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1 Introduction

Over the past decade, Internet services have evolved tremendously. The user

is now in the focus, driven by new diverse possibilities of fast-growing and

evolving Internet technology today. For instance, before the Dynamic Adap-

tive Streaming over HTTP (DASH) standard was published in 2012 [7], the user

could only watch videos with a single level of quality via a progressive down-

load. Today, users can have their own full HD adaptive video channel that can

be displayed on any personal computer or mobile smart device. In addition to

this, the emergence of cloud computing has revolutionized the Internet ecosys-

tem by providing the users with everything as services [8]. This means, the

user only needs a thin client to run an arbitrary type of cloud application that

is centralized at the data center or distributed in the edge cloud. By moving

desktop-based software into the cloud, the users can �exibly access their appli-

cations from anywhere, enjoy the best user experience, and take advantages of

the scalability of the cloud paradigm with nearly unlimited resources. Moreover,

the shared model in Software as a Service (SaaS) provides the users with lower

cost of usage while accessing a shared cloud application and maintaining their

own data in the personal cloud storage (e.g., Google Docs). All these advantages

have led to an explosion of the cloud service subscriptions in recent years.

Despite the potential increasing in revenue, challenges the network opera-

tors are to deal with the problem of a high service demand nowadays while the

capacity is limited. Moreover, to successfully compete for a share of a promi-

nent market and retain the prospective users, the providers have to take the

user experience into account. For example, a degradation of the service quality

like a video interruption may induce user churn [9–11]. As a consequence, the
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1 Introduction

user may stop using that service and seeks for another provider. Therefore, the

network and cloud service providers, more than ever, need to be aware of the

user experience with their products. This not only helps to satisfy the users and

increase the revenue, but also gives the ability to react with tra�c management

when a network impairment occurs. To this end, a monitoring mechanism is re-

quired to understand the degree of the user experience with the cloud services,

which is one objective of this thesis.

In the Internet, a prerequisite to ful�ll user requirements is that the network

operators need to ensure a high Quality of Service (QoS) connection to the users.

However, the network QoS parameters such as bandwidth, delay, or packet loss

do not re�ect the user perception or feelings rather than the physical network

conditions. Therefore, a new concept that can translate the user experience into

a measurable metric is required and de�ned in [12], called Quality of Experience

(QoE). QoE is the degree of delight or annoyance of the user of an application

or service. It is conventionally measured by subjective tests or objective studies.

This thesis covers di�erent aspects of objective QoE research that may help the

network providers to understand the impact of the network QoS on the user

satisfaction. Based on this, tra�c management decisions can be performed to

improve the network accordingly.

Although QoE is considered as a reliable indicator in assessing the level of

user satisfaction, subjective QoE measurements are costly and time consum-

ing since it requires recruited participants. Additionally, di�erent cloud services

have di�erent objective and subjective characteristics for perception of qual-

ity [13]. For instance, QoE assessment for a cloud-based photo service can be

performed based on photo loading time [3, 14, 15]. Whereas, QoE assessment

for video streaming conventionally relies on stalling frequency and length [4,

16, 17]. This means, the assessment is highly dependent on the type of applica-

tion or service. Thus, performing QoE assessment for every Internet service is

even more expensive. To tackle this problem, objective QoE [11, 18] becomes an

alternative solution to estimate the QoE.

Objective QoE refers to the attempt to quantify the user experience based on

2



analytical and statistical models. The input for these models can be the network

layer parameters such as delay or packet loss, or application layer parameters

like login time or photo loading time. There, a high end-to-end latency may

cause a longer login time of a cloud service like Google Docs that also may dis-

satisfy the users. Similarly, the loading time of a photo also depends on the net-

work condition on the path to the users. The longer path the photo traverses, the

higher delay with possible packet loss occurs that negatively impacts the photo

quality and loading time, so the QoE. In this situation, QoE assessment for these

cloud services is necessary. To this end, �rst, the in�uence of the network QoS

on the performance of the services needs to be analyzed and evaluated. The

outcome of this step is a correlation between the service qualities (i.e., login or

loading time) and the levels of network QoS (i.e., delay or packet loss). Then, the

results are mapped with a pre-de�ned QoE model to specify the degree of user

satisfaction depending on the network conditions. Based on this, a monitoring

mechanism can be de�ned and network management can be performed to im-

prove the QoE perceived by the user. For instance, the cloud photo service can

be migrated to the edge cloud to decrease the latency.

