
University of Würzburg

Institute of Computer Science

Research Report Series

Estimating the size of a Chord ring

Andreas Binzenhöfer, Dirk Staehle and Robert Henjes

Report No. 348 February 2005

Department of Distributed Systems
Institute of Computer Science

University of Würzburg, Am Hubland, 97074 Würzburg, Germany
{binzenhoefer, staehle, henjes}@informatik.uni-wuerzburg.de

Estimating the size of a Chord ring

Andreas Binzenhöfer, Dirk Staehle and

Robert Henjes
Department of Distributed Systems

Institute of Computer Science
University of Würzburg, Am Hubland, 97074 Würzburg,

Germany
{binzenhoefer, staehle,

henjes}@informatik.uni-wuerzburg.de

Abstract

The Chord system is a decentralized peer-to-peer mechanism designed to store
and search key/value pairs. The peers in a Chord overlay network are represented
on a circle, whereas each peer has to maintain log

2
(n) neighbors to guarantee a

stable overlay structure in the presence of high churn rates. A single peer, however,
does not know the current size n of the Chord ring. Choosing a constant value for
the number of neighbors does not scale to large networks and involves unnecessary
overhead in small networks. In this paper we therefore introduce an estimator for the
current size of the Chord ring based on a peer’s neighbor- and fingerlists. To be able
to rate the goodness of the estimator we show how to calculate the corresponding
confidence intervals.

1 Introduction

The main purpose of peer-to-peer (P2P) networks is to store data in a decentralized
overlay network. Other peers will then be able to retrieve this data using some sort
of search algorithm. Traditional P2P algorithms like Gnutella [1], Napster or KaZaA
[2] use flooding mechanisms or central index servers to realize searches for data stored
in the P2P network. Obviously those networks do not introduce any structure to the
overlay architecture. The current generation of P2P algorithms, however, is based on
structured overlay networks to make searches faster, more reliable and more efficient.
Systems like Chord [3], CAN [4] and Kademlia [5] implement so called Distributed Hash
Tables (DHT) to organize their overlay network. A DHT assigns each peer in the overlay
an m-bit identifier using a hash function such as SHA-1 [6] or MD5 [7]. Additionally each
document that is to be stored in the peer-to-peer network is assigned an m-bit identifier
using the same hash function. Based on these ids the underlying P2P mechanism decides
where to store the documents. That is, the P2P algorithm determines which peers are
going to be responsible for which documents. Peers searching for particular documents
will then use the same algorithm to retrieve the searched information from the P2P
overlay network. As compared to other DHT based P2P algorithms Chord builds a ring
topology (marked with numbers from 0 to 2m), where the position of a peer on this
ring is determined by a peers m-bit identifier. As can be seen in Figure 1 the peers are
ordered in a clockwise ascending manner on the Chord ring. The main advantage of this

1

peer with
identifier 1

peer with
identifier 128

peer with
identifier 163

peer with
identifier 42

peer with
identifier 77

peer with
identifier 213

Figure 1: All documents whose identifiers fall into the hatched area will be stored at the
peer with identifier 213.

ring structure is that the peer responsible for a particular document is exactly defined.
In particular a document is stored at the first peer whose identifier is greater or equal to
the documents identifier in the identifier space. All documents whose identifiers fall into
the hatched area in Figure 1, e.g., are stored at the peer with identifier 213, since this
peer is the first peer that follows this area in a clockwise direction. The advantages that
come along with this exact mapping of peers and documents, however, are bought by the
overhead needed to maintain the ring structure. In particular the ring structure has to
be maintained even under high churn rates. That is, when a great number of peers join
or leave the network. To cope with this situations each peer maintains pointers to the
first r of its immediate successors on the identifier circle. According to [3] the stability
of the Chord ring can be obtained with high probability as long as r = Ω1(log2(n)),
where n is the current size of the Chord ring. In practice a peer either has to choose the
parameter r large enough to be able to handle the maximum possible ring size or has to
adjust r dynamically. The first approach, however, does not scale to large networks, since
the maximum possible ring size is not likely to be known a priori. Moreover choosing
the parameter r too large in small networks results in unnecessary overhead, since the
participating peers generate more maintenance traffic than actually needed. All in all
choosing a large constant value for r results in high maintenance cost in the majority of
cases, or insufficient stability in larger than expected overlay networks. In other words
a constant value for r is not feasible in practice. Unfortunately a peer is also not able to
adjust the size of its neighborlist dynamically to r = Ω(log2(n)) since a single peer has
no way of knowing the current size n of the Chord ring.

