University of Wiirzburg
Institute of Computer Science
Research Report Series

Performance Comparison of
Common Server Hardware
Virtualization Solutions Regarding
the Network Throughput of
Virtualized Systems

Daniel Schlosser, Michael Duelli,
and Sebastian Goll

Report No. 479 March 2011

University of Wiirzburg, Germany
Institute of Computer Science
Chair of Communication Networks
Am Hubland, D-97074 Wiirzburg, Germany
phone: (449) 931-31-86642, fax: (+49) 931-31-86632
{schlosser|duelli|goll} @informatik.uni-wuerzburg.de

Performance Comparison of Common Server Hardware
Virtualization Solutions Regarding the Network Throughput
of Virtualized Systems

Daniel Schlosser, Michael Duelli,

and Sebastian Goll
University of Wiirzburg, Germany
Institute of Computer Science
Chair of Communication Networks
Am Hubland, D-97074 Wiirzburg, Germany
phone: (+49) 931-31-86642, fax: (+49) 931-31-86632
{schlosser|duelli|goll} @informatik.uni-wuerzburg.de

Abstract

Hosting virtual servers on a shared physical hardware by means of hardware
virtualization is common use at data centers, web hosters, and research facilities.
All virtualization platforms include isolation techniques that restrict resource con-
sumption of the virtual guest systems. Therefore, they setup quotas for the virtual
guest systems on the use of processors, memory, and hard disk of the host. How-
ever, these isolation techniques have an impact on the performance of the guest
systems. In this technical report, we study how popular hardware virtualization
approaches, namely OpenVZ, KVM, Xen v4, VirtualBox, and VMware ESXi,
affect the network throughput of a virtualized system. We compare their perfor-
mance impact in a dedicated and a shared host scenario as well as to the bare,
i.e. not virtualized host system. Our results provide an overview on the perfor-
mance of popular hardware virtualization platforms on commodity hardware in
terms of network throughput and should be considered when performing scientific
experiments in a virtualized environment.

Keywords: hardware virtualization; analysis; commodity hardware; network through-
put; isolation

1 Introduction

Hardware virtualization means abstracting functionality from physical components. This
principle is used for sharing hardware by multiple logical instances — the wvirtual guest
systems — and originated already in the late 1960s. Recently, the importance of virtu-
alization has drastically increased due to its availability on commodity hardware, which
allows multiple wvirtual guests to share a physical machine’s resources. The resource
access is scheduled and controlled by the wvirtual machine monitor (VMM), also called
hypervisor. Different virtualization platforms have been implemented and are widely
used in professional environments, e.g. data centers and research facilities like G-Lab [I],

to increase efficiency and reliability of the offered resources. The resources that may be
used by a virtual guest system as well as lower performance bounds regarding these
resources are determined in service level agreements (SLAs) between providers and cus-
tomers. The implementation of the VMM influences how well the resource allocation
complies with these SLAs and to which extent different guests interfere with each other.
Hence, a provider has to know the performance limitations, the impact factors, and the
key performance indicators of the used VMM to ensure isolation and SLAs.

There are two basic scenarios in which hardware virtualization is used. In the dedicated
scenario, only a single virtual guest is run on a physical host. By means of hardware vir-
tualization, the guest system is made independent of the underlying physical hardware,
e.g., to support migration in case of maintenance or hardware failures. Hardware virtu-
alization is also used to consolidate resources. Therefore, the physical hosts are shared
among multiple virtual guest systems in a shared scenario. While the performance of a
virtualized system can be directly compared to the bare host system in the dedicated
scenario, the performance of a virtual guest may also be affected by interference with
other virtual guests on the same physical host in a shared scenario.

The performance cost of virtualization and isolation, i.e. the prevention of virtual
guest interference, has been studied for CPU, memory, and hard disk usage. Nowadays,
most commodity servers have built-in hardware support for virtualization enabling fast
context switching in the CPU and resource restriction for the memory. However, the
input/output (1/O) system, especially network throughput, is still a crucial factor.

Therefore, we focus on the network throughput of virtualized systems as the per-
formance metric. We apply this metric on a non-virtualized Linux and on a virtual-
ized version of this system using several popular hardware virtualization platforms, i.e.
OpenVZ, KVM, Xen v4, VirtualBox, VMware ESXi. Furthermore, we install a second
virtual guest and analyze the effects when the second virtual guest is idle, running some
CPU and memory intensive tasks, or is transmitting packets.

The remainder of this report is structured as follows. In [Section 2| we present the
different virtualization concepts used by the considered VMMs and related work. We
explain our measurement setup and methodology in [Section 3| Results for the dedicated
scenario considering only a single guest are described in [Section 4 An analysis of two
virtual guests in shared scenarios is discussed in [Section 5. In [Section 6 we draw
conclusions and give an outlook on future work.

2 Background and Related Work

In this section, we describe the techniques used by the considered VMMSs to virtualize
the underlying hardware and give an overview on related work.

2.1 Virtualization Concepts

The recent popularity of virtualization on commodity hardware created a plethora of
virtualization platforms with different complexity and environment-dependent applica-
bility. An overview of virtualization platforms is given in [2].

Server Server Server

User
Space

User User User
Space

User User Spacel |||| Space 2

VMM
US Base

VMM
S Y,
[Hardware J [Hardware J [Hardware J
Native VMM: Host VMM: OS-Level Virtualization:
VMware, Xen VirtualBox, KVM OpenVZ

Figure 1: Virtualization concepts of the considered VMMs.

Several ways to realize hardware virtualization have evolved, which differ in the re-
quired adaptations of the guest system. For instance, a VMM may run on bare hardware
(called Type 1, native, or bare metal) or on top of an underlying/existing operating sys-
tem (OS) (called Type 2 or hosted). Also hybrids between Type 1 and 2 are possible.
Finally, OS-level virtualization is a special form, where the guests are run in a container
of the OS operating directly on the hardware.

