
University of Würzburg
Institute of Computer Science

Research Report Series

Improving the Performance and Robustness
of Kademlia-based Overlay Networks

Andreas Binzenḧofer and Holger Schnabel

Report No. 405 April 2007

University of Würzburg, Institute of Computer Science
Chair of Distributed Systems, Ẅurzburg, Germany

Email: binzenhoefer@informatik.uni-wuerzburg.de

Improving the Performance and Robustness
of Kademlia-based Overlay Networks

Andreas Binzenḧofer and Holger Schnabel
University of Würzburg, Institute of Computer Science

Chair of Distributed Systems, Ẅurzburg, Germany
Email: binzenhoefer@informatik.uni-wuerzburg.de

Abstract

Structured peer-to-peer (p2p) networks are highly distributed systems with a potential to
support business applications. There are numerous different suggestions on how to imple-
ment such systems. However, before legal p2p systems can become mainstream they need
to offer improved efficiency, robustness, and stability. While Chord is the most researched
and best understood mechanism, the Kademlia algorithm is widely-used in deployed ap-
plications. There are still many open questions concerningthe performance of the latter.
In this paper we identify the main problems of Kademlia by large scale simulations and
present modifications which help to avoid those problems. This way, we are able to signifi-
cantly improve the performance and robustness of Kademlia-based applications, especially
in times of churn and in unstable states. In particular, we show how to increase the stability
of the overlay, make searches more efficient, and adapt the maintenance traffic to the current
churn rate in a self-organizing way.

1 Introduction

There is both theoretical and practical evidence that p2p networks havea potential to support
business applications. They are scalable to a large number of customers, robust against denial
of service attacks, and do not suffer from a single point of failure. Skype [12], a p2p based
VoIP application, e.g., serves millions of people every day. The main task of the underlying p2p
network is to support efficient lookups for content stored in the overlay. The latest generation of
p2p networks, the so called Distributed Hash Tables (DHTs), was especially designed to handle
this task in a fast and scalable way. There are numerous different DHTsproposed in literature:
CAN, Pastry, Chord, and Kademlia, to name just a few. All those algorithms dohave in common
that each participating peer gets a unique identifier using a hash function, while a distance metric
is defined on these identifiers. In order to maintain the stability of the overlay each peer usually
has a very good knowledge about its neighbors and some additional pointers to more distant
peers used as shortcuts to guarantee fast lookups. In the research community Chord became
the most studied algorithm in the last few years, which is possibly due to its easyto analyze
ring structure. The scalability [10] [2], the behavior under churn [5] and the overlay stability of
Chord [3] are well understood.

The majority of deployed overlay networks, however, make use of the Kademlia protocol [7].
It replaces the server in the latest eMule modifications and is used as a distributed tracker in the
original BitTorrent as well as in the Azureus client [1]. The latter continuously attracts more
than 800.000 simultaneous users world wide. Despite all this there are only few scientific papers
evaluating the performance of the Kademlia algorithm. In [6] the performanceof different DHT

1

algorithms including Kademlia is evaluated and compared. Modifications to support heteroge-
neous peers are introduced in [4]. Finally in [11] an analysis of the lookup performance of Kad,
the Kademlia-based DHT used in eMule, is given. The authors examine the impact of rout-
ing table accuracy on efficiency and consistency of the lookup operationand propose adequate
improvements.

In order to understand the performance of Kademlia in greater detail, we implemented a de-
tailed discrete event simulator in ANSI-C based on the algorithm given in the original paper [7].
In particular, we studied the search duration, the overlay stability and the required maintenance
traffic. In this paper we present the insights gained during our simulations.We will describe the
weak points we discovered and pinpoint their root causes. For each problem we will present an
optimization, which eliminates the disadvantages and makes Kademlia a protocol more feasible
for business applications.

The remainder of the paper is structured as follows: In Section 2, we recapitulate the main
aspects of the original Kademlia algorithm. A brief description of our simulator and the cor-
responding user model is given in Section 3. The discovered problems, their causes, and the
solutions are summarized in Section 4. Section 5 finally concludes the paper.