In this paper we therefore introduce an estimator for the current size n of the Chord
ring based on the peers current neighborlist. To be able to rate the goodness of the esti-
mator we show how to calculate the corresponding confidence intervals. The estimated
value of n can then be used to build a peers neighborlist in actual Chord implementa-

1Definition: T (n) = Ω(f(n)) if and only if there are constants
c0 and n0 such that T (n) ≥ c0f(n) ∀ n ≥ n0

2

tions. The remainder of this paper is structured as follows. In Section 2 we summarize
the most important aspects of the Chord algorithm to provide the basis to understand
our estimator. Related work is summarized in Section 3. Section 4 presents the main
idea of our estimator. In Section 5 the mathematical framework and all necessary de-
finitions are introduced. The numerical results are then shown in Section 6. Section 7
finally summarizes and concludes the paper.

2 Chord Basics

This section introduces a brief overview of Chord with a focus on aspects relevant to
this paper. A more detailed description can be found in [3].

As stated above the Chord algorithm arranges the peers in a clockwise ascending
manner on the Chord ring as illustrated in Figure 1. In a very unsophisticated Chord
ring each peer would only know the id of its immediate successor in a clockwise direction
on the ring. If this successor goes offline the peer does not know the id of the next
peer, which would now be its new immediate successor. As a consequence thereof the
ring structure is lost and the functionality of the Chord algorithm can no longer be
guaranteed. Therefore a peer stores information about its r immediate successors on
the ring. Figure 2 shows the successorlist for a peer z for r = 3 successors. The list

peer z
s1

s2

s3

Figure 2: The successor list for peer z consists of the r = 3 immediate successors s1, s2
and s3 in a clockwise direction.

consists of s1, s2 and s3 the three immediate successors of peer z. If the immediate
successor s1 of peer z goes offline now, peer z can still contact the next closest peer s2
of its successorlist. As stated in [3] as long as r = Ω(log2(n)) a peer is able to know the
id of its closest living successor. Later on we will exploit the successorlist of a peer to
introduce our estimator.

However, if a peer would only maintain pointers to the peers in its successorlist as
mentioned above, searches for resources stored in the P2P network would obviously take
very long. A peer looking up another peer or a resource would have to pass the query
around the circle using its successor pointers. Figure 3 illustrates a search of peer z
for another peer y using only the immediate successor. The search has to be forwarded

3

peer z

peer y

Figure 3: A search of peer z for peer y in a simple Chord ring is passed around the circle
using the immediate successors.

half-way around the ring. The average search would require n
2

overlay hops, where n
is the current size of the Chord ring. To speed up searches a peer z in a Chord ring
also maintains pointers to other peers, which are used as shortcuts through the ring.
Those pointers are called fingers, whereby the i-th finger in a peers finger table contains
the identity of the first peer that succeeds z’s own id by at least 2i−1 on the Chord
ring. That is, peer z with hash value idz has its fingers pointing to the first peers that
succeed idz + 2i−1 for i = 1 to log2(m), where 2m is the size of the identifier space.
Figure 4 shows two examplary fingers F1 and F2 for the same peer z of the last figure.

peer z

peer y
F2

F1

Figure 4: A peers finger pointers can be used to speed up searches. A search of peer z
for peer y using finger F2 only takes two hops as indicated by the dotted line

If peer z would search again for peer y, this time using its finger pointers, the search
would only take two overlay hops. For the first hop peer z uses its finger F2. Peer y can
then directly be reached using the successorlist of F2 as indicated by the dotted line. A
detailled mathematical analysis of the search delay in Chord rings can be found in [8].

4

In the next section we show how to make use of a peers successorlist and fingerlist to
estimate the size of the current Chord ring.

3 Related Work

Most works concerning DHT algorithms concentrate on improving the speed and ef-
ficiency of queries in such systems, e.g. by taking physical proximity into account.
In [9] Proximity Neighbor Selection (PNS) and Proximity Route Selection (PRS) were
considered and evaluated. PNS based algorithms chose neighbors in the routing table
according to their physical proximity. The PRS algorithms on the other hand deal with
the trade-off between the number of hops and the latency of such overlay hops.

