University of Wiirzburg
Institute of Computer Science
Research Report Series

Improving the Performance and Robustness
of Kademlia-based Overlay Networks

Andreas Binzenbfer and Holger Schnabel

Report No. 405 April 2007

University of Wiirzburg, Institute of Computer Science
Chair of Distributed Systems, Wzburg, Germany
Email: binzenhoefer@informatik.uni-wuerzburg.de

Improving the Performance and Robustness
of Kademlia-based Overlay Networks

Andreas Binzenlbfer and Holger Schnabel
University of Wiirzburg, Institute of Computer Science

Chair of Distributed Systems, Wvzburg, Germany

Email: binzenhoefer@informatik.uni-wuerzburg.de

Abstract

Structured peer-to-peer (p2p) networks are highly digtatl systems with a potential to
support business applications. There are numerous diffetgygestions on how to imple-
ment such systems. However, before legal p2p systems camieanainstream they need
to offer improved efficiency, robustness, and stability. Wi@hord is the most researched
and best understood mechanism, the Kademlia algorithmdslyiused in deployed ap-
plications. There are still many open questions concertlisgpoerformance of the latter.
In this paper we identify the main problems of Kademlia bygéascale simulations and
present modifications which help to avoid those problemss Way, we are able to signifi-
cantly improve the performance and robustness of Kadepalged applications, especially
in times of churn and in unstable states. In particular, vasvsiow to increase the stability
of the overlay, make searches more efficient, and adapt thrgenance traffic to the current
churn rate in a self-organizing way.

1 Introduction

There is both theoretical and practical evidence that p2p networksehpeéential to support
business applications. They are scalable to a large number of custooterst against denial
of service attacks, and do not suffer from a single point of failureyp8K12], a p2p based
VolIP application, e.g., serves millions of people every day. The main taslk afrttierlying p2p
network is to support efficient lookups for content stored in the oveflhg latest generation of
p2p networks, the so called Distributed Hash Tables (DHTSs), was e#ipagaigned to handle
this task in a fast and scalable way. There are numerous different pidépssed in literature:
CAN, Pastry, Chord, and Kademlia, to name just a few. All those algorithrhsd®in common
that each participating peer gets a unique identifier using a hash functide anistance metric
is defined on these identifiers. In order to maintain the stability of the overtdyp=er usually
has a very good knowledge about its neighbors and some additional rsdiotenore distant
peers used as shortcuts to guarantee fast lookups. In the researstunity Chord became
the most studied algorithm in the last few years, which is possibly due to itsteasyalyze
ring structure. The scalability [10] [2], the behavior under churn [&] the overlay stability of
Chord [3] are well understood.

The majority of deployed overlay networks, however, make use of theidd protocol [7].
It replaces the server in the latest eMule modifications and is used as autiestritacker in the
original BitTorrent as well as in the Azureus client [1]. The latter contirakp attracts more
than 800.000 simultaneous users world wide. Despite all this there are andgifentific papers
evaluating the performance of the Kademlia algorithm. In [6] the performaihdéferent DHT

algorithms including Kademlia is evaluated and compared. Modifications to dupgteroge-
neous peers are introduced in [4]. Finally in [11] an analysis of the lp@arformance of Kad,
the Kademlia-based DHT used in eMule, is given. The authors examine thetimipeout-
ing table accuracy on efficiency and consistency of the lookup operatidipropose adequate
improvements.

In order to understand the performance of Kademlia in greater detail, wenmapted a de-
tailed discrete event simulator in ANSI-C based on the algorithm given in tpmalpaper [7].
In particular, we studied the search duration, the overlay stability and guéreel maintenance
traffic. In this paper we present the insights gained during our simulatesvill describe the
weak points we discovered and pinpoint their root causes. For eablepr we will present an
optimization, which eliminates the disadvantages and makes Kademlia a protoedieasible
for business applications.

The remainder of the paper is structured as follows: In Section 2, weitelzde the main
aspects of the original Kademlia algorithm. A brief description of our simulatdrthe cor-
responding user model is given in Section 3. The discovered problerisctuses, and the
solutions are summarized in Section 4. Section 5 finally concludes the paper.

