
University of Würzburg
Institute of Computer Science

Research Report Series

Throughput Comparison of Professional
JMS Servers

Michael Menth, Robert Henjes,
Sebastian Gehrsitz, and Christian Zepfel

Report No. 380 March 2006

Department of Distributed Systems
Institute of Computer Science, University of Würzburg

Am Hubland, D-97074 Würzburg, Germany
phone: (+49) 931-888 6644, fax: (+49) 931-888 6632

{menth|henjes|gehrsitz|zepfel}@informatik.uni-wuerzburg.de

Throughput Comparison of Professional JMS Servers

Michael Menth, Robert Henjes,

Sebastian Gehrsitz, and Christian Zepfel
Department of Distributed Systems

Institute of Computer Science, University of Würzburg
Am Hubland, D-97074 Würzburg, Germany

phone: (+49) 931-888 6644, fax: (+49) 931-888 6632
{menth|henjes|gehrsitz|zepfel}@informatik.uni-

wuerzburg.de

Abstract

The Java messaging service (JMS) facilitates communication among distributed soft-
ware components according to the publish/subscribe principle. If the subscribers install
filter rules on the JMS server, JMS can be used as a message routing platform, but it is
not clear whether its message throughput is sufficiently high to support large-scale sys-
tems. In this paper, we investigate the capacity of three high performance JMS server
implementations: FioranoMQ, SunMQ, and WebshereMQ. In contrast to other studies,
we focus on the message throughput in the presence of filters and show that filtering re-
duces the performance significantly. We present models for the message processing time
of each server and validate them by measurement. These models depend on the number of
installed filters and the replication grade of the messages,and predict the overall message
throughput for specific application scenarios. Finally, weillustrate the use of these mod-
els by comparing the message throughput of the three serversin four different application
scenarios.

1 Introduction
The Java messaging service (JMS) is a communication middleware for distributed software
components. It is an elegant solution to make large softwareprojects feasible and future-
proof by a unified communication interface which is defined bythe JMS API provided by Sun
Microsystems [1]. Hence, a salient feature of JMS is that applications do not need to know
their communication partners, they only agree on the message format. Information providers
publish messages to the JMS server and information consumers subscribe to certain message
types at the JMS server to receive a certain subset of these messages. This is known as the
publish/subscribe principle.

When messages must be reliably delivered only to subscribers that are presently online, the
JMS in the non-durable and persistent mode is an attractive solution for the backbone of a large
scale real-time communication applications. For example,some user devices may provide
presence information to the JMS. Other users can subscribe to certain message types, e.g.,
the presence information of their friends’ devices. For such a scenario, a high performance

This work was funded by Siemens AG, Munich. The authors aloneare responsible for the content of the paper.

1

routing platform needs filter capabilities and a high capacity to be scalable for many users. In
particular, the throughput capacity of the JMS server should not suffer from a large number of
clients or filters.

In this paper we compare the performance of the FioranoMQ [2], the SunMQ [3], and the
WebsphereMQ [4] JMS server implementation. We evaluate their maximum throughput by
measurement under various conditions. In particular, we consider different numbers of pub-
lishers, subscribers, and filters, different message sizes, different kinds of filters, and filters
of different complexity. We propose a mathematical model depending on the number of fil-
ters and the message replication grade to approximate the processing time of a message for
each server type. Finally, we show the usefulness of these models in practice by predicting
and comparing the message throughput of the three server types in four different application
scenarios.

The paper is organized as follows. In Section 2 we present JMSbasics, that are important for
our study, and consider related work. In Section 3 we explainour test environment and mea-
surement methodology. Section 4 shows measurement resultsof rather simple experiments
whereas Section 5 proposes quite complex measurement setups to derive mathematical mod-
els for the message processing time from their results. These models are useful to predict the
server throughput for specific application scenarios whichis demonstrated in a comparative
study in Section 6. Finally, we summarize our work in Section7.

2 Background
In this section we describe the Java messaging service (JMS)and discuss related work.

2.1 The Java Messaging Service
Messaging facilitates the communication between remote software components. The Java
Messaging Service (JMS) standardizes this message exchange. The so-called publishers gen-
erate and send messages to the JMS server, the so-called subscribers consume these messages
– or a subset thereof – from the JMS server, and the JMS server acts as a relay node [5], which
controls the message flow by various message filtering options. This is depicted in Figure 1.
Publishers and subscribers rely on the JMS API and the JMS server decouples them by acting
as an isolating element. As a consequence, publishers and subscribers do not need to know
each other. The JMS offers several modes. In the persistent mode, messages are delivered
reliably and in order. In the durable mode, messages are alsoforwarded to subscribers that
are currently not connected while in the non-durable mode, messages are forwarded only to
subscribers who are presently online. Thus, the server requires a significant amount of buffer
space to store messages in the durable mode. In this study, weconsider the persistent but
non-durable mode if not mentioned differently.

Information providers with similar themes may be grouped together and publish to a so-
called common topic; only those subscribers having subscribed for that specific topic receive
their messages. Thus, topics virtually separate the JMS server into several logical sub-servers.
Topics provide only a very coarse and static method for message selection. In addition, topics
need to be configured on the JMS server before system start. Filters are another option for
message selection. A subscriber may install a message filteron the JMS server, which effects

2

1

2

3

n

1

2

3

m

SubscribersPublishers

Message flow

Filters Replication
grade

JMS
server

Filtered
message

Figure 1: The JMS server decouples publishers and subscribers.

that only the messages matching the filter rules are forwarded instead of all messages in the
corresponding topic. In contrast to topics, filters are installed dynamically during the opera-
tion of the server. Figure 2 shows that a JMS message consistsof three parts: the message
header, a user defined property header section, and the message payload itself [1]. So-called
correlation IDs are ordinary 128 byte strings that can be setin the header of JMS messages.
Correlation ID filters try to match these IDs whereby wildcard filtering is possible, e.g., in the
form of ranges like[#7; #13]. Several application-specific properties may be set in the prop-
erty section of the JMS message. Application property filters try to match these properties.
Unlike to correlation ID filters, a combination of differentproperties may be specified which
leads to more complex filters with a finer granularity. After all, topics, correlation ID filtering,
and application property filtering are three different possibilities for message selection with
different semantic granularity and different computational effort.

Fixed header fields Application properties Application data

JMS message

Header Body

Figure 2: JMS message structure.