Other studies try to make complex queries in DHT based systems possible. In [10] e.g.
n-grams are used to enable keyword search in DHT based system. Another approach is
introduced in [11], where the problem of complex queries is solved by keyword fusion.
That is, popular keywords are fused with unpopular keywords once their popularity
exceeds a certain threshold.

While all those algorithms concentrate on the efficiency of DHT system, we believe
that the real issue concerns their redundancy and stability. As mentioned in Section
1 there is a trade-off between maintenance cost and stability. This trade-off can be
controlled by the size r of a peer’s successor-list. If r is chosen too small the stability
of Chord will be less than desired. In [12], e.g., a survey of different studies regarding
session times in various peer-to-peer systems is done. The performance of existing DHT
implementations under the observed churn rates is evaluated. The conclusion of the work
states that performance is less than desirable at the higher end of these churn rates. We
believe that this is at least in part due to the fact that r was set to a constant value of
10, underestimating the size of the regarded Chord rings.

Overestimating the parameter r on the other hand leads to unnecessary overhead. In
[13], e.g., it was shown that the real scalability problem can be found in the service
bandwidth needed to maintain redundancy and stability in dynamic overlay networks.
However, especially in these dynamic networks it is most important to know the size
of the current network to be able to adjust the maintenance cost needed to obtain
redundancy and stability.

Therefore in [14] the trade-off between high maintenance cost and poor stability in
dynamic networks is investigated. The results show that it is crucial to adapt parame-
ters dynamically. However, to be able to adapt the parameters to current conditions,
estimates for the current size of the network are needed. The authors introduce an esti-
mator for the size of Pastry based networks, that can in some way be extended to other
networks like CAN or Chord. However, there was no mathematical statement about
the goodness of the estimator nor any confidence intervals were given. Moreover since
the estimator was primarily designed for Pastry networks, it does not exploit additional
characteristics that are typical for Chord rings.

A rough estimator for the size of butterfly based P2P overlay networks is introduced
in [15]. Other approaches rely on active probing of the overlay network. A distributed
way of estimating the size of overlay networks is presented in [16], where an additional

5

logical ring among existing nodes is maintained and nodes exchange their estimators
upon arrival and departure. In [17] the size of general overlay networks is estimated by
actively sending samples to other nodes and evaluating the answer statistics.

Current estimators either lack a mathematical description, need additional overhead to
actively probe the network or do not exploit all properties of a Chord ring. In this work
we therefore present a mathematical substantiated estimator, which is well adapted to
the properties of the Chord algorithm. Instead of solely relying on a peer’s successorlist
it also takes the peers fingerlist into account. We calculate confidence intervals for our
estimator and show how it performs in different network sizes and when exposed to
different churn rates.

4 Analytical Model

In this section we present the analytical framework of our model based on a peers
successor- and fingerlists. At first we have a closer look at the identifier space itself.
As stated above a total of n peers share the identifier space of length N = 2m. We
furthermore assume that, by the hash function, the position S(z) of every peer z is
distributed uniformly in the identifier space. Accordingly, every identifier is occupied by
a peer with probability p = n/N . Let I(z) = S(z + 1) − S(z) be the random variable
describing the length of the interval between peer z and peer z + 1, i.e. the distance
between two peers as illustrated in Figure 5.

0 2m-1
n

I

peer z peer z + 1

Figure 5: A total of n peers share the identifier space of length 2m. The random variable
I describes the length of the interval between two peers.

Further, let us assume that without loss of generality peer z has identifier 0, i.e.
S(z) = 0. Then, the probability that another peer sits on position 1 is (n − 1)/(N − 1)
as there remain n − 1 peers for N − 1 free identifiers. The probability P (z + 1, i) that
S(z + 1) = i is

P (z + 1, i) =

(
1 −

n − 1

N − 1

)(
1 −

n − 1

N − 2

)
· · · (1)

· · ·

(
1 −

n − 1

N − i + 1

)
·

(
n − 1

N − i

)
(2)

≈(1 − p)i−1p ≈ (1 − p)ip (3)

The approximation is justified as n >> 1 and consequently N >> i. Thus, we can
conclude that the Interval I(z) between a peer and its direct neighbor is approximately

6

geometric with parameter p:

I(z) ∼ geom(p) where p =
n

2m
(4)

We validate this approximation by generating 10000 snapshots of a chord ring with 1000,
10000, and 100000 peers in an identifier space of size 2160. Peer z has identifier 0. We
evaluate the distance to peer z +1 and refer to this distance as Interval 1, which is equal
to S(z + 1) − S(z). Figure 6 compares the simulated distribution with the theoretical
geometric distribution. Since the curves match exactly when plotted on a linear scale we
use a log-log scale. Considering the magnitude of the interval sizes and probabilities, the
geometric distribution and the simulated distribution are almost identical. The dithering
in the simulated curve comes from the limited amount of values that we gain from the
simulations.

