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Abstract— The Univeral Mobile Communication System
(UMTS) operates with Wideband Code Division Multiple Ac-
cess (WCDMA) over the air interface. The uplink capacity
in WCDMA strongly depends on the interference situation in
the network. The fraction of interference received at a NodeB
originating from mobile stations (MS) in foreign cells is called
other–cell interference. In the literature, this interference is often
approximated by a constant factor or an independent random
variable. In this paper, we propose an analytic algorithm to
calculate the uplink blocking probabilities in a WCDMA network
in order to answer the question how much traffic the network
can carry. The algorithm considers the other–cell interference
by calculating the mutual generated load between all cells in
the network. Furthermore, the system model considers multiple
service classes and the effects of imperfect power control.

I. INTRODUCTION

The forthgoing build–up of the Universal Mobile Telecom-
munication System (UMTS) in Europe demands a sophisti-
cated network planning. The primary questions which must
be answered in the planning process are: Does the network
cover the desired area and does the network carry the predicted
traffic? The uplink capacity of a WCDMA network is limited
by the amount of Multiple Access Inteference (MAI) received
at the NodeB by all mobiles in range. Therefore the capacity is
a stochastical value and is known as soft-capacity in contrast
to the deterministic capacity in systems like GSM with hard
capacity. The MAI at a NodeB is further differentiated into
own–cell interfence, denoting interference generated by mo-
biles which are power–controlled by the considered NodeB,
and other–cell interference generated by all other mobiles.
Because the power control mechanism tries to maintain a
constant received power level for all mobiles in the cell, the
power received from mobiles in neighbouring cells, namely
the other–cell interference, depends on the position of the
mobiles relative to the considered NodeB. Furthermore, the
capacities of WCDMA cells are mutual dependent, since
a higher other–cell interference in cell A leads to higher
transmission powers of the power controlled mobiles which in
turn leads to a higher other–cell interference in neighbouring
cells.

In the literature, the other–cell interference is often mod-
elled as a relative interference factor, known as the f–

factor, which is multiplied with the own–cell interference
to approximate the total received interference. Some of the
first papers with this approach are [1], [2] and [3]. In [4], a
closed–form expression for the f–factor is developed with the
precondition that the positions of the NodeBs and the mobiles
are distributed according to a spatial Poisson process. Similar
approaches can be found e.g. in [5] and [6]. In [7], this model
is extended and used to derive a distribution for the other-
cell interference. In [8], derivatives of the homogenous spatial
mobile distribution are developed. The inherent problem of
the f -factor approach is the assumption that the interference
received from other cells is a fraction of the interference
generated in the own cell. This implicates that the recieved
other–cell interference is homogenous from all surrounding
cells in the network.

Another approach is taken in [9], where the other–cell inter-
ference is modelled as an independent lognormal random vari-
able. This, however, neglects the mutual dependency existing
between the other– and own–cell interferences in a WCDMA
network. In [10], an iterative algorithm for the calculation
of the other-cell interference is proposed. The drawback of
this method is the time until the iteration converges. The
algorithm we propose in this paper combines both approaches,
but without the need for an iterative computation.

In the remainder, we present an analytical model for calcu-
lating the blocking probabilities of a WCDMA network. The
other–cell interference is calculated depending on the current
system state of the considered NodeB and the load situation
at the neighbouring NodeBs. The algorithm includes soft–
blocking and the effects of imperfect power control. We use
a modified recursive scheme based on [11] and [12], making
the algorithm predestinated for the use in planning tools due
to its low computational costs.

This work is organized as follows: In Sec. II, the problem of
calculating the capacity of WCDMA networks is formulated
more detailed. The system and interference model based on
a discretized cell model are described in Sec. III. It is then
applied in Sec. IV for the calculation of the blocking probabil-
ities and the cell capacity. In Sec. V, some numerical results
for selected scenarios are presented. Finally, we conclude this
paper in Sec. VI.



