University of Würzburg Institute of Computer Science Research Report Series

An $O(n \log n)$ Heuristic for the Euclidean Traveling Salesman Problem

Evgeny Yanenko, Eckart Schuhmacher ${ }^{1}$ and

Ulrich Spörlein, Kurt Tutschku²

Report No. 358
April 25, 2005
${ }^{1}$ atg test systems GmbH \& Co KG.
Zum Schlag 3, 97877 Wertheim, Germany.
\{eianenko,eschuhmacher\}@atg-test-systems.de
${ }^{2}$ University of Würzburg, Department of Distributed Systems.
Am Hubland, 97074 Würzburg, Germany.
\{spoerlein,tutschku\}@informatik.uni-wuerzburg.de

An $O(n \log n)$ Heuristic for the Euclidean Traveling Salesman Problem

Evgeny Yanenko, Eckart Schuhmacher
atg test systems GmbH \& Co KG.
Zum Schlag 3, 97877 Wertheim, Germany.
\{eianenko,eschuhmacher\}@ atg-test-systems.de

Ulrich Spörlein, Kurt Tutschku
University of Würzburg, Department of Distributed Systems.
Am Hubland, 97074 Würzburg, Germany. \{spoerlein, tutschku\}@informatik. uni-wuerzburg.de

Abstract

In this paper we present a fast approach for solving large scale Traveling Salesman Problems (TSPs). The heuristic is based on Delaunay Triangulation and its runtime is therefore bounded by $O(n \log n)$. The algorithm starts by construction the convex hull and successively replaces one edge with two new edges of the triangulation, thus inserting a new city. The decision which edge to remove is based on edge ranks. Finally the tour is subject to a node insertion improvement heuristic. By extensive case studies it will be shown that only highly optimized $2 / 3-\mathrm{Opt}$ heuristics are superior to this approach in both running time and tour lengths for very large TSP instances.

1 Introduction and Motivation

Atg test systems $\mathrm{GmbH} \& \mathrm{Co}$. KG is the global market leader for automatic test equipment (ATE) for unpopulated printed circuit boards (PCBs). The product line comprises two families of machines one of them the so called flying probe testers. These machines determine boards with open circuits or shorts between networks of the PCB. Multiple moving probe heads are being positioned on all test points of the PCB. By contacting these test points, electro-static properties are captured by various kinds of measurements. Today typical PCBs contain several tens of thousands of test points and in peak can hold up to 250000 test points. Goal of the cooperation is to find solutions for this TSP that are close to the optimum yet in very short computation times.

2 Related Work

A comprehensive overview of tour constructing heuristics and tour improving algorithms can be found in [1]. The results in [1] shows that established tour constructing heuristics (Nearest Neighbor, Insertion heuristics, Christofides, Savings) usually range about $10 \%-30 \%$ above the lower bound of the instances. The Savings heuristic, being the best, had an average of 11.11% above the lower bound for some selected instances of the TSPLIB [2].

Several well known tour improvement algorithms are compared: Node/Edge Insertion, 2-Opt and 3-Opt exchanges as well as the Lin \& Kernighan heuristic. The tour quality improves from heuristic to heuristic and is rather independent from the initial tour. That is, even with random starting tours, the average quality of tours obtained with 3-Opt and Lin-Kernighan lies between 6.82% and 2.47%, respectively. For Christofides starting tours an average tour quality of 3.55% for 3 -Opt and 1.95% for the Lin-Kernighan heuristic are achievable. An iterated approach to Lin-Kernighan yields tours that lie on average only 1.26% above the lower bound.

In fact the Lin-Kernighan heuristic implemented by CONCORDE [3] has been used to solve many instances of the TSPLIB. Several improvements have been made to the original algorithm and the question of how to obtain a good initial tour is still open. As of this writing, the record for the optimal solution lies at 24978 cities [4].

However, running time constrains often forbid long runs of improvement heuristics, only to shorten the tour by $1 \%-2 \%$. Therefore we focus more on achieving acceptable results ($5 \%-8 \%$) in a short time.

An overview of existing algorithms and how they perform can be obtained from the 8th DIMACS (Center for Discrete Mathematics and Theoretical Computer Science) Implementation Challenge [5].

