
University of Würzburg

Institute of Computer Science

Research Report Series

Agile Management of Software

Based Networks

Steffen Gebert, Christian Schwartz,
Thomas Zinner, Phuoc Tran-Gia

Report No. 493 January 2015

University of Würzburg, Germany
Institute of Computer Science

Chair of Communication Networks
Am Hubland, D-97074 Würzburg, Germany
steffen.gebert@informatik.uni-wuerzburg.de

NOTICE: The technical report is an extended version of the IM 2015 paper “Continuously Deliverying
Your Network” containing more use cases as well as a more detailed discussion. Due to page limitations,
this is not possible in the original paper. Please cite the peer reviewed paper as follows: Steffen Gebert
and Christian Schwartz and Thomas Zinner and Phuoc Tran-Gia. “Continuously Deliverying Your
Network”. 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM 2015),
Ottawa, Canada, May, 2015.

NOTICE: The technical report is an extended version of the IM 2015 paper entitled
“Continuously Deliverying Your Network”. Please cite the peer reviewed IM paper.

Agile Management of Software Based Networks

Steffen Gebert, Christian Schwartz,

Thomas Zinner, Phuoc Tran-Gia

University of Würzburg, Germany
Institute of Computer Science

Chair of Communication Networks
Am Hubland, D-97074 Würzburg, Germany
steffen.gebert@informatik.uni-wuerzburg.de

Abstract

The softwarization and cloudification of networks through mechanisms like Soft-
ware Defined Networking and Network Functions Virtualisation promise a new
degree of flexibility and agility. By moving logic from device firmware into ap-
plication software and by applying mechanisms from software development, in-
novations can be introduced with lower effort. Concrete ways how to operate
and orchestrate such systems, however, are not defined. The process of making
changes to a controller software or a virtualized network function in a production
network without the risk of network disruption is not covered by literature, yet.
Complexity of systems bring the risk of unexpected side-effects and has so long
been the show-stopper for administrators being relaxed while applying changes to
networking devices. This paper suggests the adaption of the successful concept
of continuous delivery into the software defined networking world. Mechanisms
like Test-Driven Development and automatic acceptance tests demonstrate that
the software engineering community already found ways to ensure that changes do
not break a software’s functionality. Applied to network engineering, the adaption
of continuous delivery can be seen as an enabler for risk-free and frequent changes
in production infrastructure through push button deployments.

1

Contents

1 Introduction 3

2 Background 4

2.1 SDN and NFV . 4
2.2 Continuous Delivery . 5

3 Continuous Delivery of Network Functions 7

3.1 SDN Controller Pipeline . 8
3.2 Traffic Shaping Network Function . 11

4 Discussion 13

4.1 Releasing More Frequently . 13
4.2 Overhead of Testing Every Change . 13
4.3 Automated Testing of Networks . 14
4.4 Adaption of Behavior-Driven Development to Networks 14
4.5 Metrics . 14

5 Conclusion 15

2

1 Introduction

In the last years, the introduction of Software Defined Network (SDN) has ushered
networks in an agile new future, allowing flexible configuration for researchers and busi-
nesses alike. However, regardless of these new accomplishments even after decades the
Command Line Interface (CLI) is still the best friend of network engineers when config-
uring switches, routers or other network devices. Furthermore, the network is configured
decentralised directly on the devices, irregardless if this happens via CLI, Graphical User
Interface (GUI) or a Web interface. Thus, there is no simple way to test the complete
network configuration before applying it device by device. The network engineer has to
make sure to always enter the correct commands, make no typing errors and hope for no
unforeseen side-effects while configuring the network. This cumbersome process causes
severe problems for the management of today’s IT infrastructure, as the fear of breaking
the production network results in security updates, e.g. for the infamous Heartbleed
bug, being applied late or never [1, 2].
In most current networks, applying updates or configuring devices is scheduled in

maintenance windows, where the user is informed beforehand that failures may occur.
This approach tries to increase the Mean Time Between Failure (MTBF), as downtimes
are avoided by avoiding changes until finally necessary. At the same time, the risk of
failure when changes are applied is increased, as multiple changes are applied at the
same time. Furthermore, also identifying the root causes of potential problems becomes
harder, when more than one change is introduced to the network at the same time.
Software development projects faced similar problems before agile project manage-