II. PROBLEM FORMULATION

In WCDMA systems like UMTS, and generally in every
CDMA system, the capacity of the cellular network depends
on the current interference level. Sources of interference are
mobiles in the own cell1, mobiles in the other cells and noisy
signals from unknown sources. A higher received interference
level at the NodeBs leads to lower signal-to-interference ratios
and subsequently requires higher signal powers. This impli-
cates that the received interferences in a WCDMA network
depend on each other, since a higher own–cell interefence at
an arbitrary NodeB — say NodeB x — is seen as other–cell
interference in surrounding NodeBs, which requires higher
signal powers in order to meet the Eb/N0–targets leading in
turn to an increased other–cell interference at x. These mutual
dependencies of the interferences are illustrated in Fig. 1.
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Fig. 1. Interference originating from and coming to NodeB x

So, as admission control in WCDMA networks is based on
the current interference situation at the NodeB, for a more
accurate modelling of the system it is important to consider
these dependencies. This also implicates that the load situation
in the network must be included in the calculation of the
other–cell interferences.

Furthermore, for the calculation of blocking probabilities,
soft–capacity which depends on interference must be consid-
ered. This implicates that in every system state an incoming
call can be blocked, although the probability for this event
grows with increasing cell loads. So, basically in every system
state the interference situation at all NodeBs in the network
must be calculated in order to obtain accurate approximations
of the cell loads.

The algorithm we propose in this work calculates the block-
ing probabilities on the NodeBs in an WCDMA network with
consideration of the effects mentioned before. Interference
from other cells is calculated with inclusion of the load
situation at the own and the surrounding NodeBs.

III. SYSTEM AND INTERFERENCE MODEL

We define a UMTS network as a set B of L NodeBs with
fixed positions. These NodeBs carry the traffic inside the
area F which is subdivided into unit area elements f ∈ F .
The mobiles in each area element arrive according to an
independent Poisson process with arrival rate λf . We associate
an area element f to a NodeB x, (f ∈ x) if x is the NodeB

1Note that mobiles which are power–controlled by the considered NodeB
are referred to as mobiles in the own cell

with the largest propagation gain df,x from f :

f ∈ x⇔ df,x = max
y∈B

{df,y} (1)

The propagation gain is deterministic and follows the defini-
tion given in [13]:

γf,x = −128.1− 37.6 · log10(dist(f, x)) (2)

The UMTS system further provides S different services wich
are defined by the bitrate Rs and the Eb/N0–target ε̂∗s .
The probability that an incoming call is of service class
s is given by ps. We call the combination of the spatial
traffic distribution and the service mixture a scenario. In the
following, we derive the probability that an incoming call of
service class s is blocked by the system. We propose a method
to include the load in neighbouring cells into the calculation
by considering the other–cell interference I other

x at the NodeB
x.

A. Interference Model

The interference at the NodeBs can be categorized after its
source. We call the interference caused by mobiles which are
power controlled by the NodeB x the own–cell interference
Iown
x . In contrast, interference caused by all other mobiles

in the network is the other–cell interference I other
x . The

background noise is denoted by N0 and is assumed as constant
at −174dBm/Hz.

The calculation of the interference and load is based on the
received Eb/N0 value for a mobile k at NodeB x write k ∈ x:

ε̂∗k,x =
W

Rk

ŜR
k,x

WN̂0 + Îx − ŜR
k,xνk

, (3)

where ŜR
k,x is the received signal power from mobile k and

Îx is the total received interference on NodeB x. In UMTS,
the system ciprate W is 3.84Mcps. We consider imperfect
power control, so the received Eb/N0 values at the NodeBS
oscillate around the Eb/N0–target. Therefore we assume the
received Eb/N0 as normal distributed r.v. in the dB scale.
This assumption has been verified by measurements e.g. in
[2]. So, the receieved Eb/N0 values are lognormal distributed
with parameters

µε̂∗
s

= ε∗s
ln(10)

10
and σε̂∗

s
= σε∗

s

ln(10)
10

, (4)

where σε∗
s

is the standard deviation in the dB scale. Note that
throughout the paper, x̂ denotes a variable not in dB scale,
while x denotes a db-scaled variable.