One of the most popular and rich-data cloud services is HTTP Adaptive Video

Streaming (HAS). In today’s Internet, Cisco predicts that nearly a million min-

utes of video content will cross the network in every second [19]. This intro-

duces a potential increase in revenue for the video providers but also challenges

for the network operators ensuring the user expectation. Therefore, QoE mon-

itoring for HAS has become a necessary tool for the network administrators to

perform QoE management in the network. However, since HAS is a real time

service, QoE monitoring and tra�c management should be performed in real

time as well. Additionally, the monitoring function should be executed in the

network and the dynamic geographical deployment of the function may also be

required for the mobile users. To ful�ll these requirements, Network Function

Virtualization (NFV) has emerged as a promising solution for a �exible, scal-

able, and cost saving deployment of such a QoE monitoring function [20]. NFV

aims to decouple software-based network function from the underlying physi-
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1 Introduction

cal hardware. This piece of software is called Virtual Network Function (VNF)

that can be installed in any standard commodity server. Based on this, the VNF

QoE monitoring for HAS can be deployed at any Point of Presence (PoP) in the

network or at the cloud data center. Then, QoE for HAS can be objectively mon-

itored with a reasonable level of accuracy.

Despite the promising advantages of the NFV paradigm, the performance of

VNFs in general and the VNF QoE monitoring for HAS has not clearly inves-

tigated. First, since the QoE metric for HAS is estimated based on monitoring

the application layer parameters in the network, it is not really understood how

the network QoS in�uences the accuracy of the estimation. Second, in the NFV

paradigm, the VNF QoE monitoring can be deployed in any PoP across the net-

work. It is important to know the side-e�ects of di�erent VNF placements on its

performance. Next, while the data center network typically has high capacity,

the network impairments conventionally occur right at the user mobile access

network. As a consequence, a video interruption might happen when the user

is losing the signal from a cellular base station. This situation may become a

bottleneck in estimating QoE if the monitoring VNF is operating outside this

network segment and is unaware of the occurring network conditions. To cope

with these problems, a new study on evaluating the performance of the VNF

QoE monitoring for HAS is required.

In fact, a QoE management system typically consists of di�erent functions

such as QoE controller, QoE monitoring, and QoE manager [21]. Wherein, the

QoE controller acquires the application data tra�c. Then, the monitoring func-

tion estimates the QoE based on the parameters provided by the QoE controller.

An estimation of the QoE for the monitored application is forwarded to the

QoE manager where a tra�c management decision is made accordingly. These

functions are executed in a speci�c order and called Service Function Chain

(SFC) [22]. In the NFV architecture, the SFC promises to reduce the complexity

when deploying heterogeneous network services. However, the placement of

each function in the chain must be well de�ned with respect to latency or server

utilization, since QoE management must be quickly performed in the network.
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1.1 Scienti�c Contributions

Thus, in the context of cloud computing and NFV, several challenges in QoE

assessment and monitoring exist and need to be investigated. This monograph

presents solutions to cope with these problems and challenges. We present a

QoE assessment method for two popular cloud applications, the performance

evaluation of VNF QoE monitoring for HAS in the cloud, and the strengths and

weaknesses of di�erent placement algorithms for SFC in the edge cloud. The

next sections highlights the main contributions and the outline of this work.

1.1 Scientific Contributions

Figure 1.1 shows the main content structure and contributions of this thesis.