3

2.2 Related Work

A general introduction to publish/subscribe systems can befound in [6]. It presents a tax-
onomy of existing systems and compares qualitatively the capabilities of different concepts.
The SIENA middleware is based on the publish/subscribe principle and has been presented in
[7] with the objective to achieve an Internet-scale scalability for event notification services.
This and several other papers [8, 9] focus on an efficient design of publish/subscribe sys-
tems to build high-performance message routing platforms.However, they do not provide
measurement results or performance models for the message throughput of publish/subscribe
systems. Another optimization aspect addresses semantic issues like uncertainties in queries
[10] which obviously leads to a tradeoff between missed information and redundant message
delivery. Several studies address implementation aspectsof filters [11, 12]. A JMS server
checks for each message whether some of its filters match. If some of the filters are identical
or similar, filter matching can be optimized [13]. We conductmeasurements for the SunMQ
with identical and different filters in Section 5 and the results show an increased throughput
for identical filters compared to different filters.

The JMS is a wide-spread and frequently used middleware technology. Therefore, its
throughput performance is of general interest and several papers address this aspect already
from a different viewpoint and in different depth. A mathematical model for publish/subscribe
communication systems in the durable mode is presented in [14], but its focus lies rather on
semantic than performance issues. Guidelines for benchmarking distributed publish/subscribe
systems are given in [15] but without measurement results. The setup of our experiments is
in line with these recommendations. On the one hand, there are only a few academic studies
considering the throughput performance by experimental measurements [16, 17, 18], but they
do not address the server capacity in the presence of messagefilters. In [16] the throughput
performance of Tibco Rendezvous and SonicMQ JMS server is compared while [17] con-
trasts two leading JMS products whose names are not revealed. The authors of [18] show that
the throughput of JMS servers suffers tremendously from durable subscriptions when mobile
users hand over. On the other hand, performance studies of publish/subscribe systems are of
great interest such that whitepapers compare the throughput of various commercial servers.
The throughput performance of four different JMS servers iscompared in [19]: FioranoMQ
[2], SonicMQ [20], TibcoEMS [21], and WebsphereMQ [4]. The study focuses on several
message modes, e.g., durable, persistent, etc., but it doesnot consider filtering, which is the
main objective in our work. The authors of [22] conduct a benchmark comparison for the
SunMQ [3] and the WebsphereMQ. They tested throughput performance in various message
modes and, in particular, with different acknowledgement options for the persistent message
mode. They also examined simple filters but they did not conduct parametric studies, and no
performance model was developed.

The objective of our work is a comparison of the throughput performance of the Fiora-
noMQ, the SunMQ, and the WebsphereMQ JMS server in various application scenarios. In
particular, we focus on the impact of filters and develop a performance model for the server
capacity to predict the maximum message throughput for specific application scenarios.

4

3 Test Environment

Our objective is the assessment of the message throughput ofthe FioranoMQ, SunMQ, and
WebsphereMQ JMS server by hardware measurement under various conditions. For compa-
rability and reproducibility reasons we describe our testbed, the server installations, and our
measurement methodology in detail.

3.1 Testbed

Our test environment consists of five computers that are illustrated in Figure 3. Four of them
are production machines and one is used for control purposes, e.g., controlling jobs like set-
ting up test scenarios and starting measurement runs. The four production machines have
a 1 Gbit/s network interface which is connected to one exclusive Gigabit switch. They are
equipped with 3.2 GHz single CPUs and 1024 MB system memory. Their operating system
is SuSe Linux 9.1 in standard configuration. To run the JMS environment we installed Java
SDK 1.4.0, also in default configuration. The control machine is connected over a 100 Mbit/s
interface to the Gigabit switch. In our experiments one machine is used as a dedicated JMS
server, the publishers run on one or two exclusive publishermachines, and the subscribers
run on one or two exclusive subscriber machines depending onthe experiment. If two pub-
lisher or subscriber machines are used, the publishers or subscribers are distributed equally
between them. We implemented test clients such that each publisher or subscriber is realized
as a single Java thread, which has an exclusive connection tothe JMS server component. A
management thread collects the measured values from each thread and appends these data to
a file in periodic intervals.

Test network
(Link capacity : 1 Gbit/s)

Measurement
(3.2GHz, 1GB RAM)

Measurement
(3.2GHz, 1GB RAM)

Server
(3.2GHz, 1GB RAM)

Controlling

Figure 3: Testbed environment.

3.2 Server Installation

We briefly describe the installation of the three consideredserver types.

5

We installed the FioranoMQ [2] version 7.5 server components as JMS server software. We
used the vendor’s default configuration as delivered with the test version. We start the server
in the superuser mode; otherwise user restrictions can limit the number of simultaneously
connected clients to the FioranoMQ kernel.

We installed the Sun Java System Message Queue 3 2005Q1 Platform edition (Version
3.6) [3], which is shipped with a trial license including allfeatures of the enterprise edition.
We use its default configuration except for the following modifications. To enable the pub-
lish/subscribe mode we set up a customized default topic. Normally, a large buffer is reserved
for incoming messages. However, it is too large for our experiments, so we limit it to a maxi-
mum of 10000 messages and switch on the flow control to avoid message loss at the incoming
buffer. Like above, we increased the maximum threshold for simultaneously connected pub-
lishers from 100 to 400.

We installed the the IBM Websphere MQ 6.0 Trial version [4] onthe server machine with
the default configuration except for the following modifications. For performance reasons we
deactivated the security module because our experiments donot focus on security issues. We
raised the internal restriction regarding the number of parallel connections to the queue man-
ager from the default value 100 to 500. To conduct our experiments, we used WebshereMQ’s
integrated publish/subscribe feature instead of an additional broker.

3.3 Measurement Methodology

Our objective is the measurement of the JMS server capacity.Therefore, we load the server in
all our experiments closely to 100% CPU load and verify that no other bottlenecks like system
memory or network capacity exist on the server machine, i.e., that they have a utilization of at
most 75%. The publisher and subscriber machines must not be bottlenecks, either, and they
must not run at a CPU load larger than 75%. To monitor these side conditions, we use the
Linux tool “sar”, which is part of the “sysstat” package [23]. We monitor the CPU utilization,
I/O, memory, and network utilization for each measurement run. Without a running server,
the CPU utilization of the JMS server machine does not exceed2%, and a fully loaded server
must have a CPU utilization of at least 96%.