Native VMMs and hosted VMMs might provide full virtualization, i.e. the guest
system does not have to be modified. This means that the virtualized guest operating
system is working as if it would run directly on the hardware. But whenever the guest
wants to access a hardware resource, which is only a virtualized resource, the VMM has
to interrupt the guest and ‘emulate’ this hardware access. This effects the performance
of the guest system. To alleviate these problems, the guest system can be modified, e.g.
with special drivers, to redirect resource accesses to function calls of the VMM. This
method is called para-virtualization and may improve the performance of the guest. OS
level virtualization solves this resource access problem by using the same modified kernel
in the guest containers as in the hosting OS. This technique has the advantage that the
overhead for virtualization is quite low compared to the other solutions. However, the
OS and the kernel of the guest is predetermined. depicts how the considered
virtualization platforms encapsulate virtual guests and indirect access to resources for
applications, which run in user space. In this work, we consider five popular hardware
virtualization platforms which can be categorized as

e native virtualization, represented by VMware ESXi [3] and Xen v4 [4],
e host virtualization, represented by VirtualBox [5] and KVM [6], and

e operating system-level virtualization, represented by OpenVZ [7].

Fair access to the physical hardware is important and known to work for resources
that can be split into quotas, e.g. memory, disk space, or processor cycles per second.
However, access to any of these separately restricted resources involves the input and
output (I/O) of data which typically shares a single bottleneck, e.g. an internal bus.
Especially, network 1/0O fairness is a crucial issue which involves another shared physical
resource, the network interface card (NIC). Hence, we consider the packet forwarding
throughput of the aforementioned virtualization platforms as a performance metric.

2.2 Related Work

An overview of virtualization techniques and mechanisms as well as their history and
motivation is given in [8]. Several publications consider resource access fairness when
multiple guest systems run on a single host. In [9], virtualization was done using Xen.
The authors show that while the processor resources are fairly shared among guests, the
scheduling of I/O resources is treated as a secondary concern and decreases with each
additional guest system. The authors of [10] use a NetFPGA-based prototype to achieve
network 1/O fairness in virtual machines by applying flexible rate limiting mechanisms
directly to virtual network interfaces. Fairness issues in software virtual routers using
Click are considered in [11]. The impact of several guests with and without additional
memory intensive tasks on packet forwarding is measured. More details and performance
tuning for the Click router is provided in [12].

As mentioned before, the performance and fairness heavily depend on the used VMM.
Hence, several comparisons of mostly two VMMs have been conducted. We focus on
the references considering network 1/O performance which altogether consider packet
forwarding performance with different packet lengths from 64 to 1500 bytes. In [13],
a comparison of VMware ESX Server 3.0.1 and open-source Xen 3.0.3 with up to two
guests was conducted by VMware using the Netperf packet generator. They show that
Xen heavily lags behind VMware ESX. This study was repeated with VMware ESX
Server 3.0.1 and open-source Xen Enterprise 3.2.3 in [I4] by Xen Inc. which showed
that a specialized Xen Enterprise lags by a few percent. The authors of [15] consider
multiplexing of two data flows with different scheduling mechanisms on a real Cisco
router, a virtual machine host, in two VM guests using Xen, and a NetFPGA packet
generator. They show the dependency of the software routers on the packet length.
Measurements of OpenVZ and User Mode Linux (UML) were conducted in [16] on wire-
less nodes of the Orbit test bed. UDP throughput and FTP performance is measured,
but it is also stated that the hardware is not the best choice for virtualization. In [17],
the network virtualization platform Trellis is presented and packet-forwarding rates rel-
ative to other virtualization technologies and native kernel forwarding performance are
compared. The considered virtualization technologies comprise Xen, Click, OpenVZ,
NetNS, and the Trellis platform. The Linux kernel module pktgen [18] is used for packet
generation. In their results, Xen has the lowest performance followed by OpenVZ.

To the best of our knowledge, this is the first paper to compare the packet forwarding
performance of today’s most popular hardware virtualization platforms on a common
commodity server system without special hardware requirements, e.g. NetFPGA cards,
or fine-tuned virtualization parameters, such that comparisons can be easily repeated.

3 Hardware Setup and Measurement Scenarios

In the following section, we give an overview on the hardware setup of our measurements
and provide technical details on the considered scenarios.

3.1 Hardware Setup

For our measurements, we use seven Sun Fire X4150 x64 servers from the G-Lab testbed
[1]. Each server is equipped with 2xIntel Xeon 15420 Quad Core CPU (2x6MB L2
Cache, 2.5 GHz, 1333MT/s FSB) and 8x2GB RAM. The unit under test (UUT) is
equipped with eight 1 Gigabit ports on two network interface cards (NICs), while all other
servers are equipped with only four 1 Gigabit ports. The network controller chip sets
identified themselves as Intel 80003ES2LAN and Intel 82571EB. The UUT is connected
on each NIC to three other servers each with a single direct connection using Cat.5e TP
cable or better. The setup and interconnection of the servers is illustrated in [Figure 2|

Each machine is running Debian 5.0.4 (“lenny”) with Linux kernel 2.6.26 compiled for
the amd64 (x86-64) architecture. Only for the test of Xen we needed to adjust the base
system with Debian 5.0.5 (“lenny”) with Linux kernel 2.6.31 for amd64. Since VMware
ESXi installs directly on the host machine, the choice of a custom operating system is
not applicable in this case. We investigate the following versions of the different VMMs
with a Debian “lenny” as a guest system and the given Kernel installed:

e KVM 0.9.1 (kvin-72) [6]: Guest running Linux 2.6.26 for amd64

e OpenVZ 3.0.22 [7]: Guest running same OS kernel as host

VirtualBox 3.2.8 [5]: Guest running Linux 2.6.26 for amd64

VMware ESXi 4.1.0 [3]: Guest running Linux 2.6.26 for amd64

Xen development version of July 16th, 2010 [4]: Guest running Linux 2.6.26 for
1386 (1686; x86) with physical addressing extensions (PAE) support.