3 Algorithm

3.1 Triangulation

This heuristic is based on the properties of plane triangulation. As the TSP is closely connected to proximity problems, the first choice is a Delaunay triangulation. But it is important to understand that the optimum tour for the TSP is not a subset of the Delaunay graph (see Figure 1).

From another point of view, the optimum tour is a subset of some triangulation, because it contains no intersecting edges. Therefore it is also interesting to investigate other types of triangulation, which may appear to be more suitable for the TSP.

On each step, the heuristic will operate with a non-empty set of directed tours T_{i}. Tour T_{i} itself contains i edges $E_{m n}$ of the triangulation graph, connecting cities C_{m} and C_{n}. Each edge $E_{m n}$, which does not belong to the convex hull, has two adjacent triangle faces, one on the left, city $C_{L}\left(E_{m n}\right)$, and one on the right, city $C_{R}\left(E_{m n}\right)$, respective to the tour direction (see Figure 2). The edges forming the convex hull have only one adjacent triangle face.

For simplicity, let us consider only left faces and cities. It is easy to see that if the direction of the tour is changed-so that the edge $E_{m n}$ changes to $E_{n m}$-then $C_{L}\left(E_{n m}\right)$ is equivalent to $C_{R}\left(E_{m n}\right)$ and vice versa.

3.2 Construction

Starting with some tour T_{i}, the next tour T_{i+1} can be constructed, if an edge $E_{m n}$ is replaced with edges $E_{m L}$ (connecting C_{m} to $C_{L}\left(E_{n m}\right)$) and $E_{L n}$ (connecting $C_{L}\left(E_{n m}\right)$

Figure 1: Optimum tour is not a subset of Delaunay graph.
to C_{n}), with the restriction that the city $C_{L}\left(E_{n m}\right)$ does not yet belong to the tour (see Figure 3).

Associated with each edge $E_{m n}$ is the pre-calculated edge quality $Q_{m n}$. In the general case $Q_{m n}$ and $Q_{n m}$ can be different. Later we will discuss different possibilities to calculate the edge quality.

So the heuristic starts with some plane triangulation, taking the cities as vertices, and some directed initial tour T_{k}. As we will extend the tour always to the left, the initial tour may be any clockwise tour around triangle face, or counterclockwise tour, consisting of the edges on the convex hull.

To keep track of the edge with the worst quality, references to all edges of the initial tour have to be put into an additional data structure D (heap or balanced tree). Now we can proceed to the main loop.

1. If D is empty, finish the loop.
2. Find the edge $E_{m n}$ with worst quality $Q_{m n}$ and remove it from D.
3. If $C_{L}\left(E_{n m}\right)$ does not exist (this can happen if $E_{m n}$ is a clockwise edge on the convex hull), return to step 1.
4. If $C_{L}\left(E_{n m}\right)$ already belongs to some tour, return to step 1 .
5. Construct the tour T_{i+1}, replacing the edge $E_{m n}$ with edges $E_{m L}$ and $E_{L n}$. Add references to $E_{m L}$ and $E_{L n}$ to D and return to step 1.

Figure 2: Edge with two adjacent faces.

3.3 Finishing the Tour

It can happen that several cities are not included into the tour. Each of these cities C_{x} can be included into the tour, as it is shown in Figure 4.

After finding an edge $E_{m n}$, which belongs to the tour and contains a city C_{m}, adjacent to C_{x}, this edge is replaced with edges $E_{m x}$ and $E_{x n}$. If several edges can be replaced, one which minimizes the increase of tour length $L_{m x}+L_{x n}-L_{m n}$ is selected, where $L_{m n}$ is the length of the edge $E_{m n}$. Note that the edge $E_{x n}$ does not necessarily belong to the triangulation graph.

3.4 Quality function

There remains one unresolved item in the described algorithm—how to calculate edge quality $Q_{m n}$. Several approaches are possible. It is not yet clear which of them gives the best result. Here are the classic methods. The city $C_{L}\left(E_{n m}\right)$ is denoted as C_{l}. In each case the edge with minimum $Q_{m n}$ will be on the top of the heap D.

