7
6,3,1,2,7

P6-7

P6-7

P6-7

P6-7

 16

We now proceed to the next iteration. Of interest is the question of whether a
deadlock situation could arise, resulting in cycling between a pair (or more) links
having successive maximum utilisation. We will see that this can occur and a method
will be proposed for breaking a cycle. The next few steps are described in the tables
below.

20
-
-

9,10
-
-

P9-10

P9-10

P9-10

P9-10

69
75
104
145

8,9,10
8,5,6,9,10
8,7,2,3,6,9,10
8,7,2,1,3,6,9,10

P8-10

P8-10

P8-10

P8-10

49
55
84
125

8,9
8,5,6,9
8,7,2,3,6,9
8,7,2,1,3,6,9

P8-9

P8-9

P8-9

P8-9

20
-
-

9,10
-
-

P9-10

P9-10

P9-10

P9-10

69
75
104
145

8,9,10
8,5,6,9,10
8,7,2,3,6,9,10
8,7,2,1,3,6,9,10

P8-10

P8-10

P8-10

P8-10

49
55
84
125

8,9
8,5,6,9
8,7,2,3,6,9
8,7,2,1,3,6,9

P8-9

P8-9

P8-9

P8-9

4-shortest paths and their path costs

Note: paths with excessive delay can be culled at this step

Iteration 2

Note that it is not necessary to re-compute k’th
shortest paths. Paths with links (2,7) and (7,2) have
their distances incremented by:

Only some re-ordering of paths is necessary.

If link (3,6) had retained the maximum utilisation
we would simply consider next P3-8 and observe that

This value is the old value -2

3 8
3,6 5−∆ =

The new link cost for link (3,6) would be 3,6 min12 1 12 5 1 18m = + ∆ + = + + =

The new paths affected would be andP3-8 P4-8

Link (2,7) now has the maximum utilisation.

We now proceed to identify Q(2,7)

2,7
: (2,7)

() 1
u v

u v

u v P Q
Min

−

−

− ∈
∆ +

 17

Q(2,7) = { : (2,7) }u v u vP P− −∈
Path Flow Demand

P1-7 4 units

P1-8 10 units

P2-7 3 units

P2-8 13 units

P3-7 4 units

P4-7 2 units

P6-7 8 units

u-vu-v uv
2,7 2,7 2,7 f ()u v u vu v Pδ δ− −− ∆

1-7 3 38 4 1,3,6,5,8,7
1-8 2 4 10 1,3,6,5,8
2-7 2 63 3 2,3,6,5,8,7
2-8 2 29 13 2,3,6,5,8
3-7 2 29 4 3,6,5,8,7
4-7 2 29 2 4,3,6,5,8,7
6-7 2 5 8 6,5,8,7

We see here the danger of reintroducing additional flow on link (3,6) -
in which case it is possible that we may either cycle or converge in a non-monotonic
manner. That is, the objective function may increase in order to avoid a local optimum and
then subsequently decrease. This would occur if transfer of flow to link (3,6) increased its
utilisation, so that it once more had greatest utilisation, and then further cost increment to
link (3,6) led to a greater reduction in its utilisation.

Continuing the principle of selecting the paths with
the least cost increment we would select 1 8 (2)P − as the first path to
deviate from using link (2,7) and effect this by incrementing the cost of
link (2,7) by 4+1 = 5. That is, 2,7 25 4 1 30m = + + = .

 18

(1,2) -10 12

(2,7) -10 34

(7,8) -10 30

(1,3) +10 44

(3,6) +10 114

(6,5) +10 64

(5,8) +10 33

* similar flow values for links
(2,1),(7,2),(8,7),(3,1),(6,3),(8,5)

Link Change in flow New flow

u-v old path new path offered flow

1-8 1,2,7,8 1,3,6,5,8 10

Paths containing
link (2,7)

Paths not containing
link (2,7)

 19

Link Flow Utilisation (decreasing) Link New flow New utilisation

3,6 104 1,06122449 (3,6) 114 1.163265306

2,7 44 1,1 (2,7) 34 0.85

3,4 34 0,85 (3,4) 34 0.85

2,3 59 0,98333333 (2,3) 59 0.983333333

6,9 61 0,7625 (6,9) 61 0.7625

5,6 54 0,9 (5,6) 64 1.083333333

1,3 34 0,85 (1,3) 44 1,1

9,10 40 0,8 (9,10) 40 0.8

1,2 22 0,73333333 (1,2) 12 0.4

7,8 40 0,66666667 (7,8) 30 0.5

8,9 15 0,75 (8,9) 15 0.75

5,8 23 0,575 (5,8) 33 0.825

4,9 10 0.5 (4,9) 1 0 0.5

Average utilisation 0,77169676 Average utilisation 0.81287936

Maximum utilisation 1,1 (link (2,7) Maximum utilisation 1,1 63265 (link (3,6)

Results after two iterations of the KSP cost adjustment heuristic

Note: Both the maximum and average utilisation have increased after the
second iteration but these values are still less than the original values.
Is this telling us that we didn’t add enough cost to link (3,6) or that we will
cycle?

1

3

4

6

5

109

8

7
2

3

30

17

13 20

49

33

25

12

17

25

49
17

25

New link costs

 20

Continuing the next iteration we observe that the algorithm is repeatedly selecting
links (3,6) and (2,7) for cost incrementation. We display the variable values for the
next iteration and then address the matter of how we can avoid this repetition, or
cycling.

1-5 2 51 3 1,2,7,8,5

1-6 3 77 6 1,3,4,9,6

1-8 2 1 10 1,2,7,8

1-9 3 49 6 1,3,4,9

1-10 3 49 1 1,3,4,9,10

2-5 2 26 9 2,7,8,5

2-6 3 70 14 2,7,8,5,6

2-9 3 49 5 2,3,4,9

2-10 3 54 7 2,3,4,9,10

3-5 2 60 7 3,2,7,8,5

3-6 2 75 6 3,4,9,6

3-8 2 10 3 3,2,7,8

3-9 2 49 14 3,4,9

3-10 2 49 8 3,4,9,10

4-5 2 25 4 4,9,6,5

4-6 2 25 1 4,9,6

4-8 2 10 1 4,3,2,7,8

)(81 8-1
3,6

8-1
3,6

8-1
3,6 δδ vuvu Pf- −−∆

Starting iteration 3 3,6 min12 1 12 5 1 18m = + ∆ + = + + =

 21

If we continue for a third iteration we will find that (i*,j*) is (2,7) and
the old path is 1,3,6,5,8 and new path is 1,2,7,8 for O-D 1-8.

