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Abstract

Today’s Internet does not offer any quality level beyond best effort for the ma-
jority of applications used by a private customer. In particular, this applies for
wire-line or wireless access networks which currently constitute the bottleneck
of the communication infrastructure. Following the principle of economic traffic
management we propose a collaboration of user and network control in order to
achieve a win-win situation through an improved application-aware resource man-
agement. In order to do so, a tool runs at the client that continuously monitors
the application comfort and communicates it to the network control. The ap-
plication comfort quantifies how well an application is running. In our example
application, YouTube video streaming, the application comfort is expressed by the
buffered video playtime. As long as there is enough playtime buffered, the appli-
cation comfort is high. YoMo, the YouTube monitoring tool, runs on the client,
detects YouTube videos and monitors their application comfort and signals it to
the resource management tool. An example how to utilize this information for an
improved resource management ensuring a high user satisfaction when playing the
YouTube video is demonstrated in an IEEE 802.11 based mesh testbed.

1 Introduction

In today’s consumer Internet, most traffic is transmitted on a best effort basis without
support for the quality requirements of the application. There are no service guarantees
for the predominant consumer Internet traffic which is composed of applications like
P2P or client-server file sharing, web browsing, or video streaming which make up for
more than 80% of today’s traffic [1, 2, 3]. The primary reason for this is not the lack
of technical solutions [4, 5] enforcing quality guarantees but that the prerequisite, that
the network knows the quality requirement of the different Internet applications, is not
fulfilled.
As an example, recent and future fixed and mobile wireless access networks like 3GPP

UMTS and LTE as well as IEEE 802.16 based WiMAX, offer connections with strict
QoS support. These connections are called bearers in 3GPP and service flows in IEEE

1



802.16. Ludwig et al [5] distinguish session-based services and none-session-based ser-
vices. Session-based services, e.g. multimedia services established via the IP multimedia
subsystem (IMS), are transported over connections with appropriate QoS parameters.
Non-session-based services, in particular the “Internet Access” service, are transported
via a connection with default QoS parameters that offer only a best effort service. All
above mentioned Internet applications rely on this Internet access service, and as a con-
sequence, they are multiplexed on a single best effort connection and use the access
network as a mere bit pipe.
Nonetheless, Internet applications like VoIP (Skype), Gaming, Video streaming (YouTube),

or even simple web browsing have more or less strict quality requirements. The prerequi-
site for providing QoS support for Internet applications is first to detect the flows/packets
belonging to the application in the packet stream and second to determine appropriate
quality parameters. The detection is currently done using deep packet inspection (DPI)
[6] , i.e. by looking not only at TCP/IP headers but also at application headers or even
using heuristics on the observed traffic pattern and TCP connection usage. The evolved
packet system of 3GPP LTE [7, 5], introduces the possibility of a network-initiated QoS
bearer establishment if the user application communicates to the network via a standard
socket-API and not the vendor-specific QoS-API which mostly means that the applica-
tion uses the Internet access services. A DPI box observes the traffic at the gateway and
if an application with known quality requirements is detected, the network establishes a
radio bearer if appropriate QoS parameters for the application are available in the user
profile.
However, DPI is rather challenging since the browser tends to become the user’s in-

terface to the Internet for an increasing number of applications like videos (YouTube),
large file downloads (Rapidshare), browser games, etc. All these applications are trans-
ported via HTTP and sum up to around 60% of the traffic for residential broadband
Internet access [3, 8]. Additionally, P2P applications and even Skype use port 80, to
tunnel through NATs or to hide from easy detection. All this makes the classification
of packets within the network rather complicated. Moreover, DPI typically only detects
applications. Deriving appropriate QoS parameters for an application from the traffic
flow observed in the network is even more complex, in particular for reactive TCP traf-
fic. Thus, only a limited set of applications with a priori known QoS parameters can be
supported by establishing approapriate connections.
An alternative concept how to learn about active applications and their QoS require-

ments at the network control, is gathering this information at the client and commu-
nicating it to the network. The 3GPP evolved packet system, e.g., also specifies the
possibility of a network-initiated QoS bearer establishment where the network control
receives the information about the application from the user and not through deep packet
inspection. Consequently, the QoS connection is not established using the QoS-API at
the terminal but by the network itself. The advantage of this solution is that the client
does not need to be aware of the access specific QoS parameters but may communicate
access agnostic QoS requirements that the network control translates into corresponding
QoS parameters. The evident solution that an application directly communicates with
the network control again requires a modification of the application. Instead, we propose
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to implement a generic tool installed by the user that monitors the applications on the
client, derives application QoS requirements, and communicates this information to the
network.
This approach, however, has two prerequisites: First, appropriate QoS requirements

must be available or measurable when the application starts. E.g. for videos with vari-
able bit rate codecs, the precise bandwidth is not known such that the QoS requirements
are typically overdimensioned which critical in especially in wireless networks. Second,
the access network must be able to guarantee strict QoS. E.g. guaranteeing strict QoS
in IEEE 802.11 wireless mesh access networks is very complex if possible at all. The
usage of strict QoS parameters can be avoided by using a quality of experience (QoE)
based resource management [9, 10, 11] that continuously adapts the network resources
to quality feedback from the application. QoE [12, 13] is a measure for the subjective
quality that a user experiences. In contrast to QoS, the QoE depends not only on the
network but also on the user’s environment. However, the environmental impact is often
neglected and frequently QoE is interpreted or approximated as a function of measurable
QoS parameters like latency, jitter, or bandwidth, see e.g. [13]. In principle there are
two ideas how to perform a QoE based resource management. The first one is to assign
network resources such that the total QoE in the network is maximized [14, 9]. This
approach requires that a QoE evaluation for all applications and traffic flows is available.
Alternatively, the network resources are partitioned into a part with and a part without
QoE based resource management. The other approach is to continuously monitor the
QoE of some applications [15] and to change the resource management, accordingly. An
overview of QoE based resource management schemes is given in Section 2.
In this paper, we follow the latter approach and apply it to a YouTube video streamed