- Farthest insertion: $Q_{m n}=-\min \left(L_{m l}, L_{l n}\right)$.
- Nearest insertion: $Q_{m n}=\min \left(L_{m l}, L_{l n}\right)$.
- Cheapest insertion: $Q_{m n}=L_{m l}+L_{l n}-L_{m n}$.

Other quantities for the edges can also be used. Best results till now were achieved using edge ranks. For each city we can rank the edges on their length and assign rank o for the shortest edge, rank 1 to the next and so on. Each edge $E_{m n}$ will get two such ranks: $R_{m n}^{m}$ from the city C_{m} and $R_{m n}^{n}$ from the city C_{n}. Here is the function, which performed best till now.

$$
\begin{equation*}
Q_{m n}=L_{m l}+L_{l n}-L_{m n}\left(R_{m n}^{m}+R_{m n}^{n}\right) \tag{1}
\end{equation*}
$$

Figure 3: Construction of the new tour.

Figure 4: Inserting cities into the tour.

This quality function is purely empirical, so further investigation is necessary to understand it theoretically and to improve the calculation of edge qualities.

3.5 Improvements

Many improvements to the core algorithm were tried. The following two proved to be beneficial for a wide range of problem instances.

3.5.1 Clustering

What we call clustering is nothing more than additional subtours that get started inside the main tour. The main tour starts with the convex hull and successively expands into the interior of the graph by removing one edge and including a new city with two new edges (see Section 3.6). Once it is decided that the cost for doing so exceeds the cost

Figure 5: Behaviour towards end of the main loop (rl5934)
of creating a new subtour, such a new subtour is created inside the graph-a cluster is formed. Several such tours may exist and they can be combined (see Algorithm 9). This clustering approach appeared to be better suited for several instances at first, however, some refinements in the normal version of the algorithm closed this gap.

3.5.2 Linear Clusters

Towards the end of the edge removing process we run into the problem depicted in Figure 5 . The process is trying too hard and includes cities with relatively high cost. The process is therefore ended, once a certain threshold of the cost has been reached.

The remaining cities could be inserted via the tour finishing function (see Algorithm 11), but an approach with so called linear clusters provided slightly better results. These linear clusters are non-closed tours, that are inserted into the tour en bloc.

3.6 Pseudo Code

Algorithm 1 shows the main structure of the heuristic. After generating all the necessary data structures and the Delaunay triangulation of the cities, the initial tour is constructed via the convex hull. These first edges get placed onto a heap, sorted by the quality of the edges (see Section 3.4). The triangles are sorted by function (2).

$$
\begin{equation*}
Q_{t}=\frac{\min \left(L_{a}, L_{b}, L_{c}\right)}{\operatorname{mid}\left(L_{a}, L_{b}, L_{c}\right)} \tag{2}
\end{equation*}
$$

Where L_{i} is the length of edge i and min and mid are the minimum and middle operations. Lower Q_{t} are better, because the resulting triangle has one very small angle and two rather long edges. These are good starting points for our edge removal process, as such constructs appear at regular shaped lines of points, as can be seen in Figure 5.

The main loop in line 8 then gathers the cost of all possible four actions: removing an edge from the tour, removing an edge from a cluster, construction a new cluster
(a new triangle) or merging two clusters or cluster and tour. If the threshold has not been reached yet, the step with minimum cost is performed (line 16-24).

```
Algorithm 1 Heuristic pseudocode
    procedure SolveTSP
        calculate the delaunay triangulation, edge quality and triangle quality
        set initial, directed tour \(\leftarrow\) convex hull
        heap \(E \leftarrow\) all edges in the convex hull \(\quad \widehat{=}\) initial tour
        heap \(C \leftarrow\) all edges in the clusters \(\triangleright\) empty upon start
        heap \(T \leftarrow\) all triangles \(\quad \triangleright\) sorted by function (2)
        heap \(M \leftarrow\) all cities for cluster merging \(\quad \triangleright\) empty upon start
        while true do
            \(e c \leftarrow\) TourEdgeCost \((E)\)
            \(c c \leftarrow\) ClusterEdgeCost(C)
            \(t c \leftarrow \operatorname{TriCost}(T)\)
            \(m c \leftarrow\) ClusterMerge \((M)\)
            if \(e c>\) threshold and \(c c>\) threshold then
                break \(\quad \triangleright\) Do linear clusters instead
            end if
            if \(e c\) is best then
                TourEdgeRemove ( \(E\) )
            else if \(c c\) is best then
                ClusterEdgeRemove(C)
            else if \(t c\) is best then
                    TriBuild(T)
            else if \(m c\) is best then
                ClusterMerge( \(M\) )
            end if
        end while
        LinearCluster()
        TourFinish()
        TourImprove()
    end procedure
```

