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Abstract

Peer-to-peer (p2p) systems are a highly decentralized, fault tolerant, and cost ef-
fective alternative to the classical client-server architecture. Yet companies hesitate
to use p2p algorithms to build new applications. Due to the decentralized nature
of such a p2p system the carrier does not know anything about the current size,
performance and stability of its application. In this paper we present an entirely
distributed and scalable algorithm to monitor a running p2p network. The snap-
shot of the system enables a telecommunication carrier to gather information about
the current performance parameters of the running system as well as to react to
discovered errors.

1 Introduction

In recent years peer-to-peer (p2p) algorithms have been widely used throughout the
Internet. So far, the success of p2p paradigms was mainly driven by file sharing appli-
cations. Despite their reputation, however, p2p mechanisms also offer the solution to
many problems faced by telecommunication carriers today [1]. Compared to the classical
client-server architecture they are decentralized, fault tolerant, and cost effective alter-
natives. Those systems are highly scalable, do not suffer from a single point of failure,
and require less administration overhead than existing solutions. In fact there are more
and more successful p2p based applications like skype [2], a distributed VoIP solution,
oceanstore [3], a global persistent data store, and even p2p based network management
[4, 5].

One of the main reasons why telecommunication carriers are still hesitant to build
p2p applications is the lack of control a provider has over the running system. At first,
the system appears as a black box to its operator. The carrier does not know anything
about the current size, performance, and stability of its application. The decentralized
nature of such a system makes it hard to find a scalable way to gather information about
the running system at a central unit. Operators, however, do not want to lose control
over their systems. They want to know what their systems look like right now and
where problems occur at the moment. The first problems already occur when testing



and debugging a distributed application. Finding implementation errors in a highly
distributed system is a very complex and time consuming process [6]. A provider also
needs to know whether his newly deployed application can truly handle the task it was
designed for.

The latest generation of p2p algorithms is based on distributed hash tables (DHTS).
The algorithm that currently attracts the most attention is Chord, which uses a ring
topology to realize the underlying DHT [7]. In general, DHTs are theoretically under-
stood in depth and proved to be a scalable and robust basis for distributed applications
[8]. However, the problem of monitoring such a system from a central position is far
from being solved. In this paper we therefore present a novel and scalable approach to
create a snapshot of a running Chord based application. Using our algorithm a provider
can either monitor the entire system or just survey a specific part of the system he is
currently interested in. This way, he is able to react to errors more quickly and can verify
if the taken countermeasures are successful. On the basis of the gathered information it
is, e.g., possible to take appropriate action to relief a hotspot or to pinpoint the cause
of a loss of the overlay ring structure. The overhead involved in creating the snapshot is
evenly distributed to the participating peers so that each peer only has to contribute a
negligible amount of bandwidth. Most important, the snapshot algorithm is very easy
to use for a provider. It only takes one parameter to adjust the trade off between the
duration of the snapshot and the bandwidth needed at the central collecting unit.

The remainder of this paper is structured as follows. Section 2 gives a brief overview
of Chord with a focus on aspects relevant to this paper. The snapshot algorithm as well
as some areas of application are described in Section 3. An analysis of the algorithm can
be found in Section 4, while Section 5 verifies its functionality by simulation. Section 6
finally concludes this paper.

2 Chord Basics

This section gives a brief overview of Chord with a focus on aspects relevant to this
paper. A more detailed description can be found in [7].

The main purpose of p2p networks is to store data in a decentralized overlay network.
Participating peers will then be able to retrieve this data using some sort of search
algorithm. The Chord algorithm solves this problems by arranging the participating
peers on a ring topology. The position id, of a peer z on this overlay ring is determined
by an m-bit identifier using a hash function such as SHA-1 [9] or MD5 [10]. In a Chord
ring each peer knows at least the id of its immediate successor in a clockwise direction
on the ring. This way, a peer looking up another peer or a resource is able to pass the
query around the circle using its successor pointers. Figure 1 illustrates a simple search
of peer z for another peer y using only the immediate successor. The search has to
be forwarded half-way around the ring. Obviously, the average search would require %
overlay hops, where n is the current size of the Chord ring. To speed up searches a peer
z in a Chord ring also maintains pointers to other peers, which are used as shortcuts
through the ring. Those pointers are called fingers, whereby the i-th finger in a peers
finger table contains the identity of the first peer that succeeds z’s own id by at least
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Figure 1: A simple search. Figure 2: Search using the fingers.