over a wireless mesh access network. Most QoE models are proposed for VoIP [16,
17, 18, 19] or video streaming [20] transported over a UDP connection. Consequently,
QoE degradation results from delay, jitter, and packet loss and a scalable instantaneous
QoE can be measured. YouTube videos, however, are transported via TCP, i.e. no
packets are lost and all packets are delivered in order. QoE degradation occurs when
the playtime buffer is empty and the video stalls. Thus, we can only measure a binary
instantaneous QoE: either the video plays or the video stalls. As an extension, we
introduce the concept of Application Comfort (AC) that not only considers the currently
observed QoE but generally evaluates the current status of the application with respect
to future performance. For a YouTube video, AC is expressed by the buffered playtime.
Let us consider an example to make the difference between QoE and AC clear: The
instantaneous QoE of a YouTube video that started quickly and played continuously up
to the observed time has an optimal QoE even if it is about to stall in the next moment
because the playout buffer is almost empty. The AC, however, is bad since it considers
the playout buffer and predicts the future QoE development in terms of an imminent
stall time. Thus, monitoring the AC allows to react to an imminent QoE degradation
before it occurs. For most UDP based applications, however, AC is identical to QoE
unless it is possible to really predict future packet losses or delays.
We give an example how an application comfort monitoring (ACM) tool running at

the client may extract application layer information and interact with the network at
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the example of a YouTube video stream in a wireless mesh network. The YouTube
monitoring tool, YoMo, runs at the client and (1) detects YouTube streams, (2) at the
beginning of the YouTube stream extracts metadata including duration, video and audio
rate, and (3) continuously monitors the AC in terms of the playtime buffer while the
video is playing. We chose YouTube as the currently most popular video portal [3, 8],
but the presented tool works for all types of flash videos which are estimated to become
one of the major traffic sources in the future Internet [21].
Wireless mesh networks (WMNs) are the most complex types of access networks with

respect to resource management and performance guarantees. The resource manage-
ment, see e.g. [22], covers routing including gateway selection, channel and interface
allocation in multi-radio multi-channel mesh networks, prioritization of medium access
through contention parameters as in IEEE 802.11, and finally traffic shaping. Perfor-
mance guarantees are difficult to achieve since a link between two nodes typically does
not have a constant capacity but it shares the radio capacity with the surrounding links
due to interference and resulting collisions. We chose the example of WMNs since (1)
WMNs are an attractive low-cost alternative for broadband wireless Internet access, (2)
practically implementing resource management strategies is possible on open source mesh
nodes, and (3) WMNs provide an enormous potential for an improved radio resource
management when application layer information is available. The focus of this paper,
however, is the monitoring tool YoMo running at the client. The proposed resource
management algorithm is not the main contribution of the paper and shall mainly serve
as a proof of concept and a first step towards a QoE or AC based resource management
architecture for wireless mesh networks.
The rest of this paper is structured as follows: In Section 2 we give an overview of the

related work on application layer and QoE monitoring as well as frameworks that try
to use application layer information for an improved resource management. Section 3
gives an overview of Flash video and how YoMo works. In Section 4, we introduce
the resource management tool OTC and demonstrate its performance at an example
scenario in Section 5. In Section 6 we summarize the contributions of this paper and
give an outlook to future work.

2 Related Work

In this section, we review contributions related to this work. We start by describing a
number of recently published radio resource management techniques and frameworks.
As most network management decisions are taken in order to avoid a degradation of the
user experience, we subsequently discuss a number of approaches suitable for deriving
the QoE from network or application layer parameters.
The IEEE is currently developing standards towards an improved usage of radio re-

sources in heterogeneous wireless access network. The IEEE 1900.4 standard [23] was
published in February 2009 by the newly founded ‘IEEE Standards Coordinating Com-
mittee 41” (SCC41) that focuses on standards projects in the areas of dynamic spec-
trum access, cognitive radio, interference management, coordination of wireless systems,
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advanced spectrum management, and policy languages for next generation radio sys-
tems [24]. The IEEE 1900.4 standard hence defines a management system which allows
the distributed optimization of radio resource usage and improves the QoS in hetero-
geneous wireless networks. The IEEE 802.21 working group specifies a standard for
media independent handover in heterogeneous radio access networks. Both approaches
have in common that they try to optimize resource usage in heterogeneous wireless
networks, establish a signaling framework between terminals and network, and try to
make context-aware resource management decisions. Among other factors, the context
includes required QoS levels, radio network and terminal capabilities as well as mea-
surements both from the terminal and the network [25, 26]. With respect to this paper,
the following two points are remarkable: On the one hand, both approaches rely on ser-
vices with strict QoS parameter settings, i.e. session-based services. A proper treatment
of applications using the non-session-based “Internet access” service without precisely
specified QoS levels, i.e. the common Internet applications, is not supported. On the
other hand, both standards are context-aware and specify an interface for information
exchange between terminal and network. Consequently, the information gathered by
the ACM tool contributes to the terminal’s context and essential information for a good
resource management for common Internet applications.
A similar idea is presented in [27] where Ong and Khang introduce a cooperative