ment methods like Scrum were introduced to reduce the risks of late integration. Here,
methods from DevOps [3], allow for fast feedback cycles and frequent releases in order
to avoid misconception, extensive manual testing, as well as failures that are hard to
identify due to the fact that many changes are applied to the system simultaneously.
Instead, modern web companies like GitHub [4] or Amazon.com [5], release changes into
production more often – in number of tens or hundreds per day. These practices aim
to increase reliability by reducing the Mean Time To Repair (MTTR) instead of in-
creasing the MTBF. Through automated test execution and deployments, the quality
assurance efforts per change can not only be reduced, but also the time to release a fix
into production, which might also be to revert a change, is effortless.
Some current network configuration management tools, e.g. Solarwinds Network Con-

figuration Manager [6] or InfoSim StableNet [7], allow for the automatized deployment
of changes to network devices. However, the proprietary nature of the configuration
interfaces of traditional network interfaces results in a high complexity and price for
Network Configuration Management (NCM) tools. Thus, many modern networks are
still not using such tools and are still maintained manually by a network engineer.
Recent developments in the area of SDN are about to disrupt this market and offer

new opportunities for change. Besides the benefits of a better network performance,
a simplified management and configuration of the network infrastructure is promised.
Most research work on the management of software defined networks however focuses on
improving network performance or reliability by defining controllers architectures and

3

roles of entities [8] or generally the more sophisticated management of network flows
[9]. The actual life cycle of the introduced SDN entities, including provisioning and
maintenance, is not covered by existing literature. This work suggests to apply Continu-
ous Delivery (CD) to SDN and the related concept of Network Functions Virtualisation
(NFV), in order to not only benefit from the provided agility, but also to support the
effortless and risk-free deployment of new networking software.
This paper is structured as follows: Section 2 introduces the technical background,

which consists of SDN and NFV as concepts from the networking world, as well as CD
as software engineering mechanism. Section 3 describes the contribution of this work,
which is to apply CD to SDN-based networks. Details of potential implementations, as
well as open issues, are discussed in Section 4. Section 5 concludes this work.

2 Background

In this section, techniques from network and software engineering are introduced. This
builds the foundation for understanding the contribution of this paper – applying suc-
cessful techniques from software engineering to the management of modern networks.

2.1 SDN and NFV

The Software Defined Network (SDN) concept suggests the externalization, centraliza-
tion and softwarization of the network control plane into an SDN controller software –
a shift away from traditional, hardware-centric networking towards open interfaces and
software-driven network control. An optimization of traffic flows inside the network is
possible by having a global view over the network inside the logically centralized control
plane [10]. By the controller running as software application on a standard server, faster
innovation cycles for the network control plane is possible than it is with the currently
integrated devices of vendors like Cisco, where firmware updates have to be installed in
order to introduce new mechanisms or protocols. The pace of innovation can also be
seen by the number of available OpenFlow controller implementations – and the number
of projects that are stopped being developed any further.
While administrators outside of hyper-giants like Facebook and Google will very un-

likely change the core functionality of an SDN controller, the plugin architectures of
modern SDN controllers allow extension of this centralized intelligence. The fields of
extension include monitoring, routing, security, application awareness and quality of
experience optimizations. An ecosystem for such controller plugins is expected by the
authors, similar to the ”app stores” of computers and smart phone vendors.
Network Functions Virtualisation (NFV, [11]) in contrast aims at replacing Network

Functions (NFs) provided by monolithic hardware middleboxes with software imple-
mentations running virtualized on standard servers, the Virtual Applications (VAs). An
overdimensioning of resources as it is usual with hardware can be avoided by apply-
ing elasticity mechanisms of nowadays cloud application stacks, including cluster and
replication functionality.

4

Therefore, NFV promises slim software instances that provide a particular function-
ality, like applying deep packet inspection, firewalling or functionality of LTE mobile
networks [12]. Again, shorter innovation cycles and an increased flexibility are a driver
for research, vendors and operators to investigate the use of virtualised network func-
tions. SDN is the preferred mechanism to pipe all or only specific parts of the traffic,
like all traffic on TCP port 80, through a specified set of network functions. The VNF
Forwarding Graph [13] specifies, which network functions should be passed, and e.g. if
the traffic should be mirrored to a monitoring function, or passed through an intrusion
detection function in order to block selected traffic.
All the promises of increased flexibility by frequently modifying the network software

and configuration of SDN controllers and the NFV infrastructure comes with the big
risk of breaking the network. Besides bugs and breaking changes in software implemen-
tations, the risk of manual configuration errors are reasons, why traditional networks
are progressing only very slowly. The open issue is now, how virtualization of network
elements and functions helps to allow frequent changes without unexpected outages.
Frequent releases of software and therefore very short innovation cycles are, however,

also a goal of application software developers. One concept that allows frequent de-
ployment of new software releases, while maintaining higher software quality in order to
reduce the risk of broken deployments, is Continuous Delivery.