Experiments are conducted as follows. The publishers run ina saturated mode, i.e., they
send messages as fast as possible to the JMS server. However,they are slowed down if the
server is overloaded because publisher side message queuing is used. Each experiment takes
100 s but we cut off the first and last 5 s due to possible warmup and cooldown effects. We
count the overall number of sent messages at the publishers and the overall number of received
messages by the subscribers within the remaining 90 s interval to calculate the server’s rate
of received and dispatched messages. For verification purposes we repeat the measurements
several times, but their results hardly differ such that confidence intervals are very narrow even
for a few runs.

6

4 Measurement Results

In this section we investigate the maximum throughput of theFioranoMQ, SunMQ, and Web-
sphereMQ JMS servers. The objective is to assess and characterize the impact of specific
application scenarios on their performance. In particular, we consider filters since they are
essential for the use of a JMS server as a general message routing platform.

4.1 Impact of the Number of Publishers

In our first experiment, we study the impact of the number of publishers on the message
throughput. Two machines carry a varying number of publishers and one machine hosts a
single subscriber. Figure 4 shows the received message throughput at the JMS server in the
persistent mode, i.e., lost messages are retransmitted by the JMS server and messages are pre-
liminarily written on a disk for recovery purposes. FioranoMQ achieves the highest received
message throughput with 32000 msgs/s, followed by SunMQ with 9500 msgs/s and Web-
sphereMQ with 1000 msgs/s. Thus, the message throughput spans several orders of magni-
tude. FioranoMQ requires 40 publishers to achieve its maximum throughput whereas SunMQ
and WebsphereMQ need only 5 publishers to achieve a typical throughput. As a consequence,
we use in the following experiments at least 5 or more publishers.

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of publishers

R
ec

ei
ve

d
th

ro
ug

hp
ut

 (
m

sg
s/

s)

Fiorano MQ

Sun MQ

Websphere MQ

Figure 4: Impact of the number of publishers
on the received message throughput
in the persistent mode.

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12
x 10

4

Number of publishers

R
ec

ei
ve

d
th

ro
ug

hp
ut

 (
m

sg
s/

s)

Fiorano MQ

Sun MQ

Websphere MQ

Figure 5: Impact of the number of publishers
on the received message throughput
in the non-persistent mode.

To assess the impact of the persistent mode, we conduct the same experiments in the
non-persistent mode and the results are collected in Figure5. The received throughput is
about 100000 msgs/s for FioranoMQ, 13500 msgs/s for SunMQ, and 9500 msgs/s for Web-
sphereMQ. Thus, the message throughput is significantly increased, in particular for Web-
sphereMQ. However, especially for WebsphereMQ we observe ahigh packet loss rate of about
8% under full load.

7

We repeated both experiment series several times and calculated the 95% confidence inter-
vals on this basis. They are shown in both figures. Obviously,they are very narrow which
results from hardly varying results. Therefore, we omit them in the following figures for the
sake of clarity.

4.2 Impact of the Number of Subscribers

Similarly to the above, we investigate the impact of the number of subscribers on the JMS
server throughput. To that end, we have 5 publishers threadsrunning on one machine and vary
the number of subscribers on two other machines. Figure 6 shows the received, dispatched,
and the overall message throughput for the SunMQ. The received message rate decreases
significantly with an increasing number of subscribersn. This can be explained as follows.
No filters are applied and all messages are delivered to any subscriber. Thus, each message is
replicatedn times and we call this a replication grade ofr=n. This requires more CPU cycles
for dispatching messages and increases the overall processing time of a single message. As a
consequence, the received message rate is reduced because the overall throughput capacity of
the server stays constant. Hence, the replication grade must be considered when performance
measures from different experiments are compared.

0 50 100 150 200 250 300320
0

0.5

1

1.5

2

2.5
x 10

4

Number of subscribers

T
hr

ou
gh

pu
t (

m
sg

s/
s)

Received messages

Dispatched messages

Received and dispatched messages

Figure 6: SunMQ: Impact of the number
of subscribers on the received,
dispatched, and overall message
throughput.

0 50 100 150 200 250 300320
0

1

2

3

4

5

6

x 10
4

Number of subscribers

O
ve

ra
ll

th
ro

ug
hp

ut
 (

m
sg

s/
s)

No filters
Application property filters

Fiorano MQ

Sun MQ
Websphere MQ

Figure 7: Impact of filter activation and the
number of subscribers on the mes-
sage throughput.

4.3 Impact of Filter Activation

We evaluate the impact of filter activation on the message throughput. Figure 7 shows the
overall message throughput depending on the number of subscribers with and without filters.
We used 5 publishers in all experiments. FioranoMQ achievesits maximum throughput for 5
subscribers, about 40000 msgs/s for many subscribers without filters, but only 25000 msgs/s

8

with application property filters. Correlation ID filters lead to 33000 msgs/s, which is omitted
in the graph for the sake of clarity. SunMQ and WebsphereMQ require both 20 or 40 sub-
scribers to reach their maximum throughput of 23000 msgs/s or 11000 msgs/s, respectively.
In contrast to FioranoMQ, they show the same capacity with and without filters. Thus, they
are hardly slowed down by the filtering engine in this experiment. However, this finding is
only valid if the message replication grade increases with the number of subscribers, which
is a rather artificial case. In Section 5, we study the joint impact of filters and the replication
grade for each server type in more detail. After all, we learnfrom these results that at least 5
subscribers are required for future experiments to get a representative value for the maximum
overall message throughput.

4.4 Impact of the Message Size

The throughput of a JMS server can be measured in messages persecond (message through-
put) or in transmitted data per second (data throughput). The message body size has certainly
an impact on both values. We test the maximum throughput depending on the message size.
For each server type we use such an experiment set up that the server achieves a sufficiently
high throughput, i.e. 10 publishers threads on two machinessend messages to the FioranoMQ
and WebsphereMQ, and 5 are sufficient for the SunMQ server. Weuse one subscriber on a
single machine for the FioranoMQ, 2 for the SunMQ, and 5 for the WebsphereMQ. Figure 8
shows the overall throughput depending on the payload size and the corresponding message
body size. The throughput in msgs/s is measured, but the throughput in Mbit/s is derived from
these data. The calculation of the corresponding overall message size takes into account vari-
ous message headers, i.e., 40 bytes JMS header, 32 bytes TCP header, 20 bytes IP header, and
38 bytes Ethernet header, as well as TCP fragmentation.