2 Standard Kademlia

Kademlia is a DHT-based p2p mechanism which is used to efficiently locateriafimm in an
overlay network. A hash table is a data structure that associates keysaligsvA distributed
hash table (DHT) assigns the responsibility of parts of the value range bfish function, i.e.
of the address spacg to different peers. In order to retrieve the data, DHTs apply sophistica
routing schemes, such as self-balancing binary search trees. Eactgres contact information
about other peers in order to route query messages.

| [(] o o [o o o o [Plo|oe [(] o ‘
Address ERouting table of peer p
Space S i
d(p.q)0[2'%2'] d(p.oy0[22"
bucket 1 e o o ° e o o |

bucket2| e o o l

bucket 7 consists of bucket 3
peers g with distance
d(P, q) D.:ZN—i : 2N—i+1|:
bucket 4 n

Figure 1: Routing table of peer

In Kademlia, the branches of the binary search tree are represertedias, cf. Figure 1.

The collection of buckets form the routing table. Bucketf peerp’s routing table is a list of
peers which have a certain distance to pedkademlia uses 160-bit identifiers for the address
space and applies the XOR metric, i.e.,

S ={0;1}" with N = 160 (1)
d: SxS —][0;2V], (2)
(rg) —poq

This means that buckétn the routing table of peercovers all peerg with distancel(p, q) €
[2V—t 2N=i+1] cf, Figure 1. In order to keep the size of the routing table small enougiglaet
has at mosk entries and is also referred to as k-bucket. This results in a maximal nurhber o
routing table entries of - N. A more detailed description of the Kademlia algorithm can be
found in [7].

3 Simulator Details

In order to evaluate the different performance aspects of Kademlia,ewelaped a discrete
event simulator according to the algorithms in [7]. As stated above, for @achi < 160 a
peer keeps a bucket éfpeers of distance betwe@? —* and2"V—#*! from itself according to
the XOR metric. Thereby the routing table is adapted dynamically. That is pesetstarts with
one single bucket covering the entire address space and recugiigdythe bucket containing
the peer’s own ID as soon as this bucket holds more khantries. This results in an up-to-date
routing table reflecting the current state of the overlay network as showigime 1. When
many peers leave the system, Kademlia merges the corresponding bucketsreyty.

Furthermore, a peer is able to insert documents into the overlay netwoguarantee their
availability, each of these documents is stored atitbbsest peers to the document’s ID. If the
document was not received from another peerZiQy minutes, the corresponding peer repub-
lishes the document, i.e. it sends the document to the remaining peers of the replication
group. When searching for a document a peer recursively senafspgueries to the closest
peers it knows. The next recursion begins as soon as the peema@ainswers. This guaran-
tees that a searching peer will only run into a timeout# 3+ 1 peers do not answer within one
specific search step. If not stated otherwise, we use the default garaffie, = 60 minutes,
a=3,0=2,andk = 20.

To model end user behavior, we randomly chose join and leave evenesdbrpeer. To
be comparable to other studies in literature a peer stays online and offliae taqponentially
distributed time interval with a mean &f,,, andE, s s respectively. When online, the peer issues
a search every,...., minutes, where the time between two searches is also exponentially
distributed. Using different distributions mainly changes the quantitativadiuhe qualitative
statements made during the remainder of this paper. To increase the credilalityresults [8],
we include the 95 percent confidence intervals where appropriate.

4 |mprovements

All structured p2p networks have been designed to scale to a large nohgeenrs in the overlay.
Therefore the real scalability issue of such systems is not in terms of sg&terout in terms of
churn [9]. That s, the frequency at which peers join and leave themisas significantly more
influence on its robustness and stability than the mere size of the system itgbi§ $ection we
uncover the problems caused by churn and show how to avoid them.Hrsigaglation we use

a total of 40000 peers, which we found to be sufficiently large to captummportant effects
regarding the overlay size, and 961, = Ly, resulting in an average overlay size of 20000
peers. The focus of our analysis of the simulation results is on qualitathe/lme and not on
guantitative statements.

