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Abstract

In this paper we present an analytical model for computing the othercell interference

distribution in a third generation UMTS network. Our proposed model is based on an

iterative calculation of a fixed point equation which describes the interdependency of the

interference levels at neighboring base stations. Furthermore, we developed an efficient

algorithm based on Lognormal approximations to compute the mean and standard devia-

tion of the othercell interference. We will show that our model is accurate and fast enough

to be used in UMTS network planning tools, e.g. T-Mobile’sPegasos.

1 Introduction

TheUniversal Mobile Telecommunication System (UMTS) is the proposal for third generation

wireless networks in Europe. Contrary to conventional second generation systems, like GSM,

which focus primarily on voice and short message services, UMTS will provide a vast range

of data services operating with bit rates of up to 2Mbps and varying quality of service require-

ments. This will be achieved by operating withWideband Code Division Multiple Access

(WCDMA) over the air interface.

The use of WCDMA, however, requires also new paradigms in wireless network planning.

While in GSM capacity is a fixed term, it is influenced in WCDMA by the interference caused

by all mobile stations (MS) on the uplink, as well as the transmitting powers of the base

1



stations (BS) or NodeB on the downlink. Due to the power control mechanisms in both link

directions, the signals are transmitted with such powers that they are received with nearly

equal strength. Therefore, the distribution of the user locations must be taken into account in

order to perform a thorough network planning.

A detailed examination of the interference on the uplink, however, is not a very straightforward

task. Due to the universal frequency reuse in UMTS, all users both in the considered cell and in

the neighboring cells will contribute to the total interference, thus influencing the link quality

in terms of received bit-energy-to-noise ratio (Eb=N0). Apart from the previously mentioned

direct influence, there is also an indirect effect in the system. Since an increase in interference

results in a higher required transmission power of the MS, there is a feedback behavior on the

other cells as well. It is obvious that in order to model interference adequately it is necessary

to capture this feedback behavior by performing an iterative computation.

Most studies on interference found in the literature do not fully take these interactions between

cells into account. Among the first papers in this field, [1] and later [2] introduced a relative

othercell interference factorf as the ratio between othercell interference to the interference

due to users in the same cell. A closed form expression of thef -factor can be found in [3],

when both BS and MS are assumed to be distributed according to a spatial Poisson process.

Similar simple approximations with a fixed interference factor can be found in [4] and [5].

A more sophisticated model is given in [6] and later extended in [7]. Contrary to the prior

studies, these models derive distributions for othercell interference which are used to calculate

capacity bounds.

In this paper we present an analytical model for the computation of the interference which

uses iterative fixed-point equations to determine the distribution of the othercell interference.

This iterative approach allows us to include the interdependency between the interferences

of neighboring cells in our model which is not fully considered in previous work. By using

Lognormal approximations, this method proves to be superior in computation speed compared

to the exact computation, which requires multiple convolutional operations. Furthermore, we

investigate the influence of different service mixes on the othercell interference.

The paper is organized as follows. Section 2 describes the basic model and the derivation of

interference and transmission power in a multi-cell and multi-user scenario. This is extended

in Section 3 to an iterative model using fixed-point equations which is solved efficiently using

Lognormal approximations. The accuracy of the model is validated in Section 4. The paper is

concluded in Section 5 with a short outlook on future work.
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2 Basic model using point patterns

The capacity of a UMTS system is limited on the uplink by the interference at the BS. This

interference level corresponds to the sum of the powers received from all MS within a certain

distance to this BS. In the following, the interference level at BS` is denoted bŷI`, Ŝk and�k
define the transmission power and the activity of MSk, and the path loss from MSk to BS`

is given byd̂k;`. The interference level is computed as

Î` =
1

W

KX
k=1

Ŝkd̂k;`�k: (1)

The variableŝ� written with a hat are always linear and the corresponding values� are in

decibels with�̂ = 10�=10. K denotes the number of considered MS andW is the frequency

bandwidth. The transmission power of each user is defined by the power control equation, see

e.g. [4],

�̂�k =

Ŝkd̂k;`
Rk

N̂0 +
P

i6=k
Ŝid̂i;`�i
W

(2)

with the targetEb=N0 �̂
�
k, the bit rateRk, and the activity�k specifying the service of userk.