2.2 Continuous Delivery

In order to mitigate the risk of broken software deployments while keeping a high pace
of software releases, Continuous Delivery (CD, [14]) introduces the concept of the De-
ployment Pipeline.
Every change to the software developed using the CD paradigm has to pass all stages

of this pipeline, in order to be released into production. An important principle is that
in case of failure, a fast feedback to the team making the changes, the delivery team, is
given and illustrated in Figure 1. Every version of the software that passes until the end
of the pipeline is considered as stable. The stages of such a deployment pipeline that
are executed on a centralized server running a software like Jenkins [15] or Go CD [16]
are described as follows:

Version control: Every change to the software is checked into a Version Control System
(VCS), like Git or Subversion. The use of a VCS allows the team to prevent
overwriting changes of source code files, when different developers modify the same
file in a short time. The traceability of changes by storing all historic versions of a
software’s source code gives the possibility to revert back to a state of the software
that is known to work in case of regressions. After checking a change of the software
into version control, the deployment pipeline is instantiated and the state of the
software code passed through the following stages.

Build & unit tests: The centralized build server picks up the source code and creates an
executable build artifact by compiling the source code. By creating the build on a
centralized server, it can be made sure that not only a single developer can compile

5

Delivery
Team

Version
Control

Build & unit
tests

Automated
acceptance

tests

User
acceptance

tests
Release

Check in

Check in

Trigger

Trigger

Trigger

Approval

Approval

Feedback

Feedback

Feedback

Feedback

Figure 1: The deployment pipeline for software projects as suggested by [14]. Red: Test
execution resulted in failure; green: tests succeeded.

and release software, but the whole team. Building only on PCs of developers
introduces the risk of errors on other developer’s machines because of different
configuration or compiler and library versions. After successfully creating the
build and following the technique of Test-Driven Development (TDD), unit tests
are executed against the compiled software. In case of any error during the build
process or while running the unit tests, the pipeline is stopped and the developer
informed about the problem. A fast feedback regarding any failure is important
for the success of software development. If the stage is successfully passed, the
next stage is triggered.

Automated acceptance tests: The particular steps in this stage are dependent on the
actual implementation of the deployment pipeline. The result of this stage how-
ever is the knowledge that the created build artifact meets the specified acceptance
criteria – or not. These acceptance criteria range from functional and integration
tests over to capacity tests, and longer-lasting source code analysis. Functional
tests ensure that the functionality of a software actually meets its specification.
Integration tests ensure that a part of the software works expected after integrating
with other components. In order to execute all of these tests, a running version of
the software is required, which is therefore deployed into a production-like infras-
tructure. This means that the environment, where the tests are executed, matches
the production environment in terms of version and configuration of operating
system, libraries and installed software. If all tests can be executed successfully,
the pipeline execution is continued and otherwise the delivery team is notified to
adjust.

6

User acceptance tests: In order to verify the implementation of a new feature, the
software is deployed into a production-like environment, where all team members
can access the current state. The Quality Assurance (QA) sign-off, when testers
manually verify the functionality of the software, is the first human intervention
after making the commit to the VCS. An extensive automated test suite that is
executed in the previous steps and verifies the basic feature set of the software
gives now the QA team time to focus on new features and exploratory testing.
After this manual verification, the build artifact is ready to be released.

Release: The release of the software means that it is installed on the production servers
or, in case of on-premise software, that is made available for customers to download.
This stage can be either triggered manually, or after a button click in the software
supporting the CD process.

The result of this process is always a state of the software that is known to work,
either the current version or an older one. Through automated tests, the manual QA
efforts are reduced and the duration that a change takes to pass through the deployment
pipeline in order to be known as releasable is reduced to minutes or hours.
Besides to software development, the continuous delivery paradigm has been success-

fully applied to other areas. Modern configuration management software, like Chef [17]
or Puppet [18], that follows the infrastructure as code paradigm allows to define the
setup of a particular entity, mostly a cloud server including its application stack, as
source code. Any change to the configuration inside the source code repository is only
brought into production when the new configuration successfully passes the continuous
delivery process.