2=1 on the Chord ring. That is, peer z with hash value id, has its fingers pointing to
the first peers that succeed id, +2'~! for i = 1 to m, where 2™ is the size of the identifier
space.

Figure 2 shows the fingers f1 to fy for the same peer z of the last figure. Using this
finger pointers, a search does only take two overlay hops. For the first hop peer z uses
its finger f4. Peer y can then directly be reached using the successor of f; as indicated
by the little arrow. This way, a search only requires %logz (n) overlay hops on average.
A detailed mathematical analysis of the search delay in Chord rings can be found in
[11]. The snapshot algorithm presented in Section 3 makes use of the finger tables of
the peers.

3 The Snapshot Algorithm

In this section we introduce a scalable and distributed algorithm to create a snapshot of
a running Chord system. The algorithm is based on a very simple two step approach.
In step one, the overlay is recursively divided into subparts of a predefined size. In step
two, the desired measurement is done for each of these subparts and sent back to a
central collecting point (C'P). In the following, we describe both steps in detail.

3.1 Step One: Divide the Overlay into Subparts

The algorithm to divide the overlay into subparts is called snapshot(Rs, Re, Smin, CP).
This function is called at an arbitrary peer p with id,. The peer tries to divide the region
from Ry = id, to R into contiguous subparts using its fingers. The exact procedure
is illustrated in Figure 3. In this example peer p has four fingers f; to fy. It sends a



request to the finger closest to R, within [Rs; Re]. Finger f4 is neglected since it does
not fall into the region between Rs; and R.. This makes finger f3 the closest finger to
R in our example. If this finger does not respond to the request as illustrated by the
yellow bolt, it is removed from the peer’s finger list and the peer tries to contact the
next closest finger fs. If this finger acknowledges the request, peer p recursively tries to
divide the region from R, = id, to 1/%@ = idy, — 1 into contiguous subparts. Finger fo

partitions the region from R, =id t, to R, accordingly.

R =id,

Figure 3: Visualization of the snapshot algorithm

As soon as a peer does not know any more fingers in the region between the current
R, and the current R, the recursion is stopped. The peer changes into step two of the
algorithm and starts a measurement of this specific region. In this context, the parameter
Smin can be used to determine the minimum size of the regions, which will be measured
in step two. Taking Sy, into account, a peer will already start the measurement if
it does not know any more fingers in the region from the current Rs; + Sy, to the
current R.. In this case finger f; would be disregarded, as illustrated by the dotted
line in Figure 3, since it points into the minimum measurement region. The parameter
Smin 1s designed to adjust the trade off between the duration of the snapshot and the
bandwidth needed at the collecting point. The larger the regions in step two, the longer
the measurement will take. The smaller the regions, the more results are sent back to
the CP.

A detailed technical description of the procedure is given in Algorithm 1. Note, that
a snapshot of the entire system can be created calling snapshot(idy, id, — 1, Spin, CP)
at peer p with id = id,. Peer p will contact the closest finger to R. until it does not



Algorithm 1 The snapshot algorithm (first call Ry = id))
snapshot(Rs, Re, Smin, CP)
send acknowledgment to the sender of the request
id frmaz = max({idinger|idfinger € fingerlist A idfinger < Re})
while id 0, > Rs + Smin do
send snapshot (id fmaz, Re, Smin, CP) request to peer id fpqq
if acknowledgment from id ., then
call snapshot(idy, id tmaz — 1, Smin, CP) at local peer
return {exit the function}
else
remove id f,,q, from fingerlist
idfmar = max({idfmgerﬁdfmger € fingerlist A idfmger < Re})
end if
end while
S = % {explanation see step two}

min

result =0
call countingtoken(idy,, Re, Smin, CP, result) at local peer

know any more fingers in between Rs+ Sy, and Re. If so, it changes into step two and
starts a measurement of this region calling countingtoken(idy,, Re, Smin, CP, result) at
the local peer. A detailed description of this function is given in the next subsection.