4.1 Search Efficiency

The success and duration of a search for a document heavily depethe correctness of a
peer’s pointers to other peers, i.e. on the correctness of the pegtisgdable. In Kademlia
the most crucial pointers are those to Aitglosest neighbors in the overlay. We measure the
correctness of these pointers using two different variables:

e P,: States how many of its curret closest neighbors a peer actually holds in its k-
buckets.

e P.. Represents the number of correct peers out ofithivsest neighbors, which a peer
actually returns when asked for.

Ideally a peer would not only know but also return all ofitaeighbors.

[Eny
=

I
o

‘ : : 900
Downlist modification
200 u)
——— £ 800r
w k=S
Q| e z 2
518 Standard T £ 700
] implementation .- <
Y— L= 8
; 167 8 600 Standard
2 A 0 implementation
IS 25001
S ” IS
=z . 5
>
<

- p | Downlist
1 ‘ ‘ ‘ r 300, modification ‘ ‘
2O 50 100 150 200 0 50 100 . 150 200
Average online time [min] Average online time [min]

Figure 2: P, andP, in dependence of the churirigure 3: Influence of the downlist modifica-
rate tion on the search efficiency

However, our simulations show that the standard implementation of Kademliadiaeps
with P.. We setk = 20 and simulated the above described network for different churn rates.
Figure 2 illustrates?, and P in dependence of the churn rate. The mean online/offline time of
a peer was variied between 10 and 180 minutes. Even though on avepege lenows almost

all its neighbors P, close to 20), it returns significantly less valid entries when queriedé
low as 13). The shorter a peer stays online on average, the less vatidgpeeeturned during
a search. The problem can be tracked down to the fact that there anmatiyl pointers to
offline peers in the corresponding k-bucket of the peer. The reagbiat there is no effective
mechanism to get rid of out-dated k-bucket entries. Offline entries dyeminated (or moved
to the cache) if a peer runs into a timeout while trying to contact an offline pepeer which
identifies an offline node, however, keeps that information to itself. Tihisspot unlikely that
a node returns offline contacts as it has very limited possibilities to detecteofftides. As a
result more timeouts occur and searches take longer than necessathe®problem is that
searches are also getting more inaccurate, which has negative effecisiyron the success
of a search but also on the redundancy of the stored documents. d3mris that due to the
incorrect search results documents will be republished to lessithaars or to the wrong peers.

4.1.1 Solution - Downlists

The primary reason for the above mentioned problem is that so far onlghseg peers are able
to detect offline nodes. The main idea of our solution to this problem is thatratseg peer,
which discovers offline entries while performing a search, should ghaénformation with
appropriate other peers. To do so, a peer maintains a downlist consisatigpeers which it
discovered to be offline during its last search. At the end of the seagavthesponding entries
of this downlist are sent to all peers which gave those entries to the seapder during its
search. These peers then also remove the received offline entriethiz own k-buckets. This
mechanism helps to get rid of offline entries by propagating locally gainechiration to where
it is needed. With each search offline nodes will be eliminated.

The improved stability of the overlay is obviously bought by the additionatitaéaith needed
to send the downlists. From a logical point of view, however, it doesireguore overhead to
keep the overlay stable under higher churn rates. In this sense, thieraldverhead traffic
caused by sending downlists is self-organizing as it automatically adapts tortteat churn
rate. The more churn there is in the system, the more downlists are sent.

It should also be mentioned, that without appropriate security arrandgermesophisticated
attacker could misuse the downlist algorithm to exclude a target node by claimitaglownlist
that this specific node had gone offline. However, this problem can be madrhizonly remov-
ing those nodes which were actually given to the searching node durgsyehsor additionally
by verifying the offline status using a ping message. One could also apptyotrueputation
based mechanism to exclude malicious nodes.

4.1.2 Effect on Search Efficiency

To compare the downlist modification to the standard implementation we again simalated
scenario with 20000 peers on average and calculated the 95 pernédeoce intervals. Figure

2 proves, that the downlist modification has the desired effed®,orthe number of correctly
returned neighbors. Using downlists bd¥hand P, stay close to the desired value of 20, almost
independent of the current churn rate. That is, even in times of higin¢ha stability of the
overlay can be guaranteed.