For the KVM and VirtualBox machines, virtual NICs are using the “virtio” para-
virtualized network driver. For OpenVZ and Xen, para-virtualization is achieved im-
plicitly through the OS-level or para-virtualization approach taken by OpenVZ and Xen,
respectively. For VMware ESXi, both the “E1000” full-virtualized network card emula-
tion and the “VMXNET 3” para-virtualized network driver (using the VMware Tools
on the guest) are considered.

g ot
) —> UDP —> g
X 5
2 el
:
) g

un1t -
g under test 3
[=)) o
= (UuT) c
~ =]
o S

Figure 2: The hardware setup.

3.2 Measurement Metrics and Methodology

In all scenarios, we investigate the packet forwarding throughput performance of the
different virtualization solutions on the UUT. In each experiment, network traffic is
generated using the packet generator integrated into the Linux kernel (pktgen [18]). It
sends out UDP packets which are forwarded by the UUT to another destination server
where the traffic is recorded by tcpdump [19] and discarded afterwards. After stopping
packet generation, the packet generator reports how many packets it was able to send.
We calculate the “offered bandwidth” from this value and the time in which the traffic
has been sent as well as the “measured throughput” from the data of the tcpdump file.

For our performance evaluation, we set up two different scenarios, a dedicated host
scenario and a shared host scenarios, which we describe in the next sections.

3.3 Dedicated Host Scenario — Impact of Virtualization

In this scenario, we measure the packet forwarding performance of the Linux system
without any virtualization (raw) and compare it with a setup where the same system
is installed inside the tested VMM. We consider up to three traffic sources. It has to
be noted that each traffic stream through the UUT does not interfere with any other
stream outside the server, i.e. each traffic stream enters the server over a different
network interface and also leaves the system via another distinct network interface.
Each network interface is directly bridged to a corresponding virtual interface of the
guest system.We consider packets with an Ethernet frame size of 64, 500, 1000, and
1500 byte for each data stream. The complete logical size “on the wire”, i.e. bits used
on layer 1, is 20 byte larger, due to the layer 1 preamble of 7 bytes, the start of frame
delimiter, and the inter frame gap of 12 octets, as defined in the 802.3 standard[20)].
For each packet size, a target bandwidth of 10, 100, 200, 400, 600, 800, 900, and
1000 Mbit/s was run nine times for statistical evidence. Since pktgen does not allow for
setting a target bandwidth, but instead manages different loads of traffic by waiting a
certain amount of time between sending two consecutive packets, this delay had to be
calculated. For target bandwidth b [Mbit/s] and target packet size s [byte], the resulting

delay [ns] would be 8000 x (s + 24)/b. This formula works well for large packet sizes,
but the kernel is not able to generate small packets fast enough. Hence, we additionally
adopted the inter packet delay to 1 and Ons for each nine tests, in order to maximize
the generated traffic and send as many packets as possible.

3.4 Shared Host Scenario — Impact of other Guest Systems

The consolidation of multiple virtual systems on a single physical host may have an
impact on the network performance of the virtualized guests. Thus, we add a second
virtual guest to the VMM, which runs another Debian “lenny” and repeat all measure-
ments. Initially, the second guest does not run any processes generating additional load
(no load). In order to investigate if CPU intensive processes in another guest systems
has an influence of the performance of our UUT, we generate variable amounts of CPU
and virtual memory load with the stress tool (version 0.18.9) [21] and considere two
more cases. In the first case, called light load, stress was running with parameter --cpu
1, corresponding to a single CPU worker thread. In the second case, called heavy load,
stress was running with parameters -—cpu 8 --vm 4, corresponding to 8 CPU worker
threads, and 4 virtual memory threads which allocate, write to, and release memory. In
case of full virtualization (KVM, VirtualBox, VMware, and Xen), each virtual guest was
assigned a single (virtual) CPU out of the 8 physical CPU cores installed on the server.

Besides CPU and memory load, we targeted the influence of a second guest systems
network load, even if the guests do not share physical network interfaces. We focus in
this scenario on Ethernet frame sizes of 64 byte, as the previous scenarios revealed this
packet size to be most critical. Hence, we reconfigured the UUT to have only two virtual
interfaces, which are bridged to different physical interfaces. We adjust the second guest
system to have also two virtual interfaces, which are bridged to two distinct physical
interfaces. We run the same tests as before, but this time we send traffic through the
second guest. We adjust the traffic in such a way that it is 50% and 95% of the maximum
rate, which we measured in the test with the second guest being idle. For this test, we
also measure the throughput of the second guest to investigate if the second guest system
can still forward the offered data rate.

4 The Performance Cost of Virtualization

Depending on the used VMM, the network throughput performance of the virtual guests
differs significantly. In [Figure 3 we plot the bandwidth the traffic generator produced
(“offered bandwidth”) against the throughput the central test system was able to forward
(“measured throughput”) averaged over all nine repetitions of a test. The error bars,
which in many cases can hardly be seen, present the 95% confidence intervals for the
mean values. We use the following abbreviations to shorten the labels in the figures: raw
for the system without virtualization, VMw-E for VMware with the full-virtualized net-
work card E1000, VMw-VM for VMware with the para-virtualized network VMXNET3,
and VBox for VirtualBox. The graphs for the 1500 byte packets reveal no difference be-
tween the system without virtualization and most of the VMMs. Only the VirtualBox

1000 | raw . 1000 |- raw p
- KVM P - KVM
= OpenVZ e P = OpenVZ o)
£ 800 | VMW-E o s £ 800 | VMW-E o B8
= VMw-VM o = VMw-VM P
> Xen +--e- - / > Xen #--e- -
Q v Q. A
%’ 600 L VBOX == @ @ -g) 600 L VBOX =@ > v
=1 e S o
IS) ())
£ o -
F 400 5 - F 400 -
e pd o 7 ne D S
> P > e % &1
8 < & 200 :
s 200 P) P
= /’/'/ = //./