That is, the algorithm would cycle. Each time the link distances are
incremented for links (3,6) and (2,7) until their distances are large
enough to cause re-direction of the traffic to other links – thus breaking
the cycling

1

3

4

6

5

109

8

7
2

3

30

17

13 20

49

33

25

12

17

25

49
17

25

Cycling can occur between links (3,6) and (2,7) (i.e. the
links with maximum utilisation – until their costs are
sufficiently large relative to the other links and then the
path deviation is to another path)

u-v old path new path offered flow

1-8 1,2,7,8 1,3,6,5,8 10

At iteration 2 we had:

u-v old path new path offered flow

1-8 1,3,6,5,8 1,2,7,8 10

At iteration 3 we have:

Path 1-8 is the path first
affected by the increase in link
distance

 22

Link Flow Utilisation

3,6 104 1,06122449

2,7 44 1,1

3,4 34 0,85

2,3 59 0,98333333

6,9 61 0,7625

5,6 54 0,9

1,3 34 0,85

9,10 40 0,8

1,2 22 0,73333333

7,8 40 0,66666667

8,9 15 0,75

5,8 23 0,575

4,9 10 0.5

Average utilisation 0,77169676

Maximum utilisation 1,1 (link (2,7)

Note that we do not have to recompute the link
utilisations the same paths have been involved in the
cycle (see back 3 slides). The only effective change
is that the link costs for link (3,6) and link (2,7) are
being increased.

It would be possible to compute in advance the
smallest increase in link costs for these two links
to break the cycle from the original costs- thus
avoiding more than one cycle.

Cycle-breaking

A cycle is detected by the following sequence of
events:

(1) A link l1 has max. utilisation. On checking for the
smallest ∆ for shortest paths using link l1 we have
a set of paths P1 ,to which l1 belongs, that lose
flow and another set of paths P2 ,to which l1 does
not belong, that receive flow.
We increment the link distance for l1 by ∆ +1.

(2) Τhe next link with greatest utilisation is l2.
The set of paths to which l2 belongs that lose flow
is P2 , and the set of paths to which l2 does not
belong, that receive flow, is P1.
(This implies that l1 would once again be the link
with greatest utilisation)

 23

Will the strategy of always increasing the cost of the link with the
greatest utilisation always work?
Referring to the following network we discuss a counter-example.

To break the cycle we seek the smallest ∆/ for shortest paths with link
l2 not involving l1. This may involve 3rd shortest paths or 4th shortest
etc.

Next we add the value of this new ∆/ to the distances of both links l1
and l2 .

For the current example, suppose we detect a
cycle at this stage:

1-5 2 51 3 1,2,7,8,5

1-6 3 77 6 1,3,4,9,6

1-8 2 1 10 1,2,7,8

1-9 3 49 6 1,3,4,9

1-10 3 49 1 1,3,4,9,10

2-5 2 26 9 2,7,8,5

2-6 3 70 14 2,7,8,5,6

2-9 3 49 5 2,3,4,9

2-10 3 54 7 2,3,4,9,10

3-5 2 60 7 3,2,7,8,5

3-6 2 75 6 3,4,9,6

3-8 2 10 3 3,2,7,8

3-9 2 49 14 3,4,9

3-10 2 49 8 3,4,9,10

4-5 2 25 4 4,9,6,5

4-6 2 25 1 4,9,6

4-8 2 10 1 4,3,2,7,8

)(81 8-1
3,6

8-1
3,6

8-1
3,6 δδ vuvu Pf- −−∆

Smallest
value of ∆

Second smallest ∆

The value of ∆ chosen is 25 as 1-8
3,6()u vP δ− does not include links (2,7) or (3,6)

 24

A

B D

1

2 4

3

C

45C-D

40B-D

5A-D

45C-D

40B-D

5A-D

Flow demands

Capacity = 1000
Distance = 100

Capacity = 1000
Distance = 5

Capacity = 1000
Distance = 10

Capacity = 1000
Distance = 10

Capacity = 1000
Distance = 5

Capacity = 1000
Distance = 5

Capacity = 100
Distance = 91

Capacity = 100
Distance = 91 Capacity = 200

Distance = 1

Capacity = 200
Distance = 1

Links (1,3) and (2,4) will always
have the greatest utilisation

 25

Shortest paths

C-2-4-D 97
C-1-3-D 102

PC-D

PC-D

B-1-3-D 97
B-2-4-D 102

PB-D

PB-D

A-2-4-D 97
A-1-3-D 192

PA-D

PA-D

C-2-4-D 97
C-1-3-D 102

PC-D

PC-D

B-1-3-D 97
B-2-4-D 102

PB-D

PB-D

A-2-4-D 97
A-1-3-D 192

PA-D

PA-D

Link utilisations

0.25(4,D)

0.2(3,D)

0.5(2,4)

0.4(1,3)

0.005(C,2)

0(C,1)

0(B,2)

0.04(B,1)

0.005(A,2)

0(A,1)

0.25(4,D)

0.2(3,D)

0.5(2,4)

0.4(1,3)

0.005(C,2)

0(C,1)

0(B,2)

0.04(B,1)

0.005(A,2)

0(A,1)

For this problem the optimal solution is to
also have the B-D flow using link (1,3).
Then both links with max. utilisation have
values of 0.45. Can this be achieved?

C-2-4-D 97
C-1-3-D 102

PC-D

PC-D

B-1-3-D 97
B-2-4-D 102

PB-D

PB-D

A-2-4-D 97
A-1-3-D 192

PA-D

PA-D

C-2-4-D 97
C-1-3-D 102

PC-D

PC-D

B-1-3-D 97
B-2-4-D 102

PB-D

PB-D

A-2-4-D 97
A-1-3-D 192

PA-D

PA-D

∆

95

5
We increase the
distance of link
(2,4) by 6

The effect of this is to change the
shortest path for C-D to C-1-3-D.

A-D traffic will remain on path
A-2-4-D. The new utilisations
for the links are:

0.025(4,D)

0.425(3,D)

0.05(2,4)

0.85(1,3)

0(C,2)

0.045(C,1)

0(B,2)

0.04(B,1)

0.005(A,2)

0(A,1)

0.025(4,D)

0.425(3,D)

0.05(2,4)

0.85(1,3)

0(C,2)

0.045(C,1)

0(B,2)

0.04(B,1)

0.005(A,2)

0(A,1)

 26

The link costs at this stage are as shown:

PC-D

PC-D

B-1-3-D 97
B-2-4-D 102

PB-D

PB-D

A-2-4-D 97
A-1-3-D 192

PA-D

PA-D

PC-D

PC-D

B-1-3-D 97
B-2-4-D 102

PB-D

PB-D

A-2-4-D 97
A-1-3-D 192

PA-D

PA-D

New shortest paths

C-2-4-D 103
C-1-3-D 102

∆

5

1 We increase the distance
of link (1,3) by 2.

The effect of this is to change the
shortest path for C-D back to C-2-4-D.
When we apply the cycle breaking
technique we see that there are no
k'th shortest paths that do not contain

either link (1,3) or link (2,4).
So the algorithm would stop at this
stage with the best solution:
Min (Max. utilisation) = 0.5
Thus missing the optimal solution.