10
40

10
42

10
44

10
46

10
−48

10
−46

10
−44

10
−42

interval

pr
ob

ab
ili

ty

Interval 1
Geom(N,p)

RingSize=100000

RingSize=10000

RingSize=1000

Figure 6: Interval 1 is well-approximated by the geometric distribution

Ideally, peer z does not only know its direct neighbor but the next r = dlog2(n)e neigh-
bors and can calculate the distances between them. The probability that the location of
peer z + 2 is directly after peer z + 1 is

n − 2

N − (S(z + 1) − S(z))

as there are n − 2 unknown peers and

(N − (S(z + 1) − S(z)))

7

free identifiers remaining. Consequently, from peer z’s point of view Interval I(z + 1)
depends on Interval I(z). However, we can argue again that due to the enormous size
of the identifier space

n − 2

N − (S(z + 1) − S(z))
≈ p

and thus the intervals between all r neighbors of Peer z are iid and we introduce the
random variable I for an arbitrary interval between two neighbored peers.

In Figure 7 we validate this approximation by means of the cumulative distribution
function (CDF) of Interval 1 and Interval r, i.e. the interval between the last two
successors. We can see that the curves for both intervals match very well with the
geometric distribution independent of the ring size. The simulated curves start with a
probability of 1e−4 as we generated 10000 snapshots. Note that the distribution of 99%
of the intervals (CDF≥ 1e − 2) coincides with the geometric distribution.

10
35

10
40

10
45

10
50

10
−6

10
−4

10
−2

10
0

interval

C
D

F

Interval 1
Interval r
Geom(N,p)

RingSize=100000

RingSize=10000

RingSize=1000

Figure 7: Interval 1 and Interval r follow a geometric distribution.

The main idea of our algorithm is to estimate the parameter p of the geometric dis-
tribution of I by p̂. From this we can then conclude

n̂ = p̂ · 2m

To be able to estimate p̂ we need to obtain realizations of I. As stated above, those can
be gathered by looking at our neighborlist. As shown in Figure 8 the intervals between

8

I1

1

2

r

I2

peer

Ir

Figure 8: The intervals between a peers r successors can be regarded as realizations of
the random variable I.

a peers r immediate successors can be regarded as r different realizations of the random
variable I. However, the more realizations of I we obtain the better our estimator is
going to be. More realizations of I can be found if we have a closer look at a peers
fingerlist as presented in Section 2. As has been shown in [3] only O(log2(n)) of those
log2(m) fingers are actually different, i.e. are actually pointing to different peers. The
explanation lies within the fact, that especially the first fingers tend to coincide with
a peers successor list. The interesting fact concerning our estimator, however, is that
the actual position of the i-th finger on the ring is different from its theoretical position
idz + 2i−1. Figure 9 illustrates this issue in detail. The Figure shows three exemplary

idz

F3

F1

F2
idz+2m-1

idz+2m-2

idz+2m-3

Ir+1

Ir+2

Ir+rf

Figure 9: The distance between the theoretical and actual position of a peers i-th finger
can be regarded as another realization of the random variable I.

fingers for a peer z pointing to idz +2m−3, idz +2m−2 and idz +2m−1 respectively. As we
can see the actual positions of the finger peers F1, F2 and F3 are different to the fingers
theoretical positions. This distance, however, can be interpreted as another realization of
the geometrically distributed random variable I. The explanation can be found in Figure
10. As stated above we already know that the length of the interval between a finger Fi

and the previous peer on the ring is geometrically distributed. If we now chose a random

9

Fi

geom(p)

geom(p)

theoretical finger position

Figure 10: Due to the memoryless property of the geometric distribution the interval
between a fingers theoretical and actual position is also geometrically distrib-
uted and can thus be regarded as another realization of I.