Algorithms 2, 3, 4 and 5 show what is necessary to calculate the cost of (1) removing an edge from the tour, (2) from the cluster, (3) generating a new triangle, or (4) merging two clusters or cluster and tour, respectively. They consist of pulling the first object from the heap and performing some plausibility checks to see, if the given object is usable in the following step. Algorithms 2 and 3 have one additional task. If removing an edge from the tour or cluster is not possible-because the city to add is already a member of the tour or another cluster-it must be decided, if these two tours can be merged. The cost associated with merging is calculated and the city in question is placed onto heap M.

```
Algorithm 2 Pseudocode calculating the cost of removing an edge from the tour
    procedure TourEdgeCost(E)
        get top element \(e\) from heap \(E\)
        \(e_{1}\) and \(e_{2}\) are the corresponding edges, which form a triangle \(\triangleright\) see Figure 3
        \(v \leftarrow\) vertex shared by \(e_{1}\) and \(e_{2}\)
        if \(v \in\) tour then
            restart procedure
        else if \(v \in\) cluster then
            calculate cost to merge with cluster
            add the edge \(e\) to \(M\)
            restart procedure
        end if
        return the cost associated with edge \(e \quad \triangleright\) city \(v\) is still free
    end procedure
```

```
Algorithm 3 Pseudocode calculating the cost of removing an edge from the cluster set
    procedure ClusterEdgeCost(C)
        get top element \(e\) from heap \(C\)
        \(e_{1}\) and \(e_{2}\) are the corresponding edges, which form a triangle \(\triangleright\) see Figure 3
        \(v \leftarrow\) vertex shared by \(e_{1}\) and \(e_{2}\)
        if \(v \in\) cluster then
            if \(v \in\) same cluster then
                    restart procedure
            end if
            calculate cost to merge with other cluster
            add the edge \(e\) to \(M\)
            restart procedure
        else if \(v \in\) tour then
            calculate cost to merge with tour
            add the edge \(e\) to \(M\)
            restart procedure
        end if
        return the cost associated with edge \(e \quad \triangleright\) city \(v\) is still free
    end procedure
```

```
Algorithm 4 Pseudocode calculating the cost of creating a new cluster
    procedure TriCost(T)
        get top element \(t\) from heap \(T\)
        if one city is in tour or cluster then
            restart procedure
        end if
        return the cost associated with triangle \(t\)
    end procedure
```

```
Algorithm 5 Pseudocode calculating the cost of merging cluster and tour or cluster
and cluster
    procedure MergeCost( \(M\) )
        get top element \(m\) from heap \(M\)
        if both cities already in tour then
            restart procedure
        else if both cities belong to the same cluster then
            restart procedure
        end if
        return cost associated with \(m\)
    end procedure
```

```
Algorithm 6 Pseudocode removing an edge from \(E\) and adding two new edges
    procedure TourEdgeRemove( \(E\) )
        remove top element \(e\) from heap \(E\)
        \(e_{1}\) and \(e_{2}\) are the corresponding edges, which form a triangle \(\triangleright\) see Figure 3
        \(v \leftarrow\) vertex shared by \(e_{1}\) and \(e_{2}\)
        add city \(v\) to the tour
        add \(e_{1}\) and \(e_{2}\) to \(E\)
    end procedure
```

```
Algorithm 7 Pseudocode removing an edge from \(C\) and adding two new cluster edges
    procedure ClusterEdgeRemove(C)
        remove top element \(e\) from heap \(C\)
        \(e_{1}\) and \(e_{2}\) are the corresponding edges, which form a triangle \(\triangleright\) see Figure 3
        \(v \leftarrow\) vertex shared by \(e_{1}\) and \(e_{2}\)
        add city \(v\) to the cluster
        add \(e_{1}\) and \(e_{2}\) to \(C\)
    end procedure
```

```
Algorithm 8 Pseudocode building a new cluster out of three edges
    procedure TriBuild( \(T\) )
        remove top element \(t\) from heap \(T\)
        create a cluster consisting of a simple triangle
        add all three edges to \(C\)
    end procedure
```

```
Algorithm 9 Pseudocode merging two clusters or one cluster with the tour
    procedure ClusterMerge( \(M\) )
        remove top element \(m\) from heap \(M\)
        if cluster \(\leftrightarrow\) cluster then
            merge clusters by removing two edges and adding another two
            put these two new edges onto \(C\)
        else \(\quad \triangleright\) tour \(\leftrightarrow\) cluster
            merge cluster with tour by removing two edges and adding another two
            put these two new edges and all edges from the cluster onto \(E\)
        end if
    end procedure
```