0

1

2

3

4

5

6

7
x 10

4

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Message body size (bytes)

O
ve

ra
ll

th
ro

ug
hp

ut
 (

m
sg

s/
s)

0

100

200

300

400

500

600

700
14

6
16

2
19

4
25

8
38

6
64

2
11

54
22

68
44

06
87

72
17

41
4

Total message size (bytes)

O
verall throughput (M

bits/s)

Message throughput
Data throughput

Fiorano MQ

Sun MQ

Websphere MQ

Figure 8: Impact of the message body size on
the message and data throughput.

1 2 3 4 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Number of topics

O
ve

ra
ll

th
ro

ug
hp

ut
 (

m
sg

s/
s)

r = 1
r = 20

Fiorano MQ

Sun MQ

Websphere MQ

Figure 9: Impact of the number of topics on
the message throughput for different
replication grades.

9

Figure 8 shows that an increasing message body size decreases the message throughput and
increases the data throughput significantly. For small message bodies of 0 bytes, the message
throughput is limited by 61000 msgs/s for FioranoMQ, 21000 msgs/s for SunMQ, and 6000
msgs/s for WebsphereMQ. For large message bodies of 16384 bytes, the throughput is limited
by 4400 msgs/s, 3800 msgs/s, and 2400 msgs/s. Thus, the capacity ratio between the server
types changes. The performance degradation of the servers has different shapes and this shape
depends also on the application scenario of the server, i.e.the number of publishers and
subscribers, the message replication grade and the filters.The overall consumed bandwidth is
614 Mbit/s, 525 Mbit/s, and 336 Mbit/s for the three different server types. This is very large,
but it does not yet reach the bidirectional TCP transmissionlimit of the network for which we
measured simultaneously 350 Mbit/s each in both directions. In our experiments, the default
value for the message body size is 0 bytes.

4.5 Impact of Topics

Messages published to a specific topic are only dispatched toconsumers who have subscribed
to this particular topic. Thus, topics allow a very coarse form of message selection. In this
section, we evaluate the impact of the number of topics on themessage throughput for different
replication grades. In our next experiment, 5 publisher threads are installed on one publisher
machine and two machines host the subscribers. We vary the number of topics on the JMS
server. Each publisher is connected to every topic and sendsmessages to them in a round robin
manner. A replication grader is obtained by registeringr subscribers for each topic.

Figure 9 shows the message throughput for all 3 server types.FioranoMQ achieves the
highest throughput followed by SunMQ and by WebsphereMQ. The throughput converges
asymptotically to a value that is specific to the message replication grade. This value in-
creases mostly with the replication grade. That finding holds for all server types. The limiting
throughput for many topics and a replication grade larger than 1 and amounts to 28000 msgs/s
for FioranoMQ, 15000 msgs/s for SunMQ, and 4000 msgs/s for WebsphereMQ. Hence, topics
can be used for coarse message selection with a moderate performance loss for many topics.
In particular, this impact is weaker than the one of the message replication grade.

4.6 Impact of Complex OR-Filters

A single client may be interested in messages with differentapplication property values. There
are two different options to get these messages. The client sets up subscribers

(1) with a simple filter for each desired message type.

(2) with a single but complex OR-filter searching for all desired message types.

We assess the JMS server performance for both options. We keep the replication grade at
r=1. The publishers send IDs from #1 to #n in a round robin fashion.

(1) To assess simple filters, we set up for each different ID exactly one subscriber with a
filter for that ID.

10

(2) To assess complex filters, we set up 5 different subscribers numbered from 0 to 4. Sub-
scriberj searches for the IDs #(j · n

5
+i) with i∈ [1; n

5
] using an OR-filter.

We use in this experiment one publisher machine with 5 publisher threads and one subscriber
machine with a varying number of subscribers or 5 subscribers, respectively.

0 50 100 150 200 250 300320
0

2000

4000

6000

8000

10000

12000

14000

16000

OR−filter complexity

O
ve

ra
ll

th
ro

ug
hp

ut
 (

m
sg

s/
s)

Complex filters
Simple filters

Fiorano MQ

Sun MQ

Websphere MQ

Figure 10: Impact of simple filters and com-
plex OR-filters on the message
throughput for a replication grade
of r=1.

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

14000

16000

AND−filter complexity

O
ve

ra
ll

th
ro

ug
hp

ut
 (

m
sg

s/
s)

Filter differs in first component
Filter differs in last component

Fiorano MQ

Sun MQ

Websphere MQ

Figure 11: Impact of an early non-match de-
cision for AND-filters on the mes-
sage throughput depending on the
filter complexity.

Figure 10 shows the message throughput depending onn
5
, which is the number of compo-

nents in the complex OR-filter complexity or the number of different simple subscribers per
client. Firstly, we observe that the message throughput decreases significantly for an increas-
ing number of installed simple filters. This is unlike in Figure 7 and the difference comes
from the smaller replication grade which isr=1 instead ofr=n. Thus, the number of filters
decreases the message throughput considerably if the messages are not forwarded to all sub-
scribers, which is usually intended to avoid with filters. Secondly, we observe that complex
filters (2) lead to a larger throughput than simple filters (1)but the extent of the performance
gain depends strongly on the server type. For FioranoMQ, complex filters lead to a slightly
larger throughput than multiple simple filters per client. For SunMQ, complex filters yield
a performance gain of roughly 100%, and for WebsphereMQ, complex filters even avoid the
performance loss that is observed for simple filters. Thus, the handling of simple and com-
plex filters by WebsphereMQ takes the same computation effort. However, this finding holds
certainly only to a certain extent.

4.7 Impact of Complex AND-Filters

In the application header section of a message, multiple properties, e.g.P1, ..., Pk, can be
defined. Complex AND-filters may be used to search for specificmessage types. In the

11

following, we assess the JMS server throughput for complex AND-filters. Note that complex
AND-filters are only applicable for application property filters but not for correlation ID filters.
We use one machine with 10 publisher threads and one machine with m = 10 subscriber
threads that are numbered byj ∈ [1; m]. We design two experiment series with different
potential for optimization of filter matching. The subscribers set up the following complex
AND-filters of different lengthn:

(1) for subscriberj: P1 =#j, P2 =#0, ..., Pn =#0

(2) for subscriberj: P1 =#0, P2 =#0, ..., Pn =#j

The corresponding messages are sent by the publishers in a round robin fashion to achieve
a replication grade ofr = 1. Then, the filters can already reject non-matching messagesby
looking at the first filter component (1) or only by looking at all n filter components (2). The
experiments are designed such that both the replication grade and the number of subscribers
is constant, and that only the filter complexityn varies. To avoid any impact of different
message sizes in this experiment series, we definek=25 properties in all messages to get the
same length.