3.2 Step Two: Measure a Specific Subpart

The basic idea behind the measurement of a specific subpart from Rs to R, is very
simple. The first peer creates a token, adds its local statistics and passes the token to its
immediate successor. The successor adds its statistics and recursively passes the token
to its immediate successor and so on. The first peer with an id > R. sends the token
back to the collecting point, whose IP is given in the parameter CP.

Ideally, each of the regions measured in step two would be of size S,,;, as specified by
the user. The problem, however, is that the region from R, to R, is slightly larger than
Smin according to step one of the algorithm. In fact, if the responsible peer did not know
enough fingers, the region might even be significantly larger than Sy,;,. The solution to
this problem is to introduce checkpoints with a distance of Sy, in the corresponding
region. Results are sent to the C'P every time the token passes a checkpoint instead of
sending only one answer at the end of the region. This is illustrated in the upper part
of Figure 4. The counting token is started at Rs. The first peer behind each checkpoint
sends a result back to the C'P as illustrated by the red arrows pointing upwards. The
final result is still sent by the first peer with id > R..

A drawback of this solution is that the checkpoints might not be equally distributed
in the region. In particular, the last two checkpoints might be very close to each other as
shown in the figure. We therefore recalculate the positions of the checkpoints according
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Figure 4: Results are sent back to the C'P after each checkpoint

to the following equation:

The new checkpoints can be seen in the lower part of Figure 4. Again, the first peer
behind each checkpoint sends a result back to the CP as illustrated by the dotted arrows
pointing downwards. As before the last result is sent by the first peer with id > R..
Note, that the number of checkpoints remains the same, while their positions are moved
in such a way, that the results are now sent at equal distance.

As can be seen at the end of Algorithm 1, the recalculation of S,,;, is already done
in the first step, just before the counting token is started. A detailed description of the
counting token mechanism is given in Algorithm 2. If a peer p receives a counting token
it makes sure that its identifier is still within the measured region, i.e. Ry < id, < R,
. If not, it sends a result back to the CP and stops the token. Otherwise it adds its
local measurement to the token and tries to pass the token to its immediate successor.
Additionally, if it is the first peer behind one of the checkpoints, it sends an intermediate
result back to the C'P and resets the token.

As mentioned above the parameter S,,;, roughly determines the minimum size of the
regions measured in step two. If S;4 is the total size of the identifier space, there will be:

N, > Sid

- szn

counting tokens arriving at the CP. A more detailed analysis of the snapshot algorithm
is given in Section 4.



Algorithm 2 The countingtoken algorithm (first call R, = id))
countingtoken(Rg, Re, Spin, CP, result)
send acknowledgment to the sender of the request
if Ry <id, < R, then
if id, > Rs + Sinin then
send result to C'P

result =0
Rs - Rs + szn
end if

add local measurement to result
ids = id of direct successor
while 1 do
send countingtoken(Rs, Re, Smin, C P, result) request to direct successor ids
if acknowledgment then
break
else
remove idg from successor list
ids = id of new direct successor
end if
end while
else
send result to CP
end if

3.3 What to monitor?

So far we concentrated on the technical aspects of a snapshot and did not give any
details about what to monitor at the individual peers. Generally speaking, there are two
different kinds of statistics, which can be collected using the counting tokens. Either a
simple mean value or a more detailed histogram. In the first case the counting token
memorizes two variables, V, for the accumulated value and V,, for the number of values.
Each peer receiving the counting token adds its measured value to V,, and increases V,
by one. The sample mean can then be calculated at the C'P as Eg‘l. In the second
case of the histogram, the counting token maintains a specific num er of bins and their
corresponding limits. Each peer simply increases the bin matching its measured value
by one. If the measured value is outside the limits of the bins it simply increases the
first or the last bin respectively.