0 k= 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Offered Bandwidth [Mbit/s] Offered Bandwidth [Mbit/s]
(a) 1500 byte packets (b) 1000 byte packets

1000 | raw 4 1000 [raw
= KVM = KVM
= OpenVZ o . = 0OpenVz »o--
£ 300 | VMw-E o P £ 800 | VMw-E -
= VMw-VM s = VMW-VM
8. Xen o=) s 8_ Xen » o
S 600 VBox oo £ 600} VBox oo
> I 5
e s <
E 400 P N Lt T E 400 |OpenVz - collapse

o° e -]
e e g —
§ 5 v 4) S i § //‘
g 00 ,:'fxs/”’//af **** g | 5 % 200 C 0@
A P C - curees .
0 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Offered Bandwidth [Mbit/s] Offered Bandwidth [Mbit/s]
(c) 500 byte packets (d) 64 byte packets

Figure 3: Offered bandwidth vs throughput of VMMs for different packet sizes.

system is not able to forward all packets. For smaller packet sizes, i.e. 1000 bytes and
500 bytes, the difference between the different VMMSs is clearly visible. The fact that
the offered bandwidth for all packet sizes above 500 bytes increases up to the maximum
of the link, i.e. 1Gbit/s, shows that the VMMs are able to fetch the packets from the
network interface. However, in all cases in which the measured bandwidth is lower than
the offered bandwidth, a significant number of packets get lost in the unit under test
(UUT). Looking at [Figure 3d] two additional effects can be noticed for the smallest used
packet sizes, i.e. 64 bytes. Not all graphs extend to the same length on the x-axis. This
means that the traffic generator was not able to offload the same amount of traffic to the
UUT in all cases. This behavior is caused by layer-2 flow control. Whenever the frame
buffer of the network card is fully occupied, the network card sends a notification to the
sending interfaces to throttle down the packet rate. The maximum throughput of the
UUT is never affected by this behavior. Hence, we keep it activated, as it provides an-
other option to the test system to react on traffic rates it cannot handle besides dropping
packets. Please note that in all cases in which the layer-2 flow control is actively reduc-
ing the number of sent packets, the test system already drops packets. This behavior,
therefore, never influences the maximum throughput of the system. The second observ-

3000 1 stream o - 3000 1 stream o
2 2 streams F) 2 streams mwm
35 2500 3 streams W = 2500 3 streams
= =
3 2000 }p = 2 2000
< i i <
[=) g | =2}
> i] >
2 1500 | S 1500 |
= ®] c
= i N - =
8 1000 b gt 8 1000 |
S | b [S
@ ;i @
% %'o@ %, % & % %%@”f@o%
Wy Ko B % WL Ke & %
S S
(a) 1500 byte packets (b) 1000 byte packets
3000 1 stream o - 3000 1 stream Em
9 2 streams s o) 2 streams
3 2500 3 streams m— 3 2500 3 streams m—
= =
3 2000 3 2000
oy Ny
(@) (@)
3 >
2 1500 | 2 1500
K My
[= [=
8 1000 | 8 1000
3 =}
@ @
é) 500 § 500
o LI LI ae oLl st pen U oo
D, <
v, o@ob %, 47% K 622/— v, 'O@ob %«\ %, <S>°+
SRR > €Y
(c) 500 byte packets (d) 64 byte packets

Figure 4: Maximum accumulated throughput of VMMs.

able effect is the behavior of OpenVZ when forwarding 64 byte packets. The OpenVZ
system achieves a maximum throughput at a given input rate and collapses afterwards.
We also notice this effect in other scenarios with 64 byte and 500 byte packet sizes. But
in these cases, the throughput rate does not only collapse but is heavily varying.

Next, we consider how the throughput of the UUT scales if we increase the number
of traffic generators. depicts the maximum achieved throughput with one, two,
and three traffic sources. Note that as we have seen, e.g. in [Figure 3d, the maximum
achieved throughput is not necessarily recorded at the highest offered bandwidth. The
bar plot for the UUT without any VMM reveals that in all cases, except the one sending
the 64 byte packets, the performance of the raw system scales linearly, i.e. we measure a
throughput of 1 Gbit/s, 2 Gbit/s, and 3 Gbit/s. In the case of 64 byte packets,
reveals a limitation of the raw system, as the accumulated throughput for two and three
traffic generators is the same. In this case the raw system uses layer-2 flow control to
throttle down the traffic generators. But the raw system is able to forward all received
packets, in contrast to all VMMs which accept up to 600 Mbit/s input rates but drop
packets down to the depicted maximum accumulated throughput.

1000 | 64 byte

& 500 byte
= 1000 byte o=
£ oo | 1500 byte o
5
o
S 600
=}
[}
£
5 400 s : o
[0}
5
8 200 e
= o
0 & L
0 200 400 600 800 1000
Offered Bandwidth [Mbit/s]
(a) KVM
1000 | 64 byte —=—
& 500 byte s
2 1000 byte +-o -
£ goo | 1500byte o
5
= -
S 600
=} o “a
3 .
£
5 400 a
(0]
2
8 200
s o
o ke
0 200 400 600 800 1000
Offered Bandwidth [Mbit/s]
(c) OpenVz
1000 |- 64 byte
= 500 byte o
2 1000 byte +-o -
£ 800 | 1500byte o
= %1 P
5 o ¢
S 600 o
S o
= .
£
> 400 g
o .
5
@ y
S 200
=
/;ﬂ/e—‘o—o—‘@
0
0 200 400 600 800 1000

Offered Bandwidth [Mbit/s]
(e) VMware-VMXNET3

Measured Throughput [Mbit/s] Measured Throughput [Mbit/s]

Measured Throughput [Mbit/s]