We note that the method of selecting the
initial link distances
(i.e. short distances for high capacity
links) could have annulled
this counter-example. But it illustrates the
potential for failure of
the algorithm to find an optimal solution.

A

B D

1

2 4

3

C

Capacity = 1000
Cost = 100

Capacity = 1000
Cost = 5

Capacity = 1000
Cost = 10

Capacity = 1000
Cost = 10

Capacity = 1000
Cost = 5

Capacity = 1000
Cost = 5

Capacity = 100
Cost = 97

Capacity = 100
Cost = 93

Capacity = 200
Cost = 1

Capacity = 200
Cost = 1

After iteration 1

After iteration 2

 27

We next propose an extension to the algorithm to avoid the problem illustrated in the
counter-example. The problem arose because of the algorithm’s inability to recognize
the potential for improvement from transferring flow to links with small utilisation.
Thus, in addition to the procedure involving links with high utilisation, we now
include the following procedure.

When a cycle results in termination, proceed as follows:
For the set of O-D pairs u-v that have been involved in the cycle, select a link with
minimum utilisation and decrease its link cost by the smallest amount needed to
create a new shortest path using that link. If a new shortest path cannot be found,
apply the above for all O-D pairs.

For our example, application of this rule results in re-allocation of the flow between
A and D, and the optimal solution is then found, namely a min-max utilisation of
0.45.
During the implementation of the algorithm, we work with integer link costs. When
the first set of link costs is generated there is no guarantee that unique shortest paths

C-1-3-D 102
C-2-4-D 103

PC-D

PC-D

B-1-3-D 97
B-2-4-D 102

PB-D

PB-D

A-2-4-D 97
A-1-3-D 192

PA-D

PA-D

C-1-3-D 102
C-2-4-D 103

PC-D

PC-D

B-1-3-D 97
B-2-4-D 102

PB-D

PB-D

A-2-4-D 97
A-1-3-D 192

PA-D

PA-D

For this case link (A,1) would
be selected and its distance
reduced to 9. Hence path A-1-3-
D can now be selected and the
optimal solution found

0.425(3,D)

0.05(2,4)

0.85(1,3)

0(C,2)

0.045(C,1)

0(B,2)

0.04(B,1)

0.005(A,2)

0(A,1)

0.425(3,D)

0.05(2,4)

0.85(1,3)

0(C,2)

0.045(C,1)

0(B,2)

0.04(B,1)

0.005(A,2)

0(A,1)

Link distances

Link utilisations

u-v

 28

exist for all source-destination pairs. The rule for updating link costs ensures that
paths that are re-ordered have distinct costs but not all shortest paths may be re-
ordered during the implementation of the algorithm. At the conclusion of the
algorithm, we need to ensure that the set of link costs produce unique paths for each
source-destination pair. This is an essential requirement of the IP routing protocol.
The uniqueness can be guaranteed by means of a simple perturbation of the final link
costs (this perturbation will not alter the optimal set of paths). The approach adopted
is similar to that of [2].
Suppose that the network has p links, numbered 1,2,3…p and let σ(p) be a
permutation of the integers 1,2,3…p. The cost of link j, wj, is replaced by wj +2σ(j)-p-1.
 It can be seen that the sum of the perturbation terms is less than 1 since each
perturbation is selected from the terms of the geometric series 1/ 2,1/ 4,1/8,...
Alternatively, this perturbation can be made after the initial set of integer link costs
have been assigned at the first step of the algorithm.

Comment on an Inversion of the Shortest Path Problem
Given a network and a set of single paths between each source-destination pair
satisfying the shortest path principles one can find a set of link costs that would
correspond to these shortest paths. In [11] this inverse shortest path problem is
solved using Linear Programming. These link costs are not unique. In general, there
are many solutions to the problem that do not just involve a constant multiplier. For
example, if a randomly selected set of symmetric link costs are generated such that

ij jiw w= and shortest paths determined, a set of link costs such that ij jiw w≠ may be
found as a valid solution.

3.2 Summary

The proposed heuristic should be tested thoroughly against known results from
application of the method of [11]. It has the following potential advantages:

• Large network problems may now be considered
• Computational time will be reduced (compared to mathematical

programming methods)
• It will be easy to evaluate alternative solutions near the optimal solution.

In the next section we examine the issues related to the use of decomposition
methods, for the IP routing problem, with the view to extending the range of
applicability of the method proposed in [11].

 29

4. Network Decomposition

Suppose that we are given a large undirected network G(V,E), where V denotes the
set of nodes or vertices of the network and E is its set of edges or links. We can
identify two main objectives.
First, we wish to find an efficient algorithm to automatically decompose the network
into disjoint connected subgraphs having the following desirable properties:

• Each subgraph is to have approximately the same number of nodes
• The number of separator nodes (see below) used in the decomposition is

minimized.
Secondly, we seek an efficient algorithm for independently applying the IP network
routing optimization algorithm to each subgraph and then combining the results to
obtain the optimal (or near-optimal) solution for the original network G.

4.1 First objective

We see that the following network can be subdivided into two subgraphs satisfying
our two desirable properties by separating at node 7. We seek an automatic method
for finding such a node separator set, from the input link data that describes the
network topology.

1

4

13

14

12

11

10

9

7

8

53

62

1

By eye we can see that to obtain two subgraphs with approximately equal
numbers of nodes (i.e. balanced subgraphs) and with a minimal number of
node separators, we select node 7 as a separator set S.

1

4

7

8

53

62

1

13

14

12

11

10

9

7

 30

The general approach we adopt for our first objective is to start with any network
partition [S,B,W] where S is a node (vertex) separator set. B and W are the two disjoint
subgraphs induced by S. Assume that B is the bigger of the two subgraphs.
We consider strategies to reduce the imbalance and to reduce the separator size based on
the Dulmage-Mendelsohn decomposition [4] and rely significantly on ideas from [1].
First we require some terminology and definitions.

The adjacent set of a vertex v is given by () { | (,) }Adj v u v u v E= ≠ ∈ .
A vertex separator S is a subset of V if the subgraph induced by the vertices in V but
not in S has more than one connected component (similar definition for edge
separator). A separator is minimal if no subset of it forms a separator.

An Evaluation function is proposed in [1]: max{| |,| |}
[; ;] | | (1)

min{| |,| |}
B W

S B W S
B W

γ α= +

The parameter α determines the relative significance of minimizing the number of
nodes in the separator set compared to balancing the sizes of the two subgraphs.
We wish to minimise this function.
The interior of a set Y is () { | () }Int Y y Y Adj y Y= ∈ ⊆
That is, the adjacent nodes of Y are all in Y
The boundary of the set Y is the set of nodes not in Y that are adjacent to Y. It is
denoted by ()Adj Y .

() { \ | (,) for some } (()) \
y Y

Adj Y v V Y y v E y Y Adj y Y
∈

= ∈ ∈ ∈ = U

The border of Y is the boundary of the interior of Y (i.e. a subset of Y).