Note that̀ is the BS with least attenuation which controls the power of MSk. TheseK power

control equations are equivalent to the followingK equations together with Eqn. (1) for each

of theL considered BS.

�̂�k =

Ŝkd̂k;`
Rk

N̂0 + Î` �
Ŝkd̂k;`�k

W

(3)

Solving each of these equations forŜk yields

Ŝk =
W

d̂k;`

�
N̂0 + Î`

� �k

W + �k�k
; (4)

where�k = �̂�kRk is an abbreviation for the “bit rate”�“target Eb=N0”-product of MS k.

TheseK equations are merged into a single matrix equation to compute the transmission

power vectorŜ which comprises the transmission powersŜk of all users.

Ŝ = W
�
N̂0 + Î

�
Q (5)

Qk;` =

8<
:

�k
(W+�k�k)d̂k;BS(k)

if ` = BS(k)

0 otherwise
;
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whereBS(k) is the BS which controls the power of MSk. Note thatN̂0 in matrix equations

denotes anL-vector with identical entries. This equation contains the variableÎ which denotes

a vector of the interference levels at the BS defined in Eqn. (1). TheseL equations are also

written as matrix equation

Î =
1

W
Ŝ~�d̂; (6)

where~� is aK � K diagonal matrix with~�k;k = �k andd̂ is aK � L-matrix containing the

attenuations. Now substituting the vectorŜ in Eqn. (6) by Eqn. (5) and solving for̂I yields

after some transformations

Î = N̂0A (E � A)
�1

; (7)

A = Q~�d̂:

The matrixE is theL � L identity matrix. Similar to theAout case defined in [4] when the

pole capacity of a single cell is exceeded, the capacity in the multi-BS case is sufficient only if

the inverse of matrix(E � A) is positive. Finally, the transmission powerŜk of MS k can be

calculated using Eqn. (5). A more detailed description of the model can be found in [8] and is

extended to include soft handover and transmission power limitations [9], as well.

Distributions of the total, incell, and othercell interference for a specific BS layout are ob-

tained from this model by generating a large number of point patterns. These define the

positions where users with a specified service are located according to a spatial arrival pro-

cess, e.g. the spatial Poisson process. For all these point patterns the interference is computed

separately and all results yield the interference distribution. This method is very flexible re-

garding different propagation models, spatial MS distributions, and BS layouts. However, the

computation of interference distributions is time consuming, thus a fast approximation of in-

terference distributions is desired for planning large UMTS networks. In the following section

such an approximation using fixed-point equations will be proposed; the computation relying

on point patterns will be used to verify the approximated results.

3 Iterative model using Fixed-Point equations

The aim of this approximation is to model analytically the stochastic variables defined by the

spatial arrival process used to generate point patterns. These stochastic elements consist of

the number of users in the system, the location of the users, and their service. In the analytic
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model we focus on a user distribution according to a homogeneous spatial Poisson process, a

regular hexagonal BS layout, and the propagation model of the vehicular test environment in

[10]

dk;` = �128:1� 37:6 log10(distk;`); (8)

wheredistk;` denotes the distance between an MSk and a BS̀ in km.

(a) Interference induced to the neighbor

BS

(b) Othercell interference induced from

neighbor BS

Figure 1: Illustration of the iterative model

The idea behind the approximation is to calculate the othercell interference distribution itera-

tively by solving fixed-point equations. The iterative model is illustrated in Fig. 1. Assuming a

homogeneous user distribution with equal densities in all cells, the r.v. (random variable)ÎOUT

describing the interference induced by the MS of an arbitrary cell at a neighbor BS is identi-

cally distributed. The distribution of̂IOUT , however, depends both on the users in the cell as

well as on the interferencêIIN produced by users of the surrounding cells. Thus, a fixed-point

equation can be formulated describingÎOUT depending on̂IIN , illustrated in Fig. 1(a), and

ÎIN depending on̂IOUT , shown in Fig. 1(b). The solution of these two equations yields the

distribution of the othercell interference.