point in this interval, due to the memoryless property of the geometric distribution, we
can then conclude that the interval between the theoretical position of the finger and the
actual finger is as well geometrically distributed with the same parameter p. Again, we
validate this assumption by means of the snapshots we used above. Figure 11 compares
the distances of the theoretical and actual finger positions with the geometric position.
We consider only those fingers that don’t coincide with the successorlist. The Figure
shows the geometric distribution with regard to three different ring sizes. Each of these
distribution is compared to the simulated distributions of each finger. Note that there
are more simulated curves for the ring with 10000 peers than with 1000 peers, as there
are more distinct fingers in larger rings as stated above. Again the plot is presented on a
log-log scale, since the curves match exactly on a linear scale. By means of the geometric
distribution of the finger intervals, we obtain another rf ≈ log2(n) realizations of I from
a peer’s fingertable, leaving us with a total of r + rf different realizations of the random
variable I. The next Section describes how we are going to estimate the parameter p
from this set of realizations.

5 Estimating the size of the Chord ring

The main goal of this Section is to introduce an estimator n̂ for the size of the current
Chord ring. This estimator can then be used to dynamically adjust the estimated nec-
essary size r̂ = log2(n̂) of a peers successorlist. Since the estimator is based on a peers
successor- and fingerlist and those lists in turn are adjusted according to the estimator,
we assume that to get started, a peer is notified about the current size of the Chord
ring by its immediate successor when first entering the network. In this section we show
how to estimate the parameter p of the geometric distribution of I using a maximum-
likelihood estimator (MLE). The MLE is used since we already know that the random
variable I is geometrically distributed but the parameter p is still unknown. The basis
for the MLE is a likelihood function L(p) which is defined as follows:

L(p) = fp(I1)fp(I2) · · · fp(Ii)

where fp(I) is the probability mass function with parameter p. The MLE p̂ of the
unknown value of p is then defined to be the value that maximizes the likelihood function

10

10
35

10
40

10
45

10
50

10
−6

10
−4

10
−2

10
0

interval

C
D

F

RingSize=100000

RingSize=10000

RingSize=1000

Figure 11: The interval between actual finger position and theoretical finger position is
geometric.

11

L(p). That is,
L(p̂) ≥ L(p)

for all possible values of p. In our case we have

fp(I) = (1 − p)Ip

and

L(p) = (1 − p)
� r+rf

i=1
Iip

As has been shown in [18] the MLE in this case can be computed as

p̂ =
1

I(r + rf) + 1

where I(2r) is the sample mean. With p̂ we can then calculate the estimated size
n̂ = p̂ · 2m of the current Chord ring. Finally n̂ will be used to determine the number of
successors the peer is going to maintain. The size of the successor-list will be set to

r̂ = dlog2(n̂)e

An obvious advantage of this approach is that the size of the successor-list is not as
sensitive to errors as the estimated size of the Chord ring itself. That is due to the fact
that the size of the successor list is logarithmically dependent on the size of the Chord
ring. In practice a peer is going to use this estimator to set the size of its successor-list
as follows. When first entering the Chord ring, a peer learns the current size of the
Chord ring from its direct neighbors and adjusts the size of its successor-list accordingly.
Afterwards it periodically uses the MLE p̂ to estimate the current size of the Chord ring
and dynamically adapts the size of its successor-list. The disadvantage is that so far
we cannot make any statement of how good the MLE p̂ estimates the actual size of the
ring. Therefore we build confidence intervals for p̂. According to [18] the 100(1 − α)
confidence interval for p is given by

p̂ ± z1−
α
2

√
p̂2(1 − p̂)

r + rf

where z1−
α
2

(for 0 < α < 1) is the upper 1 − α
2

critical point for a standard normal
random variable.

However, the consequences of underestimating the real value of p are by far more
severe than consequences of overestimating the real value of p. That is due to the fact
that a successor-list, that is too small has a negative effect on the stability of the Chord
ring. A successor-list that is too large on the other hand only results in some additional
overhead. To minimize the danger of underestimating n we use the upper limit of the
confidence interval to estimate n:

n̂+ =

(
p̂ + z1−

α
2

√
p̂2(1 − p̂)

r + rf

)
2m

12

This n̂+ is then used to calculate the size r̂+ of the successor-list as

r̂+ = dlog2(n̂+)e

Again, we round up to minimize the probability of underestimating the real value of r.
The next section summarizes how the estimator performs in an actual Chord implemen-
tation.