1000

800

600

400

200

1000

800

600

400

200

1000

800

600

400

200

64 byte
500 byte

1000 byte o

1500 byte

------- =20 PR N SRR S S

© Xo) 2= o9

200

400 600 800 1000

Offered Bandwidth [Mbit/s]
(b) Virtualbox

64 'byte
500 byte

1000 byte o

1500 byte

200

400 600 800 1000

Offered Bandwidth [Mbit/s]
(d) VMware-E1000

64 byte
500 byte

1000 byte o

1500 byte

200

400 600 800 1000

Offered Bandwidth [Mbit/s]

(f) Xen

Figure 5: Differences in throughput of three streams for different VMMs

More details of the throughput performance are presented in[Figure 5| In its subfigures
we plot the mean measured throughput as well as the minimum and maximum measured
throughput of all tests for the different VMMs. This means, that whenever there is a

noticeable error bar plotted, the three parallel streams have a different throughput mea-
sured at the receiving devices. The measured throughput for KVM, cf. and
Virtualbox, cf. [Figure 5b] shows that both systems have a stable maximum throughput
rate. This means that the measured throughput reaches a certain threshold but does
not increase any further. But the measured throughput does also not decrease if more
traffic is offered to the UUT. The VMMs just drop packets which exceed the maximum
achievable throughput. However, the maximum, mean, and minimum bandwidth for-
warded through the VMMs is not diverging, i.e. the measured throughput of all parallel
streams is equal. In case of OpenVZ, cf. we observe a different behavior. For
packet sizes of 1000 byte, the maximum throughput is reached for an offered bandwidth
of about 700 Mbit/s. If more 1000 byte packets are offered, the throughput dramati-
cally decreases down to about 300 Mbit/s. For 500 byte packets, the behavior is even
worse. In this case, the maximum throughput is achieved at an offered rate of about
380 Mbit/s. For higher offered packet rates, the throughput of the system is chang-
ing between minimum rates about 50 Mbit/s and rates up to 400 Mbit/s for individual
flows. Furthermore, the throughput of the parallel flows is no longer the same, but
varies reasonably. Using VMware without the para-virtualized driver, cf. [Figure 5d] we
measure a high variation in the throughput of the parallel flows while offering 1500 byte
packet streams. For offered bandwidths higher than 500 Mbit/s, the difference between
the parallel streams is increasing. In the worst case, we measured about 100 Mbit /s
for the lowest forwarding bandwidth of the three streams and about 800 Mbit/s for the
highest forwarding bandwidth. In the measured bandwidth for VMware with
the para-virtualized network driver VMXNet3 is depicted. This configuration provides
high throughput rates and does not have the problem of different forwarding rates for
different parallels streams. However, even in this configuration, the VMM takes more
packets of the network card than it can handle, which results in high packet loss rates.
The results for the Xen VMM are shown in [Figure 5f In the considered scenarios, Xen
achieves a forwarding bandwidth that does not vary much between the parallel streams.
However, the maximum forwarding bandwidth is not achieved for the maximum offered
traffic. Instead, the maximum forwarding bandwidth is reached for a lower offered traffic
rate and decreases for higher rates.

The results presented in [Figure 4] and [Figure 5 show that most VMMs have a through-
put limitation which depends on the packet size of the offered stream. All VMMs except
OpenVZ reveal this limitation even for 1500 byte packet sizes. Only OpenVZ is able to
forward packets of this size with the same performance as the raw system. However, if
we look at the results for the other packet sizes, we clearly see the impact of virtual-
ization even for OpenVZ. The varying throughput rates for smaller packet sizes makes
it hard to foresee the forwarding behavior of OpenVZ. In the same range, i.e. 500 byte
packets and below, VMware with the para-virtualized VMXNETS3 driver outperforms
all other solutions.

In conclusion, we see that the performance costs of virtualization increases, the more
small packets are sent and the higher the bandwidth on the UUT is. Even OpenVZ,
which only provides OS-level virtualization, has a noticeable influence on the systems’
performance in these cases. The biggest problem identified is that the VMMs try to

take as many packets of the network card as possible and therefore prevent layer-2 flow
control. Therefore, the data link layer cannot limit incoming data rate and a high
number of packets are lost in the VMM.

5 Isolation of Guest Systems

In the following, we study how two virtual guests are interfering with each other. There-
fore, we first conduct tests with a second virtual guest Linux that is only idle. The
influence of a second idle guest compared to only one guest running is mostly negligible.
Thus, we focus on the more interesting results.

1000 | raw 1000 [raw
= KVM = KVM
2 OpenVZ o =2 OpenVz e
£ 800 | VMW-E o £ 800 | VMW-E o
= VMw-VM = VMw-VM
3 Xen r-om 3 Xen »-o-s
—g) 600 | VBox ~-e-= _g’ 600 | VBox i--e-=
> >
[} [e]
= =
5 400 5 400
o Q
> >
7] [72]
g 200 : - g 200
= = v

o kit anf o 000 ° o k£ e °
0 200 400 600 800 1000 0 200 400 600 800 1000
Offered Bandwidth [Mbit/s] Offered Bandwidth [Mbit/s]

(a) 64 byte packets no CPU/RAM load (b) 64 byte packets high CPU/RAM load

1000 | raw 1000 | raw
- KVM - KVM
=2 OpenVZ o 2 OpenvVz o
£ 800 | VMw-E - £ 800 | VMW-E o
= VMw-VM = VMw-VM
3 Xen o / 3 Xen w0
< VBox --e-= < VBox e
5 6001 B 1 & 600
o - o
: : - 7
5 400 o 400 . —
(0] (0] @
5 5
g — ¥ 8 200
o} 200 Py B P) A
= (;,’1.;7/——9 77777 TS S T et =2 ‘l:,{j,qg B Y F— ®

0 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Offered Bandwidth [Mbit/s] Offered Bandwidth [Mbit/s]
(¢) 500 byte packets no CPU/RAM load (d) 500 byte packets high CPU/RAM load

Figure 6: Maximum accumulated throughput of VMMs.