The own–cell interference is defined as the sum of all
received signal powers ŜR

k,x, which follows from Eq. (3):

ŜR
k,x = ωk

(
WN̂0 + Îown

x + Îother
x

)
. (5)

According to e.g. [9], we define the load factor of a mobile
k as

ωk =
ε̂∗kRk

W + ε̂∗kRk
. (6)

We omit the activity factor νk as a mobile contributes to
the interference only if active. The own–cell interfence then



follows as the sum of all received signal powers from the k
mobiles in x:

Îown
x = ηx(WN̂0 + Îown

x + Îother
x ), (7)

with the own-cell load defined as ηx =
∑

k∈x νkωk. Solving
for Îown

x yields

Îown
x =

ηx

1 − ηx

(
WN̂0 + Îother

x

)
. (8)

So, the total interference at NodeB x is the sum of the own–
cell and other–cell interference:

Îx = Îown
x + Îother

x =
ηx

1 − ηx

(
WN̂0 + Îother

x

)
+ Îother

x .

(9)
Let us now investigate the relation between the received

own–cell interference at NodeB x and the interference at an
arbitrary NodeB y. The received signal power of a mobile k
power controlled by x, k ∈ x, at NodeB y is the product of
the attenuation ratio of the mobile to both NodeBs with the
received power at x:

ŜR
k,y = Ŝkd̂k,y = ŜR

k,x

d̂k,y

d̂k,x

= ŜR
k,x∆̂k,y, (10)

where Ŝk is the transmission power of mobile k. We define the
attenuation ratio ∆̂k,y of mobile k to NodeB y as the ratio
of the propagation gain to NodeB y and to the controlling
NodeB x. We define further

ωk,y = ωk∆̂k,y and ηx,y =
∑
k∈x

νkωk,y, (11)

where ωk,y is the load factor the mobile k ∈ x generates
at NodeB y and ηx,y is the own–cell load at NodeB x with
respect to NodeB y. The interference received at NodeB y is
then the sum of all SR

k,y:

Îx,y =
∑
k∈x

ŜR
k ∆̂k,y =

∑
k∈x

ωk,y(WN̂0 + Îown
x + Îother

x ).

(12)
Finally, replacing Îown

x with Eq. (8) gives us

Îx,y =
ηx,y

1 − ηx

(
WN̂0 + Îother

x

)
. (13)

Then, as the other–cell interference at a NodeB x comprises
the interference of all surrounding NodeBs in B, the other–cell
interference is

Îother
x =

∑
y∈B\x

Îy,x (14)

B. Stochastic Fixed–Point Equation of the Other–Cell Inter-
ference

From the previous section we obtain the following stochas-
tic fixed point equation describing the interdependencies of
the interferences:

Îother
x =

∑
y∈B\x

Îx,y and Îy,x = ζy,x(WN̂0 + Îother
x ),

(15)
where ζx,y is defined as

ζx,y =
ηx,y

1 − ηx
. (16)

Note that in this equation the system loads η are random
variables depending on the number of mobiles, their services
and their attenuation ratios. One possibility to solve this
equation is to derive the PDF of the random variables ηx,y

and calculate the interferences iteratively, starting with no
other–cell interference at all. In the subsequent iterations, Îx,y

is calculated under the assumption that ζx,y and the term
(WN̂0 + Îother

x ) are independent. However, this method is
very time consuming as the PDFs of the ζx,y have to be
calculated and the iteration takes some time till convergence.
Instead, as in [10], we assume that the other–cell interference
is lognormal distributed which reduces the problem to the
computation of the first and second moments of the other–
cell interferences:

E[Îother
x ] =

∑
y∈B\x

E[Îx,y] (17)

E[Îx,y] = E[ζx,y](WN̂0 + E[Îother
x ]) (18)

The variances are given by

Var[Îother
x ] =

∑
y∈B\x

Var[Îx,y] (19)

and

Var[Îx,y] = E[(ζx,y)2]E[(Îother
x )2] − E[ζx,y]2E[Îother

x ]2

(20)

Now, we compute the mean and variance of the other–
cell interference by formulating these equations as matrix
equations. We define the row vector

E
[
(Īother)k

]
[x] = E

[
(Îother

x )k
]

(21)

and the matrix

E
[
ζ̃k
]
[x, y] =

{
E
[
(ζx,y)k

]
if x �= y

0 if x = y
. (22)