3.1 Fixed-Point Equation

Let the central BS of Fig. 1 be BSi with K MS andj denotes an arbitrary neighbor BS. Then,

assuming that the distribution of the othercell interferenceÎIN;i is known we can compute the
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induced interferencêIOUT;j at BSj by

ÎOUT;j =

KX
k=1

(N̂0 + ÎIN;i)

1� A
�k

d̂k;j

d̂k;i
; (9)

with �k = �k (W + �k�k)
�1. The variableA is a1 � 1-matrix as defined in Eqn. (7). Note

that the location of a userk in the cell of BSi is described completely by the ratio of the

attenuations to BSj and BSi. This ratio is a r.v. denoted by� and its distribution is derived

empirically by generating a number of locations according to a spatial Poisson process. The

distribution of� is shown in Fig. 2. With the r.v.� Eqn. (9) becomes

ÎOUT;j = (N̂0 + ÎIN;i)

KX
k=1

1

1� A
�k�: (10)

The other stochastic variables in the equation are the number of MS attached to BSi and their

services. A new r.v.F is introduced which comprises all stochastic influences of the spatial

Poisson process. Thus, Eqn. (10) is simplified to

ÎOUT;j = (N̂0 + ÎIN;i)F: (11)
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0.4
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Figure 2: CDF of the attenuation ratio

In the following we will derive the distribution ofF . The users are generated according to aT -

dimensional Poisson process withT the number of offered services where a servicet is taken
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with probabilityqt. The number of users in a cell are then given by aT -tuple�n = (n1; :::; nT )

with nt the number of users with servicet. The probabilityp(�n) that �n MS are in a cell is

calculated by the product form solution

~p(�n) =

TY
t=1

(mt)
nt

nt!
and

p(�n) =
~p(�n)P

�n0:A(�n0)<1 ~p(�n
0)
; (12)

wheremt is the mean number of MS with servicet in the cell. For a traffic density of� users

per cellmt is given asmt = � � qt. The variableA(�n) is defined as

A (�n) =

TX
t=1

nt�t = �n � ��T (13)

Now, the r.v.F is calculated according to the theorem of total probability

F =
X

�n:A(�n)<1

p(�n)
1

1� A (�n)

TX
t=1

�t

ntX
i=1

�: (14)

With Eqn. (11) and Eqn. (14) one of the two formulae required to define the fixed-point equa-

tion is formulated, i.e.̂IOUT can be calculated depending onÎIN . The other equation derives

the r.v. ÎIN under the condition that̂IOUT is known. Assuming that the r.v.̂IOUT are iid for

all 6 neighboring cells and also independent ofÎIN the othercell interference is given as the

sixfold sum ofÎOUT

ÎIN =

6X
i=1

ÎOUT (15)

Now the fixed-point equations consisting of Eqn. (11) and Eqn. (15) are formulated and can be

solved iteratively by starting witĥIIN = 0 and subsequently substitutinĝIOUT andÎIN until

convergence is reached. However, the solution requires many convolutions and discretizations

of distributions and is therefore numerically intractable. Therefore, in the next section some

approximations are shown to reduce the complexity.

3.2 Approximation by Lognormal Distributions

In Figure 3 the distribution of the logarithm of the r.v.F is shown for service mix 1 consisting

of 75% 12.2kbps users, 20% 64kbps users, and 5% 144kbps users. The targetEb=N0 values
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Figure 3: Distribution of the logarithm of the r.v. F

are set to 5.5dB, 4.0dB, and 3.5dB, respectively. The activity factors of all services are equally

set to 1 and the user density is 20 MS per BS. At first glance the r.v.F seems to follow a

Lognormal distribution. This is further confirmed by the Q-Q plot and the P-P plot, see [11],

given in Fig. 4.
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Figure 4: Comparison of the r.v.F with the corresponding Lognormal distribution

Since the Lognormal distribution is entirely described by the mean and the variance only the

first two moments ofF have to be calculated. The mean ofF is given by the following
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equation

E[F ] =
X

�n:A(�n)<1

p(�n)E [F (�n)]

=
X

�n:A(�n)<1

p(�n)E

"PT
t=1 �t

Pnt
i=1 �

1� A(�n)

#

=
X

�n:A(�n)<1

p(�n)

PT
t=1 �t � ntE [�]

1� A(�n)
(16)

The second moment ofF is also calculated using the theorem of total probability

E[F 2] =
X

�n:A(�n)<1

p(�n)E
�
F (�n)2

�
(17)

and the second moment ofF (�n) is

E
�
F (�n)2

�
=

X
�n:A(�n)<1

p(�n)
�
V AR [F (�n)] + E [F (�n)]

2
�
:

The mean ofF (�n) is already given in Eqn. (16) and the variance is specified by

V AR[F (�n)] = V AR

" PT
t=1 �t

Pnt
i=1�

1� A(�n)

!#

=

TX
t=1

ntX
i=1

V AR

��
�t�

1� A(�n)

��

=

TX
t=1

nt

�
�t

1� A(�n)

�2

V AR [�] : (18)

Finally, the variance ofF is given by

V AR [F ] = E
�
F 2
�
� E [F ]

2
: (19)

With the mean and the variance ofF the parameters required for the iteration are known.