3 Continuous Delivery of Network Functions

In the following, we describe the suggested adaption of Continuous Delivery to net-
work operations. This does not mean that network administrators will now become
or be replaced by software developers. However, network engineers should learn from
experiences made in the software development world.
Similar to the configuration changes on servers, any change to the network software

brings a risk of introducing regressions. This includes not only changes of configura-
tion settings or the deployment of a new network software version. Also during the
deployment of a totally new component, e.g. a new virtualised network function that is
inserted into the VNF forwarding graph, manual misconfiguration and incompatibilities
entail risk of network outages.
The contribution of this paper is therefore to apply the concept of continuous delivery

[14] to the software defined networking world. The main building blocks are (a) process
automation, (b) automated tests, (c) availability of realistic test environments and (d)
infrastructure as code.
Through process automation, network engineers are supported in their daily work –

instead of being jammed by yet another tool to use and process to follow. Goal is to

7

configuration file resulting in the controller service to not to restart successfully for
a time frame of several seconds or minutes have to be urgently avoided. Therefore,
the error-prone manual configuration on production devices has to be succeeded by an
automatic process that is backed by automatic tests for the deployment of the central
network function of an SDN controller.
While the CD concept can be also applied for the software engineering task of devel-

oping the SDN controller software, this work focuses on the more realistic case when
an administrator uses an existing controller software and configures it according to own
needs. If the controller software itself has to be compiled, a dedicated deployment
pipeline following the original version of CD in terms of software engineering projects
should be established. The case that is presented in the following uses the compiled
artifact of an SDN controller software that could be also a purchased software that is
not available as source code, but only as binary artifact.
The following stages are suggested for the deployment pipeline applied to an SDN

controller:

Version control: The version control repository for the SDN controller pipeline contains
the configuration of the servers running the controller and how the controller has
to be installed. This includes an exact specification of the controller version that
has to be installed, as well as the configuration files of the controller software.

Setup & Smoke: As this pipeline does not involve any compilation of software, the
focus is more on compiling the infrastructure components together. Therefore, a
virtual machine that matches the configuration of the production servers is pro-
visioned. The controller software is downloaded from the specified source in the
specified version and installed into the virtual machine. This ensures that the au-
tomatic deployment process works and the controller software and all dependencies
can be downloaded and installed. Finally, the setup is completed by supplying the
configuration files as specified in the version control repository. This automatic
process is ideally implemented using a Desired State Configuration Management

System like Chef or Puppet.
Following the principle of fast feedback, this stage only includes tests that can be
executed in a very short time frame, while catching many of the errors that are
likely to happen. In [14] it is recommended to not exceed the 10min mark. What
should fit in this time frame are smoke tests, which only consist of testing, whether
the controller software using the supplied configuration is able to start up or not.

Automated acceptance tests: The tests running in this phase ensure that the specified
acceptance criteria for the software being deployed are met. A failure in any of
the tests means that at least one of the criteria that are defined to be essential for
the operational software is not fulfilled and thus the pipeline has to be stopped.
Besides functional tests, which means that the software does, what it should,
the acceptance tests also include non-functional tests, like that it meets certain
performance or capacity requirements.

9

The functional test suite of an SDN controller should include at least the following
checks:

– Accepts incoming southbound connections : While it sounds trivial, this check
ensures a very basic functionality, namely that the controller is listening to the
correct interface and port for incoming connections. This allows to quickly
identify such a basic error, instead of uncertainty, when the later tests fail.

– Allows a switch to forward traffic: Independent of an active or reactive setup
of rules inside the switches’ forwarding tables, the result should be that two
stations connected to a switch can exchange network traffic.

– Accepts incoming northbound connections : In the author’s opinion, the whole
benefit of SDN can only be exploited, if an integration into and coordination
with the remaining IT infrastructure is happening [19]. Therefore, the func-
tionality of the northbound API, nowadays usually implemented as a REST-
ful API, is essential as the functionality of the southbound API is. This first
northbound test ensures that a client is able to connect. Besides the correct
configuration of the listening interface and port, this also verifies that the
authentication is working correctly.