Figure 11 shows the message throughput depending on the filter complexityn. The filter
complexity reduces the server capacity significantly for FioranoMQ and SunMQ. Experiment
(1) yields a considerably larger message throughput than experiment (2). Thus, an early reject
decision of the filters shortens the processing time of a message and increases thereby the
server capacity. As a consequence, practitioners should care for the order of individual com-
ponents within AND-filters: components with the least matchprobability should be checked
first. For WebsphereMQ, the message throughput is neither affected by the filter complexity
nor by the position of the component which is decisive for therejection of a message. As a
consequence, we assume that the filter logic of WebsphereMQ has a relatively high general
filter overhead without optimization for complex AND-filters since simple filter expressions
take the same filtering effort as complex filter expressions.

5 Performance Models for the Joint Impact of the Number of Filters and
the Replication Grade

We know from Section 4.3 and Section 4.6 that both the number of filters and the replication
grade influence the capacity of JMS servers. In this section,we investigate their joint impact
on the message throughput for each server type in detail and provide mathematical approxi-
mation models. To that end, we design first experiments with avarying number of filters and a
varying replication grade. We take measurements, suggest mathematical models that are able
to capture the gained throughput curves, and fit the model parameters by a least squares ap-
proximation. The measured and the analytical throughput agree very well for all three server
types such that the performance models can be used to predictthe server capacity for specific
application scenarios.

12

5.1 Performance Model for FioranoMQ

We describe the experiment series for the FioranoMQ, suggest a suitable mathematical ap-
proximation model for the server throughput, and fit the corresponding model parameters.

5.1.1 Experiment Setup and Measurement Results

We use one publisher and one subscriber machine. Five publishers are connected to the JMS
server and send messages with correlation ID #0 or application property value #0 in a saturated
way. Furthermore,n+ r subscribers are connected to the JMS server,r of them filter for
application property value #0 while the othern subscribers filter for value #1. Hence,n+
r filters are installed altogether. This setting yields a message replication grade ofr. We
choose replication grades ofr∈{1, 2, 5, 10, 20, 40} andn∈{5, 10, 20, 40, 80, 160} additional
subscribers.

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of application property filters

R
ec

ei
ve

d
th

ro
ug

hp
ut

 (
m

sg
s/

s)

Measured throughput
Analytical throughput

r = 1,2,5,10,20,40

Figure 12: FioranoMQ: Impact of the num-
ber of filtersnfltr and the message
replication grader on the over-
all message throughput – measure-
ments and analytical data.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of application property filters

O
ve

ra
ll

th
ro

ug
hp

ut
 (

m
sg

s/
s)

Measured throughput
Analytical throughput

r = 1,2,5,10,20,40

Figure 13: FioranoMQ: Impact of the num-
ber of filters nfltr and the mes-
sage replication grader on the re-
ceived message throughput – mea-
surements and analytical data.

Figures 12 and 13 show the received and overall message throughput for application prop-
erty filters depending on the number of installed filtersnfltr = n+r and on the replication
grader. The solid lines show the measured throughput. An increasing number of installed fil-
ters reduces obviously the message throughput of the server. An increasing replication grade
decreases the received message throughput, but it increases overall message throughput of
the server to a certain extent. We obtain similar measurement curves with about 100% more
throughput for correlation ID filters. In addition, we conduct the same experiment series with
then non-matching filters set to #1, ..., #n. They lead to the exactly same results as in Fig-
ures 12 and 13. Thus, we cannot find any throughput improvement if equal filters are used
instead of different filters.

13

5.1.2 Performance Model for the Message Processing Time

The message processing time is the inverse of the received message throughput. Figure 12
shows that it depends both on the number of filtersnfltr and the replication grader. Therefore,
we propose a very simple model for the message processing timeB:

B = trcv + nfltr · tfltr + r · ttx. (1)

The parametertrcv is a fixed time overhead for each received message. The filtering effort
increases linearly with the number of filtersnfltr and the time to check a single filter istfltr.
Finally, ttx describes the time to dispatch and to send a single message for a matching filter.

5.1.3 Validation of the Model by Measurement Data

The results in Figures 12 and 13 show the overall throughput regarding received and sent mes-
sages. Within timeB, one message is received andr messages are dispatched by the server.
Thus, the overall throughput is given byr+1

B
and corresponds to the measurement results in

Figure 13. The parametersnfltr andr for the message processing time in Equation (1) are
known from the respective experiments. We fit the parameterstrcv, tfltr, andttx by a least
squares approximation to adapt the model in Equation (1) to the measurement results. The
resulting parameter values are compiled in Table 1 for correlation ID and application property
filters.

Table 1: Empirical values for the model parameters of the message processing time in Equa-
tion (1).

parameter trcv (s) tfltr (s) ttx (s)
corr. ID filtering 8.52 · 10−7 7.02 · 10−6 1.70 · 10−5

app. prop. filtering 4.10 · 10−6 1.46 · 10−5 1.62 · 10−5

We calculate the message throughput based on these values and Equation (1) for all mea-
sured data points, and plot the results with dashed lines in Figures 12 and 13. The throughput
from our analytical model agrees very well with our measurements for all numbers of filters
nfltr and all replication gradesr.

5.2 Performance Model for SunMQ

We describe the experiment series for the SunMQ, suggest a suitable mathematical approx-
imation model for the server throughput, and fit the corresponding model parameters. Note
that the model for SunMQ is more complex than the model for FioranoMQ.

5.2.1 Experiment Setup and Measurement Results

We performed the same experiment like above for the SunMQ andfound out that it matters
whether non-matching filters are equal or different. Thus, we design such an experiment

14

series that we can study the impact of the replication grader, the number of different filters
n

diff
fltr , and the number of all filtersnall

fltr on the message throughput. The publishers send only
messages with value #0. To achieve a replication grade ofr, we set upr subscribers with
a filter for value #0. Furthermore, we installnadd

diff other different filters for values from #1
to #nadd

diff . We set up these additional filtersfr times and callfr the filter replication factor
in this experiment. We use the following values for our experimentsr ∈ {1, 2, 5, 10, 20, 40},
nadd

diff ∈ {1, 2, 5, 10, 20, 40, 80, 160}, andfr ∈ {1, 2, 4, 8}, and conduct them with 5 publisher
threads on one publisher machine and with a variable number of r+(nadd

diff · fr) subscribers on
one subscriber machine.