2 Standard Kademlia

Kademlia is a DHT-based p2p mechanism which is used to efficiently locate information in an
overlay network. A hash table is a data structure that associates keys with values. A distributed
hash table (DHT) assigns the responsibility of parts of the value range of the hash function, i.e.
of the address spaceS, to different peers. In order to retrieve the data, DHTs apply sophisticated
routing schemes, such as self-balancing binary search trees. Each peer stores contact information
about other peers in order to route query messages.

Address
Space S Routing table of peer pRouting table of peer p

bucket 1

bucket 2

bucket 3

bucket 4

bucket 5

1(,) 2 ;2N i N id p q − − + ∈  

bucket i consists of
peers q with distance

1(,) 2 ;2N Nd p q − ∈   0 1(,) 2 ;2Nd p q − ∈  

Figure 1: Routing table of peerp

In Kademlia, the branches of the binary search tree are represented asbuckets, cf. Figure 1.

2

The collection of buckets form the routing table. Bucketi of peerp’s routing table is a list of
peers which have a certain distance to peerp. Kademlia uses 160-bit identifiers for the address
space and applies the XOR metric, i.e.,

S = {0; 1}N with N = 160 (1)

d : S × S → [0; 2N], (2)

(p, q) 7→ p ⊕ q.

This means that bucketi in the routing table of peerp covers all peersq with distanced(p, q) ∈
[2N−i; 2N−i+1[, cf. Figure 1. In order to keep the size of the routing table small enough, abucket
has at mostk entries and is also referred to as k-bucket. This results in a maximal number of
routing table entries ofk · N . A more detailed description of the Kademlia algorithm can be
found in [7].

3 Simulator Details

In order to evaluate the different performance aspects of Kademlia, we developed a discrete
event simulator according to the algorithms in [7]. As stated above, for each0 ≤ i < 160 a
peer keeps a bucket ofk peers of distance between2N−i and2N−i+1 from itself according to
the XOR metric. Thereby the routing table is adapted dynamically. That is, eachpeer starts with
one single bucket covering the entire address space and recursivelysplits the bucket containing
the peer’s own ID as soon as this bucket holds more thank entries. This results in an up-to-date
routing table reflecting the current state of the overlay network as shown inFigure 1. When
many peers leave the system, Kademlia merges the corresponding buckets accordingly.

Furthermore, a peer is able to insert documents into the overlay network. Toguarantee their
availability, each of these documents is stored at thek closest peers to the document’s ID. If the
document was not received from another peer forTrep minutes, the corresponding peer repub-
lishes the document, i.e. it sends the document to the remainingk − 1 peers of the replication
group. When searching for a document a peer recursively sends parallel queries to theα closest
peers it knows. The next recursion begins as soon as the peer receivedβ answers. This guaran-
tees that a searching peer will only run into a timeout ifα−β+1 peers do not answer within one
specific search step. If not stated otherwise, we use the default parametersTrep = 60 minutes,
α = 3, β = 2, andk = 20.

To model end user behavior, we randomly chose join and leave events foreach peer. To
be comparable to other studies in literature a peer stays online and offline foran exponentially
distributed time interval with a mean ofEon andEoff respectively. When online, the peer issues
a search everyEsearch minutes, where the time between two searches is also exponentially
distributed. Using different distributions mainly changes the quantitative butnot the qualitative
statements made during the remainder of this paper. To increase the credibility of our results [8],
we include the 95 percent confidence intervals where appropriate.

3

4 Improvements

All structured p2p networks have been designed to scale to a large numberof peers in the overlay.
Therefore the real scalability issue of such systems is not in terms of systemsize but in terms of
churn [9]. That is, the frequency at which peers join and leave the system has significantly more
influence on its robustness and stability than the mere size of the system itself. In this section we
uncover the problems caused by churn and show how to avoid them. In each simulation we use
a total of 40000 peers, which we found to be sufficiently large to capture all important effects
regarding the overlay size, and setEon = Eoff , resulting in an average overlay size of 20000
peers. The focus of our analysis of the simulation results is on qualitative behavior and not on
quantitative statements.

4.1 Search Efficiency

The success and duration of a search for a document heavily depend on the correctness of a
peer’s pointers to other peers, i.e. on the correctness of the peer’s routing table. In Kademlia
the most crucial pointers are those to itsk closest neighbors in the overlay. We measure the
correctness of these pointers using two different variables:

• Ph: States how many of its currentk closest neighbors a peer actually holds in its k-
buckets.