This improved correctness of the overlay stability also has a positive itkuem the search
efficiency. In Figure 3 we plot the average duration of a search aghimaverage online/offline
time of a peer. In this context an overlay hop was modeled using an exjatyedistributed
random variable with a mean of 80 ms. Both curves show the same gerteasidre The longer
a peer stays online on average, the shorter is the duration of a seaostevét, especially
in times of high churn, the downlist modification (lower curve) significantly etftrms the
standard implementation. The main reason is that on average a peer runs iattimemuts
using the standard implementation, as it queries more offline peers duriagch s€he effects
on the maintenance overhead will be discussed in Section 4.3.

4.2 Overlay stability

When peers join and leave the overlay network, the neighbor pointerspetrahave to be
updated accordingly. As mentioned above, the downlist modification greathpimp the cor-
rectness of thé closest neighbors of a peer. To understand this effect in more detdilavesa
closer look at a single simulation run. We consider a mean online/offline timerofrfdtes and
an average of 20000 peers for both the standard implementation and thistovodification.

20
i mP,
15k P i 1sklP
, i . | 219
3 3 =
o Q .]} D li
‘5 10krStandard ‘5 10k Downlists 5198 m%vt;l;iéition only
b Implementation o 5
Q Ko o
S S IS
2 sK 2 sk 2107 [—p
h
- p
070 20 2 10 20 196 50 100 150 200
number of entries number of entries Average online time [min]

Figure 4:P, and P, for the standard imple- Figure 5: Effect of Forceé: under churn
mentation and the downlist modifica-
tion

Figure 4 illustrates the distribution @%, and P, in both scenarios. As can be seen in the left
part of the figure, almost all peers know more than 17 of their 20 closgéghlpors using the
standard implementation. However, the number of correctly returned peeésssignificantly
smaller for most peers. This problem is greatly reduced by the downlist rratififn as can be
seen in the right part of the figure. In this case, the number of knowtharumber of returned
peers are almost equal to each other. Yet, there are still some peers,dehiot know all of
their 20 closest neighbors. This is in part due to the churn in the overlayorle However,
simulations without churn produce results, which are comparable to thogeash the right
part of Figure 4. The cause of this problem can be summarized as follosts3, be the k-
bucket of peer p, which includes the ID of peer p itself d)gdthe brother ofB,, in the binary
tree whose leaves represent the k-buckets as shown in Figure 6adtmnding to the Kademlia

algorithm bucketB,, is the only bucket which will be split. However, if onty< & of the actual
k closest contacts fall into this bucket, thes= k& — e of these contacts theoretically belong into
its brotherB;.

contains peer p

Figure 6:B,, and its brothe3; in the Kademlia routing table

Now, if this bucket is full it cannot be split. Thus, if some of theontacts are not already
in the bucket, it is very unlikely that the peer will insert them into its bucketse fEason is,
that a new contact will be dropped in case the least recently seen eniBy sponds to a
ping message. Since in a scenario without churn all peers always laiospieg messages, new
contacts will never be inserted intg);, even though they might be among thelosest neighbors
of the peer. In the original paper it is suggested to split additional bugkethich the peer’s
own ID does not reside in order to avoid this problem. However, this hasn&jor drawbacks.
At first, it is a very complex process, which is vulnerable to implementatiomser8econdly, it
involves a great deal of additional overhead caused by buckeshefs and so on and so forth. In
the next section, we therefore develop a simple solution, which doesquiteeany additional
overhead.

4.2.1 Solution - Forcek

As stated above, it is possible, that a peer does not know all &f desest neighbors, even
in times of no churn. To solve this problem, we need to find a way to force atpedways
accept peers belonging infgy; in case they are amongst kslosest neighbors. Suppose a node
receives a new contact, which is amongkitslosest neighbors and which fits into the already
full bucket B;. So far, the new contact would have been dropped in case the leastlyeseen
entry of B, responded to a ping message. Compared to this, the Famedification ensures
that such a contact will automatically be inserted into the bucket. In ordercidedevhich of
the old contacts will be replaced, one could keep sending ping messadesnaove the first
peer, which does not respond. However, this again involves additawesthead in terms of
bandwidth. A faster and passive way is to put all entrief3gf which are not among the
closest peers into a ligtand drop the peer which is the least useful. This could be the peer
which is most likely to be offline or the peer which has the greatest distamoedieg to the

XOR metric.
In our implementation, we decided to consider a mixture of both factors. Hable entries
e of list [is assigned a specific score

Se = te + de (3)

and the one with the highest score will be dropped. Therkghyg,intended to be a measure for
the likelihood of peee to be offline andi, for the distance of peerto peerp. The exact values
of t, andd, are obtained by taking the index of the position of the corresponding péwes list,
as if it was sorted ascending by the time least recently seen or by the gistaisce respectively.
That is, ife is the least recently seen peéy & 1) and has the third closest distance to peer
(d. = 3) itis assigned a score 6f = 4.