The impact of a second virtual guest, which is performing CPU and memory intensive
tasks, is also small in most cases. In [Figure 6 we compare the impact of a second
virtual guest system running CPU and RAM intensive tasks, as described in [Section 3.4
while forwarding two packet streams over the first guest system. shows the
mean forwarding capacity per stream while the second guest is idle. The plots for the

measured throughput develop as expected from the previous section. All VMMs receive
more packets from the network interfaces than they can forward and a high number of
packets are lost. Comparing these results to the scenario in which the second guest is
running CPU and memory intensive tasks, cf. [Figure 6b] there is hardly any difference
visible. If we consider forwarding two streams of 500 byte packets with an idle second
guest, cf. [Figure 6d, against a second guest running CPU and memory intensive tasks,
cf. [Figure 6d], some small changes can be seen. These differences apply to VMware with
the para-virtualized network driver and OpenVZ. For VMware, the plot might indicate a
lower throughput performance for high offered loads. However, the confidence intervals
overlap. Thus, this result is not statistical significant and need further investigation.
In case of OpenVZ, shows that the variation of the forwarded bandwidth is
smaller while the measured mean throughput is decreasing rapidly.

We provide the difference in maximum achieved throughput in for CPU in-
tensive (light) and CPU and memory intensive (heavy) loaded second guest. It has to
be noted that positive values in correspond to an increase of throughput un-
der these conditions. For instance, Xen achieves in any considered scenario a higher
maximum forwarded bandwidth if a second virtual guest is running CPU or CPU and
memory intensive tasks. Only OpenVZ is negatively affected by more than 10% relative
forwarding performance considering small packets. This effect might be caused by the
fact that OpenVZ, in the original implementation, does not foresee the option to restrict
the execution of processes to predefined CPUs. Thus, the stress processes are run
on all CPUs compared to the other scenarios, where the stress processes are strictly
bound to the CPU of the second guest. It has to be noted that both OS containers in
OpenV7Z are started with the “CPUUNIT” parameter, which means equal sharing of
CPU resources. This result is surprising and we intend to study it closer in future work.

Table 1: Averaged offered bandwidth (in) and throughput measured(out) for 2nd guest

in background at 50% relative load, c.f. [Figure 4dl
packet raw KVM OpenV7Z VM-E1000 | VM-VMXNET3 Xen VirtualBox
size in ‘ out in ‘ out in ‘ out in ‘ out in ‘ out in ‘ out in ‘ out
1500 | 153.1 | 153.1 | 37.1 |37.1 |721 |72.1 | 718 |71.8 |152.2 | 1519 37.1 |36.8 |37.1 |36.7
1000 | 153.0 | 153.0 | 37.1 | 37.1 721 | 721 | 71.8 | 718 | 152.0 | 151.8 371 | 36.6 |37.1 |36.0
500 | 153.0 | 153.0 | 37.1 | 37.1 72.1 1681 |71.8 | 718 |152.0 | 151.7 371 |36.1 |37.1 |36.2
64 153.0 | 153.0 | 37.1 | 370 |72.1 |625 |71.8 |71.8 |152.1 |151.8 371 | 354 |37.1 |36.8

Table 2: Averaged relative throughput changes considering a single traffic source and a

second guest running CPU/Memory intensive processes,cf. [Section 3.4}
packet KVM OpenVZ VM-E1000 VM-VMXNET3 Xen VirtualBox
size | light ‘ heavy | light ‘ heavy | light ‘ heavy | light ‘ heavy light ‘ heavy | light ‘ heavy
64 42% |-0.4% | 1.0% -2.7% | -4.5% | -0.5% | -0.6% 6.8% | 7.9% |21% |2.0%

18.2%

500 | 5.5% |4.0% | 1.5% |- -4.4% | -5.3% | 0.0% |-0.1% 3.7% | 34% | -2.0% | -4.0%
11.4%
1000 | 51% | 5.6% |0.0% |0.0% |0.0% |0.0% |0.0% |0.0% 08% | 1.7% |3.6% |-4.8%

1500 | 0.0% | 0.0% |0.0% |0.0% |0.0% |0.0% |0.0% |0.0% 0.0% |0.0% |34% |2%

1000 F raw . 1000 [raw ,
= KVM = KVM ¢
2 OpenVz e = OpenVz +-o--
£ 800 [VMW-E o el S 800 | VMw-E o
= VMw-VM P = VMw-VM .

3 Xen o % 5 Xen »- o
%’ 600 L VBOX i@ /t-"' -g) 600 L VBOX i@
=} o > /
o IS P
5 400 L 8 - 400
o P Q
§ /- - é T .
8 200 P P 3 S 200 B
= o = e

0 0 -

0 200 400 600 800 1000 0 200 400 600 800 1000
Offered Bandwidth [Mbit/s] Offered Bandwidth [Mbit/s]

(a) 500 byte packets without network load (b) 500 byte packets with high network load

1000 [raw B 1000 | raw]
= KVM - KVM
= OpenVz «-o-- > = Openvz +o- -

800 F VMw-E o A ¢ 800 b VMw-E o .
= VMw-VM o = VMW-VM i
8_ Xen +--o /,/' a Xen +--o :w
§ 600 VBox —oeo- 5 600 | VBox ~oe
=1 s 5 pore
o - o
E ’ E - 0 g
5 400 - 7 R 5 400 2 (
| e Tt 5 i L
S 200 “ g 200 P
= o = o

0 0
0 200 400 600 800 1000 0 200 400 600 800 1000
Offered Bandwidth [Mbit/s] Offered Bandwidth [Mbit/s]
(c) 1000 byte packets without network load (d) 1000 byte packets with high network load

Figure 7: Throughput while transmitting 64 byte packets over a second VM.