• Pr: Represents the number of correct peers out of thek closest neighbors, which a peer
actually returns when asked for.

Ideally a peer would not only know but also return all of itsk neighbors.

0 50 100 150 200
12

14

16

18

20

N
um

be
r

of
 e

nt
rie

s

Average online time [min]

P
h

P
r

Downlist modification

Standard
implementation

Figure 2:Ph andPr in dependence of the churn
rate

0 50 100 150 200
300

400

500

600

700

800

900

Average online time [min]

A
ve

ra
ge

 s
ea

rc
h

tim
e

[m
s]

Downlist
modification

Standard
implementation

Figure 3: Influence of the downlist modifica-
tion on the search efficiency

However, our simulations show that the standard implementation of Kademlia has problems
with Pr. We setk = 20 and simulated the above described network for different churn rates.
Figure 2 illustratesPh andPr in dependence of the churn rate. The mean online/offline time of
a peer was variied between 10 and 180 minutes. Even though on average apeer knows almost

4

all its neighbors (Ph close to 20), it returns significantly less valid entries when queried (Pr as
low as 13). The shorter a peer stays online on average, the less valid peers are returned during
a search. The problem can be tracked down to the fact that there are stillmany pointers to
offline peers in the corresponding k-bucket of the peer. The reasonis that there is no effective
mechanism to get rid of out-dated k-bucket entries. Offline entries are only eliminated (or moved
to the cache) if a peer runs into a timeout while trying to contact an offline peer. A peer which
identifies an offline node, however, keeps that information to itself. Thus,it is not unlikely that
a node returns offline contacts as it has very limited possibilities to detect offline nodes. As a
result more timeouts occur and searches take longer than necessary. Another problem is that
searches are also getting more inaccurate, which has negative effects not only on the success
of a search but also on the redundancy of the stored documents. The reason is that due to the
incorrect search results documents will be republished to less thank peers or to the wrong peers.

4.1.1 Solution - Downlists

The primary reason for the above mentioned problem is that so far only searching peers are able
to detect offline nodes. The main idea of our solution to this problem is that a searching peer,
which discovers offline entries while performing a search, should sharethis information with
appropriate other peers. To do so, a peer maintains a downlist consisting of all peers which it
discovered to be offline during its last search. At the end of the search the corresponding entries
of this downlist are sent to all peers which gave those entries to the searching peer during its
search. These peers then also remove the received offline entries from their own k-buckets. This
mechanism helps to get rid of offline entries by propagating locally gained information to where
it is needed. With each search offline nodes will be eliminated.

The improved stability of the overlay is obviously bought by the additional bandwidth needed
to send the downlists. From a logical point of view, however, it does require more overhead to
keep the overlay stable under higher churn rates. In this sense, the additional overhead traffic
caused by sending downlists is self-organizing as it automatically adapts to thecurrent churn
rate. The more churn there is in the system, the more downlists are sent.

It should also be mentioned, that without appropriate security arrangements a sophisticated
attacker could misuse the downlist algorithm to exclude a target node by claimingin its downlist
that this specific node had gone offline. However, this problem can be minimized by only remov-
ing those nodes which were actually given to the searching node during a search or additionally
by verifying the offline status using a ping message. One could also apply trust or reputation
based mechanism to exclude malicious nodes.

4.1.2 Effect on Search Efficiency

To compare the downlist modification to the standard implementation we again simulateda
scenario with 20000 peers on average and calculated the 95 percent confidence intervals. Figure
2 proves, that the downlist modification has the desired effect onPr, the number of correctly
returned neighbors. Using downlists bothPh andPr stay close to the desired value of 20, almost
independent of the current churn rate. That is, even in times of high churn the stability of the
overlay can be guaranteed.

5

This improved correctness of the overlay stability also has a positive influence on the search
efficiency. In Figure 3 we plot the average duration of a search against the average online/offline
time of a peer. In this context an overlay hop was modeled using an exponentially distributed
random variable with a mean of 80 ms. Both curves show the same general behavior. The longer
a peer stays online on average, the shorter is the duration of a search. However, especially
in times of high churn, the downlist modification (lower curve) significantly outperforms the
standard implementation. The main reason is that on average a peer runs into more timeouts
using the standard implementation, as it queries more offline peers during a search. The effects
on the maintenance overhead will be discussed in Section 4.3.