radio resource management framework which shall enable seamless multimedia service
delivery. The framework consists of two components: a distributed terminal-oriented
network-assisted handover architecture is intended to support the convergence of het-
erogeneous wireless access networks by making the exchange of QoS information among
them possible. Furthermore, a generic dynamic access network selection algorithm al-
lows the cooperation between network terminals for making more informed access or
handover decisions. This means that a terminal can take a handover decision based
on the QoS information broadcasted by the access networks instead of measuring the
channel quality itself. Both concepts together allow to maintain a QoS-balanced sys-
tem, i.e. to reach a state with a similar level of QoS in all access networks. A simulation
study demonstrates that the QoS broadcasting mechanism may be implemented within
the IEEE 802.11 beacon frames and that the scheme allows to decrease the uplink and
downlink packet delay and packet loss rates while maximizing the network throughput
in a WLAN with two access points. Kassar et al. [28] also focus on vertical handover.
They introduce an intelligent management system which is responsible for transparently
switching between cellular and non-cellular Internet access networks. This module han-
dles the handover information gathering, handover decision, and handover execution
phase. Information is gathered from terminal and network side. This allows to decide
the necessity of handover according to user preferences or velocity on the one hand and
bandwidth or network coverage on the other hand. Terminal and network side charac-
teristics like user preferences or terminal battery status and cost or QoS characteristics
respectively are also used to assist during the decision for an access network. The au-
thors were able to show that in a simulation with one mobile user and a 3G/WLAN
environment the scheme works as well as a traditional scheme.
A comparable but more general framework has been presented by Bullot et al. [29]
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who propose an architecture for decentralized network management and control. The
architecture consists of a data, a control, and a management plane, and a piloting
system. What is novel about this proposal is that the piloting system decides which
system parameters have to be measured by the control plane and which parameters
have to be given to which algorithms. The advantage of this solution is that the control
algorithms like routing, mobility management etc. can use information which is stored by
the piloting plane and perhaps used by other algorithms, too. In traditional architectures
in contrast each algorithm is responsible for retrieving the parameters it requires. The
piloting plane is realized in a distributed manner. Cooperating agents are running on
each network element and exchange their own view on the network with neighboring
agents. As an evaluation of their architecture, the authors simulate a mobile-initiated
handover in a setting with three 802.11 access points and up to 30 mobiles. The study
demonstrates that the traditional policy for such a handover, the received signal strength,
is outperformed in terms of rejected VoIP calls and increased end-to-end delay by a
distributed decision making process taking into account the load of the APs.
For mesh networks which do in general not have mobile nodes nor allow the user to se-

lect among several access networks, handover is not an option for resource management.
However, many other possibilities like node placement, channel and routing allocation,
or MAC layer optimization exist. Akyildiz et al. [22] give a good overview on the existing
alternatives, we refrain from an exhaustive enumeration and introduce as an example the
work of Pries et al. [11]. The authors propose to dynamically constrain the bandwidth
of best effort traffic in order to ensure the quality of service requirements of multimedia
applications. This is realized by the interaction of a Traffic Observer (TO) and a Traffic
Controller (TC). An instance of the TO is running on each mesh node and continuously
monitors the QoE of the VoIP flows in terms of the Mean Opinion Score (MOS) as a
function of the measured packet loss and delay. As soon as the TO detects that the MOS
becomes bad, the TC running on the same and on the neighboring nodes throttle the
interfering best effort traffic. The evaluation of this concept in a mesh testbed showed
that TO and TC together allow to maintain a satisfying MOS score even in the presence
of disturbing traffic.
The approach of [11] to use a user experience-oriented metric for managing decision

is another point which distinguishes this work from the previously introduced contribu-
tions. The authors use the exponential relation between packet loss and MOS discovered
by Hoßfeld et al. [30] to find a mapping between a measurable parameter and the user
experience. Many similar contributions [16, 17, 18, 19, 20] exist which allow to derive
the QoE for a specific application from a QoS parameter. An exemplary work is the
one of Mohamed et al. [19] who obtain a mapping function between the loss rate and
the mean size of loss bursts and the VoIP user QoE in terms of MOS. For this purpose,
a number of test persons evaluate VoIP samples which were transmitted over varying
link conditions. Those rated samples are used to teach a random neural network the
interdependency between QoS and QoE.
Piamrat et al. [31] use this idea for an admission control mechanism which ensures the

QoE of multimedia users in a WLAN environment. In a simulation study the authors
are able to show that this scheme is able to guarantee a high user satisfaction while
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admitting a higher number of flows and achieving a better bandwidth utilization as loss-
base admission control policies. Bohnert et al [32] also propose an QoE based admission
control scheme. They modify the QoE model for speech quality proposed by Raake [16]
in order to obtain a QoE estimation for an aggregate of VoIP calls. An evaluation of
the QoE based admission control scheme for an IEEE 802.16 access network shows that
the scheme successfully avoids long periods of user dissatisfaction. In [33], Bohnert et
al. propose a QoE aware scheduler for VoIP calls in an IEEE 802.16 access network.
The idea is to give priority to VoIP calls that instantaneously experience a low QoE,
i.e. those calls that recently suffered from packet loss. The authors demonstrate by a
simulation study that the QoE based scheduler outperforms a simple FIFO scheduler
and performs similar to a channel-aware scheduler that gives priority to mobiles with
higher SNR.
Khan et al. [14] present a resource management scheme that optimizes the average

QoE for video streams in a wireless network using cross-layer design. The video QoE
metric - though not explicitly referred to as QoE in the paper - uses the PSNR model.
The resource management scheme optimizes both network resources and video param-
eters in order to maximize the average PSNR experienced by the video streams. In
[9], the model is extended to three applications, VoIP, video, and FTP, and a concrete
resource management scheme for HSDPA is described.
The above approaches are just some examples which use QoE as a basis for manage-

ment decisions. The methods of deriving it from QoS parameters is however problematic,
as a mapping between QoS and QoE is highly application dependent. An earlier exper-
iment [34] with human test persons who remotely used Microsoft Word even revealed
that the satisfaction of the users depends on the task they are doing, too. Some users,
who were typing for instance, were totally satisfied with a lossy and very slow connec-
tion, whereas users who used the scroll bar were already annoyed if the connection speed
was at a medium, level. The experiment also showed that the time which is required for
completing the task, hence the application comfort in our terminology, is a good metric
for the user satisfaction. Michaut et al. [35] give an overview on application-oriented
measurement tools and techniques, which they do understand to be classical network
characteristics like bandwidth, one-way delay or round-trip time. This is a good ex-
ample, as to our knowledge, no work exists which tries to find a relation between the
application comfort and the network condition.