[]If , , is a two set partition of G and is a subset of then

 denotes the of the subset from to .
This creates the new partition:

\ (), , and (\) (())Z W Z W Z W

S B W Z S

Z W move Z S W

B B Adj Z W W Z S S Z Adj Z B→ → →

→

= = ∪ = ∪ ∩

The new separator set is S minus Z plus nodes from B in Adj (Z)
Thus the new separator size is | | | | | | | () |Z WS S Z Adj Z B→ = − + ∩ .
Therefore if we can find a subset Z of S such that | | | ()Z Adj Z B> ∩ ,
then the move of Z to W will result in a reduction of the separator set size.
The question now is: ”How do we find an optimal set Z that achieves our purpose?”
The solution comes from the theory of bipartite graph matching.
Some further definitions are needed.

A bipartite graph is an undirected graph whose set of nodes can be divided into two
disjoint sets (X and Y) such that every edge (link) has one endpoint in each set.

 31

A matching of a bipartite graph H is a subset M of edges such that no two edges in
this subset have a node in common.
A node that is incident to an edge in M is said to be covered, otherwise it is exposed.
The number of edges in M is said to be the size of the matching.
A maximum matching is one of largest size for the bipartite graph.
A complete matching from X to Y in a bipartite graph is a one-to-one correspondence
between the vertices in X and a subset of the vertices in Y, with the property that the
corresponding vertices are joined.
If (x,y) belongs to the matching M then x = mate(y) and y = mate(x).

The concept of a complete matching is readily explained with the classical marriage
problem.
Given a finite set of boys each of whom knows several girls, under what conditions
can we marry off the boys in such a way that each boy marries a girl he knows? A
matching is illustrated below with the edges in the matching being given as thick
lines.

For the example network, with separator set {2,3,5,8}, the sets W and B are as shown
in the following figure.
The bipartite graph induced by the separator set is also shown.

b1

b4

b2

b3

g1

g2

g3

g4

g5

Example of a complete matching
from the nodes in X to the nodes in Y

Y X

 32

There are two maximal mappings from the nodes in S to the nodes in ()B Adj S∩ ,
one of which is shown below by the thick lines. We see that the matching is not
complete (nodes 3 and 5 are not paired with nodes in ()B Adj S∩).

1

4

13

14

12

11

10

9

7

8

53

62

1

S
W

B

8

53

62

7

An induced bipartite graph H = (S, Border(B), EH)

() ()Border B B Adj S= ∩

EH is the set of edges in the bipartite graph H

8

53

62

7

A maximum matching M
(this is not a complete matching)

Exposed nodes
in the maximum
matching

 33

We want to find a subset Z of S such that | | | () |Z Adj Z B> ∩ . To answer this
question we make use of Hall’s theorem [5].

Hall’s Theorem (1935)
The bipartite graph H has a complete matching of
S into B if and only if for every subset Z of S, | | | () |Z Adj Z B≤ ∩ .

Alternative statement:
A necessary and sufficient condition for a solution of the marriage problem is that
every set of k boys collectively knows at least k girls.
.
We want to find a subset Z of S such that | | | () |HZ Adj Z B> ∩ .
Thus Hall‘s theorem can be used to provide a necessary and sufficient condition for
the existence of a size-improving subset Z of SS,, ii..ee.. tthhaatt HH ddooeess nnoott hhaavvee aa ccoommpplleettee
mmaattcchhiinngg ffrroomm SS iinnttoo BB..
For our example, we do not have a complete matching; therefore we can find a size-
improving subset of S.
To find the size-improving subset, we require the concept of an alternating path:
Given a matching M, a simple path (sequence of unrepeated nodes)
 x1, x2, … ,xk is an alternating path if alternate edges belong to the matching.

A theorem due to Liu [7] provides information on the magnitude of the size
improvement.

Liu’s Theorem (1989)
Let be an exposed node in a maximum matching of .
Define { | s is reachable from via alternating paths}.
Then | | | () | 1

x

x H x

x S H
S s S x
S Adj S

∈
= ∈
− =

The alternating path 2,6,5 in the maximum matching allows us to now place the
nodes 2 and 5 in W and to put the node 6 into S. The isolated node 3 can also be
placed in W.

8

3
7

For this example, their are two exposed nodes
in S. Therefore we can find a size-improving
subset Z of S.Exposed nodes

in the maximum
matching

5

62

 34

At this stage, we have the new decomposition of the network as shown below.

We note that the set S was not a minimal vertex separator (nodes 2,5 and 8 would
have given a separation of the graph into two subgraphs). Node 3 did not feature in
the matching.
We now have a better-balanced decomposition of the network and a reduction in the
number of nodes in the vertex separator.
This process can be made even more efficient.

In applying Liu’s theorem, the set Sx can be determined by performing an alternating
breadth- first search starting from the exposed node x.
The first improvement is to use all exposed nodes in S to find a subset Z in S that
maximises the decrease in separator size.
A theorem due to Pothen and Fan [10] is useful in helping to select the optimal set X
from S.

Pothen and Fan’s Theorem (1990)

{

Z S

Define a set of nodes | is reachable from some exposed node in via alternating paths}

Then :
| | | () | 0
| | | () | = Max{| | | () |}

 is the subset of with this max

I

I H I

I H I H

I

S s S s S

S Adj S
S Adj S Z Adj Z

S smallest S
⊆

= ∈

− >
− −

imum value | | | () | I H IS Adj S−

Although the subset SI gives the maximum reduction in separator size, one might
prefer a smaller reduction in exchange for a better balance between the two
subgraphs.
If X0 is any subset of the exposed nodes in S then 0{ | } xZ S x X= ∈U satisfies the
condition: | | | () |HZ Adj Z B> ∩ .

1

4

13

14

12

11

10

9

7

8

53

62

1

 35

We have seen how to improve the decomposition for the case that the maximum
matching in the induced bi-partite graph is not complete. When the matching is
complete the above theorems fail to improve the decomposition, In this case we can
proceed by applying a result based on the Dulmage-Mendelsohn Decomposition [3].

The Dulmage-Mendelsohn Decomposition
(Originally published in the Canad. J. Math. In 1958
Re-stated in our context by Pothen & Fan in 1990)

Suppose that the induced bipartite graph from a given partition [S,B,W] is H(S,B) and
that we have a maximum matching M on H.
The Dulmage-Mendelsohn decomposition of the vertex separator set S is the
decomposition of S into 3 disjoint subsets: I X RS S S S= ∪ ∪ .

R

{ | s is reachable from some exposed node in S via alternating paths}

{ | s is reachable from some exposed node in via alternating paths}

S \ ()

I

X

I X

S s S

S s S B

S S S

= ∈

= ∈

= ∪

The set SR is the set of remaining nodes in S, after SI and SX have been determined.