4.2 Overlay stability

When peers join and leave the overlay network, the neighbor pointers of apeer have to be
updated accordingly. As mentioned above, the downlist modification greatly improves the cor-
rectness of thek closest neighbors of a peer. To understand this effect in more detail, wehave a
closer look at a single simulation run. We consider a mean online/offline time of 60minutes and
an average of 20000 peers for both the standard implementation and the downlist modification.

10 20
0

5k

10k

15k

number of entries

nu
m

be
r

of
 p

ee
rs

Standard
Implementation

P
h

P
r

10 20
0

5k

10k

15k

number of entries

nu
m

be
r

of
 p

ee
rs

Downlists

P
h

P
r

Figure 4:Ph and Pr for the standard imple-
mentation and the downlist modifica-
tion

0 50 100 150 200
19.6

19.7

19.8

19.9

20

N
um

be
r

of
 e

nt
rie

s

Average online time [min]

Downlist and Force−k
modification

Downlist
modification only

P
h

P
r

Figure 5: Effect of Force-k under churn

Figure 4 illustrates the distribution ofPh andPr in both scenarios. As can be seen in the left
part of the figure, almost all peers know more than 17 of their 20 closest neighbors using the
standard implementation. However, the number of correctly returned peersPr is significantly
smaller for most peers. This problem is greatly reduced by the downlist modification as can be
seen in the right part of the figure. In this case, the number of known andthe number of returned
peers are almost equal to each other. Yet, there are still some peers, which do not know all of
their 20 closest neighbors. This is in part due to the churn in the overlay network. However,
simulations without churn produce results, which are comparable to those shown in the right
part of Figure 4. The cause of this problem can be summarized as follows:Let Bp be the k-
bucket of peer p, which includes the ID of peer p itself andBp̄ the brother ofBp in the binary
tree whose leaves represent the k-buckets as shown in Figure 6. Thenaccording to the Kademlia

6

algorithm bucketBp is the only bucket which will be split. However, if onlye < k of the actual
k closest contacts fall into this bucket, thenv = k− e of these contacts theoretically belong into
its brotherBp̄.

contains peer p
BpBpBp

cannot be split

Figure 6:Bp and its brotherBp̄ in the Kademlia routing table

Now, if this bucket is full it cannot be split. Thus, if some of thev contacts are not already
in the bucket, it is very unlikely that the peer will insert them into its buckets. The reason is,
that a new contact will be dropped in case the least recently seen entry ofBp̄ responds to a
ping message. Since in a scenario without churn all peers always answer to ping messages, new
contacts will never be inserted intoBp̄, even though they might be among thek closest neighbors
of the peer. In the original paper it is suggested to split additional bucketsin which the peer’s
own ID does not reside in order to avoid this problem. However, this has twomajor drawbacks.
At first, it is a very complex process, which is vulnerable to implementation errors. Secondly, it
involves a great deal of additional overhead caused by bucket refreshes and so on and so forth. In
the next section, we therefore develop a simple solution, which does not require any additional
overhead.

4.2.1 Solution - Force-k

As stated above, it is possible, that a peer does not know all of itsk closest neighbors, even
in times of no churn. To solve this problem, we need to find a way to force a peer to always
accept peers belonging intoBp̄ in case they are amongst itsk closest neighbors. Suppose a node
receives a new contact, which is among itsk closest neighbors and which fits into the already
full bucketBp̄. So far, the new contact would have been dropped in case the least recently seen
entry ofBp̄ responded to a ping message. Compared to this, the Force-k modification ensures
that such a contact will automatically be inserted into the bucket. In order to decide which of
the old contacts will be replaced, one could keep sending ping messages and remove the first
peer, which does not respond. However, this again involves additionaloverhead in terms of
bandwidth. A faster and passive way is to put all entries ofBp̄, which are not among thek
closest peers into a listl and drop the peer which is the least useful. This could be the peer
which is most likely to be offline or the peer which has the greatest distance according to the

7

XOR metric.
In our implementation, we decided to consider a mixture of both factors. Each of the entries

e of list l is assigned a specific score

se = te + de (3)

and the one with the highest score will be dropped. Thereby,te is intended to be a measure for
the likelihood of peere to be offline andde for the distance of peere to peerp. The exact values
of te andde are obtained by taking the index of the position of the corresponding peer inthe list,
as if it was sorted ascending by the time least recently seen or by the peer’sdistance respectively.
That is, if e is the least recently seen peer (te = 1) and has the third closest distance to peerp

(de = 3) it is assigned a score ofse = 4.