Then, Eq. (18) can be formulated as

E
[
Īother

]
= (E

[
Īother

]
+ N̄0)E

[
ζ̃
]
, (23)

where N̄0 is a row vector with N̄0[x] = WN̂0 as entries.
The row vector with the mean other–cell interferences is then
computed by matrix inversion:

E
[
Īother

]
= N̄0E

[
ζ̃
] (

Ĩ −E
[
ζ̃
])−1

(24)

The second moment of the other–cell interference at NodeB
x is given by

E

[(
Îother
x

)2
]

= E
[
Îother
x

]2
−
∑

y∈B\x

E
[
Îother
y

]2
E[ζx,y]2

+
∑

x∈B\x

(
(WN̂0)2 + 2WN̂0E

[(
Îother
y

)])
Var[ζx,y]

+
∑

y∈B\x

E

[(
Îother
y

)2
]
E
[
(ζx,y)2

]
.

(25)



Furthermore, we introduce the variable Hy defined as

Hy = E
[
Îother
x

]2
−
∑

y∈B\x

E
[
Îother
y

]2
E[ζx,y]2

+
∑

y∈B\x

(
(WN̂0)2 + 2WN̂0E

[(
Îother
y

)])
Var[ζx,y]

.

(26)

The row vector H̄ consists of entries Hy for all y ∈ B. Then,
the matrix equation for the second moment of the other–cell
interference is formulated:

E
[(
Īother

)2]
= H̄

(
Ĩ −E

[
ζ̃2
])−1

. (27)

In Fig. 2, the mean other–cell interferences at all NodeBs in
a hexagonal cell layout with two tiers are shown. The NodeBs
are ordered from the center to the edge of the network, so the
first column indicates the NodeB in center of the network.
The mean offered load ηnorm is normalized to the NodeB
with the highest offered load. For lower offered loads, the
analytic and the simulated results match very well. For a cell
load ηnorm = 0.6 the values begin to diverge, but are still
quite accurate.
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Fig. 2. Mean other–cell interferences in a hexagonal cell layout

The calculation of the other–cell interferences requires the
moments of the r.v. ζx and ζx,y. We describe an approximation
method for these moments in the next section.

C. Moments of ζx and ζx,y

The derivation of the moments of ζx,y requires the moments
of the cell load ηx. We obtain these recursively from the
user Markov process which is described in detail in the next
section. Since ηx is the sum of lognormal distributed random
variables ωk, ηx is lognormal distributed too and we denote
its PDF as φηx(t). Then, the PDF of ζx follows directly as

φζx(t) = φηx

(
t

1 + t

)
. (28)

We compute the first and second moments by numerical
integration. However, due to the fact that ζx goes to infinity for

η → 1, we calculate the moments of ζx under the condition
that the system load ηx is less than 1 − ε. This restriction
is also justified by the real world behavior of WCDMA
systems where loads near the pole capacity lead to infinite
interferences.

The cell load inflicted to NodeB y, ηx,y, includes the atten-
uation ratios ∆̂k,y of the mobiles k ∈ x, so the computation
of the moments becomes more complicated. However, under
the assumption that the load factors ωk and the attenuation
ratios are independent, the service and traffic component is
separated from the spatial component and we write:

E[ζx,y] = E



∑
k∈x

ωk∆̂k

1 − ∑
k∈x

ωk


 = E[ζx]E[∆̂x,y] (29)

The assumption of independency is valid if all services follow
the same spatial distribution and we introduce the random
variable ∆̂x,y = ∆̂k,y for all k ∈ x. The same principle —
separation of the service and the spatial component — is used
for the calculation of the second moment of ζx,y. It can be
shown that the second moment is

E[(ζx,y)2] = E[(ζx)2]E[∆̂x,y]2 + E[ζ2
x]Var[∆̂x,y]. (30)

Note that (ζx)2 is different from the r.v. ζ 2
x which is defined

as

ζ2
x =

η2
x

1 − ηx
and η2

x =
∑
k∈x

ω2
k (31)

The moments of the spatial component ∆x,y follow from
the conditioned sum of all subelements f in the considered
area F . Neglecting soft handover, we say that an area element
f belongs to the NodeB with the largest propagation gain, say
x, with the probability p(f ∈ x):

p(f ∈ x) = P
(
d̂x,f = maxy

{
d̂y,f

})
(32)