Theorem:
The Dulmage-Mendelsohn decomposition SI, SX, SR is independent of
 the maximum matching used to define the alternating paths

Theorem (due to Pothen & Fan):

I

I

The set satisfies:
|S | | () | | | | () |

S is the largest subset of with the maximum value
{| | | () |}

I R

R H I R I H I

R

HZ S

S S
S Adj S S S Adj S

S S
Max Z Adj Z

⊆

∪
∪ − ∪ = −

∪
−

SI is the smallest subset of S that gives the maximum reduction in separator size

I RS S∪ is the largest subset of S that gives the maximum reduction in separator size

Thus, moving either of SI or I RS S∪ will achieve the same size reduction but the
balance for the resulting partition may be better for one or the other of the two
moves.

 36

By symmetry, we can also decompose Border (B) into 3 disjoint node sets BI, BX, BR .
For example:

{ | b is reachable from some exposed node in via alternating paths}XB b B S= ∈ .

Theorem:

() and ()X H I X H IS Adj B B Adj S= =

SX can be given by the adjacent set of BI, the set of reachable nodes in B from internal
exposed nodes via alternating paths.
BI can be found by forming the alternating breadth-first forest from the set of
exposed nodes in B.

We illustrate the above results as follows:

()

()

X H I

X H I

S Adj B

B Adj S

=

=

Adjacency Theorem:

BI can be found by forming the alternating breadth-first
forest from the set of exposed nodes in B

SX can be given by the adjacent set of BI, the set of reachable
nodes in B from internal exposed nodes via alternating paths

8

3
7

Exposed nodes
in the maximum
matching

5

62 SI = {5,2}

SX = {}

SR = {8}

BI = {}

BX = {6}

BR = {5}

AdjH(BI) = {}

AdjH(SI) = {6}

 37

Comments on the Stopping Condition

If a separator-improving subset of S can be found satisfying | | > | () |HZ Adj Z B∩
then we can attempt to use it to gain a better balance between the subgraph sizes.
Otherwise if no such subset can be found, no reduction in separator size by graph
matching is possible. This occurs when the maximum matching is complete. The
current separator S is already of minimum size among covering separator subsets
of ()S Border B∪ .

We may still be able to improve the imbalance ratio: max{| |, | |}
min{| |, | |}

B W
B W

We can search for a subset Z in S with | () | | |HAdj Z Z= .
A move of Z to the smaller subgraph W will replace Z by | () |HAdj Z
in S. There will be no change in separator size, but there may be a reduction in the
imbalance.
If SI is empty, size reduction is not possible for the vertex separator set, but the subset
SR can be used to reduce the imbalance.

The following lemma is used to show that in the case that SI is empty (and it is then not
possible to reduce the size of the vertex separator set), SR is the key to finding a balance-
improving separator subset.

Lemma:

Theorem:

RLet {}. The separator subset S is the largest
subset of S such that its size is the same as the size
of its adjacent set.

IS =

We list two of the properties of SI:
|SR| = |BR|

Thus if SI is empty then by definition BX is empty and therefore

Let {} and consider a subset of .

If Z S is non-empty then | | | ()|.X

S Z SI

Z Adj ZH

=

∩ <

() H I R X RAdj S S B B∪ = ∪

() H R RAdj S B=

 38

Therefore, when the separator subset SI is empty, the move of SR to W will give a new
separator:

Theorem:

Let [S,B,W] be a partition with |B| > |W| and SI= { }.
Given a subset Z with |Z| = |AdjH(Z)| the move of Z to W
Will reduce the evaluation function if and only if |Z| < |B| - |W|.

() \

so that
| | | () \ | | |

R

R

S W R R

S W R R

S S B S

S S B S S

→

→

= ∪

= ∪ =

Example

30

292827262524

232221201918

171615141312

11109876

542 310

31 32 33 34 35
SI = {}

SX = {4,10,24,25}

SR = {9,15,19,20,21}

BI = {5,11,17,30,31,32}

BX = {}

BR = {16,22,26,27,28}

There is a complete matching of S into B, hence
The size of the separator set cannot be reduced.
Moving SR from S to W and BR to S gives a new
separator set with the same size and also gives better
balance of the subgraphs

SI = {}

Dulmage-Mendelsohn
Decomposition:

 39

4.2 Second objective

We now seek to find an efficient algorithm for independently applying the IP
network link cost optimization algorithm [11] to each subgraph and then combining
the results to obtain the optimal link costsfor the original network G.

Preliminary Comments
It is not possible simply to apply the algorithm to the two subgraphs separately and
to use the link costs obtained for the entire network. Although a shortest path must
consist of shortest subpaths (the optimality principle), the following example
illustrates that the concatenation of two shortest paths may not give a shortest path.
Let Su-v denote the shortest (cheapest) path from u to v.
S1-4 = 1-2-4 (of length 2)and S4-7 = 4-6-7 (of length 4). The concatenation of these two
shortest paths gives the path 1-2-4-6-7 of length 6, but S1-7 = 1-3-5-7 is of length 5.
Suppose u is in W and v is in B.
We need to consider the shortest distance from node u to all nodes in the separator
set and then the shortest distance from such nodes s to v.

30

292827262524

232221201918

171615141312

11109876

542 310

31 32 33 34 35

Shifting SR = {9,15,19,20,21} from S to W and
from B to S

BR = {16,22,26,27,28}

 40

It is pointed out in [8] that the optimality principle does not apply to k’th shortest
paths:

We see that a k’th shortest path may exist containing a j’th shortest subpath
with j > k.

1

3

2

5

4
6

7

1

1
1

3

2

2

2

2

1

5

4

3

20

2

1

0

0

0

0

Let Pu-v(k) denote the k‘th
shortest path between u and v.

P1-2(1) = 1,2 with distance 0

P1-2(2)

P1-3(1)

P1-3(2)

P1-3(3)

The 3rd shortest path from 1 to 3
is a subpath of the 2nd shortest path
from 1 to 2

= 1,3,5,2 with distance 2

= 1,2,4,3 with distance 0

= 1,2,3 with distance 1

= 1,3 with distance 2

 41

If the network has identifiable subgraphs comprising tree structures, there is an
immediate simplification possible. Since a tree has a unique path between any two
member nodes, the costs given to the links of the tree may be arbitrary. For example,
the network below may be reduced to a mesh-type network and two leaves.

 42

A Preliminary Approach to the Problem

Consider the following decomposition of a network.

We form from the previous network two associated networks by adding dummy
nodes X and Y.

1

3

4

6

5

109

8

7
2

3

Vertex separator set S

W

B

1 2

3

4

Y

6

7

X

7

6

4

8

5

9
10

GX

GY

 43

Note that the structures of B and S are retained in the network GX, with dummy node
X, whilst the sub-graph W is condensed to a single node. Similarly, the structure of W
and S are retained in the network GY, with dummy node Y, whereas B is condensed
to the single node Y.
Suppose that the input data for the network is as follows.

The input data for the two related subgraphs GX and GY are obtained by the
following rules.