3 Monitoring the YouTube Application Comfort

In 2008, Wamser et al. [3] conducted a study of the Internet usage of 250 households
connect by a broadband wireless access network. The traffic classification revealed that
nearly 1/4 of the consumed bandwidth belongs to streaming traffic. This value is even
more impressive if one is aware that during a similar measurement the authors conducted
in 2007, only 4% of streaming traffic were found. An analysis of the streaming traffic
in turn revealed that 30% of it is Flash video (FLV) traffic, the technology used by
YouTube. A tool which is able to monitor the application comfort of YouTube and FLV
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video streaming portals in general, is hence able to provide information on roughly 10%
of the traffic volume of a WMN.
In the remainder of this section we describe YoMo, a YouTube application comfort

monitoring tool. YoMo has to fulfill all tasks which are mandatory for an ACM: It has
to firstly, detect that a YouTube flow is existing which has to be monitored. It has to
secondly collect as many information as possible on the YouTube flow and has to thirdly
to monitor the YouTube AC. To make our approach more easy to understand, we first
of all analyze the technology behind YouTube in Section 3.1, before we introduce the
core YoMo ideas and their implementation in Section 3.2.

3.1 The Technology Behind YouTube

The YouTube player is a proprietary Flash application1, which concurrently plays an
FLV file and downloads it via HTTP. At the beginning of this so-called pseudo stream-
ing, the client fills an internal buffer and starts the playback of the video as soon as a
minimum buffer level is reached. During the time of simultaneous playback and down-
loading, the buffer level is dependent on the download bandwidth and the video rate.
As long as the download bandwidth is higher than the video rate, the buffer increases,
otherwise it shrinks. If the buffer runs empty, the video stalls.
A stalling of the video can be detected by a change of the YouTube player state

from “playing” to “buffering”. The player state is hidden to the normal user, but can
be retrieved from the YouTube API which may be accessed by developers who embed
the YouTube player into web pages. Furthermore, the API allows to control the video
playback and to get information about the currently displayed video.
Each YouTube video is encoded as an FLV file which is a container format for media

files developed by Adobe Systems2 . An FLV file encapsulates synchronized audio and
video streams, and is divided into a header and a body. The header starts with an
FLV signature and contains information about the available tags in the file. The body
consists of tags and separators. The tags encapsulate the data from the streams and
contain information on their payload. This information includes the payload type, the
length of the payload, and the time to which the tag payload applies. FLV files may
also contain metadata encapsulated in a tag with a script data payload. The available
properties depend on the software used for the FLV encoding and may include the
duration of the video, the audio and video rate, and the file size.

3.2 The Functionality of YoMo

The YouTube player opens a new TCP connection each time it downloads a new FLV file.
Each FLV file begins with an FLV-identifier which is detected by YoMo which constantly
monitors the client’s incoming traffic. Once a flow containing FLV data is recognized,
the data is continuously parsed in order to retrieve the available meta information from
the FLV file. The first two tasks of an ACM, detecting a YouTube flow and extracting

1http://www.adobe.com/devnet/flashplayer/, last accessed 02/10
2http://www.adobe.com/devnet/flv/, last accessed 02/10
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Tt β t

Figure 1: The YouTube Player together with the parameters used by YoMo

available information, are hence no problem for YoMo. The third task, the application
comfort monitoring is more difficult to solve for reasons we explain in the following.
Recall that we defined the YouTube AC as the buffer status of the YouTube player,

which is defined as the amount of playtime β, the player can continue the playback if
the connection to the server is interrupted. As long as β is not zero, the video does not
stall. To avoid a stalling of the video and thereby a QoE degradation, YoMo constantly
monitors β and checks that it does not drop below an alarm threshold βa. Fig. 1 depicts
how β can be calculated as the difference between the currently available playtime T

and the current time of the video t.
As YoMo decodes the FLV tags in real time, it exactly knows the currently downloaded

playtime T which is the time stamp of the last completely downloaded tag. Intuitively,
t could easily be calculated as the time difference between the actual time and the time
when the player starts the video download. During our measurements we however found
that this is not possible. The playback of a YouTube video does not start immediately
after the player has loaded, but only after a certain amount γ of bytes have been down-
loaded. The analysis of experiments with 10 different videos and 5 different connection
speeds shows that for each video one value of γ exists which is independent from the
connection speed and the servers from which the video is downloaded. We moreover
were not able to find a relation between γ and different video characteristics. This is
illustrated by Fig. 2, where the coefficient of correlation between γ and the considered
video characteristics which include information about the frame types of the original
H264 file embedded in the FLV tags, is depicted.
As it is not possible to derive γ from the properties of the displayed video, t can not

be calculated, but has to be queried from the YouTube API. This API can however only
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Figure 2: Coefficient of correlation between video characteristics and γ

be used by JavaScript or ActionScript embedded in a web site. Obviously, the original
YouTube web page can not be modified, nor is it unrealistic to redirect all YouTube
traffic to a dedicated web page. Hence, YoMo uses a Firefox plugin which is able to
embed a JavaScript statement and a JavaBean in the YouTube site when it is loaded.
The JavaScript retrieves the information from the YouTube player and the JavaBean
sends the information to YoMo. YoMo uses this to compute and to visualize β in a GUI.
Additionally, β can be sent to a network engineer or the network provider. The notifier
can, however, also be configured to send an alert message to a network management
instance if β is smaller than an alarm threshold βa. YoMo and the Firefox plugin may
be downloaded from the G-Lab website 3.