6 Numerical Results

In this Section we show the results obtained by our simulations. If not stated otherwise,
each snapshot of our simulations is done by uniformly placing n peers into the identifier
space of length 2m. Then the distances between the first r consecutive peers are calcu-
lated and given as input to our estimator. We regard different ring sizes to see how the
estimator scales to larger networks. Furthermore, we evaluate the difference between
the upper and lower limit of the estimator and study the influence of the corresponding
confidence levels. Additionally, we investigate how accurate the estimator and its upper
bound are able to estimate the actually required number of successors. Finally we study
the influence of churn by varying the number of successors a peer maintains.

To see how accurate our estimator n̂ estimates the current ring size we generated 10000
snapshots of a specific ring size n. We then set the number of successors to the ideal
value r = dlog2(n)e and compared the estimated ring sizes to the actual ring size. Figure
12 shows the results of our simulations for a given ring size of 10000 and a successorlist
of size 14. As can be seen in the Figure, our estimator n̂ is well in the right order

0 2000 4000 6000 8000 10000
0.5

1

1.5

2

2.5

3x 10
4

snapshot

rin
g

si
ze

estimated ringsize
actual ring size

Figure 12: 10000 estimates of the ring size as compared to the actual ringsize

of magnitude and roughly oscillates between 0.5n and 2n. Depending on the range of
application, however, under- or overestimating might be crucial to the performance of
the application on top of the estimator.

In Figure 13, we therefore compare the lower bound n̂
−

and the upper bound n̂+ of
our estimator to the actual ring size, again using 10000 snapshots of a ring of size 10000.
The confidence level in this example is set to 95%. The lower bound n̂

−
of the estimator

13

0 2000 4000 6000 8000 10000
0

1

2

3

4x 10
4

snapshot
rin

g
si

ze

lower bound
upper bound
actual ring size

Figure 13: The lower and upper bound of the estimator with a confidence level of 95%
as compared to the actual ring size

stays beneath the actual size of the ring with high probability. Whereas the upper bound
ranges between n and 2n to 3n, underestimating the real value of n at times.

To analyze the number of times the lower bound overestimates and the upper bound
underestimates the actual ring size we plotted the sorted snapshots in Figure 14. The
Figure shows the normalized results obtained for the estimator and its lower and upper
bounds for three different ring sizes. Again a confidence level of 95% is used. The part of
the upper bound beneath the black line represents the number of times the upper bound
underestimates the actual ring size, the part of the lower bound above the black line the
number of times the lower bound overestimates the actual ring size respectively. Note

0 2000 4000 6000 8000 10000
0.5

1

1.5

2

ring snapshots (estimator sorted)

no
rm

al
iz

ed
 e

st
im

at
ed

 r
in

gs
iz

e

lower bound

estimator

upper bound

1000
10000
100000

Figure 14: Sorted estimates gained by the estimator and its lower and upper bounds

that the median of the estimator itself approximately intersects with the actual ring
size as indicated by the two straight black lines. This justifies our assumption that the
random variable I is approximately geometric since the median of an estimator based
on exactly geometric intervals would exactly intersect with the actual ring size.

Another important fact that can be derived from the Figure is that we over- and

14

underestimate the actual ring size less highly in larger networks. This is of course due to
the fact that we use more neighbors in larger networks. The primary reason, however,
lies in the fact, that a peer also has more distinct fingers and thus more uncorrelated
realizations of I in larger networks. Note that the tiny spikes in the graphs of the
lower and upper bound arise since we only sorted the estimator itself and plotted the
corresponding upper and lower bounds.

As can be seen in Figure 15 the lower and upper bound of the estimator can be fine
tuned by adjusting the confidence level. The confidence level in this example was varied
between 50% and 99%. The higher we set the confidence level, the more the curves of
the upper and lower bound drift away from the estimator. This means that the higher

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5x 10
5

upper bound

lower bound

conf. level 50%
conf. level 75%
conf. level 90%
conf. level 95%
conf. level 99%
Estimator

Figure 15: Influence of the confidence level on the upper and lower bound in a network
of size 105

we choose the confidence level, the less frequently we will under- and overestimate the
actual ring size. However, the drawback of a high confidence level is that the estimates
of the upper and lower bound get less precise. The trade-off between the frequency of
under- and overestimating the actual size and the precision of the estimate has to be
adapted to the application of the estimator.