The demand from node X (or Y) to a node s in S is the sum of the demands to s from
the nodes aggregated together to form node X (or Y).

Let s be a node in S. The capacity of link (X,s) is

(,) ;
ks

k s L k W

c
∈ ∈
∑

That is, the capacity of link (X,s) is the sum of the capacities of links adjacent to s in
W.
Let s be a node in S. The capacity of link (Y,s) is

(,) ;
ks

k s L k B

c
∈ ∈
∑

That is, the sum of the capacities of links adjacent to s in B.

049125387110

403249714569

93071021313108

12708724347

2410803161476

59273047935

3712140311124

814346730253

75133149112082

1610473125801

10987654321

049125387110

403249714569

93071021313108

12708724347

2410803161476

59273047935

3712140311124

814346730253

75133149112082

1610473125801

10987654321

Actual Flow demands between O-D pairs

05010

5002080209

20060408

600407

80060986

406005

200404

9840060403

40600302

403001

10987654321

05010

5002080209

20060408

600407

80060986

406005

200404

9840060403

40600302

403001

10987654321

Original Link capacities

 44

Applying the above rules, the flow demands for Gx and GY are:

0171915323420Y

9

8

170824347

1980161476

5

15210311124

324630253

34314112082

2047125801

Y987654321

0171915323420Y

9

8

170824347

1980161476

5

15210311124

324630253

34314112082

2047125801

Y987654321

Flow demands for GY

05010

5002080209

20060408

600407

80060986

406005

200404

3

2

4098400X

1098765432X

05010

5002080209

20060408

600407

80060986

406005

200404

3

2

4098400X

1098765432X

Capacities for GX

6014020Y

9

8

600407

1400986

5

200404

9840060403

40600302

403001

Y987654321

6014020Y

9

8

600407

1400986

5

200404

9840060403

40600302

403001

Y987654321

Capacities for GY

04912531610

4032497259

93071021268

1270872117

24108031276

5927304195

3712140264

162526112719260X

10987654X

04912531610

4032497259

93071021268

1270872117

24108031276

5927304195

3712140264

162526112719260X

10987654X

Flow demands for GX

 45

We next use the LP to find the optimal routing in the two networks Gx and GY such
that we minimize the maximum link utilisation (or minimize an objective function
also involving the average utilisation over the network).

The optimal solution to the LP is a set of paths between each pair of nodes, satisfying
the shortest (cheapest) path principle.
We record for each source u and destination v the optimal paths between them in Gx
and GY, respectively. If u (v) ∈W (B) in Gx (GY) the path is to X (or Y as the case
may be). Let us denote these optimal paths by PX(u-v) and PY(u-v) respectively.
Note that at this stage it is not necessary to know the link costs that would normally
be generated by the usual application of the algorithm in [11].
For the example under consideration the optimal paths PX(u-v) and PY(u-v) are
shown in the table on the following page These were found by solving for optimal
paths on GX and GY separately..
Looking at the first entry, the source node is node 1 and the destination is node 10. In
GY, node 10 ∈Y and PY(1-10) is 1-3-6-Y. The path between nodes 1 and 10 in GX is X-
6-9-10. Note that the nodes 1,3 belong to X and the nodes 9,10 belong to Y. The node
6 in S is common to both paths in GY and GX. This is an example of what we will call
compatible paths.

Definition: Two paths, PY(u-v) and PX(u-v) are said to be compatible if they consist of
path segments that belong entirely to W, B and S in matching sequences with nodes
in S having an identical sequence for the two paths PY(u-v) and PX(u-v).

 The paths 1-3-6-Y and X-6-9-10 each have 3 segments belonging in sequence to
X- S - Y and they have the common node 6 in S. The concept is illustrated with a
further example.

The path PX(u-v) with u =s1 and v = j4 is : s1–j1-j2-s2-X-s3-X-s4-j3-j4. Its segments belong
to S-B-S-X-S-X-S-B respectively.

x

s1

s3

s2

s4

j1

j3

j2

j4

S B

 46

u v s(u-Y) s(X-v) Path in Gy Path in Gx Path in G

1 10 6 6 1-3-6-Y X-6-9-10 1-3-6-9-10
1 9 6 6 1-3-6-Y X-6-9 1-3-6-9
1 8 6 7 1-3-6-Y X-7-8
1 7 7 7 1-2-7 X-7 1-2-7
1 6 6 6 1-3-6 X-6 1-3-6
1 5 6 6 1-3-6-Y X-6-5 1-3-6-5
1 4 4 4 1-3-4 X-4 1-3-4
1 3 both in X 1-3 1-3
1 2 both in X 1-2 1-2
2 10 6 6 2-3-6-Y X-6-9-10 2-3-6-9-10
2 9 6 6 2-3-6-Y X-6-9 2-3-6-9
2 8 6 7 2-3-6-Y X-7-8
2 7 7 7 2-7 X-7 2-7
2 6 6 6 2-3-6 X-6 2-3-6
2 5 6 6 2-3-6-Y X-6-5 2-3-6-5
2 4 4 4 2-3-4 X-4 2-3-4
2 3 both in X 2-3 2-3
3 10 6 6 3-6-Y X-6-9-10 3-6-9-10
3 9 6 6 3-6-Y X-6-9 3-6-9
3 8 6 7 3-6-Y X-7-8
3 7 6&7 7 3-6-Y-7 X-7
3 6 6 6 3-6 X-6 3-6
3 5 6 6 3-6-Y X-6-5 3-6-5
3 4 4 4 3-4 X-4 3-4
4 10 4 4 4-Y 4-9-10 4-9-10
4 9 4 4 4-Y 4-9 4-9
4 8 4 4 4-Y 4-9-8 4-9-8
4 7 both in S both in S 4-Y-7 4-9-8-7 4-9-8-7
4 6 both in S both in S 4-Y-6 4-X-6
4 5 4 4 & 6 4-Y 4-X-6-5
5 10 both in Y 6 5-6-9-10 5-6-9-10
5 9 both in Y 6 5-6-9 5-6-9
5 8 both in Y 5-8 5-8
5 7 Y to S 7 Y-7 5-8-7 5-8-7
5 6 Y to S 6 Y-6 5-6 5-6
6 10 6 6 6-Y 6-9-10 6-9-10
6 9 6 6 6-Y 6-9 6-9
6 8 6 6 6-Y 6-5-8 6-5-8
6 7 both in S 6&7 6-Y-7 6-5-8-7 6-5-8-7
7 10 7 7 7-Y 7-8-9-10 7-8-9-10
7 9 7 7 7-Y 7-8-9 7-8-9
7 8 7 7 7-Y 7-8 7-8
8 10 both in Y 8-9-10 8-9-10
8 9 both in Y 8-9 8-9
9 10 both in Y 9-10 9-10

 47

Now consider the path PY(u-v): s1,Y,s2,,i1,s3,i2,s4,Y.