The solution of the fixed point equation is simplified by approximatingF by a Lognormal

distribution, as well. In Eqn. (11) two r.v.(N̂0 + ÎIN) andF have to be multiplied. With an

initial value of ÎIN = 0 the first value of̂IOUT is obtained by multiplyingF with the constant

N̂0 and soÎOUT is Lognormal distributed, as well. According to Eqn. (15)ÎIN is the sixfold

sum ofÎOUT such thatE[ÎIN ] = 6 �E[ÎOUT ] andV AR[ÎIN ] = 6 �V AR[ÎOUT ]. Assuming that

the sum of few Lognormal distributions is again Lognormal distributed in the next iteration

step two Lognormal distributed r.v.(N̂0+ÎIN) andF have to be multiplied and the resultÎOUT
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is in turn Lognormal distributed. The multiplication is performed by adding the parameters of

(N̂0 + ÎIN) andF

�IOUT = �(N̂0+ÎIN ) + �F and (20)

�2
IOUT

= �2

(N̂0+ÎIN )
+ �2

F : (21)

The parameters of a Lognormal distributed r.v.Z are calculated from the mean and variance

by

�2
z = log

�
V AR[Z]

E[Z]
+ 1

�
and

�z = log (E[Z])�
�z

2
: (22)

In the next iteration step the mean and variance ofÎOUT are required again to determine the

mean and variance of̂IIN . They are calculated by solving Eqn. (22) for the moments. Thus,

the iteration is performed by subsequently calculating the mean and variance ofÎOUT andÎIN
and it finally converges if the moments do not change any more.

3.3 Extension to Two Cell Rings

In the last section an iterative model was described to calculate the othercell interference

efficiently. However, results shown later in Fig. 6 indicate that the mean of the othercell

interference is underestimated while the variance matches well the results obtained by the

point pattern model in Section 2. Therefore, the iterative model is changed to consider the

othercell interference of two surrounding cell rings. The extended model is illustrated in

Fig. 5. Now three different r.v. for̂IOUT exist depending on the distance between the BS.

In a regular hexagonal BS layout the distance to the BS in the first ring is denoted byd, the

distance to the BS in the second ring is either2d or
p
3d. Therefore, the new r.v. are denoted

by ÎOUT;p3d, IOUT;2d, andÎOUT;d which corresponds to the previousÎOUT . The calculation of

these r.v.ÎOUT;x is similar to Eqn. (11) however with different r.v.Fx

ÎOUT;x = (N̂0 + ÎIN)Fx: (23)

The formula to determine the moments ofFx is also similar to the one forF described in

Eqn. (16) to Eqn. (19). Only, the mean and variance of the attenuation ratios�x varies de-

pending on the BS distance. The computational effort only hardly increases as the moments

of all r.v. Fx can be determined in parallel, i.e. the algorithm has to run through the states�n

only once and therefore a single calculation of the state probabilities~p(�n) is required.
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(a) Interference at the BS of the first and

second ring

(b) Othercell interference induced by the

MS of the first and second ring

Figure 5: Illustration of the extended iterative model

Furthermore, the calculation of mean and variance ofÎIN has to be modified. In the previous

model the mean and variance ofÎOUT are simply multiplied by 6. When considering the

second cell ring, as well, the means and variances of the r.v.ÎOUT;x have to be added and the

sum is multiplied by 6 since there are six cells in the first ring and of the twelve cells in the

second ring six have a distance of2d and the other six have a distance of
p
3d. So, the mean

and variance of̂IIN is

E
h
ÎIN

i
= 6 �

X
x2fd;2d;

p
3dg

E
h
ÎOUT;x

i
; and

V AR
h
ÎIN

i
= 6 �

X
x2fd;2d;

p
3dg

V AR
h
ÎOUT;x

i
: (24)

4 Verification of the iterative model

The proposed iterative model to calculate othercell interference distributions using fixed-point

equations includes the following assumptions which are verified in this section. First, it is

assumed that the r.v.Fx follow a Lognormal distribution which was already shown in Fig. 4 by

a Q-Q and a P-P plot. The second assumption is that the sum of the Lognormal distributed r.v.