Figure 5.2.2 shows the received and overall message throughput for this experiment series.
The server capacity clearly decreases for an increasing number of different filtersnadd

diff . An
increasing message replication grader reduces the received message rate, but it increases the
overall message rate. The four related figures differ by a different filter replication gradefr,
but they look very similar at the first spot. The impact of the number of all filtersnall

fltr =

r+fr · nadd
diff is clearly visible when we compare the right margins of the figures since the

number of all filters only differs significantly if the numberof additional different filtersnadd
diff

is large. Thereby we observe that equal filters also reduce the throughput even though they do
not match.

5.2.2 A Simple Model for the Message Processing Time

The message processing time is the inverse of the received message throughput. The Fig-
ures 14(a)–14(d) on the left show that it depends on the number of additional filtersnadd

fltr, the
filter replication factorfr, and the replication grader. We propose a simple model for the
message processing timeB that relies onnall

fltr =r+fr · n
add
diff andn

diff
fltr =nadd

diff +1:

B = trcv + nall
fltr · t

all
fltr + n

diff
fltr · tdiff

fltr + r · ttx. (2)

The parametertrcv is a fixed time overhead for each received message. The filtering effort
increases linearly with the number of all filtersnall

fltr and the time to check a single filter is

tall
fltr. Different filters impose an extra overhead ofn

diff
fltr · tdiff

fltr . Finally, ttx describes the time
to dispatch and to send a single message for a matching filter.

15

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

Number of different non−matching filters

R
ec

ei
ve

d
th

ro
ug

hp
ut

 (
m

sg
s/

s)

Measured throughput
Analytical throughput

r = 1,2,5,10,20,40

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

x 10
4

Number of different non−matching filters

O
ve

ra
ll

th
ro

ug
hp

ut
 (

m
sg

s/
s)

Measured throughput
Analytical throughput

r = 1,2,5,10,20,40

(a) Filter replication gradefr =1.

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

Number of different non−matching filters

R
ec

ei
ve

d
th

ro
ug

hp
ut

 (
m

sg
s/

s)

Measured throughput
Analytical throughput

r = 1,2,5,10,20,40

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

x 10
4

Number of different non−matching filters

O
ve

ra
ll

th
ro

ug
hp

ut
 (

m
sg

s/
s)

Measured throughput
Analytical throughput

r = 1,2,5,10,20,40

(b) Filter replication gradefr =2.

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

Number of different non−matching filters

R
ec

ei
ve

d
th

ro
ug

hp
ut

 (
m

sg
s/

s)

Measured throughput
Analytical throughput

r = 1,2,5,10,20,40

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

x 10
4

Number of different non−matching filters

O
ve

ra
ll

th
ro

ug
hp

ut
 (

m
sg

s/
s)

Measured throughput
Analytical throughput

r = 1,2,5,10,20,40

(c) Filter replication gradefr =4.

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

Number of different non−matching filters

R
ec

ei
ve

d
th

ro
ug

hp
ut

 (
m

sg
s/

s)

Measured throughput
Analytical throughput

r = 1,2,5,10,20,40

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

x 10
4

Number of different non−matching filters

O
ve

ra
ll

th
ro

ug
hp

ut
 (

m
sg

s/
s)

Measured throughput
Analytical throughput

r = 1,2,5,10,20,40

(d) Filter replication gradefr =8.

Figure 14: SunMQ: Impact of the number of different filtersn
diff
fltr and the message replication

grader on the received and overall message throughput for different numbers of
additional equal filters – measurements and analytical data.

16

5.2.3 Validation of the Model by Measurement Data

The results in the right column of the Figures 14(a)–14(d) show the overall throughput re-
garding received and sent messages. Within timeB, one message is received andr messages
are sent on average. Therefore, the overall throughput is given by r+1

B
and corresponds to the

measurement results in Figures 14(a)–14(d) on the right column. The parametersndiff
fltr , nall

fltr,
andr for the message processing timeB are known from the respective experiments. We fit
the parameterstrcv, tall

fltr, t
diff
fltr , andttx by a least squares approximation to adapt the model in

Equation (2) to the measurement results. The results are compiled in Table 2 for correlation ID
and application property filters. We calculate the message throughput based on these values

Table 2: Empirical values for the model parameters of the message processing time in Equa-
tion (2).

parameter trcv (s) tall
fltr (s) t

diff
fltr (s) ttx (s)

value 1.118 · 10−4 2.200 · 10−6 1.785 · 10−6 4.008 · 10−5

and Equation (2) for all measured data points, and plot the results with dashed lines in Fig-
ure 5.2.2. The throughput from our analytical model agrees very well with our measurement
results.

5.3 Performance Model for WebsphereMQ

We conduct an experiment series to study the joint impact of the replication grader and
the number of installed filtersnfltr for the WebsphereMQ, suggest a suitable mathematical
approximation model for the server throughput, and fit the corresponding model parameters.
Note that WebshereMQ requires a substantially different model for the message processing
time compared to FioranoMQ and SunNQ.

5.3.1 Experiment Setup and Measurement Results

We set up the same series of experiments like for the FioranoMQ in Section 5.1.1. Fig-
ure 15 shows the received message throughput depending on the number of installed filters
nfltr =n+r and on the replication grader. The solid lines show the measured throughput. An
increasing number of filters reduces the received message throughput of the system which is
obviously independent of the replication grade. This is different to the results for FioranoMQ
and SunMQ in Section 5.1.1 and Section 5.2.1. Figure 16 showsthe resulting overall mes-
sage throughput. It decreases also with an increasing number of filters, but it rises with the
replication grade. We have performed the same experiments for correlation ID filters, too, and
obtained the same measurement results. Thus, correlation ID and application property filters
lead to the same throughput both for SunMQ and WebsphereMQ.

17

0 50 100 150 200
0

200

400

600

800

1000

1200

1400

Number of application property filters

R
ec

ei
ve

d
th

ro
ug

hp
ut

 (
m

sg
s/

s)

Measured throughput
Analytical throughput

r = 1,2,5,10,20,40

Figure 15: WebsphereMQ: Impact of the
number of filters nfltr and the
message replication grader on
the received message throughput –
measurements and analytical data.