4.2.2 Effect on Stability

We investigated the impact of the Force-k modification on the stability of the overlay network
in various simulations. In scenarios without churn, all peers finally know and return all of their
k closest neighbors. The corresponding figures show lines parallel to the x-axis at a value of
k = 20. It is therefore more interesting to regard the overlay stability during churnphases.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

Average online time [min]

S
en

t p
ac

ke
ts

 p
er

 p
ee

r
pe

r
se

co
nd

Total
traffic

Republish
traffic

Join traffic

Downlist traffic

Figure 7: The maintenance traffic of a peer
split into its components

58 59 60 61 62
0

0.5

1

1.5

2

Time stamp of next republish event

P
D

F

x = 0.5 x = 1 x = 2

Figure 8: PDF ofIrep for different values ofx

In Figure 5, we plot the average online time of a peer against the number of known and
returned neighbors using the same simulation scenario as before. The two lower curves corre-
spond to our previous results using the downlist modification. The two uppercurves represent
the Force-k modification in combination with the downlist modification. It can be seen that the
Force-k algorithm also improves the stability of the overlay in times of churn. While the appear-
ance of the curves is similar, there are more neighbors known (solid lines) and returned (dashed
lines) as compared to using only the downlist modification. Even if a peer staysonline for only
10 minutes on average, it will know about 19.9 out of 20 neighbors and return more than 19.8
correct entries. By improving the correctness of the neighbors, the Force-k modification also
increases the search success rate and the redundancy of stored documents.

8

4.3 Redundancy Overhead

The bandwidth required to maintain a stable overlay and to ensure the persistence of stored
documents directly reflects the costs for a peer to participate in the network. We simulated a
network with 20000 peers on average and recorded the average number of packets per second
sent by a peer while it was online. Figure 7 illustrates the average traffic per peer in dependence
of the average online time of a peer. In addition to the total traffic, the figure also shows its three
main components, the join, the republish, and the downlist traffic.

SinceEsearch, the average time between two searches of a peer, was set to 15 minutes, the
search traffic per peer per second can be neglected in this scenario and is thus not shown in the
figure. The same is true for the traffic caused by bucket refreshes, since a specific bucket is only
refreshed if it has not been used for an entire hour. The Force-k algorithm is performed locally
and does thus also not produce any additional overhead.

It can be seen in the figure that the downlist traffic automatically adapts itself to the current
churn rate. The more frequently the peers join and leave the system, the moredownlist traffic is
produced by a peer on average. In general, the small amount of bandwidth needed to distribute
the downlists is also easily compensated by the improved stability of the overlay. The major part
of the traffic is caused when joining the network and republishing documents. It is obvious that
the average amount of join traffic increases if a peer stays online for a shorter period of time. The
join traffic cannot and should not be avoided as it is necessary for a peer to make itself known
when it joins the network. Moreover, the join traffic already shows a self-organizing behavior.
The more churn there is in the system, the more joins there are in total and the moreoverhead is
produced to compensate the problems caused by the churn.

At first, the run of the curve representing the republish traffic seems to becounter-intuitive.
The less churn there is in the system, the more republish traffic is sent by a peer on average.
However, the reason becomes obvious, if one takes into account that thelonger a peer stays
online on average, the more likely it gets that there are republish events. Infact, the probability
that a peer stays online for longer than 60 minutes given the corresponding average online time
Eon, resembles the run of the republish curve. The reason why the total amount of republish
traffic exceeds the remaining traffic so significantly is as follows: Each document is stored at the
k closest nodes to its ID, the so called replication group. To compensate for nodes leaving the
network, each peer sends the document to all other peers of the replication group if it has not re-
ceived the document from any other peer forTrep = 60 minutes. The idea behind this republish
mechanism is that one peer republishes the document and all other peers reset their republish
timers accordingly. Since the republishing peer sends the document to all peers of the replication
group simultaneously, the peers reset their timers at approximately the same time.The next time
the first peer starts to republish the document, it has to search for the corresponding replication
group before it can redistribute the document. However, during this search the republish timers
of the other peers are likely to run out and they will start to republish the document as well. For
this reason, a document might get republished by up tok peers instead of just one single peer,
resulting in unnecessary overhead traffic. This problem of synchronization is already mentioned
in the original paper. In the following section, we present a solution, whichgreatly reduces the
republish overhead and which is also resistant against churn.