Algorithms 6 and 7 are nearly identical and perform the removal of the worst edge e from either heap, adding another city v and putting the newly used edges back onto the heap. Algorithm 8 simply pops off the first triangle structure and transforms it into a minimal cluster, adding three edges to the cluster heap. Algorithm 9, however, is fairly complex. There are not only three possible calls (tour \leftrightarrow cluster, cluster \leftrightarrow tour, cluster \leftrightarrow cluster) but also two possible ways to merge the two constructs (see Figure 6).

```
Algorithm 10 Pseudocode building linear clusters and merging them into the tour
    procedure LinearCluster
        for all cities not in tour do
            create linear, open clusters with delaunay edges
            merge them into the tour
        end for
    end procedure
```

Algorithm 10 for linear clusters-that is, clusters that do not form a closed cyclehas even more cases to check. There are two endpoints to consider. Then each facing edge has to be checked for the best possible way to integrate the cluster. This can be done in four different ways.

Algorithms 11 and 12 are very similar too. They have been separated, because TourImprove is not strictly necessary to obtain a valid tour, whereas TourFinish is (see also Section 3.3 on page 4). They are rather straightforward and check for every city v, if it could be better inserted before or after every adjacent city. If the tour improvement would be positive, the city is then detached from its current position in the tour, and reinserted into the better position. The difference to TourFinish is that it then places all cities, that share an edge with the five changed cities-city v, its old previous and next city and its new previous and next city-back onto the heap. This is basically a node insertion heuristic with the candidate set limited to cities, that are at most two delaunay edges away from the current city.

(a) Two tour sections

(b) Solution 1

(c) Solution 2

Figure 6: Possible ways of merging two tours

```
Algorithm 11 Pseudocode connecting remaining cities to the tour
    procedure TourFinish
        put all remaining cities onto heap \(H\)
        for all cities \(c\) in \(H\) do
            search all facing edges \(e\) for the best spot to insert \(c\)
            if no \(e\) could be found then \(\quad \triangleright\) no facing edge is yet part of the tour
                re-add \(c\) to the bottom of \(H\)
                continue for loop
            end if
            remove edge \(e\) and add two new edges connecting \(c\) to the tour
        end for
    end procedure
```

```
Algorithm 12 Pseudocode performing Node Insertion optimization
    procedure TourImprove
        put all remaining cities onto heap \(H\)
        for all cities \(c\) in \(H\) do
            search all facing edges \(e\) for a better spot to insert \(c\)
            if no better \(e\) could be found then
                continue for loop
            end if
                remove \(c\) from current tour
                put \(c\) between the two cities connected through \(e\)
                put all adjacent cities to the five changed cities back onto \(H\)
                put the five changed cities back onto \(H\)
        end for
    end procedure
```


4 Results

4.1 Test setup

All tests were conducted on a Dell Inspiron 860oc laptop (Intel Banias CPU, 1 MB L2 cache, 1.5 GHz and 1 GB RAM) running Freebsd 5.4. The program itself, as well as CONCORDE, was compiled using the Intel C Compiler (ICC) version 8.1.028 with very high optimization settings (CFLAGS $=-03-x B$).