4 Application Comfort-based Quality Support in WMNs

If a YouTube video stalls, this simply means that the corresponding download lacks
of bandwidth. In a wireless environment, this could be caused by a bad link quality
due to fading while moving or a crowded channel. We, however, consider a WMN with
stationary clients and assume that the links used by the YouTube flow are fast enough to
display a YouTube video if no other traffic exists. Under these assumptions, the flow can
only lack of bandwidth if the links it is using are overloaded or if the nodes forwarding
the flow can not access the channel often enough as neighboring nodes are highly loaded
and thereby cause too much interference. The first problem is known from the wired
domain and caused by in-band cross traffic. The second problem is wireless specific and
due to out-band cross traffic. We illustrate the difference between those two types of
cross traffic in Fig. 3 where the wireless mesh testbed which is used for evaluating our
concepts is shown. The YouTube flow from the client is routed over nodes A and B, a
traffic flow using the link between A and B or B and A is hence called in-band, using
the link between C and D or D and C is called out-band cross traffic.

3http://www.german-lab.de/go/yomo, last accessed 10/02
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Node A Node B
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Figure 3: The mesh testbed used for the experimental evaluation

If the bandwidth of the cross traffic is reduced, the YouTube flow gets more bandwidth
and the video playback continues smoothly. This is exactly the idea of a bandwidth
shaper tool we describe in the following. It is inspired by previously discussed work
of Pries et al. [11] who propose the interaction of traffic controller and traffic observer
instances running on each of the mesh nodes. We illustrate this functionality using the
setting depicted in Fig. 3. If the amount of disturbing traffic is too large, the packet loss
of the YouTube flow increases. The TO instances on A and B detect this problem and
notify their associated TC instance which deal with the in-band cross traffic by throttling
the non-realtime flows they are forwarding. If the TO on A and B still observe packet
loss, they trigger their associated TC instances to use the messaging system of the
OLSR routing algorithm to deal with the out-band cross traffic. In this case, alerts are
embedded in the OLSR Hello messages to inform the one-hop neighbors C and D which
now in turn throttle their best effort flows.
As there is not always a direct relation between packet loss and QoE, we use the

application comfort for resource management decisions. For this purpose, a monitoring
software like YoMo has to run at the clients, as the application comfort can only be
measured at the edge of the network. An instance of the resource management tool
which we describe in the following runs at each of the mesh node. It only reacts if
it is triggered by YoMo, which runs at the client, and hence called Obedient Traffic
Controller, or OTC for short, in order to distinguish it from the TC proposed by [11].
OTC classifies all traffic to be either low priority best effort traffic like email or file

transfers or high priority traffic, like YouTube, VoIP, or the OTC signaling traffic. High
priority traffic is tagged by setting the TOS field to 8 which stands for “minimize delay”.
The Linux tool tc allows OTC to setup an egress root queuing discipline (QDISC) as
a priority queue with two different sub queues. The sub queue for high priority traffic,
like YouTube, VoIP, or the OTC signaling traffic uses the stochastic fairness queuing

11



QDISC. This results in a FIFO queue for each high priority stream from which packets
are dequeued in a round robin fashion. The sub queue for the low priority best effort
traffic, e.g. email or file transfer traffic uses the token bucket filter QDISC which allows
to upper bound the rate of the low priority traffic. In the normal case, both classes share
the bandwidth available on the link, but if necessary, the maximum bandwidth of the
best effort class can be limited.
OTC is running on all mesh nodes, whereas YoMo is running on the client only, there-

fore the communication between the instances has to be realized in a distributed fashion.
To make the distributed traffic controlling approach independent from the underlying
routing protocol, two types of dedicated messages are used: The flow detection mes-
sage (DM) is sent by YoMo to announce a new high priority flow, i.e. a YouTube flow it
detected. The flow alert message (AM) is used if YoMo detects a problem, which means
that β ≤ βa. Both messages contain the identifier of the corresponding flow which is the
unique combination of the source and destination IP and port.
The distribution of the AM and DM messages in the WMN works as follows: As soon

as a mesh access point, in Fig. 3 node A, receives a DM or AM from a client, it broadcasts
this message. All mesh nodes which receive an AM or a DM and which are forwarding
the corresponding flow, rebroadcast the message unless they already forwarded the YoMo
message. This ensures that only nodes which are forwarding the YouTube flow, or which
are direct neighbors to this flow receive those messages. In our example B and C receive
the broadcast from A, but only B rebroadcasts the message. The broadcast from B is
received by A and D. A recognizes that it already sent the message and does not forward
it.
The traffic controlling mechanism works in a similar way as the previously described

concept of [11]. Upon the reception of a DM from a YoMo instance, a node forwarding
the corresponding flow tags it as high priority by setting the TOS field of all its packets
to 8. Furthermore, the bandwidth of the best effort traffic is reduced by a factor ∆Bd.
All nodes which receive the DM from an OTC instance do not have to tag the flow, but
also limit the bandwidth of the cross traffic. Nodes which do not forward the flow, ignore
the DM. In contrast, both forwarding and non-forwarding nodes reduce the bandwidth
of the best effort traffic by ∆Bd if they receive an AM, as this means that the YouTube
video is about to stall. As long as β is smaller than βa, YoMo sends AM messages every
∆Td seconds. If the YouTube video has been completely downloaded or if β > βa, no
AM messages are sent. All mesh nodes which throttled their best effort flows and which
do not receive an AM, increase the maximum bandwidth of the best effort class by an
amount ∆Bi each ∆Ti sec.