The most obvious application of the estimator is the dynamic adaptation of a peers
successorlist. Since a peer ideally maintains a list of at least r = dlog2(n)e neighbors the
estimate in this case does only depend logarithmically on the estimate of n. As it is more
critical to underestimate than to overestimate the required number of successors, we will
only compare the estimator and its upper bound in the following. Since we additionally
round the estimate for the upper bound

r̂+ = dlog2(n̂+)e

we set the confidence level to moderate 95% in the remainder of this section. Figures 16
and 17 show the estimated number of required neighbors in a network of size 104 and 105.
In Figure 16 the actually required number of neighbors is 14 =

⌈
log2(104)

⌉
. The regular

estimator provides the correct number of neighbors in over 80% of all cases. However, in
almost 20% of the snapshots the estimator would set the size of the successorlist to 13, one

15

12 13 14 15 16 17 18
0

0.2

0.4

0.6

0.8

1

estimated required neighbors

pr
ob

ab
ili

ty

actually required
 neighbors=14

upper bound
estimator

Figure 16: The upper bound does never underestimate the actually required number of
neighbors, as does the regular estimator

peer less than needed. In order to minimize the danger of underestimating the required
number of successors, one should therefore use the number of neighbors estimated by the
upper bound. While the upper bound does almost never underestimate in the current
example, it tends to overestimate more frequently than the regular estimator.

In a ring of size 105 (see Figure 17) the upper bound overestimates the required
number of neighbors by 1 in over 60% of all cases. In return it never understimates
the actually required number of successors. The regular estimator on the other hand
again underestimates the actual value, even though only in very few cases. Note that
in about 90% of all cases the regular estimator meets the actually required number of
neighbors. Given the fact that the upper bound only slightly overestimates the desired

15 16 17 18 19 20 21
0

0.2

0.4

0.6

0.8

1

estimated required neighbors

pr
ob

ab
ili

ty

actually required
 neighbors=17

upper bound
estimator

Figure 17: The regular estimator reaches the actually required number of neighbors in
about 90% of all cases, thereby scarcely underestimating the actual value.

number of neighbors, we suggest to prefer the upper bound to the regular estimator in
critical applications.

So far the results presented in this section were based on the ideal number of neighbors

16

in the given networks. To see how the estimator performs when relying on an unideal
number of neighbors, we again simulate 10000 snapshots for a ring of size 104 and
evaluate the estimator and its upper bound based on successorlists of different size.
Thereby the number of successors used as input to the estimator ranges between 1 and
20 successors. The actually required number of neighbors in this example is again 14.
Figure 18 shows the results corresponding to the regular estimator. The bars represent
the results obtained by using 1 to 20 neighbors. The brighter the color, the more
neighbors have been used as input to the estimator. Obviously, the more neighbors

12 13 14 15 16 17
0

0.2

0.4

0.6

0.8

1

estimated number of necessary neighbors

pr
ob

ab
ili

ty actually required
 neighbors=14

1 neighbor
20 neighbors

Figure 18: The bars represent the results obtained by using 1 to 20 neighbors as input
for the regular estimator in a ring of size 104

the estimator can rely on, the better the obtained results become. That is, the more
realizations of I we can give as an input to the estimator, the more precisely it calculates
the actually required number of neighbors and the less often it over- and underestimates
this value. Still the estimator underestimates the actual value, even in the case of 20
neighbors.

For comparison the results obtained by the upper bound are summarized in Figure 19.
The bars increase and decrease more rapidly than the bars in the last Figure. That is due
to the fact, that the more realizations of I we obtain, the smaller the confidence interval
is going to be. Thus the upper bound will converge to the estimator. Having a closer look
at the Figure, we also notice that the probability that the upper bound underestimates
the required number of neighbors is negligible but not entirely zero. Obviously, this is
especially noticeable for small successorlists, since a small successorlist also means fewer
realizations of I. Moreover since 13 = log2(8192) all estimated values of n < 8913 will
result in an underestimation of r. Thus, the estimator can not fully take advantage of
the mathematical round step. Note, that independent on the size of the successorlist
the upper bound is able to rely on the realizations of I gained by its fingerlist. Thus, it
supplies an applicable estimate of the required number of neighbors independent on the
number of successors used as input.