There are numerous things that can be measured using the above mentioned methods.
Table 1 summarizes some exemplary statistics and the kind of information, which can
be gained by them. The most obvious application is to count the number of hops for
each counting token. On the one hand, this is a direct measure for the size of the overlay
network. On the other hand, it also shows the distribution of the identifiers in the
identifier space. If the hash function does not work as expected, this distribution will be




skewed and the number of hops per token will vary significantly. To gain information

’ Statistic ‘ Information gained
Number of hops per token Size of the network, Distribution of the identifiers
Mean search delay Performance of the algorithm
Sender —— predecessor Overlay stability

Number of timeouts per token Churn rate

Number of resources per peer Fairness of the algorithm

Number of searches answered User behavior

Bandwidth used per time unit Maintenance overhead
Missing resources Data integrity

Table 1: Possible statistics gathered during snapshot

about the performance of the Chord algorithm, the mean search delay or a histogram
for the search time distribution can be calculated and compared to expected values.
Furthermore, Chord’s stability can only be guaranteed as long as the successor and
predecessor pointers of the individual peers match each other correspondingly. Since
each peer should receive the counting token from its direct predecessor, this invariant
can be checked counting the percentage of hops, where the sender of the counting token
did not match the predecessor of the receiving peer. Additionally, the number of timeouts
per token can be used to measure the current churn rate in the overlay network. The
more churn there is, the more timeouts are going to occur due to outdated successor
pointers. Similarly, the number of resources stored at each peer is a sign of the fairness
of the Chord algorithm. The number of searches answered at each peer can likewise be
used to get an idea of the search behavior of the end users. Finally, a peer can keep
track of the number of missing resources to verify the integrity of the stored data. This
can, e.g., be done counting the number of search request, which could not be answered
by the peer.

All of the above statistics can be collected periodically to survey the time dependent
status of the overlay. Note, that it is also possible to monitor only a specific part of
the overlay network. This can, e.g., be helpful if there are problems in a certain region
of the overlay network and the operator needs to verify that his countermeasures are
successful.

4 Analysis and Optimizations

From an analytical point of view there are two interesting aspects of the algorithm, which
should be considered in greater detail. At first, we will regard the overhead produced
during a snapshot. Independent of the size of the overlay, the number of messages sent
by the individual peers during the snapshot is about two (one intermediate and the final
result). The bandwidth required at the central collecting point (CP), however, strongly
depends on the size of the overlay and Sy, (cf. Subsection 4.1). Secondly, depending
on the application the duration of a snapshot (cf. Subsection 4.2) and the temporal



distribution of the token arrival times at the C'P (cf. Subsection 4.3) might be of equal
importance. Last but not least, we will go into the issue of losing tokens while creating
a snapshot of the running system in Subsection 4.4.

4.1 Required Bandwidth at the Monitor Station

The snapshot algorithm takes only one single parameter Sy,;,. It basically determines
the number of areas IV, into which the Chord ring is divided during a snapshot:

N[ )

Independent of the current size of the overlay network at least one result per region is
sent back to the C'P. A closer look at step one of the snapshot algorithm yields the
following bounds for N., the number of counter tokens sent to the C'P:

2.N,> N, > N, (2)

The equation can be explained as follows: According to the second step of the algorithm,
a counter token sends an intermediate result every §min and an additional result at the
end of the region. Obviously, this way, at least on result is sent per region. In the
worst case, however, the region is slightly larger than the original S,;, in which case an
intermediate checkpoint is created and the number of tokens is thus doubled.

As can be seen in Equation 1, Sy, can be used to adjust the trade-off between the
duration of a snapshot and the number of tokens, which arrive at the C'P. The larger
Smin, the more hops per counter token and the longer the snapshot will take. The
smaller S;,;,, the less hops per counter token but the more tokens arrive at the CP in
total. Also note, that if S;,;, is slightly larger than a power of two, it is very likely that
the corresponding peer has a finger just before the end of the minimum measurement
region. Since the distance to the theoretical finger pointers is always a power of two, the
next finger sits at a distance of about twice Sy, from the peer. The resulting counter
token will therefore travel a distance of about twice S;,;, as well.