9

4.3.1 Solution - Betarepublish

The synchronization problem of the republish process arises if all peers of a replication group
have approximately the same time stamp for the next republish event. At first thisseems to be
unlikely. However, each time a peer republishes a document all other peers of the replication
group receive this document at approximately the same time and are thus synchronized again.
The main idea to avoid this problem is to assure that all peers use different timestamps. To
achieve this, each peer chooses its time stamp randomly in the interval[Trep − x, Trep + x]
instead of exactly afterTrep = 60 minutes. LetIrep be the random variable describing the
time stamp of the next republish event. Then we wantIrep to be distributed in such a way, that
only few peers start republishing at the beginning of the interval and the probability to republish
increases towards the end of the interval. This can, e.g., be achieved by setting:

Irep = (Trep − x) + 2 · x · Ibeta (4)

whereIbeta is a random variable with density

ibeta(t) =

{

t√
(1−t)·B(2,0.5)

if 0 < t < 1

0 otherwise
(5)

andB (α, β) is the beta function, defined by

B (α, β) =

∫ 1

0
tα−1 (1 − t)β−1 dt (6)

Therebyx should be small compared toTrep but still significantly larger than the duration
of a search. Figure 8 shows the probability density function ofIrep for different values ofx.
All peers will set their time stamps somewhere in the interval[60 − x, 60 + x]. The probability
for a peer to set its time stamp is still very low at the beginning of the interval. It then ascends
significantly towards the end of the interval. In the case ofTrep = 60 minutes,x = 2 minutes
is a reasonable choice, since it offers a long period of time with a low probability of republish
events. This way, the republish traffic will be significantly reduced as it becomes very likely
that only one or a few peers actually start a republish process. Again, note that a peer does only
republish a document if it has not received it from another peer forTrep = 60 minutes.

4.3.2 Effect on Overhead

In this section we will have a look at the influence of the Betarepublish modification on the
average amount of republish traffic sent by a peer.

Figure 9 shows the average number of republish packets per peer per second in dependence
of the average online time. We compare the results for simulations using the standard imple-
mentation, our two previous modifications, and all modifications including Betarepublish. First
of all the average republish traffic of a peer is increased by using the downlist modification. The
reason is that using the standard implementation there are more offline nodes inthek-buckets
during times of churn. Thus documents are republished to less peers, which reduces the re-
publish traffic but also the redundancy in the system. The additional trafficintroduced by the
downlist modification is therefore used to improve the availability of documents.

10

0 50 100 150 200
0

0.5

1

1.5

2

Average online time [min]

S
en

t p
ac

ke
ts

 p
er

 p
ee

r
pe

r
se

co
nd

Standard
implementation

Downlist and Force−k
modification

Betarepublish modification

Figure 9: Maintenance traffic caused by repub-
lish processes

0 50 100 150 200
1

1.5

2

2.5

3

Average online time [min]

S
en

t p
ac

ke
ts

 p
er

 p
ee

r
pe

r
se

co
nd

Downlist and Force−k
modification

Standard
implementation

Betarepublish modification

Figure 10: Total maintenance traffic in depen-
dence of the churn rate

The Betarepublish modification is applied in an effort to minimize the traffic which isneces-
sary to achieve this availability. The figure shows that Betarepublish indeedreduces the amount
of required republish traffic significantly. The Betarepublish traffic lies well beneath the stan-
dard implementation and also rises slower with an increasing average online time.Note that
the Betarepublish modification does only avoid redundant traffic. It is still able to guarantee the
same redundancy, stability, and functionality. Figure 10 shows how the reduced republish traf-
fic influences the total traffic for the three regarded versions of Kademlia(Standard, downlists
and Force-k, all modifications). At first, it can be seen that the use of downlists increases the
total traffic as compared to the standard implementation. Again, this is desired overhead as it
greatly helps to increase the robustness, the stability, and the redundancyof the overlay in an
autonomous way.