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of application property filters

O
ve

ra
ll

th
ro

ug
hp

ut
 (

m
sg

s/
s)

Measured throughput
Analytical throughput

r = 1,2,5,10,20,40

Figure 16: WebsphereMQ: Impact of the
number of filters nfltr and the
message replication grader on
the overall message throughput –
measurements and analytical data.

5.3.2 A Simple Model for the Message Processing Time

Figure 15 shows that the message processing time depends only on the number of filtersnfltr.
In contrast to FioranoMQ and SunMQ, it does not depend on the replication grader. Thus,
the time to send messages is obviously so small that it is not noticeable for a replication grade
of up to r = 40. A linear model like for the FioranoMQ or the SunMQ in Section5.1.2
and Section 5.2.2 does not work for the approximation of the above measurement results.
Therefore, we propose the following model for the message processing timeB:

B = trcv + nfltr ·
√

(nfltr) · tfltr. (3)

The parametertrcv is a fixed time overhead for each received message. The filtering effort
affects the processing time with a supplement ofnfltr ·

√

(nfltr) · tfltr. Hence, it increases
more than linearly with the number of installed filtersnfltr.

5.3.3 Validation of the Model by Measurement Data

As mentioned above, the received and the overall throughputcan be analytically calculated
by 1

B
and r+1

B
. Again, we adapt the model parameterstrcv andtfltr in Equation (3) by a least

squares approximation and obtain for them the valuestrcv =7.03·10−4 andtfltr =1.1017·10−5.
We calculated the received and overall throughput for all measured data points based on these
values and Equation (3), and plot them with dashed lines in Figures 15 and 16. The throughput
from our analytical model agrees very well with our measurement data for all numbers of
filtersnfltr and all replication gradesr. For a very high message replication grade liker = 80,
the prediction tends to be incorrect since the time to send the 80 outgoing messages imposes

18

additional time which is not captured by the model. However,the model predicts the overall
message throughput of the server quite accurately for a widerange of realistic parametersnfltr

andr.

5.4 Summary of the Performance Models

We have investigated the joint impact of the number of filtersand the replication grade on the
server capacity of FioranoMQ, SunMQ, and WebsphereMQ. FioranoMQ leads to enhanced
throughput for correlation ID filters compared to application property filters while the filter
type does not lead to different results for SunMQ and WebshpereMQ. Only SunMQ imple-
ments an optimized filter matching algorithm such that equalfilters can be handled more
efficiently than different filters. The message replicationgrade has an impact on the mes-
sage processing time for FioranoMQ and SunMQ, but not for WebsphereMQ as long as a
replication grade ofr = 40 is not exceeded. The filtering effort for SunMQ and FioranoMQ
increases at most linearly with the number of installed filters whereas WebshpereMQ showed
a worse filter scalability in our experiments. As a consequence, the models we developed for
the message processing time of each server type were substantially different. They are useful
to predict the server capacity for specific application scenarios. Thus, they can be used to di-
mension the number of servers in a network. The throughput comparison of the three different
server platforms helps in general to decide which of these solutions satisfies the requirements
of a special distributed application from a performance point of view.

6 Application Example

We assume a distributed notification service, i.e., producers generate so-called events and
consumers are notified about them. A JMS server can be used to implement such a service. We
assume many producers and 100 consumers. There are many event types, but each consumer is
interested in only one. The consumers may use filters withnall

fltr =100 to get only the relevant
events; otherwise, they are notified about all events and have to process a higher load. The
consumers are interested inndiff

fltr ∈ {1, 10, 100} different events. We predict the JMS server
throughput based on the results of our study, in particular for different message replication
gradesr. Large replication grades occur if several clients filter for the same events. If no filters
are used, we consult Figure 7 to determine the received throughput. If filters are applied, we
use Equation (1), Equation (2), and Equation (3) with the respecitve parameters for application
property filtering to calculate the server capacity. We havecompiled the throughput of received
messages at the servers in Table 3.

The use of filters increases the throughput performance in these application scenarios for
FioranoMQ and for SunMQ but not for WebsphereMQ. However, the use of filters is not
only recommended to increase the server throughput but alsoto protect the consumers from
undesired load if they are only interested in 1% or 10% of the messages. We immediately re-
alize that FioranoMQ and SunMQ are superior to WebsphereMQ in all considered application
scenarios. Therefore, we discuss only the performance of these two solutions. Without filters,
FioranoMQ has twice the capacity of SunMQ and each consumersreceives all messages. With

19

Table 3: Throughput capacity of the FioranoMQ, SunMQ, and WebsphereMQ JMS server for
different application scenarios with 100 subscribers and an overall number ofnall

fltr =
100 filters if filters are used.

n
diff
fltr repl. Fiorano Sun Websphere
if grade capacity capacity capacity

applicable r (msgs/s) (msgs/s) (msgs/s)
no filters 100 456 228 90

100 1 676 1817 85
10 1 676 2566 85
1 1 676 2676 85
10 10 615 1333 85

all consumers having a filter installed, the throughput increases to 676 msgs/s for FioranoMQ,
and for SunMQ to 1817, 2566, or 2677 msgs/s if the number of different filtersndiff

fltr is 100,
10, or 1. This holds for a message replication grade ofr=1. In this case, the clients get only
1% of all messages. For a replication grade ofr = 10, the clients get 10% of all messages.
Then, FioranoMQ achieves a throughput of 615 msgs/s and SunMQ 1333 msgs/s ifndiff

fltr =10.
Thus, SunMQ has twice the capacity of FioranoMQ if filters areapplied.

After all, only FioranoMQ and SunMQ can be considered as highthroughput performance
JMS platform. FioranoMQ is the better choice without filterswhereas SunMQ performs better
when filters are applied. From a throughput performance point of view, WebsphereMQ is
clearly inferior both to FioranoMQ and SunMQ. However, Websphere comes with a wealth
of other functionality and the mere consideration of the throughput performance of its JMS
module is then certainly not a sufficient criterion against this solution, in particular, if high
throughput performance is not required.

7 Conclusion

In this work, we have compared the message throughput of the FioranoMQ, SunMQ, and
WebsphereMQ Java messaging system (JMS) server under various conditions. We first gave
a short introduction into JMS and reviewed related work. We presented the testbed and ex-
plained our measurement methodology. Then, we presented our experiments and results that
we used to develop performance models for the server throughput. We briefly summarize our
major findings.