4.2 Duration of a Snapshot

Besides Spuin, the duration of a snapshot mainly depends on two things, the current
churn rate and the implementation of the Chord algorithm. The more sophisticated the
implementation and the less churn there is in the network, the less timeouts will occur
during the snapshot. In Section 5 we therefore simulate different scenarios with a varying
churn rate and also give details about the implementation of the Chord algorithm in our
simulator. To be able to calculate an estimate of the duration of a snapshot, we assume
a scenario without any peers joining or leaving the network in this subsection.

In this case, it is quite straightforward to estimate the duration of step one, the
signaling step. The last region, in which a counter token will be started is the one
directly following the initiating peer. This is due to the fact, that the initiating peer will
start its counter token no sooner than it divided the ring into separate regions. Before



it starts the counter token, it contacts its fingers until the first finger is closer to itself
than Sp,in. The initiating peer has at most logy(n) fingers and each of the fingers sends
an acknowledgment, before the peer can go on with the algorithm. If Ty is the random
variable describing one overlay hop, then the duration of step one of the algorithm is at
most

Dstepl =2 10g2 (n) ’ E[TO] (3)

The worst case for step two would be that the initiating peer did not know any fingers
and directly sends the counter token. This would take n - E[Tp], but is very unlikely to
happen. An easy solution to this problem would be to pass the responsibility of dividing
the ring to the direct successor in case the counter token region becomes too large. In
general, however, it is possible to estimate the average number of peers per region. If
there are n peers in the overlay, there are roughly P, peers per region:

P=— 4
r Nr ( )
As stated in the last subsection, if Sy, is slightly larger than a power of two, the counter
token region becomes almost twice as large. Therefore a good estimate for the duration
of the counting step of the algorithm is:

Dstep2 =2 P’I‘ : E[TO] (5)
This results in the following total duration of a snapshot:

D= (log(n) g

)2t 0
To estimate the required bandwidth at the central C' P, however, we also need the dis-
tribution of the arrival times of the tokens at the C'P. This aspect is covered in the next
subsection.

4.3 Token Arrival Time Distribution

To get a rough estimate for the distribution of the arrival times of the counting tokens
at the C'P, we consider the special case where the size of the overlay n = 29 is a power
of two and Sy, is such that N, = 2" with h < g. Furthermore, we assume that the
individual peers sit at equal distances on the ring as shown in Figure 5.

It can be shown, that in this case h = logy(N,.) is the number of overlay hops it takes
until the first counting token is started during a snapshot. Similarly, it takes 2 - h hops
until the last counting token is started according to our assumptions. The probability
p; that a counting token is started after exactly ¢ hops for i = h,h+1,...,2 - h can also

be calculated as: .
(=)

(7)
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The above considerations are nontrivial, but can nicely be explained using the simple
example shown in Figure 5, where g = 4, h = 2 and therefore n = 2% and N, = 22. The
solid arrows in the figure show the messages of the signaling step, the dotted arrows the
corresponding acknowledgments. The numbers next to the arrows represent the number
of overlay hops, which have passed since the beginning of the snapshot.

In the example, peer A starts a snapshot of the entire ring. It sends a request to B
to cover the region between B and A. Peer B sends an acknowledgment back to A and
a simultaneous request to C to cover the region from C to A. C has no fingers outside
its minimum measurement region and starts the first counting token after h = 2 overlay
hops. Simultaneously it sends an acknowledgment back to B. Peer B then starts its
counting token after 3 overlay hops. In the meantime A signals D to cover the region
from D to B. Peer D immediately starts its counting token after a total of 3 overlay hops.
Peer A waits for the final acknowledgment and starts its counting token after 4 = 2 - h
overlay hops. Summarizing the above, there are four counting tokens started after 2, 3,
3, and 4 overlay hops respectively.

A (2h=4)

Figure 5: Starting times of the counting tokens for N, = 22 and n = 24

According to our assumptions, each counting token needs exactly P, = 4 hops to travel
the corresponding region and one final hop to arrive at the CP. A rough estimate for
the distribution of the arrival times of the counting tokens at the C'P is therefore given
by the phase diagram shown in Figure 6. The signaling step takes ¢ overlay hops with
a probability p; for i = h,h + 1,...,2 - h, which is followed by P, hops of the counting
token and the final hop to report the result back to the CP.