ÎOUT;x is again approximately Lognormal distributed. Finally, the r.v. describing interferences

are considered to be independent. In particular, we presume the independence of the othercell

interferences of all surrounding cells among each other as well as the independence of the

11



othercell interference from a neighboring cell and the incell interference which is directly

related toFx. Evidently, all these values are correlated, however, we will show that due to the

iteration the effects of the correlations diminish.

The overall validation of the analytic model is performed by the point pattern model described

in Section 2. In this model no assumptions about the independence of r.v. are made. The

othercell interference distributions are obtained by generating point patterns for 39 BS placed

in a hexagonal layout. For each of these point patterns the othercell interferences at all BS are

computed according to Eqn. (7). However, to avoid border effects, i.e. the othercell interfer-

ence at BS with less neighbor cells is smaller, only the value for the central cell contributes to

the resulting distribution.
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Figure 6: Comparison of the othercell interference distributions resulting from the analytic

model and the point pattern model

Fig. 6 shows a Q-Q plot which compares the othercell interference obtained by the point pat-

tern model with the results of the analytic model both with one and two cell rings surrounding

the central cell. We can see that both the dashed line representing the model with two rings as

well as the dotted line showing the results under consideration of one ring run roughly parallel

to the main diagonal. This indicates that the variance of the results fits well in both cases.

However, the distance from the dotted line to the main diagonal is much larger than for the
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dashed line which shows that the mean is underestimated if only one ring is considered. The

results for the analytic model including two rings match well with the point pattern model.

Up to now we have validated the model for service mix 1, cf. Section 3.2 and a mean of 20

users per BS, only. In the following we will show more results for service mix 1 with different

user densities. Furthermore, another service mix 2 with 50% 12.2kbps users, 30% 64kbps

users, and 20% 144kbps users is investigated. The targetEb=N0 values and activity factors

for this mix are equal to those of mix 1. As we have shown that the othercell interference

approximately follows a Lognormal distribution we will focus on the mean and the standard

deviation which is sufficient to describe the Lognormal distribution. The results of the point

pattern model will be given with 95% confidence intervals.
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(b) Standard deviation of othercell interfer-

ence

Figure 7: Comparison of the moments of the othercell interference depending on the mean

number of users per BS for traffic mix 1

Fig. 7 shows the results for service mix 1. In the left graphic we can see that the means

obtained by both models match very well. The standard deviations plotted in Fig. 7(b) show a

larger discrepancy, however they are still within the confidence intervals which are quite large

compared to those of the mean. The results in Fig. 8 obtained for service mix 2 show the same

behavior. However, comparing the points with highest user density of both service mixes the

mean for service mix 1 is larger and the standard deviation of service mix 2 is larger. The

reason for this feature is that service mix 2 contains more high data rate users which increases

the variance. Finally, we want to mention that it is possible to compute all values for one

13



service mix in parallel such that the algorithm works very efficiently. The means and standard

deviations for the two example service mixes with 7 points each have been calculated in less

than 10 seconds. Therefore, it is possible to use the algorithm in planning tools for UMTS

networks like T-Mobile’sPegasos.
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(b) Standard deviation of othercell interfer-

ence

Figure 8: Comparison of the moments of the othercell interference depending on the mean

number of users per BS for traffic mix 2

5 Conclusion and Outlook

In this paper we presented an analytical model for computing the othercell interference in a

UMTS system with multiple services. Our approach is based on solving a fixed-point equa-

tion which describes the interdependencies between the interferences at neighboring BS. An

efficient algorithm is used to solve these equations using Lognormal approximations such

that the model can be implemented in network planning tools for large UMTS networks like

T-Mobile’s Pegasos, see [12]. Our future work consists of an extension of our model to inho-

mogeneous user distributions and irregular BS layouts. Furthermore, we will include a model

for the downlink as well.
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