Its segments belong to S-Y-S-W-S-W-S-Y respectively. Now condensing W to X and B
to Y we see that both paths become S-Y-S-X-S-X-S-Y. In addition, the transit nodes in
S are visited in the same sequence (s!, s2, s3, s4) and with identical members in each of
the sets S. Thus the paths are compatible.
We can define and form the expansive concatenation of the two paths, denoted by
PX(u-v) ⊗ PY(u-v), to obtain: s1–j1-j2-s2- i1-s3- i2-s4-j3-j4.
This is obtained by replacing X in PX(u-v) by its corresponding elements in W from
PY(u-v). Since PX(u-v) ⊗ PY(u-v) = PY(u-v) ⊗ PX(u-v), we could also replace Y in
 PY(u-v) by its corresponding elements in B from PX(u-v).
We note that the expansive concatenation is, in this case, a connected simple
(loopless) path.

Returning now to the table above, all simple and connected paths in G formed by
expansive concatenation are listed in the last column under the heading “Path in G”.
It is seen that 39 of the 45 source-destination pairs have compatible paths in GX and
GY respectively. In all cases the expansive concatenations of their paths are simple
connected paths. We remind the reader that our data matrices are symmetric and
paths from v to u are identical with paths from u to v in any feasible solution.
This example provides an instance where the analysis of GX and GY separately does
not lead directly to an optimal solution to the original (larger) network G[V,A]. In
some cases, the optimal solution can be found directly from the optimizations on GX
and GY . The following theorem can be used to identify such cases.

Y

s1

s3

s2

s4

SW

i1

i2

 48

Theorem

If for all source-destination pairs u and v in G[V,A] the expansive concatenation
 PX(u-v) ⊗ PY(u-v) is a simple connected path then these paths give the optimal set of
paths in G[V,A].

Proof: The optimal flow allocation on GX minimizes the maximum utilisation over
all possible path selections on B and S (satisfying the shortest path principles).
Similarly, the optimal flow allocation on GY minimizes the maximum utilisation over
all possible paths in W and S. Such utilisations in G are not altered if the paths are
compatible and the expansive concatenations are simple connected paths. The paths
are also feasible in G (satisfying shortest path principles). Thus it is not possible to
improve on this path set.

A consequence of the above theorem is that if for all source-destination pairs u and v
in G[V,A] the expansive concatenation
 PX(u-v) ⊗ PY(u-v) is a simple connected path then the sets of link costs obtained (for
links of G) by applying the algorithm directly to the two smaller graphs XG and YG
may be used as the optimal link costs for the original network.

We still need to consider the case when some of the paths PX(u-v) and PY(u-v) are not
compatible and the question: “Can flows be re-allocated to new paths, retaining
shortest path principles, such that an optimal (or near optimal) solution can be found
for the original network G?”

Lower Bound for the solution on G(V,E)
The link utilisations obtained for the links in G(V,E), from the optimal solutions to
the two smaller graphs XG and YG , provide a lower bound for the min-max solution.

Approaches for the case PX(u-v) and PY(u-v) are not compatible

There are a number of different ways that one could proceed. Although it is not
guaranteed that an optimal solution can be obtained, without some type of
exhaustive search, a near optimal solution is sought.

Method 1
(1) Compute the link costs from the solutions for the networks XG and YG as in [11].
(2) If the costs for links in S differ for XG and YG , randomly select the cost for each
 link in S from either its cost in XG or YG .
(3) Use these costs as the initial link costs for the KSP Cost Adjustment Heuristic.

If we examine the table summarizing the results for our example and look at the 6
cases where paths are not compatible we can identify the causes of incompatibility.

 49

For source-destination pairs 1-8, 2-8 and 3-8, u is in W and v in B. The incompatibility
is due to different transit nodes being selected for paths in XG and YG .
For source- destination pair 3-7, u is in W and v in S. The incompatibility is due to
one solution being a path from W to S and the other solution being a path for W to a
different node in S and then to Y and back to S.
In the case of source-destination pair 4-6, both nodes are in S. The optimal path in XG
is via X (that is, the subgraph W) but the optimal path in YG is via Y (B).
For source-destination pair 4-5, u is in S and v in B. There is a conflict between
selection of a path u-Y versus a path u-X-S-Y.

Method 2
(1) Order the source-destination pairs with incompatible paths in decreasing order of
 their offered traffic loads.
(2) Select in turn each ordered pair of nodes and compute feasible paths from u to the
 destination v conforming with the (compressed) path solution from GX and
 satisfying the shortest path principles. Select the path most favourable to the
 objective (e.g. minimizing the maximum link utilisation). Repeat with the path
 solution from GY. Select from these two paths the one most favourable to the
 objective.
(3) Compute as in [11] the link costs.

Comments on steps (2) and (3)
Because of pre-processing possibilities for the second LP described in [11], the
computation of the link costs can be done directly on the original network G[V,A].
The selection of a path for a source-destination pair with incompatible paths involves
both removal of its load from the links of G in GX (or GY) and addition of the load to
the selected path.
The set of paths obtained from the expansive concatenation of compatible paths
satisfy shortest path principles. Thus, if a source-destination pair k-v has been
assigned a path then if the path from node u includes node k then it must have a
common path segment from k to v.
It is ,of course, also possible after completion of step (3) to use these costs as the
initial link costs for the KSP Cost Adjustment Heuristic.

5. Conclusions
We have considered the problem of computing optimal sets of paths between source-
destination pairs in large IP networks according to the model proposed in [11]. The
traffic demands between the pairs of nodes, the link capacities and the topological
structure of the network are given. The problem is to allocate the traffic streams to
routes such that either the maximum link utilisation is minimized, or the average
link utilisation of the network is minimized, or the objective is a combination of these
two targets. To be feasible, the set of paths selected, for all pairs, must be constrained

 50

to satisfy shortest path principles.
Two approaches were developed that are potentially fast and able to handle large
networks. The first, based on use of k’th shortest paths, iteratively modifies link costs
to achieve the selected objective. The second method seeks to apply network
decomposition effectively such that the LP technique of Staehle, Köhler and
Kohlhaas [11] may be implemented on each subgraph in an iterative algorithm. It
remains now to evaluate the approaches by applying the methods to a significant
number of test networks.

References

[1] C. Ashcraft, J.W.H. Liu, “Applications of the Dulmage-Mendelsohn
 Decomposition and Network Flow to Graph Bisection
 Improvement”, SIAM J. Matrix Anal. Appl., Vol. 19, No. 2,
 pp. 325-354, April 1998.

[2] A. Bley, M. Grotschel, R. Wessaly, “Design of Broadband Virtual Private

Networks: Model and Heuristics for the B-Win, Pre-print,
Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1998.

[3] E. Dijkstra, “A Note on Two Problems in Connection with

Graphs”, Numerical Mathematics, Vol. 1, pp. 395-412, 1959.

[4] A. Dulmage, N. Mendelsohn, “Coverings of Bipartite Graphs”,
 Canad. J. Math. , Vol. 10, pp.517-534, 1958.