– Required feature set of northbound API is working : Certainly, not all features
of an SDN controller’s northbound API will be used in a particular setup.
However, the subset of functionality that is used should be verified to work
correctly. If the production setup e.g. consists of a cloud controller that in-
teracts with the SDN controller, the correct functionality of that part of the
REST API should be tested automatically. This ensures that especially up-
dates of the controller software that might introduce changes or bugs are not
deployed without the confidence that the used feature set is still functioning.

Other than functional tests, non-functional tests evaluate characteristics of a setup
that cannot be directly described in a fashion that a certain response is expected for
a certain request. One of these non-functional requirements is the ability to handle
a load, in terms of connected switches as well as a rate of requests. Therefore, the
controller software is set under a certain emulated load that matches at least
the expected peak load of control traffic of the production network. Solutions to
emulate the controller load of a larger OpenFlow network include [20] and [21].

User acceptance tests: While extensive manual testing should be avoided in order to
allow a change to quickly propagate through the pipeline, manual tests of the ad-
ministrator or a QA engineer in the staging environment allows detailed manual
tests. Therefore, the tester can connect an own virtual switch, or even a hardware
switch, to the controller software running in the staging environment. For conve-
nience, additional virtual machines can be deployed and preconfigured in so that
the tester can focus on the actual testing, instead of struggling with setting up the
test environment. The manual tests done here should not test absolutely critical
functionality so that they have to be repeated during every run of the pipeline.

10

Instead, such tests should then be automatized and executed in the previous stage.
This allows the tester to focus on new functionality in detail.
After manual testing, the tester gives his either positive or negative grade and thus
either signs-off to proceed to the next stage, or fails the pipeline and returns back
to the delivery team to adjust.

Production Deployment: The final stage of the deployment pipeline triggers the pro-
duction deployment. This step can be either done automatically after every suc-
cessful execution of the pipeline, bundled into e.g. a single deployment per day,
or manually triggered. In case of manual releases, queuing up a large number of
changes would contradict with the idea of continuous delivery – the uncertainty
while trying to identify a failure of a large deployment is exactly what should be
prevented. Instead, small, incremental change is desirable.

3.2 Traffic Shaping Network Function

NFV aims at replacing hardware middleboxes through Virtualised Network Functions
(VNFs). The deployment pipeline for a VNF that is inserted into the flow of traffic will
be described in the following using a traffic shaping (TS) function. Besides giving more
capacity to other network flows, traffic shaping or rate limiting is a common use case
for mobile networks. After reaching the “flat-rate” limit of e.g. 1GB per month, the
mobile operator is shaping the subscriber’s traffic to a lower rate like 64 kbps. Therefore,
received traffic is queued inside the entity running the function and then forwarded with
a reduced rate.
The availability of such functions is crucial for correct operation of the network. If

one function of the forwarding graph fails to forward traffic, the whole traffic flow is
interrupted. Therefore, ensuring failure free functionality after deployments is seen as
an important prerequisite for successful migration towards NFV-based networks.
The suggested deployment pipeline for a TS-VNF and similar functions is as follows:

Version control: Similar to the pipeline of the controller, the version control repository
for the TS pipeline contains the configuration of the servers running the function.
If the function is developed as source code, another deployment pipeline following
the original CD for software projects [14] would be set up.

Setup & Smoke: Again, the main focus of this stage is to ensure the successful deploy-
ment by installing the specified software into a production-like environment. A
smoke test that verifies that the application implementing the VNF starts without
errors.

Automated acceptance tests: The acceptance criteria for a VNF include criteria that
are common for a certain type of network function and some that are specific for
a particular function. Tests that are common e.g. for all middlebox VNFs ensure
that incoming traffic is also sent back as specified, in order to reach the final
destination or the next network function. Automated acceptance criteria that are
specific to a traffic shaping function should include:

11

– Sent data matches received data: Using a TCP data transfer it is checked
that the Layer 7 payload sent out equals (bitwise) the payload that is sent
into the function under test. The aim of TS is not to falsify the data in any
way. Implementation errors which result in data corruption can be detected
this way.

– Traffic shaping is successfully applied: In order to verify the core functionality,
the throughput or duration of a data transfer is measured. By defining a
certain threshold, deviations of some percentage from the defined bandwidth
limit are not causing the test to fail, but ensure that TS is applied.