17

12 13 14 15 16 17
0

0.2

0.4

0.6

0.8

1

estimated number of necessary neighbors

pr
ob

ab
ili

ty actually required
 neighbors=14

1 neighbor
20 neighbors

Figure 19: The upper bound is more sensitive to the number of neighbors than the
regular estimator

7 Conclusions

In a P2P network a peer has no way of knowing the current size of the overlay network
it is participating in. In this paper we utilize the overlay structure established by the
Chord P2P algorithm to estimate the current size of the overlay network as seen by a
single peer. Thereby we do not only rely on the density of a peers current successorlist
but also exploit information gained by the peers fingerlist. Unlike the peers successors
the finger pointers are note correlated to each other and still deliver a good estimate
when the peer maintains a small successorlist. In general, the estimated sizes lie in
between 0.5n and 2n, where n is the actual ring size.

We are furthermore able to calculate confidence intervals for our estimator, whereby
the upper and lower bounds can be used as estimators themselves. The lower bound
underestimates the actual ring size with very high probability, while the upper bound
lies well above the actual overlay size. The number of times the lower and upper bound
over- or underestimate the target value respectively can be minimized by increasing the
confidence level.

Knowing the size of the overlay network is a frequently required feature in P2P net-
works. The most obvious application is the dynamical adaptation of a peers successorlist.
The upper bound of our estimator is especially suited for this task, since it practically
never underestimates the required number of neighbors. How exactly the estimator and
its upper and lower bounds can be applied in practice and what other areas of application
there are is a matter of future work.

References

[1] Gnutella website, “http://www.gnutelliums.com.”

[2] KaZaA website, “http://www.kazaa.com/us/index.htm.”

18

[3] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord:
A Scalable Peer-to-peer Lookup Service for Internet Applications,” in ACM SIG-

COMM 2001, (San Diego, CA), August 2001.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content-
addressable network,” in ACM SIGCOMM 2001, (San Diego, CA, USA), 2001.

[5] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information system
based on the xor metric,” in IPTPS 2002, (MIT Faculty Club, Cambridge, MA,
USA), March 2002.

[6] FIPS PUB 180-1, “Secure hash standard.” Federal Information Processing Stan-
dards Publication 180-1, April 1995.

[7] R. Rivest, “RFC 1321 - The MD5 Message-Digest Algorithm,” April 1992.

[8] A. Binzenhöfer and P. Tran-Gia, “Delay Analysis of a Chord-based Peer-to-Peer
File-Sharing System,” in ATNAC 2004, (Sydney, Australia), December 2004.

[9] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica,
“The impact of dht routing geometry on resilience and proximity,” in ACM SIG-

COMM 2003, (Karlsruhe, Germany), August 2003.

[10] M. H. et al., “Complex queries in dht-based peer-to-peer networks,” in IPTPS 2002,
(MIT Faculty Club, Cambridge, MA, USA), March 2002.

[11] L. Liu, K. D. Ryu, and K.-W. Lee, “Supporting efficient keyword-based file search
in peer-to-peer file sharing systems,” in Globecom 2004, (Dallas, TX), November
2004.

[12] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling Churn in a DHT,” in
2004 USENIX Annual Technical Conference, (Boston, MA), June 2004.

[13] C. Blake and R. Rodrigues, “High availability, scalable storage, dynamic peer net-
works: Pick two,” in Proceedings of HotOS IX: The 9th Workshop on Hot Topics

in Operating Systems, (Lihue, Hawaii, USA), May 2003.

[14] R. M. et al., “Controlling the cost of reliability in peer-to-peer overlays,” in IPTPS

2003, (Berkeley, CA, USA), February 2003.

[15] D. M. et al., “Viceroy: A scalable and dynamic emulation of the butterfly,” in
Proceedings of the 21st ACM Symposium on Principles of Distributed Computing,
2002.

[16] K. Horowitz and D. Malkhi, “Estimating network size from local information,” Inf.

Process. Lett., vol. 88, no. 5, pp. 237–243, 2003.

[17] M. B. et al., “Estimating aggregates on a peer-to-peer network.” Technical Report,
Dept. of Computer Science, Stanford University, 2003.

19

[18] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis. McGraw-Hill
Higher Education, 3rd ed., 1999.

20