4.2.2 Effect on Stability

We investigated the impact of the Forkenodification on the stability of the overlay network
in various simulations. In scenarios without churn, all peers finally knedvraturn all of their

k closest neighbors. The corresponding figures show lines paralle¢ te-¢ixis at a value of
k = 20. Itis therefore more interesting to regard the overlay stability during choases.

w
N

N
SL

Total
traffic

N

Republish
traffic

P
a
PDF
[

L=

Join traffic

o
3

Downlist traffic

Sent packets per peer per second

o

50 100 150 200 fs 59 60 61
Average online time [min] Time stamp of next republish event

Figure 7: The maintenance traffic of a pedfigure 8: PDF ofl,, for different values ofc
split into its components

In Figure 5, we plot the average online time of a peer against the numberoafrkand
returned neighbors using the same simulation scenario as before. Theatroclarves corre-
spond to our previous results using the downlist modification. The two uppees represent
the Forcek modification in combination with the downlist modification. It can be seen that the
Force# algorithm also improves the stability of the overlay in times of churn. While theappe
ance of the curves is similar, there are more neighbors known (solid lindseturned (dashed
lines) as compared to using only the downlist modification. Even if a peer atdiye for only
10 minutes on average, it will know about 19.9 out of 20 neighbors aundrenore than 19.8
correct entries. By improving the correctness of the neighbors, theeftomodification also
increases the search success rate and the redundancy of staretedte

4.3 Redundancy Overhead

The bandwidth required to maintain a stable overlay and to ensure the pasistestored
documents directly reflects the costs for a peer to participate in the netwaglsindvlated a
network with 20000 peers on average and recorded the average mofrgaekets per second
sent by a peer while it was online. Figure 7 illustrates the average traffipege in dependence
of the average online time of a peer. In addition to the total traffic, the figuoeshl®ws its three
main components, the join, the republish, and the downlist traffic.

Since E.qrch, the average time between two searches of a peer, was set to 15 minutes, the
search traffic per peer per second can be neglected in this scengitans not shown in the
figure. The same is true for the traffic caused by bucket refresineg, & specific bucket is only
refreshed if it has not been used for an entire hour. The Fomdgeorithm is performed locally
and does thus also not produce any additional overhead.

It can be seen in the figure that the downlist traffic automatically adapts itselé toutinent
churn rate. The more frequently the peers join and leave the system, thelowonkst traffic is
produced by a peer on average. In general, the small amount of mhdweded to distribute
the downlists is also easily compensated by the improved stability of the oveHayn@jor part
of the traffic is caused when joining the network and republishing documkemgobvious that
the average amount of join traffic increases if a peer stays online farsesperiod of time. The
join traffic cannot and should not be avoided as it is necessary foeratpenake itself known
when it joins the network. Moreover, the join traffic already shows a@gj&nizing behavior.
The more churn there is in the system, the more joins there are in total and thevedread is
produced to compensate the problems caused by the churn.