(1) The throughput of the three investigated server types spans over several orders of mag-
nitude with FioranoMQ achieving the highest one and WebsphereMQ achieving the
lowest one.

(2) The throughput is significantly larger in the non-persistent mode than in the persistent
mode. The difference depends on the server type.

20

(3) The server throughput depends on the replication grade of the messages and the number
of installed filters. FioranoMQ can handle simple correlation ID filters more efficiently
than application property filters while SunMQ and WebsphereMQ require the same fil-
tering effort for both filter types.

(4) The message throughput is limited either by the processing logic for small messages or
by the transmission capacity for large messages.

(5) The number of configured topics hardly affects the overall capacity of the server.

(6) Complex OR-filters allow a larger message throughput than an equivalent number of
simple filters. The performance gain depends significantly on the server type.

(7) The complexity of AND-filters reduces the message throughput for FioranoMQ and
SunMQ and the position of the filter components matters, which can be used to opti-
mize the formulation of filter rules. In contrast, WebsphereMQ requires the same time
to process a message regardless of the filter complexity and the position of the filter
components.

Subsequently, we studied the joint impact of filters and the message replication grade. We
designed rather complex experiment series whose measurement results showed the influence
of the relevant parameters so well that we could find a quite accurate mathematical approx-
imation model of the message processing time for each servertype. These models predict
the message throughput for specific application scenarios depending on the average message
replication grade, the overall number of installed filters,and the number of different filters.
They made it evident that all server types have a basically different performance behavior.
Finally, we illustrated the use of the performance models byassessing the suitability of the
server types in four simple application scenarios. FioranoMQ led to the highest throughput if
filtering is not required; otherwise SunMQ performed better. In contrast, WebsphereMQ can-
not be viewed as a high performance JMS solution, but it is rather an allround server platform
with many different features including JMS.

References

[1] Sun Microsystems, Inc.,Java Message Service API Rev. 1.1, April 2002. http://
java.sun.com/products/jms/.

[2] Fiorano Software, Inc.,FioranoMQTM: Meeting the Needs of Technology and Business,
Feb. 2004.http://www.fiorano.com/whitepapers/whitepapers_fmq.
pdf.

[3] Sun Microsystems, Inc.,Sun ONE Message Queue, Reference Documentation,
2005. http://developers.sun.com/prodtech/msgqueue/reference/
docs/index.html.

21

[4] IBM Corporation, IBM WebSphere MQ 6.0, 2005. http://www-306.ibm.com/
software/integration/wmq/v60/.

[5] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The Many Faces of
Publish/Subscribe,” inACM Computing Surveys, 2003.

[6] Y. Liu and B. Plale, “Survey of Publish Subscribe Event Systems,” Technical Report,
No. TR574, Indiana University, May 2003.

[7] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “AchievingScalability and Expres-
siveness in an Internet-Scale Event Notification Service,”in 19th ACM Symposium on
Principles of Distributed Computing (PODC), July 2000.

[8] G. M”uhl, “Generic Constraints for Content-Based Publish/Subscribe,” in9th Inter-
national Conference on Cooperative Information Systems (CoopIS), (London, UK),
pp. 211–225, 2001.

[9] Z. Ge, P. Ji, J. Kurose, and D. Towsley, “Min-Cost Matchmaker Problem in Distributed
Publish/Subscribe Infrastructures,” inOpenSig Workshop, From Signalling to Program-
ming, 2002.

[10] H. Liu and H.-A. Jacobsen, “Modeling Uncertainties in Publish/Subscribe Systems,” in
20th International Conference on Data Engineering (ICDE), (Washington, DC, USA),
2004.

[11] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha, “Filtering Al-
gorithms and Implementation for Very Fast Publish/Subscribe Systems,”ACM SIGMOD
Record, vol. 30, pp. 115–126, June 2001.

[12] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith, “Efficient filtering in publish-
subscribe systems using binary decision diagrams,” in23rd International Conference on
Software Engineering (ICSE), (Washington, DC, USA), pp. 443–452, IEEE Computer
Society, 2001.

[13] G. Mühl, L. Fiege, and A. Buchmann, “Filter Similarities in Content-Based Pub-
lish/Subscribe Systems,”Conference on Architecture of Computing Systems (ARCS),
2002.

[14] R. Baldoni, M. Contenti, S. T. Piergiovanni, and A. Virgillito, “Modelling Pub-
lish/Subscribe Communication Systems: Towards a Formal Approach,” in8th Interna-
tional Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2003),
pp. 304–311, 2003.

[15] A. Carzaniga and A. L. Wolf, “A Benchmark Suite for Distributed Publish/Subscribe
Systems,” tech. rep., Software Engineering Research Laboratory, Department of Com-
puter Science, University of Colorado, Boulder, Colorado,2002.

22

[16] M. Pang and P. Maheshwari, “Benchmarking Message-Oriented Middleware - TIB/RV
vs. SonicMQ,” inWorkshop on Foundations of Middleware Technologies, International
Symposium on Distributed Objects and Applications (DOA) 2002, (University of Cali-
fornia, Irvine, CA), Nov. 2002.

[17] S. Chen and P. Greenfield, “QoS Evaluation of JMS: An Empirical Approach,” in37th

Annual Hawaii International Conference on System Sciences (HICSS), (Washington,
DC, USA), IEEE Computer Society, 2004.

[18] U. Farooq, E. W. Parsons, and S. Majumdar, “Performanceof Publish/Subscribe Mid-
dleware in Mobile Wireless Networks,”ACM SIGSOFT Software Engineering Notes,
vol. 29, no. 1, pp. 278–289, 2004.

[19] Krissoft Solutions, “JMS Performance Comparison,” tech. rep., 2004.http://www.
fiorano.com/comp-analysis/jms_perf_comp.htm.

[20] Sonic Software, Inc., Enterprise-Grade Messaging, 2004. http://www.
sonicsoftware.com/products/docs/sonicmq.pdf.

[21] Tibco Software, Inc., TIBCO Enterprise Message Service, 2004. http:
//www.tibco.com/resources/software/enterprise_backbone/
message_service.pdf.

[22] Crimson Consulting Group, “High-Performance JMS Messaging,” tech. rep.,
2003. http://www.sun.com/software/products/message_queue/wp_
JMSperformance.pdf.

[23] S. Godard,Sysstat Monitoring Utilities, Feb. 2004.

23