– Only traffic that should be shaped is shaped: Assuming that the shaping func-
tionality allows to handle flows differently, this test ensures that bandwidth
limits are only applied to the specified flows and not to others that should
not be shaped. Therefore, a bandwidth limit for a certain flow criteria is de-
fined. The duration of a data transfer through the network function that not
matches the shaping rule is measured and the average throughput computed.
If the measured throughput exceeds the shaping limit by a factor specified in
the test, e.g. twice, the test succeeds and it can be assumed that the shaping
is only applied to specified flows.

While the elasticity of network functions and the automatic up and down scaling
should ensure that additional capacity is provided in case of increased resource
requirements, automated capacity and performance tests are still of big impor-
tance. Heavily increased requirements of a certain functionality can cause various
kind of trouble, including additional costs. Therefore, either static triggers with
fixed limits, or a limit of divergence from previous runs ensures that a by far more
resource-intense new implementation or configuration is not released into produc-
tion.

User acceptance tests: Again, the network engineer or QA staff has the chance to
manually verify functionality like already described in the pipeline described for
the SDN controller pipeline in Section 3.1.

Production Deployment: As already applied in previous testing environments, the au-
tomated deployment is now happening into the production environment. Depend-
ing on the configuration of the pipeline, this stage is executed automatically after
the QA sign-off in the previous stage or on the push of a button in the software
supporting the continuous delivery process.

The previous two sections described the application of the concept of Continuous
Delivery to network functions. The deployment pipeline of an SDN controller and of a
TS-VNF as typical functions of SDN/NFV-enabled networks were used to illustrate how
the agile deployment of such functionality into the production network should happen.

12

4 Discussion

The idea of this work, namely to apply the software engineering concept of Continuous
Delivery to networks has been described previously. In this section, we want to discuss
the aspects that are in the opinion of the authors worth noting to understand the reasons
for introducing such a process. Furthermore, open issues that should be tackled by the
software development or network engineering community in order to further support the
adoption of this concept are described.

4.1 Releasing More Frequently

For agile software development, the ”highest priority is to satisfy the customer through
early and continuous delivery of valuable software” [22]. That quality and productivity
is increased through introduction of agile methods in software engineering is shown by
a survey in [23]. Also that more releases do not mean more bugs, instead that fixes are
released faster, is shown in a study of comparing Mozilla Firefox with long and short
release cycles [24]. For Amazon.com it is reported that the number of outages triggered
by software deployments was reduced by 75% within 5 years. The safety net provided
by a deployment process backed by automated tests instead reduces stress for humans.
In case of failures, the smaller amount of changes deployed simultaneously makes the
identification of root causes easier and allows automated rollback.

4.2 Overhead of Testing Every Change

The execution of numerous automatic tests often results in the feeling that CD would
introduce a large overhead into software development processes. In order to be able to
identify the particular commit in the source code repository that introduces a regres-
sion, every single change executes numerous automated tests. The suggested pipeline
execution includes the instantiation of multiple virtual machines and running functional
tests with potentially a duration of several minutes.
To understand that the benefits of this automatic process are worth implementing,

one has to realize that the compute power that is spent for automated tests is just the
replacement for manual tests by humans. These manual tests, in the field of network
software certainly similar to software development, otherwise bind a large capacity of hu-
man resources. As generally compute power is cheaper than engineer work, the resources
spent for automated tests can be considered lower than for manual quality assurance.
Compared to manually applying changes, the delay until a change passed through

the deployment pipeline, is notably larger. However, manual configuration changes are
considered bad practice, as they cannot be tracked (who changed what and when) or
easily reverted and do not scale to a large number of devices. Therefore, the time for an
automated deployment process has to be preferred over manual fire-and-forget changes
in production.

13

4.3 Automated Testing of Networks

The authors of [25] argue for applying the software engineering concept TDD to the
management of SDNs. In order to prevent a faulty network configuration to be deployed,
a formal language called Data Path Requirement Language (DPRL) is introduced. Using
the specifications made in DPRL, the compliance of an SDN controller against the
specified rules can be verified. The authors provide a prototype implementation that
builds upon Mininet and Open vSwitch.
The work in [25] can be seen as an important step into the right direction. TDD is an

important building block for continuous delivery of networks. However, the suggested
prototype implementation would still require the network engineer to write Python code.