All times reported are the user times (i.e., the time the program spend executing code in userland). It does not contain the time the process waited for I/O to finish or was otherwise blocked from running.

Because of the Delaunay triangulation this approach uses, only instances with either euclidean or ceiling norm can be computed. Thus, only those instances were used from the following libraries: TSPLIB, National TSPs and the Very Large Scale Integration (VLSI) TSPs. The first can be obtained from [2], the latter two from http://www.tsp. gatech.edu/. The results will be limited to instances with more than 10000 (TSPLIB, National TSPs) and 50000 (VLSI TSPs) cities, to avoid showing endless tables. Besides, the goal of this heuristic is to get good tours of huge instances in short time.

The resulting tours are compared against the known optimal solution or the best known lower bound. This provides an exact or slightly pessimistic overview of the quality of tours achieved. However, no lower bounds exist for the VLSI instances, therefore the solution is compared to the best known tour as of this writing. Comparisons for the VLSI instances are thus rather optimistic, as the real solution could actually be an even shorter tour. The figures shown are the percentages above the known lower bound, calculated via:

$$
\text { quality of tour }=\left(\frac{\text { calculated tour }}{\text { lower bound }}-1\right) \cdot 100
$$

4.2 Version with linear clusters

The first version of woptsa only used the TourEdgeRemove (Algorithm 6) and the LinearCluster function (Algorithm 10), i. e., it used no triangles/cyclic clusters at all. The quality function (3) was used (compare also equation (1) on page 4).

$$
\begin{equation*}
Q_{m n}=L_{m l}+L_{l n}-p \cdot L_{m n}\left(R_{m n}^{m}+R_{m n}^{n}\right) \tag{3}
\end{equation*}
$$

The parameter p describes a weighting of the edge rank computation. The original version ran the algorithm eleven times varying p ($p \in\{0.20,0.25, \ldots 0.70\}$) and returned the shortest tour achieved. The results can be seen in Table $1 . N$ is the number of cities, M the number of cities left for OptTourFinish to include, O denotes the number of tour changes done in OptTourImprove. p is the weighting parameter for function (3). q and t show the excess above the lower bound/known optimal tour and the running time.

4.3 Version with cyclic clustering

A different quality function was used for the cyclic clustering case:

$$
\begin{equation*}
Q_{m n}=\frac{L_{m l}+L_{l n}-2 \cdot L_{m n}}{L_{m n}} \tag{4}
\end{equation*}
$$

This provided a normalized increase in tour length for $Q_{m n}$. Once the removal of edge $E_{m n}$ and the addition of edges $E_{m l}$ and $E_{l n}$ would result in the new edges being at least twice as long as the old edge, the value of $Q_{m n}$ will be greater than 1 .

This value is critical for the threshold t. The main loop ran an additional three times with t varying between $\{1.0,1.5,2.0\}$. The best tour of those 14 runs was then passed to OptTourImprove for further improvement.

As it stands now, the additional clustering helps with a few small instances of the TSPLIB, where the original code with linear clustering only achieved tour qualities of 21% (fl3795 and fli577, see Figure 7). These could be brought down to 13% and 9% above the lower bound, respectively. Comparing all the results from the TSPLIB, the average excess could be reduced from 5.69% to 5.19% and the standard deviation from 4.18% to 3.04%. A lower deviation is very good, as it improves the estimation of qualities for unknown instances.

4.4 Comparison

Besides woptsa, the running times and tour qualities were compared to several other algorithms as implemented by CONCORDE (see Table 2). Namely a 2-Opt and 3-Opt heuristic starting with a Greedy tour (kdtree) and a Chained Lin-Kernighan heuristic provided via linkern (Quick-Boruvka starting tour, one round, \# kicks = \# cities). All CONCORDE-tools used 99 as random seed, wopt sa is not relying on random numbers and is not seeded.