To validate our analytical results, we simulated a Chord ring of size n = 2'° with
Smin = 22 according to the above assumptions. Figure 7 shows the probability density
function of the token arrival times at the C'P. The green line corresponds to our analysis,
the blue curve represents a histogram of one single simulation run. Obviously, the
curves match very well and the binomial distribution of the duration of step one can
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Stepl: Signaling Step2: Counting
A

Figure 6: Phase diagram of the token arrival time distribution

be recognized. So far, in our example there is always a peer at exactly distance Spin
of each peer. In reality, however, the finger would sit at a slightly different position,
which again would result in an additional checkpoint at the middle of the region. The
red curve in the figure corresponds to a slightly modified phase diagram, which adds an
intermediate result in the middle of the measurement region. The first rise of the pdf
therefore represents the intermediate results sent back to the C'P at the checkpoint. The
second rise still represents the regular results at the end of the region.

In the next section we will present some simulations of more realistic scenarios includ-
ing churn, timeouts and so forth. Fortunately, timeouts, which are caused by churn in
the network, tend to spread the results and decrease the spike of counting tokens arriving
at the C'P. This spike could also be minimized using a list of C'Ps and sending each re-
sult to a random entry of this list. The same recursion of the snapshot algorithms could
also be used backwards to collect the results. The downside of this approach is that it
takes longer and is more vulnerable to the loss of a token. The general implications of
a lost token are summarized in the next subsection.

4.4 Lost Tokens

As in all token based algorithms, there is a certain probability of losing a token or a
signaling message. In our case, this is especially true during high churn phases. However,
the loss of a token only results in a loss of the measurements of the corresponding region.
Fortunately, most statistics do not require all counting tokens in order to produce useful
results. In the case of a measurement of the size of the overlay, it is, e.g., possible to
extrapolate the received results. In case of a more fault-prone statistic, such a partial
loss can also be dealt with very easily. All the operator has to do is to make additional

12
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Figure 7: Probability density function of the token arrival time

snapshots of the lost region(s).

Additionally, the probability to lose a token is very small, since there are only two
scenarios which result in the loss of a token. First, if a peer goes offline while it still waits
for the timeout of a signaling messages. Second, if a peer goes offline while it still waits
for the timeout of counting token message. Again both scenarios only involve the loss of
the measurements of the corresponding region of the ring. In both cases the probability
for the loss of the region is

Dloss = P(A < timeout) (8)

where A is the random variable describing the session duration of a peer and timeout is
the value of a timeout in the overlay network.

5 Results

In our experience the performance of the Chord algorithm depends on the way the algo-
rithm is implemented. This is especially true for the correctness of the overlay neighbors,
i.e. the successors and the fingers of a peer. This section is therefore rather intended
to make qualitative than quantitative statements. The results were obtained using our
Ansi-C simulator, which incorporates a detailed yet slightly modified Chord implemen-
tation [12, 13]. If not stated otherwise an overlay hop is modeled using an exponentially
distributed random variable with a mean of 80ms. The results considering churn are
generated using peers, which stay online and offline for an exponentially distributed
period of time with a mean as indicated in the figures.

13



The snapshot algorithm takes only one single input argument N, = [é%"n—‘ This pa-
rameter influences the duration of the snapshot as well as the number of results arriving
at the central collecting point. Figure 8 shows the distribution of the arrival times of
the results in an overlay of 40000 peers using /N, = 1000 and N, = 100 areas. Obviously,
the more areas the overlay is divided into, the faster the snapshot is completed. While
the snapshot using 1000 areas was finished after about ten seconds, the snapshot with
100 areas took about one minute. In exchange the latter snapshot produces significantly
smaller bandwidth spikes at the CP. The two elevations of the blue curve correspond
to the intermediate results (first elevation) and the results at the end of the measured
subpart (second elevation). Note that the final results arrive about twice as late as the
intermediate results.