4.4 Adaption of Behavior-Driven Development to Networks

In the agile software development world, where software requirements are specified by
others than developers, the technique of Behavior-Driven Development (BDD, [26]) gains
more and more attention. Implementations of the natural language style domain spe-
cific language called Gherkin [27] are available for nearly all platforms. Giving such a
language with an implementation for the used SDN technique, e.g. OpenFlow, we are
confident that network administrators can far more easily adopt the concept of TDD
and continuous delivery. An example of a Gherkin-based specification of the behavior
of an SDN controller that is automatically verified, is shown in Listing 1.

Feature: Reactive mode

Scenario: Flow to unknown destination

Given the switch having a flow table with

no entries connects to the controller

And computer A is connected to the switch

And computer B is connected to the switch

When computer A sends data to computer B

Then the data should be received by computer B

Listing 1: BDD specification of a reactive controller behavior-

Certain tokens of that language (like Flow table with (.*) entries) are inter-
preted by the test driver provided by the SDN controller, another specialist for network
protocols or e.g an open-source project. Therefore, a user of the language, the network
engineer, does not need to know the actual implementation of the control plane protocol.
For example, in case of OpenFlow, the user does not need to know about PACKET IN

messages that are sent to the controller. Instead, the resulting behavior is described
using the provided language constructs in a Given-When-Then style.

4.5 Metrics

An essential part of CD and the related DevOps practices is to monitor, how the produc-
tion infrastructure behaves. The collection of metrics in a DevOps context means more
than just monitoring of bandwidth usage and QoS [28]. Instead, a data-driven culture

14

relies on aggregating data from numerous sources together, in order to allow engineers,
as well as business units to take decisions based on measured truth and not on assump-
tions or feelings. While the change of network parameters does not necessarily result
in a change of measured QoS metrics, it can affect performance of applications running
in the network. The collection and aggregation of metrics can go so far that also the
number of transactions in an online shop is monitored. In case of a large decrease of this
metric, the metrics collected from the network side can be correlated as well as matched
with times of deployments. If a certain behavior is seen after a point in time at which a
change to the network or server infrastructure happened, this change is likely to be the
cause for this changed behavior. Again, it is important that all changes are tracked in
a version control repository to revert to previous states, as well as that data about the
exact time when deployments happen are stored.
Together with an extensive collection of metrics and the use of a concept similar to

Feature Flags [29], it would be possible to treat parts of the traffic different than others.
Feature Flags allow to change a particular behavior, like the availability of a feature,
for a group of users. Transferred to networks, this could mean that a mechanism that
should be evaluated can be tested under production conditions for only a number of
users, servers, or flows. Metrics then allow to compare one implementation against the
other. The flexibility of steering network traffic provided by SDN can be seen as an
enabler for techniques such as A/B-testing, where two different implementations are
compared regarding specified metrics.

5 Conclusion

Thanks to softwarization of networks through the concepts SDN and NFV, a more agile
management of network infrastructure seems possible. Any change however introduces
the risk of failures and this is why traditional networks are hardly changed. The risk of
frequently introducing changes into production networks through the new mechanisms
SDN and NFV has to be mitigated by automated processes, which bring the certainty
that configuration changes or updates will not harm the network. This paper first de-
scribed the established concept of Continuous Delivery, an important technique for agile
and high-quality software development. The adaption of the continuous delivery process
to network software in order to bring agile methods and risk-free deployments into the
management of networks is the main contribution. The infrastructure as code paradigm
that relies on tracking every change in a version control repository followed by automated
deployments of infrastructure through configuration management software ensures avail-
ability and identicalness of testing, staging and production environments. Automated
acceptance tests automatically verify every change prior to deployment into production
infrastructure, which then happens automatically or through the push of a button. This
process was illustrated by describing the deployment pipeline of two typical components
of an SDN/NFV-enabled network, an SDN controller and a middlebox VNF.

15

Acknowledgment

This work has been performed in the framework of the CELTIC EUREKA project
SASER-SIEGFRIED (Project ID CPP2011/2-5), and it is partly funded by the BMBF
(Project ID 16BP12308). The authors alone are responsible for the content of the paper.

16

References

[1] TrustedSec, “CHS Hacked via Heartbleed Vulnerability.” https://www.trustedsec.com/

august-2014/chs-hacked-heartbleed-exclusive-trustedsec/, August 2014.

[2] G. Cluley, “Heartbleed blamed for hack that put 4.5 million patients at risk.” http://

grahamcluley.com/2014/08/heartbleed-chs-hack/, August 2014.