The traffic intensity of service s ate the NodeB x then
becomes

ax,s = ps

∑
f∈F

afp(f ∈ F) (33)

and the moments of ∆̂x,y are

E[∆̂k
x,y] =

∑
f∈F

afp(f ∈ F)∑S
s=1 ax,s

E



(
d̂y,f

d̂x,f

)k ∣∣∣∣∣f ∈ F

. (34)

We now have the means to calculate the total received
interference a the NodeBs depending on the current system
load, that is on the number of mobiles in the cell. Together
with the calculation of the soft-blocking probabilities in each
system state, the total blocking probabilities of the system are
obtained in the next section.

IV. WCDMA CELL CAPACITY

The admission control (AC) in UMTS is based on the
received interference. Since the interference is a stochastical
value, blocking of new calls can occur in virtual every system
state. The term local soft blocking probability refers to this
characteristic of the system.



A. Local Soft Blocking Probabilities

An incoming call is blocked if the estimated cell load η is
higher than a predefined maximum cell load ηmax < 1. We
define the cell load as

η =
Îown
x + Îother

x

Îown
x + Îother

x + N̂0

< ηmax (35)

deriving from the definition of the noise rise, see e.g. [6]. This
can be reformulated to

ηx + ωs + Γ(ηx) < ηmax, (36)

where the r.v. Γ(ηx) denotes the cell load induced by the
other–cell interference depending on the own–cell load η x. It
is defined as

Γ(ηx) = Îother
x (ηx)

1 − ηmax

N̂0

. (37)

So, the probability βs(η) that for a given ηx the call of a
mobile with service class s is blocked at the NodeB x is

βs(ηx) = 1 − P (ηx + ωs + Γ(ηx) < ηmax). (38)

Note that in this case the activity factor ν is omitted since we
assume that an incoming connection is always active. All r.v.
in Eq. (38) are assumed lognormal, so

βs(ηx) = 1 − LNµx,σx(ηmax), (39)

where µx is derived from the first moment of the total cell
load as

µx = ln(E[ηx] + E[ωs] + E[Γ(ηx)]) − 1
2σ (40)

and the shape parameter σ from the variance as

σ =

√
ln

(
Var[ηx] + Var[ωs] + Var[Γ(ηx)]
E[ηx] + E[ωs] + E[Γ(ηx)]

)2

+ 1. (41)

Note that ηx and Γ(ηx) are correlated due to the effects of
the imperfect power control. However, the spatial effects on
the r.v. ζx,y do outweigth this effect by far, so we assume
independence.

B. Analytic Calculation of the Total Blocking Probabilities

The cell loads ηx, the other–cell interference Îother
x as well

as the other–cell load Γ(ηx) and the soft blocking probabilities
depend on the system state, that is on the number of mobiles
power–controlled by NodeB x. We obtain these values by
defining a modified Markov process where the transition rates
are conditioned with the local soft blocking probabilities, see
e.g. [14]. The state probabilites are calulated recursively. In
every recursion step, i.e. for every system state, the other–cell
interference is computed by matrix inversion as in Eq. (24).
To consider the loads at the surrounding NodeBs y �= x, the
first and second moments of ζx,y are calculated in beforehand
without considering soft–blocking. These are then used as
input for the calculation of the other–cell interference at x
in the recursion algorithm.

For the recursive calculation scheme of the state proba-
bilities following [11] and [12], states with similar resource
occupations, that is with similar values of ηx, are combined

to one state. This folds the S-dimensional state space into
one dimension, with transitions for the different resource
requirements of the service classes.

In order to combine similar states, a common resource must
be defined. In this case it is reasonable to choose the load
factor ηx as resource, with the condition that ηx < ηmax. The
maximal load ηmax is implicitly given by the condition that it
must hold that ηx < 1 for the feasibility of the power control
equation. So, we define a basic resource unit g and map the
service load factors ωs with the activity factor νs to resource
requirements ψs which are multiples of g:

ψs =
(
� νsωs

g + 1
2�
)
g (42)

Note that the maximum cell load ηmax should be a integer
multiple of g.