5 Results

In this section the functionality of our concept is evaluated. For this purpose we first
demonstrate that YoMo is suitable to estimate the stall time of a YouTube video. This
analysis is contained in Section 5.1. Section 5.2 reports results from an experiment
where YoMo cooperates with OTC. The value of the alarm threshold βa has a strong
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Figure 4: Difference between estimated and actual stalling time

impact on the performance of a WMN where YoMo and OTC are running. Section 5.3
therefore more deeply investigates the influence of this parameter on application and on
network level.

5.1 YoMo Accuracy

In order to find out how accurately YoMo predicts the time when a video stalls, we use
a client running a measurement web page which allows to dump the YouTube player
state. The client is connected to the Internet via a proxy which is able to modify the
connection speed and to interrupt the connection. It runs YoMo which is modified to
log the buffer estimation and the corresponding timestamps. During our experiments
we observed that β = 0 is a sufficient but not a necessary condition for a stalling video:
many videos already stall if β ≈ 0.5 sec. We therefore consider a video to stall as soon as
β ≤ 0.5 sec. In Fig. 4 we depict the estimation error ∆ts between the time when YoMo
considers the video to stall and the video actually stalls which is the instance when the
player state changes to buffering. We depict experiments with 10 different randomly
chosen YouTube videos displayed at different connection speeds. For each considered
bandwidth, the box depicts the inter quartile range of the estimation errors and whiskers
which are 1.5 times longer than the interquartile range. Values beyond this range are
shown by red crosses. This allows to see that the estimation error is independent of
the bandwidth. YoMo estimates the video on average to stall roughly 0.1 sec earlier
than it actually did. In most cases, YoMo underestimated the remaining play time, i.e.
predicted the time of stalling earlier than it actually happened. The maximal estimation
error in this direction was 0.5 sec. In some cases, YoMo overestimated the remain play
time with a maximal error below 0.5 sec. Taking the inherent error of our assumption
that a video already stalls if β < 0.5 into account, these results demonstrate that YoMo
is working as intended.
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5.2 Cooperation of YoMo and OTC

For an evaluation of the cooperation of YoMo and OTC, we use the experimental setup
shown in Fig. 3. The client is a standard laptop running Microsoft Windows XP and
YoMo with βa = 15 sec. The WMN consists of four Saxnet Meshnode III which use the
IEEE 802.11b spectrum in the 2.45 GHz band and run an instance of OTC which uses
∆Td = 2 sec, ∆Bd = 4, ∆Ti = 0.6 sec, and ∆Bi = 20 kbps for the control of the cross
traffic. Those values performed best during our experiments. An extensive parameter
study is the scope of future works.
In our setup, the mesh gateway B is connected to the access router of the university

via Ethernet. The client is connected to A, which is configured as access point. On
A, two wireless interfaces are activated, one for the connection to the WMN and the
other for the connection to the client. All other nodes use only one interface for building
the WMN. As our testbed is located in one of our laboratories it is fully meshed, the
indicated topology is created with restricting firewall rules.
To evaluate the performance of OTC, we need a heavily loaded network where the

YouTube flow gets less than the roughly 300 kbps it needs for a smooth playback. As
our testbed consists only of four mesh nodes, it is difficult to overload a 54 Mbps link,
especially in the out-band scenario. Therefore, we reduced the link rate to 1 Mbps, to
make it easier to generate overload on the links. For our test, the client displays the
YouTube video “Madagascar I like to move music video”4 whereof a snapshot is shown
in Fig. 1. It has a playtime of 2:49 minutes and a file size of 6.8 MB. The cross traffic is
generated with the Linux tool iperf5 as both TCP and UDP flows. The TCP flows use as
much bandwidth as possible, each UDP flow generates disturbing traffic at a fixed rate
of 800 kbps. We furthermore distinguish two test scenarios: an in-band scenario where
the cross traffic is generated at A and B, and an out-band scenario where the cross traffic
is between C and D. For each of the four combination of in-band/out-band, TCP/UDP
we perform two experiments. At the beginning of each experiment, the cross traffic flows
are started. Roughly ten seconds later, the client starts to display the video. During
the first experiment, OTC is disabled, for the second run, it is enabled. All packets are
captured with tcpdump6 and analyzed with Wireshark 7 afterwards.
Let’s start discussing the results from the experiments conducted for the in-band

scenario. They are shown in Fig. 5. Fig. 5(a) and 5(b) depict the experiments without,
Fig. 5(c) and 5(d) the experiments with OTC. For each of the four experiments we show
the behavior of three different parameters. On the top, the bandwidth of the three flows
which share the link are shown. The area at the bottom accounts for the bandwidth
consumption of the flow from B to A, the area above for the bandwidth consumption
of the flow from A to B, and the area on top for the bandwidth consumption of the
YouTube traffic. The subplot in the middle shows the YouTube player state which is
either “b” for buffering or “p” for playing. The subplot at the bottom shows the amount