At first, the run of the curve representing the republish traffic seems toiater-intuitive.
The less churn there is in the system, the more republish traffic is sent bgr @paverage.
However, the reason becomes obvious, if one takes into account thiantier a peer stays
online on average, the more likely it gets that there are republish everiggt]ithe probability
that a peer stays online for longer than 60 minutes given the corresjgomgiinage online time
E,,, resembles the run of the republish curve. The reason why the total aimbrepublish
traffic exceeds the remaining traffic so significantly is as follows: Eachmieat is stored at the
k closest nodes to its ID, the so called replication group. To compensatedesieaving the
network, each peer sends the document to all other peers of the repligadia if it has not re-
ceived the document from any other peerTor, = 60 minutes. The idea behind this republish
mechanism is that one peer republishes the document and all other @ssrsheir republish
timers accordingly. Since the republishing peer sends the document teIgfehe replication
group simultaneously, the peers reset their timers at approximately the sam&hengext time
the first peer starts to republish the document, it has to search for tlesponding replication
group before it can redistribute the document. However, during thislséae republish timers
of the other peers are likely to run out and they will start to republish thardeat as well. For
this reason, a document might get republished by up peers instead of just one single peer,
resulting in unnecessary overhead traffic. This problem of synctation is already mentioned
in the original paper. In the following section, we present a solution, wiiehtly reduces the
republish overhead and which is also resistant against churn.

4.3.1 Solution - Betarepublish

The synchronization problem of the republish process arises if alsm#ex replication group
have approximately the same time stamp for the next republish event. At firsetmnss to be
unlikely. However, each time a peer republishes a document all othes pedre replication
group receive this document at approximately the same time and are thismyined again.
The main idea to avoid this problem is to assure that all peers use differensttimgs. To
achieve this, each peer chooses its time stamp randomly in the infégival— x, Ty.¢p +]
instead of exactly afte¥;., = 60 minutes. Letl,., be the random variable describing the
time stamp of the next republish event. Then we wags to be distributed in such a way, that
only few peers start republishing at the beginning of the interval andrtmapility to republish
increases towards the end of the interval. This can, e.g., be achievettihg:s

IT’ep - <T7’€p - CU) +2-2 - Ipeta (4)
wherel,, is a random variable with density
—t— ifo<t<1
ibeta(t) = (1-t)-B(2,0.5) . -
0 otherwise

andB («,) is the beta function, defined by

B(a,p) = /Olta_l (1) dt (6)

Therebyz should be small compared .., but still significantly larger than the duration
of a search. Figure 8 shows the probability density functiod,gf for different values ofr.
All peers will set their time stamps somewhere in the intef§@l x, 60 + x]. The probability
for a peer to set its time stamp is still very low at the beginning of the interval. tt #iseends
significantly towards the end of the interval. In the casé,Qf = 60 minutes,x = 2 minutes
is a reasonable choice, since it offers a long period of time with a low pildigaif republish
events. This way, the republish traffic will be significantly reduced asdbimes very likely
that only one or a few peers actually start a republish process. Agaimthmat a peer does only
republish a document if it has not received it from another pe€fifgr= 60 minutes.

4.3.2 Effect on Overhead

In this section we will have a look at the influence of the Betarepublish motiifican the
average amount of republish traffic sent by a peer.

Figure 9 shows the average number of republish packets per peerquerdsin dependence
of the average online time. We compare the results for simulations using theustanigple-
mentation, our two previous modifications, and all modifications including Bathlish. First
of all the average republish traffic of a peer is increased by using theldgbd modification. The
reason is that using the standard implementation there are more offline ndtles:tbuckets
during times of churn. Thus documents are republished to less peerd) weldigces the re-
publish traffic but also the redundancy in the system. The additional traffmduced by the
downlist modification is therefore used to improve the availability of documents.

10

N

w

Downlist and Force—k
modification

Downlist and Force-k
modification

=
a
N
a

=
N

Standard
implementation

Standard
implementation |

o
SL
=
a

Betarepublish modification

Sent packets per peer per second

Sent packets per peer per second

Betarepublish modification

50 100 150 200 b 50 100 150 200
Average online time [min] Average online time [min]

=

Figure 9: Maintenance traffic caused by repubigure 10: Total maintenance traffic in depen-
lish processes dence of the churn rate

The Betarepublish maodification is applied in an effort to minimize the traffic whicleces-
sary to achieve this availability. The figure shows that Betarepublish imdeledes the amount
of required republish traffic significantly. The Betarepublish traffic liedl Wweneath the stan-
dard implementation and also rises slower with an increasing average onlineNiote.that
the Betarepublish maodification does only avoid redundant traffic. It is blidl 80 guarantee the
same redundancy, stability, and functionality. Figure 10 shows how theeddepublish traf-
fic influences the total traffic for the three regarded versions of Kadd@iandard, downlists
and Forcek, all modifications). At first, it can be seen that the use of downlists inesctse
total traffic as compared to the standard implementation. Again, this is desieeldead as it
greatly helps to increase the robustness, the stability, and the redurofatheyoverlay in an
autonomous way.