TSPLIB

Instance	N	M	O	p	$q \cdot 100$	$t \cdot \mathrm{~s}^{-1}$
rl11849	11849	26	1068	0.55	9.32	0.33
usa13509	13509	39	1667	0.45	6.31	0.35
brd14051	14051	49	1369	0.50	5.31	0.36
d15112	15112	45	1605	0.50	5.38	0.43
d18512	18512	56	1834	0.55	5.30	0.52
pla33810	33810	94	3085	0.25	7.39	0.92
pla85900	85900	166	8819	0.60	8.21	2.68
total					6.75	5.59
stddev					1.60	

National TSPs

Instance	N	M	O	p	$q \cdot 100$	$t \cdot \mathrm{~s}^{-1}$
fi10639	10639	20	1083	0.40	5.89	0.26
mo14185	14185	38	1423	0.40	6.71	0.36
it16862	16862	39	1636	0.40	5.75	0.47
vm22775	22775	51	1970	0.50	6.42	0.65
sw24978	24978	64	2609	0.35	6.51	0.72
ch71009	71009	193	7348	0.45	6.05	2.38
total					6.22	4.84
stddev					0.38	

	VLSI						
Instance	N	M	O	p	$q \cdot 100$	$t \cdot \mathrm{~s}^{-1}$	
fna52057	52057	102	3523	0.45	8.58	1.73	
bna56769	56769	123	3893	0.50	8.06	1.91	
dan59296	59296	161	4201	0.35	8.94	2.00	
sra104815	104814	274	7975	0.40	9.80	3.65	
ara238025	238025	581	18594	0.40	9.51	9.25	
lra498378	498378	1078	42601	0.50	11.06	21.74	
lrb744710	744710	1638	51267	0.40	9.11	32.48	
total					9.29	72.76	
stddev					0.97		

Table 1: Qualities and times for the first version of wopt sa

Figure 7: Final tours for fli577

TSPLIB

		woptsa		2 Opt		3 Opt		linkern	
Instance	N	$q \cdot 100$	$t \cdot \mathrm{~s}^{-1}$						
rl11849	11849	9.32	0.33	9.41	0.11	5.81	0.20	0.35	20.82
usa13509	13509	6.31	0.35	10.75	0.17	7.48	0.27	0.24	40.84
brd14051	14051	5.31	0.36	9.13	0.16	6.28	0.24	0.19	28.58
d15112	15112	5.38	0.43	9.10	0.19	6.27	0.32	0.19	35.43
d18512	18512	5.30	0.52	9.38	0.23	6.51	0.33	0.21	35.39
pla33810	33810	7.39	0.92	12.13	0.36	8.50	0.60	0.57	73.39
pla85900	85900	8.21	2.68	10.00	1.10	7.24	1.58	0.29	211.88
total stddev		6.75	5.59	9.99	2.32	6.87	3.54	0.29	446.33
		1.60		1.11		0.92		0.14	
		National TSPs							
		woptsa		2 Opt		3 Opt		linkern	
Instance	N	$q \cdot 100$	$t \cdot \mathrm{~s}^{-1}$						
fi10639	10639	5.89	0.26	12.10	0.12	8.84	0.19	0.28	22.47
mo14185	14185	6.71	0.36	10.06	0.17	6.98	0.26	0.25	30.26
it16862	16862	5.75	0.47	12.52	0.20	8.25	0.47	0.19	44.37
vm22775	22775	6.42	0.65	12.20	0.29	8.91	0.41	0.24	50.18
sw24978	24978	6.51	0.72	11.00	0.31	7.51	0.59	0.31	55.61
ch71009	71009	6.05	2.38	9.27	1.28	5.91	1.87	0.23	186.17
total		6.22	4.84	11.19	2.37	7.73	3.79	0.25	389.06
stddev		0.38		1.31		1.17		0.04	

VLSI
woptsa 2 Opt 3Opt linkern

Instance	N	$q \cdot 100$	$t \cdot \mathrm{~s}^{-1}$						
fna52057	52057	8.58	1.73	10.06	0.61	7.02	0.89	0.50	69.51
bna56769	56769	8.06	1.91	10.44	0.68	7.01	0.96	0.46	78.28
dan59296	59296	8.94	2.00	10.13	0.70	7.69	1.00	0.50	81.86
sra104815	104814	9.80	3.65	10.89	1.47	8.26	2.49	0.48	207.25
ara238025	238025	9.51	9.25	10.66	3.72	7.85	6.00	0.48	531.19
lra498378	498378	11.06	21.74	9.95	9.13	7.09	18.67	0.56	1276.58
lrb744710	744710	9.11	32.48	10.48	15.38	7.77	60.05	0.51	2016.67
total		9.29	72.76	10.37	31.69	7.53	90.06	0.50	4261.34
stddev		0.97		0.34		0.49		0.03	