200

1000 Areas
100 Areas

=
Ul
o

100

a
o

Number of results per 500ms

Time in ms

Figure 8: Arrival times of the results for 40000 peers without churn.

The first step of the algorithm uses the fingers to divide the ring into subparts. Since
the distance between a peer and its fingers is always slightly larger than a power of two
it is usually not possible to divide the ring exactly into the desired number of areas. In
fact it is very likely, that a peer stops the recursion and starts its measurement once it
contacted its xth finger, where 2*~! < S,.;, = ’d < 2%, That is, the recursion stops at
finger x with idy, , whereas the distance between "the peer and this specific finger mlght
almost be twice as large as the desired S,,;,. It is therefore advisable to choose N,

a power of two itself in order to ensure that idy, is only slightly larger than id, + Smin-
Figure 9 shows the different arrival times of the results for NV, = 512 and N,. = 500 in an
overlay of 20000 peers. The skewed shape of the red curve results from the fact that 500
is slightly smaller than a power of two, which in turn makes Sy,;, slightly larger than a
power of two. In this case it is likely that the peer has a finger just before the end of
the minimum measurement region idy, + Smi,. Thus, finger x sits at a distance of about

14



twice Spn from the peer. The resulting counting token will therefore travel a distance
of about twice Sy, as well.
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Figure 9: Arrival times of the results for 20000 peers without churn.

A more detailed analysis of the influence of N, can be found in Figure 10, which
shows the number of results received at the C'P in dependence of N,. As mentioned in
Section 4.1 the number of counting tokens sent to the C'P is limited by 2-N,. > N. > N,..
The blue lines in the figure show the corresponding limits. The black and red curves
represent the results obtained for 20000 and 10000 peers respectively. It can be seen,
that the number of results sent to the C'P is within the calculated limits and independent
of the overlay size. The curves roughly resemble the shape of a staircase, whereas the
steps are located at powers of two. There are two main reasons for this behavior. First
of all, the average countingtoken sends two results back to the C'P, one intermediate
result and the final result at the end of the measurement region. Hence, the smaller
the region covered by the average countingtoken, the more results arrive at the C'P. As
explained above the closer N, gets to a power of two, the smaller the region covered by
the average countingtoken. This accounts for the first part of the rise of the number of
results received at the C'P. The reason, that the curve still rises for a short time once N,
becomes slightly larger than a power of two has a different cause. Due to the fact that the
actual finger positions slightly differ from the theoretical finger positions, it is possible
that id, + Synin > Re in the last step of the recursion. In this case the corresponding
countingtoken does not send an intermediate result, since the first checkpoint is behind
the end of the measured region. As long as Sy, is still large enough for this to happen,
the curve will slightly rise.

The distribution of the arrival times of the results is also influenced by the current
size of the network. The larger the network is, the more peers are within one region.
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Figure 10: Number of results received at the C'P in dependence of N,

However, the more peers are within one region, the more hops each countingtoken has to
make, before it can send its results back to the CP. Figure 11 shows the token arrival time
distribution for three different overlay sizes of 10000, 20000, and 40000 peers respectively.
There was no churn in this scenario and N, was set to 512 areas. As expected, the larger
the overlay network, the longer the snapshot is going to take. However, the curves are
not only shifted to the right, but also differ in shape. This can again be explained by
the increasing number of hops per countingtoken. As mentioned above, the average
countingtoken sends two results back to the CP, whereas the checkpoints are equally
spaced. Thus, the final result takes twice as many hops as the intermediate result. In
a network of 10000 peers there are approximately 20 peers in each of the 512 regions.
The intermediate results are therefore sent after about 10 hops, the final results after
about 20 hops respectively. The two corresponding elevations in the histogram overlap
in such a way, that they build a single elevation. In a network of 40000 peers, however,
there are approximately 78 peers in each of the 512 regions. The intermediate results are
therefore sent after about 39 hops, the final results after about 78 hops respectively. The
difference between these two numbers is large enough to account for the two elevations
in the blue histogram in Figure 11. Note, that all curves are shifted to the right as
compared to the mere hop count since it takes some time for the signaling step until
the countingtokens can be started. In practice the current size of the overlay can be
estimated [14] to be able to choose an appropriate value for N,.