By adding the Betarepublish modification, the total traffic is significantly reduend no
longer dominated by the republish traffic. While the average maintenanfie sexft by a peer
in the standard implementation actually increases when there is less movemenbveitiag
network, it finally shows a self-organizing behavior when using all maatifims. The less churn
there is in the system, the less maintenance traffic is generated to keep tlag aetwork up
to date. That is, the amount of bandwidth invested to keep the overlay guaotomatically
adapts itself to the current conditions in the overlay.

5 Conclusion

In this paper we investigated the performance of the Kademlia protocol aslatpiled discrete
event simulator. We were able to detect and pinpoint some weak pointsliregéne stability

and the efficiency of the overlay network. In this context, three modificatiane been proposed

to enhance the performance, the redundancy, and the robustneaderhka-based networks.
With the help of downlists, the correctness of the neighbor pointers andithgah of a search is
greatly improved. The Forckmodification ensures that a peer has a very good knowledge of its
direct neighborhood, which greatly increases the stability as well as #ralbperformance. We

11

also introduced a new republish algorithm, which significantly reduces tHeraffec needed to
keep the overlay running. The improved version of Kademlia shows asgfizing behavior
as the amount of generated maintenance traffic autonomously adapts toréme churn rate in
the system.

The proposed modifications can be used to support large scale p2p tppsicavhich are
able to sustain dynamic user behavior. Even though the algorithms havinbeelniced using
Kademlia, they are by no means restricted to this protocol. Especially the dbandsthe
Betarepublish mechanisms can easily be applied to other DHTs like Pastry,dzAord.

Acknowledgements

The authors would like to thank Robert Henjes, Tobias Hofeld, and PhtaortGia for the
insightful discussions as well as the reviewers for their valuable stiggss

References

[1] Azureus. URL: http://azureus.sourceforge.net/.

[2] A. Binzenhbfer and P. Tran-Gia. Delay Analysis of a Chord-based Peer-to{HkEe
Sharing System. IATNAC 2004, Sydney, Australia, December 2004.

[3] Andreas Binzendfer, Dirk Staehle, and Robert Henjes. On the Stability of Chord-based

P2P Systems. IGLOBECOM 2005, page 5, St. Louis, MO, USA, November 2005.

[4] Youki Kadobayashi. Achieving Heterogeneity and Fairness in idide In Proceedings of
|EEE/IPSJ International Workshop on Peer-to-Peer Internetworking co-located with Sym+
posium on Applications and the Internet (SAINT2004), pages 546-551, January 2004.

[5] Supriya Krishnamurthy, Sameh El-Ansary, Erik Aurell, and Seif HardStatistical The-
ory of Chord under Churn. ith I nternational Workshop on Peer-To-Peer Systems, Ithaca,
New York, USA, February 2005.

[6] Jinyang Li, Jeremy Stribling, Thomer M. Gil, Robert Morris, and M. se&Kaashoek.
Comparing the performance of distributed hash tables under chufro¢eedings of the
3rd International Workshop on Peer-to-Peer Systems (IPTPSD4), San Diego, CA, February
2004.

[7] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peerimition system
based on the xor metric. IPTPS 2002, Cambridge, MA, USA, March 2002.

[8] K. Pawlikowski, H.-D.J. Jeong, and J.-S. Ruth Lee. On credibility of $ation studies of
telecommunication networks. IEEE Communications Magazine, January 2002.

[9] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicmlig Churn in a
DHT. In 2004 USENIX Annual Technical Conference, Boston, MA, June 2004.

12

[10] lon Stoica, Robert Morris, David Karger, M. Frans. Kaashaakd Hari Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Apidioa. InACM S G-
COMM 2001, San Diego, CA, August 2001.

[11] Daniel Stutzbach and Reza Rejaie. Improving lookup performaveesonidely-deployed
dht. InIEEE INFOCOM 2006, Barcelona, Spain, April 2006.

[12] Skype Technologies. Skype. URL: http://www.skype.com.

13