The impact of a second guest is clearly recognizable, whenever it is handling small
packets, as depicted by [Figure 7 In the subfigures, we contrast the throughput perfor-
mance of the VMMs forwarding 500 byte packets with an idle second guest, cf. [Figure 7a]
and a second guest forwarding the maximal 64 byte packet rate we measured in the ded-
icated host scenario, cf. [Figure 7bl It is clear to see that the measured throughputs
using Xen and OpenVZ as VMMs are noticeably decreasing. In the scenario with a high
network load on the second guest, OpenVZ is no longer able to fetch all the packets from
the network interface. We can see this problem in by looking at the offered
bandwidth. In our tests, it was not possible to offload more than about 750 Mbit/s to
the UUT. Although the measured throughput for OpenVZ is not reaching the maximum
rate, it is again heavily varying. These effects are also visible for larger packet sizes,
cf. [Figure 7d and [Figure 7dl Again Xen and OpenVZ are affected most, but with this
larger packet sizes, OpenVZ does not show the fluctuation of the measured throughput.

In we present the maximum measured throughput for all scenarios in which
the second guest forwards 64 byte packets. Even if the UUT is only handling 1500 byte
packets KVM and Xen are not able to achieve their maximum throughput. But if
we consider the results for streams of 1000 byte and 500 byte packets, also OpenVZ

0 % rel. load o 0 % rel. load
) 1200 | 50 %rel. load = | @ 1200 F 50 % rel. load w7
= 100 % rel. load s = 100 % rel. load
S 1000 | i - o 1 S 1000 | o i - I .
5 E
2 soof W 2 goofWi o
[=) i [=) i i
3 ii g ii '
= 600 Wi = 600 | i i
2 400 § ® 400 | ff
é’ 200 g 200 .
e o b 4 L e o 4 4 4 &
%W Ty, % M, 1 T Y, % Ty, %, T Y
OLe /k((\ "’\% + ob ‘Iz& /14% 2
(a) 1500 byte packets (b) 1000 byte packets
| 0 %rel. load | | 0 %rel. load o |
& 1200 50 % rel. load wwms | & 1200 50 % rel. load
2 100 % rel. load mm— 2 100 % rel. load mm—
£ 1000 } £ 1000
5 5
2 goof 2 800
(@) (@)
3 3
g e00f 2 600
[= =
2 400} B 400
2 2
é’ 200 % 200
e 9 4 4 % 4 e o 4 4t 4
) <
v 0@@ %"6‘ %, . * 634 v 0@% @‘k@ @‘k . K <SE’+
> 7 < %,
(c) 500 byte packets (d) 64 byte packets

Figure 8: Maximum throughput considering a second guest transmitting small packets
relative to the maximum throughput in the dedicated scenario, c.f.

and VMware without the para-virtualized network driver are affected, whereas the raw
system and the VMware guest with VMXNET3 driver still handle all packets.

For 64 byte packets it seems as if the VMware system with the para-virtualized
VMXNET3 driver outperforms the unvirtualized system. But this is not the case. Due
to the fact that we send packets through the second guest relative to the performance we
measured before, the raw system handles 270 Mbit /s of 64 byte packets in the background
and forwards all packets. The VMware system is only forwarding about 200 Mbit /s in
the second guest and is buying the higher throughput of the test system by a loss rate
of about 20%.

The offered bandwidth and the measured throughput for the second guest in this
experiment are provided for both load scenarios in and respectively.
These measurements reveal that the second guest is also negatively affected. If both
guests are forwarding 64 byte packets, loss rates up to 50% can be experienced. The
most severe impact can again be seen for OpenVZ. It seems as if the well known problem
of the Linux kernel to handle small packets, cf. [22], has an even larger impact when

Table 3: Averaged offered bandwidth (in) and throughput measured(out) for 2nd guest

in background at 95% relative load, c.f. [Figure 4d|
packet raw KVM OpenVZ VM-E1000 | VM-VMXNET3 Xen VirtualBox
size | in ‘ out in ‘ out in ‘ out in ‘ out in ‘ out in ‘ out in ‘ out
1500 | 275.8 | 270.4 | 72.1 | 63.2 | 127.0 | 127.0 | 126.6 | 126.6 | 274.4 | 268.3 72.0 |56.2 |72.1 |42.1
1000 | 275.6 | 270.4 | 72.1 | 61.3 | 127.0 | 102.7 | 126.7 | 126.6 | 274.3 | 267.6 72.1 | 509 | 721 |41.5
500 | 275.9 | 2714 | 72.1 |60.8 | 1259 | 80.1 | 126.6 | 126.6 | 274.3 | 267.5 72.1 | 489 | 721 | 402
64 274.9 | 269.3 | 72.1 | 64.6 | 1244 | 62.7 | 126.6 | 126.6 | 274.4 | 268.4 72.0 | 472 | 721 |424

using OS-level virtualization. This effect has to be considered when planning experi-
ments on experimentation facilities using this kind of virtualization, as it might cause a
high variance in the results of experiments, depending on the processes in other guest
systems.

6 Conclusion

In this paper, we analyzed the impact of virtualization for a single system in terms of
packet forwarding throughput. We compared KVM, OpenVZ, VMware, Xen, and Vir-
tualBox to a raw host system and the impact of another virtual guest system performing
CPU and memory intensive tasks as well as forwarding of small packets. Our results
revealed that the impact of virtualization is noticeable for most virtualization platforms
even when only considering the throughput on a single network interface. When in-
creasing the number of interfaces and traffic sources, each VMM revealed a throughput
bottleneck, which depends on the size of the packets being transmitted but is signifi-
cantly lower than the forwarding capacity of the raw system. The impact of a second
guest, which is idle or running only CPU and memory intensive tasks, is rather small.
However, a second guest that forwards small packets even at comparably low rates is
able to influence the performance of a virtualized system severelyl| Our findings show
that virtualized systems and the traffic they handle need to be monitored. In profes-
sional system, network monitoring and exact measurements of the used systems enable
the diagnosis of performance bottlenecks and definition of relocation strategies. But also
for research facilities, in which many scientists share the resources of a test bed, it is
crucial to record all influences which might be introduced by another test running on
the same test bed, in order to provide credible scientific results.