4http://www.youtube.com/watch?v=0x3W6hutEj8, last accessed 02/10
5http://sourceforge.net/projects/iperf/, last accessed 02/10
6http://www.tcpdump.org/, last accessed 02/10
7http://www.wireshark.org/, last accessed 02/10
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Figure 5: Video playback with in-band cross traffic
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of buffered playtime.
An analysis of the experiments without OTC, represented by Fig. 5(a) and 5(b),

demonstrates that the disturbing flows use about half of the bandwidth each. The
bandwidth consumptions of the YouTube stream which starts after the disturbing flows
are in contrast too small to be clearly visible. As a consequence, the player is spending
more time in the buffering than in the playing state and during the first shown 250 sec of
the measurement, the video (which has a length of 169 sec) is not completely downloaded.
The subplot in the middle shows the behavior of the YouTube player. As soon as it is
downloaded it tries to connect to the YouTube server to download the video. During this
time, the YouTube API indicates that the player is in buffering state. As the link to the
YouTube server is overloaded, the YouTube flow gets only little bandwidth and needs
over 30 seconds in the TCP and more than 50 seconds in the UDP scenario before it
can begin the playback. The representation of the player state visualizes moreover that
the video playback is not smooth but that the player repeats the pattern of 2 seconds of
playback and a roughly ten times longer buffering phase. This is simply due to the fact
that the YouTube player is not able to fill its buffer in a speed faster than the video rate
and also depicted by the zig-zag shape of the curves illustrating the buffer state. With
UDP cross traffic the buffer is even more slowly filled than with TCP cross traffic, and
the player stalls 88 times until the end of the video and 81 times in the TCP experiment.
During the experiments with OTC, the video playback is terminated normally which

can be recognized by the fact that the player state depicted in Fig. 5(c) and 5(d) does
not change to buffering after the initial buffering phase any more. The shown results
hence depict the entire measurement. However note, that the player is again 10 and
20 seconds for TCP and UDP respectively in the buffering state before it begins the
video playback. This initial delay is caused by YoMo’s functionality which detects the
YouTube connection after the first FLV tag has been downloaded. If now the link is
heavily congested, it is only after this time that YoMo can send DM and AM messages
which cause the mesh nodes to throttle the cross traffic. More advanced YoMo versions
will hence include mechanisms for recognizing a YouTube flow before the first FLV tag
has been downloaded in order to speed up the begin of the video playback.
For both, TCP and UDP, a comparison between the consumed bandwidth and the

buffer level shows that YoMo and OTC are working as intended: As soon as YoMo
detects the YouTube flow it sends a DM and continues to send AM as long as β is
below the threshold. Upon the reception of an AM, A and B reduce their best effort
traffic. Hence more bandwidth is available to the YouTube stream and β increases.
If β is large enough, YoMo does not send messages any more, and A and B begin to
increase the bandwidth of the best effort traffic. Consequently, the bandwidth available
for the YouTube stream and thereby β decreases. After it has become smaller than βa,
YoMo starts to send AM messages again, A and B reduce their best effort traffic and β

increases. Observe that while β is behaving differently in the TCP and UDP case, the
player does not stall in both experiments, YoMo and OTC are hence able to guarantee
a perfect QoE.
Fig. 6 shows the results from the experiments in the out-band scenario. This time

the disturbing traffic is not generated between A and B but on the interfering link C-D.
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Figure 6: Video playback with out-band cross traffic
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In the experiments without OTC shown by Fig. 6(a) and 6(b), the YouTube flow hence
gets a bigger share of the bandwidth than in the in-band case as three nodes compete for
the transmission opportunity and as a result the bandwidth is more equally distributed.
The representation of the player state and of the buffering level however visualize that
this is also not enough to guarantee a smooth playback. As in the experiment before,
the shape of the curve depicting the buffer level shows a zig-zag behavior illustrating a
sequence of playback and buffering phases. Even if the playing and buffering phases are
now alternating more quickly, the download has not completed until the 230 seconds of
the measurement we show. Moreover does the video stall 41 times regardless the type
of the cross traffic.
In the experiment with OTC shown in Fig. 6(c) and 6(d), we may again observe that

the concept is working as intended. After an initial buffering phase, which is longer
than in non-congested networks but shorter than in the scenario with in-band traffic,
YoMo detects the YouTube flow and sends a DM and AMs until β has reached the
alarm threshold. As a result C and D throttle their traffic, the video playback may
hence begin earlier than without OTC. We may again observe that as soon as no AM
messages are sent any more the UDP cross traffic causes the YouTube buffer to decrease
and the controlling algorithms has to start again. This is however not the case for TCP
cross traffic. In this situation the disturbing flows keep their bandwidth consumption at
a level which allows a fair share of the bandwidth.
In both cases the video did not stall during the experiment, YoMo and OTC were

again able to guarantee the user QoE. The representation of the cross traffic bandwidth
in Fig. 6(c) visualizes however another inherent problem of YoMo: Shortly before the
video playback is completed, the playtime buffer reaches the alarm threshold, AMs
are sent, and hence C and D limit the best effort traffic. In this case this is however
not necessary, as the video is nearly completely loaded ant eh YouTube flow does not
need much bandwidth any more. Future versions of YoMo will hence incorporate the
knowledge about the playback end in the decision about sending alarm messages or not.

5.3 Parameter study for βa

The previous section demonstrated that YoMo and OTC are cooperating successfully.
This section will more closely analyze the advantages and disadvantages of different
parameterizations of βa, a factor which has a major influence on the performance of the
controlling algorithm. For this purpose we use the same setup as before but generate
bidirectional TCP cross traffic between A and B and bidirectional UPD cross traffic
between C and D. After the start of the cross traffic, the client starts to display the
video. YoMo is always activated with different values for the buffer alarm threshold.
Due to the heavily congested network, the YouTube flow gets at most 1 kbps before
YoMo can send the first message. In Fig. 5 and 6 it can be observed that the chosen
video shows a particular buffering behavior: β increases until it is roughly larger than 2
seconds. The playback begins and the β decreases nearly to 0 before it starts increasing
again. In medium congested networks with YoMo enabled this is no problem. In this
experiment, it causes however that for all parameterizations of βa the video stalls after
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Figure 7: Influence of the alarm buffer threshold βa