By adding the Betarepublish modification, the total traffic is significantly reduced and no
longer dominated by the republish traffic. While the average maintenance traffic sent by a peer
in the standard implementation actually increases when there is less movement in theoverlay
network, it finally shows a self-organizing behavior when using all modifications. The less churn
there is in the system, the less maintenance traffic is generated to keep the overlay network up
to date. That is, the amount of bandwidth invested to keep the overlay running automatically
adapts itself to the current conditions in the overlay.

5 Conclusion

In this paper we investigated the performance of the Kademlia protocol usinga detailed discrete
event simulator. We were able to detect and pinpoint some weak points regarding the stability
and the efficiency of the overlay network. In this context, three modifications have been proposed
to enhance the performance, the redundancy, and the robustness of Kademlia-based networks.
With the help of downlists, the correctness of the neighbor pointers and the duration of a search is
greatly improved. The Force-k modification ensures that a peer has a very good knowledge of its
direct neighborhood, which greatly increases the stability as well as the overall performance. We

11

also introduced a new republish algorithm, which significantly reduces the total traffic needed to
keep the overlay running. The improved version of Kademlia shows a self-organizing behavior
as the amount of generated maintenance traffic autonomously adapts to the current churn rate in
the system.

The proposed modifications can be used to support large scale p2p applications, which are
able to sustain dynamic user behavior. Even though the algorithms have beenintroduced using
Kademlia, they are by no means restricted to this protocol. Especially the downlist and the
Betarepublish mechanisms can easily be applied to other DHTs like Pastry, CAN, or Chord.

Acknowledgements

The authors would like to thank Robert Henjes, Tobias Hofeld, and PhuocTran-Gia for the
insightful discussions as well as the reviewers for their valuable suggestions.

References

[1] Azureus. URL: http://azureus.sourceforge.net/.

[2] A. Binzenḧofer and P. Tran-Gia. Delay Analysis of a Chord-based Peer-to-Peer File-
Sharing System. InATNAC 2004, Sydney, Australia, December 2004.

[3] Andreas Binzenḧofer, Dirk Staehle, and Robert Henjes. On the Stability of Chord-based
P2P Systems. InGLOBECOM 2005, page 5, St. Louis, MO, USA, November 2005.

[4] Youki Kadobayashi. Achieving Heterogeneity and Fairness in Kademlia. InProceedings of
IEEE/IPSJ International Workshop on Peer-to-Peer Internetworking co-located with Sym-
posium on Applications and the Internet (SAINT2004), pages 546–551, January 2004.

[5] Supriya Krishnamurthy, Sameh El-Ansary, Erik Aurell, and Seif Haridi. A Statistical The-
ory of Chord under Churn. In4th International Workshop on Peer-To-Peer Systems, Ithaca,
New York, USA, February 2005.

[6] Jinyang Li, Jeremy Stribling, Thomer M. Gil, Robert Morris, and M. Frans Kaashoek.
Comparing the performance of distributed hash tables under churn. InProceedings of the
3rd International Workshop on Peer-to-Peer Systems (IPTPS04), San Diego, CA, February
2004.

[7] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information system
based on the xor metric. InIPTPS 2002, Cambridge, MA, USA, March 2002.

[8] K. Pawlikowski, H.-D.J. Jeong, and J.-S. Ruth Lee. On credibility of simulation studies of
telecommunication networks. InIEEE Communications Magazine, January 2002.

[9] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling Churn in a
DHT. In 2004 USENIX Annual Technical Conference, Boston, MA, June 2004.

12

[10] Ion Stoica, Robert Morris, David Karger, M. Frans. Kaashoek, and Hari Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. InACM SIG-
COMM 2001, San Diego, CA, August 2001.

[11] Daniel Stutzbach and Reza Rejaie. Improving lookup performance over a widely-deployed
dht. In IEEE INFOCOM 2006, Barcelona, Spain, April 2006.

[12] Skype Technologies. Skype. URL: http://www.skype.com.

13