Table 2: Comparison of tour qualities and computation times between woptsa, 2-Opt, 3-Opt and Lin-Kernighan heuristics as implemented by CONCORDE.

Instance	slower, better	slower, worse	faster, worse	faster and better	
pla85900	65	14	26	9	$(2 / 3$ opt-JM, 2/2.5opt-B, LK-ACR, LK-ABCC, CLK-ACR)
					CLS
C316k.0	42	6	32	7	$(2 / 3$ opt-JM, 2/2.5opt-B)
E3M.0	21	9	30	2	$(2$ opt-JM, 3opt-JM)

Table 3: Speed and quality compared to woptsa for three selected instances
Since the cyclic clusters made no significant impact on instances with more than 10000 cities, we use only the version from Section 4.2.

Figure 8 shows the running time versus tour quality comparison for pla85900 from the TSPLIB and two instances from the 8th DIMACS challenge: E3M.o, three million uniformly distributed points and C316k.0, 316000 clustered points. The exact details of the compared heuristics can be taken from the DIMACS Homepage [5]. Note that these are highly optimized heuristics that are either very fast or very good. The figures are divided into four quadrants with wopt sa being the intersecting point. The number of heuristics in each quadrant is also shown. As can be seen, there are only a few heuristics that beat wopt sa both in time and quality.

Table 3 shows how many and which heuristics fared better or worse than woptsa.

5 Conclusion

In this work we presented an algorithm for the Traveling Salesman Problem, based on Delaunay triangulation. An advantage of this algorithm is that there is only one parameter to tune: the edge quality, or in other words, the decision which edges to remove, to advance the given tour. Here, it is not obvious, why some instances are very sensitive to the weighting factor p of the edge rank. Further research is necessary in this area.

The heuristic also shows a good tradeoff between speed and length of the obtained tour. There are only a few selected and highly optimized 2 -Opt, 3-Opt and Lin-Kernighan heuristics that do a better job overall.

The algorithm stabilizes with increasing node count. With fewer nodes, there can be high variations in the achieved tour quality as already mentioned in Section 4.3 (see also Figure 7). This also explains the high overall standard deviation of tour qualities within the TSPLIB, whereas the instances with 10000 nodes or more only show a standard deviation of 1.60.

Another notable observation is the correlation between the tour quality and graphs with lots of regular shapes. The National TSPs are solved very well and-due to their nature of being maps-their distribution of delaunay edge lengths varies highly. Contrast that with the VLSI instances, which have lots of regular patterns and thus many equally long delaunay edges grouped together. The same can be seen with

Figure 8: Runtime vs. quality comparison of several heuristics.
the TSPLIB instances. Those with regular patterns (rli1849, pla33810, pla85900) have qualities above 7% and the city map instances (usa13509, brdi4051, d15112, d18512) are below 6.5% (see Table 1).

References

[1] G. Reinelt, The Traveling Salesman: Computational Solutions for TSP Applications. Springer, 1994.
[2] G. Reinelt, "TSPLIB - a Traveling Salesman Problem library." http://www.iwr. uni-heidelberg.de/groups/comopt/software/TSPLIB95/, 1995.
[3] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, "Concorde: A code for solving Traveling Salesman Problems." http://www.tsp.gatech.edu/concorde.html, 2004.
[4] D. Applegate, R. Bixby, V. Chvátal, W. Cook, and K. Helsgaun, "Optimal tour of Sweden." http:/ /www.tsp.gatech.edu/sweden/, 2004.
[5] D. Johnson, "8th DIMACS implementation challenge: The Traveling Salesman Problem." http:/ /www.research.att.com/~dsj/chtsp/, 2004.