[3] E. Mueller, “The agile admin: What is devops?.” http://theagileadmin.com/what-is-devops/.

[4] J. Douglas, “Deploying at GitHub.” https://github.com/blog/1241-deploying-at-github.

[5] J. Jenkins, “Velocity culture (the unmet challenge in ops),” in O’Reilly Velocity Conference, Jun.
2011.

[6] “Solarwinds Network Configuration Manager.” http://www.solarwinds.com/

network-configuration-manager.aspx.

[7] “Infosim.net: StableNet Enterprise.” https://www.infosim.net/products/

stablenet-enterprise.html.

[8] R. Ahmed and R. Boutaba, “Design considerations for managing wide area software defined net-
works,” Communications Magazine, IEEE, vol. 52, pp. 116–123, July 2014.

[9] H. Kim and N. Feamster, “Improving network management with software defined networking,”
Communications Magazine, IEEE, vol. 51, pp. 114–119, February 2013.

[10] M. Jarschel, F. Wamser, T. Höhn, T. Zinner, and P. Tran-Gia, “SDN-based Application-Aware
Networking on the Example of YouTube Video Streaming,” in European Workshop on Software
Defined Networks (EWSDN), (Berlin, Germany), Oct. 2013.

[11] ETSI, “Network Functions Virtualisation (NFV); Architectural Framework,” Oct. 2010.

[12] S. Gebert, D. Hock, T. Zinner, P. Tran-Gia, M. Hoffmann, M. Jarschel, E.-D. Schmidt, R.-P.
Braun, C. Banse, and A. Koepsel, “Demonstrating the Optimal Placement of Virtualized Cellular
Network Functions in Case of Large Crowd Events,” in ACM SIGCOMM, Chicago, USA, Aug.
2014.

[13] ETSI, “Network Functions Virtualisation (NFV); Terminology for Main Concepts in NFV,” Oct.
2010.

[14] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases Through Build, Test,
and Deployment Automation. Addison-Wesley Professional, 1st ed., 2010.

[15] “Jenkins - an extendable open source continuous integration server.” http://jenkins-ci.org.

[16] “go continuous delivery.” http://www.go.cd.

[17] “Chef.” http://www.getchef.com/chef/.

[18] “Puppet enterprise.” http://puppetlabs.com/puppet/puppet-enterprise.

[19] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer, “Interfaces, Attributes, and Use
Cases: A Compass for SDN,” IEEE Communications Magazine, vol. 52, June 2014.

[20] M. Jarschel, C. Metter, T. Zinner, S. Gebert, and P. Tran-Gia, “OFCProbe: A Platform-
Independent Tool for OpenFlow Controller Analysis,” in IEEE International Conference on Com-
munications and Electronics (IEEE ICCE 2014), (Da Nang, Vietnam), Aug. 2014.

[21] P. Wette, M. Draxler, and A. Schwabe, “Maxinet: distributed emulation of software-defined net-
works,” in Networking Conference, 2014 IFIP, pp. 1–9, IEEE, 2014.

17

[22] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Gren-
ning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor,
K. Schwaber, J. Sutherland, and D. Thomas, “Manifesto for agile software development.” http:

//www.agilemanifesto.org/, 2001.

[23] A. Ahmed, S. Ahmad, N. Ehsan, E. Mirza, and S. Sarwar, “Agile software development: Impact
on productivity and quality,” in IEEE International Conference on Management of Innovation
and Technology (ICMIT), pp. 287–291, June 2010.

[24] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams, “Do Faster Releases Improve Software Quality?
An Empirical Case Study of Mozilla Firefox,” in IEEE Working Conference on Mining Software
Repositories (MSR), pp. 179–188, June 2012.

[25] D. Lebrun, S. Vissicchio, and O. Bonaventure, “Towards Test-Driven Software Defined Network-
ing,” in Network Operations and Management Symposium (NOMS), pp. 1–9, May 2014.

[26] D. North, “Behavior modification - the evolution of behavior-driven development,” Better Software
Magazine, June 2006.

[27] “Cucumber wiki: Gherkin.” https://github.com/cucumber/cucumber/wiki/Gherkin.

[28] J. Roche, “Adopting devops practices in quality assurance,” Communications of the ACM, vol. 11,
Nov. 2013.

[29] R. Harmes, “Flipping out.” http://code.flickr.net/2009/12/02/flipping-out/, Dec 2009.

18