In future work, we will integrate the results from this paper into performance models
for virtualized systems and virtual software routers to analyze and optimize throughput
and isolation. Additionally, we want to extend the monitoring in the G-Lab experimental
facility to effectively monitor tests, which possibly influence other experiments.

LAll measurement results are publicly available: http://www3.informatik.uni-wuerzburg.de/
staff/schlosser/Downloads/Complete.Data.VM.Measurement.zip

http://www3.informatik.uni-wuerzburg.de/staff/schlosser/Downloads/Complete.Data.VM.Measurement.zip
http://www3.informatik.uni-wuerzburg.de/staff/schlosser/Downloads/Complete.Data.VM.Measurement.zip

References

[1] “German-Lab (G-Lab).” [Online]. Available: http://www.german-lab.de

[2] Wikipedia, “Comparison of platform virtual machines — Wikipedia, The Free
Encyclopedia,” 2010. [Online]. Available: http://en.wikipedia.org/w/index.php?
title=Comparison_of platform_virtual_machines

[3] VMware ESXi. [Online]. Available: http://www.vmware.com/products/vi/esx/
[4] Xen. [Online|. Available: http://www.xen.org/
[5] Oracle, “Virtualbox.” [Online]. Available: http://www.virtualbox.org/

6] KVM, “Kernel-based virtual machine.” [Online]. Available: http://www.
linux-kvm.org/

[7] OpenVZ, “Open virtualization.” [Online|. Available: http://openvz.org/

[8] L. van Doorn, “Hardware virtualization trends,” in Proceedings of the 2nd interna-
tional conference on Virtual execution environments (VEE), New York, USA, 2006,
pp. 45-45.

[9] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling I/O in virtual machine monitors,”
in Proceedings of the fourth ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments (VEE), New York, USA, 2008, pp. 1-10.

[10] M. B. Anwer, A. Nayak, N. Feamster, and L. Liu, “Network I/O fairness in virtual
machines,” in Proceedings of the 2nd ACM SIGCOMM workshop on Virtualized
infrastructure systems and architectures (VISA), New York, USA, 2010, pp. 73-80.

[11] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy, “Fair-
ness issues in software virtual routers,” in Proceedings of the ACM workshop on

Programmable routers for extensible services of tomorrow (PRESTO), New York,
USA, 2008, pp. 33-38.

)

[12] ——, “Towards high performance virtual routers on commodity hardware,” in Pro-
ceedings of the 2008 ACM CoNEXT Conference, New York, USA, 2008, pp. 20:1-
20:12.

[13] VMware, “A Performance Comparison of Hypervisors,” 2007. [Online|. Available:
http://www.vmware.com/pdf/hypervisor_performance.pdf

[14] XenSource Inc, “A Performance Comparison of Commercial Hypervisors,” 2007.
[Online]. Available: http://www.vmware.com/pdf/hypervisor_performance.pdf

[15] M. Bredel, Z. Bozakov, and Y. Jiang, “Analyzing router performance using network
calculus with external measurements,” in 18th International Workshop on Quality
of Service (IWQoS), Jun. 2010, pp. 1-9.

http://www.german-lab.de
http://en.wikipedia.org/w/index.php?title=Comparison_of_platform_virtual_machines
http://en.wikipedia.org/w/index.php?title=Comparison_of_platform_virtual_machines
http://www.vmware.com/products/vi/esx/
http://www.xen.org/
http://www.virtualbox.org/
http://www.linux-kvm.org/
http://www.linux-kvm.org/
http://openvz.org/
http://www.vmware.com/pdf/hypervisor_performance.pdf
http://www.vmware.com/pdf/hypervisor_performance.pdf

[16]

[17]

[18]

[19]
[20]

[21]

[22]

G. Bhanage, I. Seskar, Y. Zhang, D. Raychaudhuri, and S. Jain, “Analyzing router
performance using network calculus with external measurements,” in TridentCom

2010, May 2010.

S. Bhatia, M. Motiwala, W. Muhlbauer, Y. Mundada, V. Valancius, A. Bavier,
N. Feamster, L. Peterson, and J. Rexford, “Trellis: a platform for building flexible,
fast virtual networks on commodity hardware,” in Proceedings of the 2008 ACM
CoNEXT Conference, New York, USA, 2008, pp. 72:1-72:6.

R. Olsson, “pktgen the Linux packet generator,” in Proceedings of Linux symposium,
2005.

“¢cpdump.” [Online]. Available: http://www.tcpdump.org

IEEE Computer Society, “802.3 Part 3: Carrier sense multiple access with collision
detection (CSMA/CD) access method and physical layer specifications,” 2002.
[Online]. Available: http://standards.ieee.org/getieee802/download /802.3-2002.
pdf

“Stress tool.” [Online|. Available: http://weather.ou.edu/~apw/projects/stress/

S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: a GPU-accelerated software
router,” ACM SIGCOMM Computer Communication Review, vol. 40, no. 4, pp.
195-206, 2010.

http://www.tcpdump.org
http://standards.ieee.org/getieee802/download/802.3-2002.pdf
http://standards.ieee.org/getieee802/download/802.3-2002.pdf
http://weather.ou.edu/~apw/projects/stress/

	Introduction
	Background and Related Work
	Virtualization Concepts
	Related Work

	Hardware Setup and Measurement Scenarios
	Hardware Setup
	Measurement Metrics and Methodology
	Dedicated Host Scenario – Impact of Virtualization
	Shared Host Scenario – Impact of other Guest Systems

	The Performance Cost of Virtualization
	Isolation of Guest Systems
	Conclusion