The recursion algorithm defined in [11] must be modified
in order to include the local soft blocking probabilities. This
leads to an approximation error since the recursion formula
assumes that transitions in the same dimension have equal
transition rates, which does not hold here because of the soft
blocking. The modified recursion formula then becomes

p̃(η∗) = 1
η∗

S∑
s=1

(1 − βs(η∗ − ψs))p̃(η∗ − ψs)asψs, (43)

where η∗ is the current system state and is a integer multiple
of g. The state probability follows by normalizing p̃:

p(η∗) =
p̃(η∗)∑

jg≤ηmax

p̃(jg)
, j ∈ N0 (44)

The mean and the variance of the cell load ηx are also
obtained recursivley. We initialize both to zero for η ∗ = 0
and write

E[ηx(η∗)] =
S∑

s=1

Ps(η∗)(E[ηx(η∗ − φs) + νsE[ωs]) (45)

E[ηx(η∗)2] =
S∑

s=1

Ps(η∗)(E[ηx(η∗ − φs)2]

+ 2νsE[ηx(η∗ − φs)]E[ωs] + νsE[ω2
s ])

(46)

for 0 < η∗ < ηmax. The first and second moments of ζx,
ζx,y and ζ2

x,y follow according to Eq. (29), (30) and (31).
Note that we assume that the activities of mobiles with same
service classes are equal, hence νs = νk.

The probability Ps(η∗) denotes the conditional probability
that the current system state η∗ has been reached from the
predecessing state η∗ − ψs by an incoming connection of
service class s. This probability is given by

Ps(η∗) =
(1 − βs(η∗))p̃(η∗)asψs

S∑
t=1

(1 − βt(η∗))p̃(η∗)atψt

. (47)

Finally, the total blocking probabilities can be calculated
as the sum over all state probabilities multiplied with the
corresponding local soft blocking probabilities:

Pblock(s) =
∑

jg<ηmax

βs(jg)p(jg), j ∈ N0 (48)



V. NUMERICAL RESULTS

In the following, numerical results will be shown for an
example UMTS network with a hexagonal cell layout with
two tiers as shown in Fig. 1. The results are validated with
an event-driven simulation designed to verify the assumption
we made. The confidence level for all results is 0.975.

We consider two scenarios, one with two and one with
three service classes with 12.2kbps, 64kpbs and 144kbps.
The Eb/N0–targets are 5.5dB, 4dB and 3dB, respectively.
The standard deviations of the Eb/N0–targets are 1.2dB for
both services and scenarios. The distance between the NodeBs
is 1.2km and the area element size is 50m. The maximum
allowed cell load ηmax is 0.5. For the first scenario, the service
probabilites ps are 0.6 for the first and 0.4 for the second
service. For the second scenario, the service probabilities are
0.5, 0.3 and 0.2. The mean offered load is normalized to the
NodeB with the maximum offered load.
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Fig. 3. Blocking probabilities for two service classes

In Fig. 3, the analytic results for the service class with the
lower bitrate match very well with the simulated results, while
the analytic results for the higher service class underestimate
the simulation. In Fig. 4, the case is similar: The analytic
results for the first two service classes with 12.2kbps and
64kbps match the simulation quite accurate, while the highest
service class is underestimated by the analytic algorithm.
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Fig. 4. Blocking probabilities for three service classes

VI. CONCLUSION

The goal of this paper was to develop an analytical model
for the calculation of blocking probabilities in a UMTS net-
work. Special attention was turned to the other–cell interfer-
ence, whose contribution to the overall cell load must be con-
sidered for an accurate modelling of WCDMA systems like
UMTS. For this reason, we proposed an analytic algorithm
which computes the other–cell interference at the considered
NodeB for every system state. Together with the own–cell
interference this enabled us to calculate the soft blocking
probabilities reflecting the admission control mechanism in
WCDMA. The approximation of the other–cell interference
showed very good results for lower cell loads and sufficient
results for high cell loads. The blocking probabilities are
underestimated, but nevertheless give a good impression for
blocking targets relevant to network operators. This and the
low computational costs of the algorithm due to its recursive
scheme makes it a valuable tool for the planning of WCDMA
networks.
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