So far, we did not consider the influence of churn in our simulations. However, the
arrival time of the results at the C'P is also affected by the online/offline behavior of
the individual peers. To study the influence of churn we consider 80000 peers with
an exponentially distributed online and offline time, each with a mean of 60 minutes.
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Figure 11: Arrival times of the results at the CP

This way, there are 40000 peers online on average, which makes it possible to compare
the results to those obtained using 40000 peers without churn. Figure 12 shows the
corresponding histograms. As a result of churn in the system, the two elevations of the
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Figure 12: Influence of churn on the pattern traffic at the CP

original histogram become noticeably blurred and the snapshot is slightly delayed. This
is due the inconsistencies in the successor and finger lists of the peer, as well as the
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timeouts, which occur during the forwarding of the countingtokens. In return the spike
in the diagram and thus the required bandwidth at the C'P becomes smaller.

As already shown in Section 4.4, the probability to lose a token is almost negligible.
Therefore, a more meaningful method to measure the influence of churn is to regard
the number of timeouts, which occur during a snapshot. Furthermore, the influence of
churn on the stability of the overlay network can be studied looking at the frequency
at which the predecessor pointer of a peer’s successor does not match the peer itself.
Figure 13 plots the relative frequency of timeouts and pointer failures against the mean
online/offline time of a peer. The smaller the online/offline time of a peer, the more
churn there is in the system. The results represent the mean of several simulation runs,
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Figure 13: Relative frequency of timeouts and pointer failures.

whereas the error bars show the 95 percent confidence intervals. The relatively small
percentage of both timeouts and failures is to some extent implementation specific. More
interesting, however, is the exponential rise of the curves under higher churn rates. The
shape of the curve is independent of the size of the overlay and only affected by the
current churn rate. The curve can therefore be used to map the frequency of timeouts
or failures measured in a running system to a specific churn rate.

Until now, we only regarded the traffic pattern at the central collecting point. From
an operator’s point of view, however, it is more important to know, whether the snap-
shot itself is meaningful. To validate the accuracy of the snapshot algorithm, we again
simulated an overlay network with 80000 peers, each with a mean online/offline time
of 60 minutes. Due to the properties of the hash function and the churn behavior in
the system the number of documents on a single peer can be regarded as a random
variable. The measurement we are interested in is the corresponding probability density
function (pdf) in order to see whether the distribution of the documents among the
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peers is fair or not. The pdf was measured using our snapshot algorithm as explained in
Section 3.3. The result of the snapshot is compared to the actual pdf obtained using the
global view of our discrete event simulator (c.f. Figure 14). The two curves are almost
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Figure 14: Results of a snapshot compared to the global view.

indistinguishable from each other. That is, the snapshot provides the operator with a
very accurate picture of the current state of its system. This nicely demonstrates, that
the results obtained by the snapshot can be used to better understand the performance
of the running p2p system. The multiple possibilities to interpret the collected data are
well beyond the scope of this paper.

6 Conclusion

One of the main reasons why telecommunication carriers are still hesitant to build p2p
applications is the lack of control a provider has over the running system. In this paper
we introduced an entirely distributed and scalable algorithm to monitor a Chord based
p2p network at runtime. The load generated during the snapshot is evenly distributed
among the peers of the overlay and the algorithm itself is easy to configure. It only takes
one input parameter, which influences the trade off between duration of the snapshot
and bandwidth required at the central server, which collects the results. In general it
takes less than one minute to create a snapshot of a Chord ring consisting of 40000
peers. We performed a mathematical analysis of the basic mechanisms and provided a
simulative study considering realistic user behavior.

The algorithm is resistant to dynamic in the overlay network (churn) and provides
the operator with a very accurate picture of the current state of its system. It offers the
possibility to monitor the entire overlay network or to concentrate on a specific part of
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the system. The latter is especially useful if a problem occurred in a specific part of the
system and the operator wants to assure that his countermeasures are successful.
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