[5] P. Hall, “On Representatives of Subsets”, J. London Math. Soc., Vol.
 10, pp.26-30, 1935.

[6 N. Katoh, T. Ibaraki, H. Mine, “An Efficient Algorithm for k
 Shortest Simple Paths”, Networks, Vol. 12, pp.411-424, 1982.

[7] J.W.H. Liu, “A graph Partitioning Algorithm by Node Separators”,
 ACM Trans. Math. Software, Vol. 15, pp.198-219, 1989.

[8] E.Q.V. Martins, M.M.B. Pascoal, J.L.E. Santos, “The K Shortest
 Loopless Paths Problem”, Research Note, Dept. Mathematics, Uni.
 Coimbra, Portugal, July 1998.

[9] E.Q.V. Martins, M.M.B. Pascoal, J.L.E. Santos, “A New

 51

Improvement for a K Shortest Paths Algorithm”, Research Report,
Dept. Mathematics, Uni. Coimbra, Portugal, Nov. 1999.

[10] A. Pothen, C. Fan, “Computing the Block Triangular Form of a
 Sparse Matrix”; ACM Trans. Math. Software, Vol. 16, pp. 303-324,
 1990.

[11] D. Staehle, S. Köhler, U. Kohlhaas, “Towards an Optimization of
 the Routing Parameters for IP Networks”, Univ. Würzburg
 Institute of Computer Science Research Report, 2000.

[12] J.Y. Yen, “Finding the K Shortest Loopless Paths in a Network”,
 Management Science Vol. 17, pp.712-716, 1971.

 Appendix- K Shortest Paths in a Network

The algorithms available in the present literature fall into two main categories, those
that can be applied to find k’th shortest simple paths (those that are without loops)
and those that find all k’th shortest paths. The second class of algorithm is not
directly suitable for finding simple paths. For our problem we must generate k’th
shortest simple paths. The main algorithms for generating k’th shortest simple paths
are:
• Yen‘s algorithm (1971).
 Applicable to directed and undirected networks
• Katoh, Ibaraki & Mine‘s Algorithm (1982).
 Applicable to directed networks
• Martins, Queiros & Pascoal‘s Algorithm (1999).
 Applicable to directed and undirected networks
All of the above algorithms use a path deviation approach. Labelling type algorithms
are not suitable owing to the fact that the “optimality principle” for shortest paths
does not hold for k’th shortest paths.
The main characteristics of the path deviation algorithms are:
•The k‘th shortest path pk is the shortest path taken from a candidate set X.
• To form the set X, we start with the k-1‘th shortest path and consider in turn each
node on the path except the destination node. The considered node is called the
deviation node and a new path is formed for each deviation node, i. The new path is
loopless and one that is not in 1 2 1{ , ,..., }kp p p −

 52

•The new path is formed from the concatenation of psi the subpath of pk-1 from s to i
and p*it where p*it is a shortest path from i to the destination node t satisfying the
condition that the new concatenated path is loopless and one that is not in

1 2 1{ , ,..., }kp p p −

••The concatenation is denoted by *

si itp p⊕

Many algorithms exist for the k‘th shortest unconstrained path problem (loops
allowed), but these are not suitable for our purpose.

Yen’s algorithm is explained with an example.

Yen’s Algorithm

Let pk denote the k‘th shortest path, from node s to node t, just selected from X. Let psv
be the subpath of pk from node s to node v (the deviation node).
To form p*vt we
•Remove from the graph all nodes of psv , except node v, (this effectively also
removes the links between these nodes). This is to ensure that no cycles are found in
the new path

The k‘th Shortest Path Pseudo-trees

1

3

4

6

5

109

8

7
2

3

3

4

6

5

109

8

7
2

3

A pseudo-tree composed of shortest and second shortest paths. Note that
all nodes of the original graph may be repeated except for the source.

 53

•Remove links (v,w) that belong to the pseudo-tree Tk . That is, remove links (v,w)
that have belong to the previously found shortest paths 1 2 1{ , ,..., , }k kp p p p−

•Find the shortest path, p*vt , in the remaining network, from v to t and then the
concatenation psv ⊕ p*vt is formed and the path entered into the set X.
•We repeat this process for all deviation nodes on pk and the shortest path in X
becomes pk+1.

Example

1

7

6

5

4

3

21

5

3

6

3

5

3 2 3

2

s

t

P1 = 1,2,6,7

6

2

1,3,5,71,3,5,7-1

psv p*
vtPath p*

vt
Path psvDeviation node v

6

2

1,3,5,71,3,5,7-1

psv p*
vtPath p*

vt
Path psvDeviation node v ⊕

X

 54

Example (cont.)

1

7

6

5

4

3

21

5

3

6

3

5

3 2 3

2

s

t

6

1,2,3,5,7 (9)2,3,5,71,22

1,3,5,7 (10)1,3,5,7-1

psv p*
vtPath p*

vt
Path psvDeviation node v

6

1,2,3,5,7 (9)2,3,5,71,22

1,3,5,7 (10)1,3,5,7-1

psv p*
vtPath p*

vt
Path psvDeviation node v ⊕

X

Example (cont.)

1

7

6

5

4

3

21

5

3

6

3

5

3 2 3

2

s

t

1,2,6,5,7 (8)6,5,71,2,66

1,2,3,5,7 (9)2,3,5,71,22

1,3,5,7 (10)1,3,5,7-1

psv p*
vtPath p*

vt
Path psvDeviation node v

1,2,6,5,7 (8)6,5,71,2,66

1,2,3,5,7 (9)2,3,5,71,22

1,3,5,7 (10)1,3,5,7-1

psv p*
vtPath p*

vt
Path psvDeviation node v ⊕

X

P2 = 1,2,3,5,7 (length =8)

 55

Continuing the example, the k’th shortest paths are :

Although efficient k’th shortest simple and non-simple path algorithms exist for both
directed and undirected networks, these are designed for the case of a single origin
and a single destination. In our problem we may, of course, apply an algorithm
repeatedly to each source-destination pair in the network. This, however, may not be
the most efficient way to compute all pairs k’th shortest paths. In discussion with
Martins [8,9], it seems that no efficient algorithm is known for the all pairs k’th
shortest path problem. This remains an open research area. Currently, the method
adopted in [11] is based on an exhaustive search (with the number of possible paths
reduced by imposing hop-limits) and this is followed by a sorting process.

151,3,2,6,5,7P9

141,3,2,6,7P8

131,3,5,6,7P7

121,2,3,5,6,7P6

111,4,7P5

101,3,5,7P4

91,2,3,5,7P3

81,2,6,5,7P2

71,2,6,7P1

151,3,2,6,5,7P9

141,3,2,6,7P8

131,3,5,6,7P7

121,2,3,5,6,7P6

111,4,7P5

101,3,5,7P4

91,2,3,5,7P3

81,2,6,5,7P2

71,2,6,7P1