the first 3 seconds of playback, as the playtime buffer is not replenished fast enough. For
this reason, we repeated the experiment with a second video, “Al Hirt Rocky”8 with a
length of 3:28 min and a size of 8.6 MB. While this video, called video 2 in the following,
is both longer and bigger than the previously considered vide0 1, the behavior of the
buffer status shows the same trend. Moreover are all results we show in the following
comparable, although video 2 is larger and longer than video 1.
This phenomenon is depicted by Fig. 7(a) which shows that both videos are stalling

one time if βa ≥ 10 sec. If the alarm threshold is set to a smaller value, the video stalls
significantly more often as the reaction of OTC upon the reception of an AM, simply
does not allow the YouTube player to replenish its buffer fast enough. The drawback of
a large alarm threshold is also depicted in Fig. 7(a): the larger βa, the more overhead in
terms of AMs is caused. At the moment OTC is configured to send and AM each two
seconds as long as β is below the threshold. If this threshold is small, e.g. if βa = 1 sec,
than the buffer runs empty before the reduction of the cross traffic flows allows the
YouTube player to grab more bandwidth. As the video is not played any more, the
buffer is filled quickly and at most after 3 sec again larger than the alarm threshold.
Consequently each time the buffer is below the threshold at most 2 messages are sent.
For the case of a larger threshold, e.g. βa = 20 sec, the video playback could continue
for 20 seconds from the time when β drops below the threshold. The playback hence
continues and more amount of playtime has to be downloaded until β is again larger than
βa in comparison to the setting with βa = 1 sec. On average, each time the threshold
is too small, 5 AM messages are sent. We saw that the buffer threshold is more often
below the alarm threshold if this is set to a small value, but less AMs are sent than if βa

is set to a larger value, as those phases take less time. If a large value for βa is chosen,
YoMo additionally sends a larger number of AM before the playtime buffer is the first
time larger than the threshold.

8http://www.youtube.com/watch?v=X60jEHxEAY4, last accessed 02/10
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The average bandwidth of YouTube and of the cross traffic during the video playback
are shown in Fig. 7(b). Before YoMo and OTC start to control the bandwidth in the
network, the YouTube flow gets roughly 1 kbps, as the other traffic flows predominate.
The fact that small values for βa < 10 sec are not advantageous which we already ob-
served in Fig. 7(a) is also visible here: the minimal bandwidth for a simple YouTube
video to play without stalling is roughly 300 kbps which is only reached if βa ≥ 10 sec.
The price for this is clearly a significant restriction of the best effort traffic. A configu-
ration with a value in the range of βa = 5 sec in contrast, is insofar also interesting as
it allows to find a balance between application comfort, overhead and reduction of best
effort traffic. Values in this range guarantee a video playback with few more stall times
while it reduces the cross traffic less strongly and causes less AM to be sent.
Clearly, any optimization of βa has to be done in respect to the network situation.

More exhaustive parameter studies involving the parameters of OTC under different
load conditions are hence the subject of our future works. This results presented in this
section are however able to illustrate the configuration possibilities for our scheme.

6 Conclusion and Outlook

Application comfort monitoring presents an approach to monitor the usage of applica-
tions, their quality requirements and the experienced application comfort at the client.
Application comfort goes beyond quality of experience in so far that it also considers the
future development of the QoE if a prediction is possible. In the scope of our example
application, Flash video streaming over TCP connections, the application comfort is
measured as the buffered playtime. YoMo, the ACM tool for Flash videos or concretely
for YouTube streaming, consists of two parts: a browser plug-in that monitors the state,
in particular the current playtime, of the Flash player and a packet sniffer that detects
new Flash video transfers, extracts the videos metadata, and monitors the available
playtime. Both components together allow to determine exactly the buffered playtime,
even if the user jumps within the video.
As discussed in the introduction and the related work section, ACM can be a solution

to provide some kind of QoS support to many Internet applications that by themselves do
not communicate their quality requirements. Possible use cases for YoMo are within the
scope of the connection setup and adaptive parameterization in future wireless networks
like LTE or WiMAX. Additionally, application comfort monitoring has the potential to
deliver essential context information on the application usage for resource management
frameworks like IEEE 802.21 or IEEE 1900.4.
As a scenario for our proof of concept we used a wireless mesh network where YoMo

is running at the client. It autonomously detects YouTube videos and signals that
presence to the OTC instances running at the mesh nodes. This enables OTC to classify
the YouTube flow as high priority and to restrict the bandwidth of low priority traffic if
necessary. To ensure a good quality in mesh networks this is however not sufficient. Much
traffic with low priority on interfering nodes may nevertheless decrease the bandwidth
of the YouTube flow and hence lead to stall times. In order to prevent this, YoMo
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continuously monitors the buffered playtime. If this decreases below a threshold YoMo
sends alarm messages to the OTC instances which cause both the forwarding nodes and
the one-hop neighbors to limit their best effort traffic. In our testbed we set up two test
cases. In the in-band case, the cross traffic is generated on a link used by the YouTube
flow, in the out-band case, the cross traffic is on an interfering link. In both cases the
cooperation of YoMo and OTC is able to avoid stall times.
YoMo demonstrates the appeal of ACM for both costumers and network providers.

YoMo is lightweight and easy to install while it provides valuable information to a
network manager. If users run YoMo and the network provider a tool similar to the
discussed OTC, both parties may greatly benefit as the provider gets information for
free it can use for improving the user QoE. Our future work will therefore be dedicated to
develop this concept in two directions. Firstly, we will refine YoMo and develop similar
tools for other popular applications like VoIP, scalable video or web traffic. Secondly, we
will work on an improved radio resource management scheme for wireless mesh networks
which include intelligent access mechanisms, gateway selection, channel selection, and
routing.
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