Each circle with di�erent colors indicates an individual research topic presented

in corresponding content chapter. However, these topics are also relevant to

each other as depicted by the arrow of the circle.

Lam Dinh-Xuan 
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1 Introduction

From the top of the �gure, this monograph focuses on three main research

areas, which are the QoE assessment of the cloud applications, the investigation

of applying the NFV paradigm for QoE monitoring in the cloud, and performance
evaluation of di�erent placement algorithms for SFC. A majority part of these

works have been conducted within the EUHorizon 2020 (H2020-2014-ICT-644672)
project In-Network Programmability for Next-Generation Personal Cloud Service
Support (INPUT) [23].

The �rst contribution of this dissertation is the evaluation of the impact of

network QoS parameters on the performance of Google Docs and cloud-based

photo services. Herein, the impact of delay and packet loss on di�erent subpro-

cesses of Google Docs service is evaluated through testbed experiments. The

derived linear regression models can be further used in reference models for

QoE assessment of such an exemplary SaaS solution. Regarding the cloud-based

photo service, we determine the trade-o� between the size of photo and its ge-

ographical placement to acquire a high QoE for photo loading time. To this end,

we propose a mapping equation which is based on previous TCP and QoE mod-

els. This formulation is able to assess the QoE for photo loading time depending

on di�erent network QoS parameters and the distance between the user and

the location of the service. This insight may help the providers to have another

strategy to deploy such a photo service with respect to QoE.

Next, we conduct real-world experiments in the �eld of QoE monitoring for

HAS as the second contribution. We propose to use VNF for monitoring video

tra�c in the network to leverage the advantages of the NFV paradigm. To this

end, we design a VNF using deep packet inspection technique and an algorithm

to estimate the video quality and QoE based on application layer parameters.

Then, we evaluate the performance of the VNF in di�erent deployment scenar-

ios under the side-e�ects of the network QoS and the virtual environment of

the cloud architecture. Our insights show that the di�erent geographical de-

ployments of the VNF in�uence the accuracy in estimating the video quality

and QoE. Specially, packet re-ordering and mobile network can induce an over-

estimation of QoE for HAS. In this situation, moving the VNF next to the user

6



1.2 Outline of the Thesis

is highly recommended to achieve an accurate QoE estimation. This contribu-

tion may help the network providers to further understand the advantages and

drawbacks of deploying such a VNF QoE monitoring in the cloud.

As the third contribution, we focus on, is a scenario where di�erent VNFs

interwork in a speci�c order to form a SFC. Herein, we propose four algorithms

to place the VNFs across data centers in the edge cloud. We use the EdgeNet-

workCloudSim simulator [24] to simulate users accessing the SFCs and the per-

formance of the placement algorithms is evaluated with respect to service re-

sponse time or server utilization. Our results show that the optimized solutions

produced by using Integer Linear Programing (ILP) model obtain lowest ser-

vice response time and least server utilization rate compared to the heuristic

approaches. However, when the solution space is large due to a large network

topology, the placement problems isNP-hard that requires a longer solving time.

As a consequence, the service response time is negatively in�uenced. In this

case, heuristic approaches can be the alternatives. This may help the network

administrators to have di�erent solutions for SFC placement in the edge cloud.

1.2 Outline of the Thesis

The outline of this thesis is depicted in Figure 1.2. From the top of the �gure,

after the introductory section, the scienti�c contributions and the organization

of the thesis are presented in Chapter 1. Then, the main outcome of this work

is described in detail in separate chapters.

In Chapter 2, we present QoE assessment methods for the two popular cloud

applications, which are Google Docs and photo service. First, the SaaS service

model in the cloud paradigm and basic concepts are introduced in Section 2.1.

Several related studies are also addressed in this section. Subsequently, Sec-

tion 2.2 assesses the in�uence of di�erent network QoS parameters on the per-

formance of Google Docs service. The investigation of the trade-o� between the

content size, service geographical placement, and QoE is detailed in Section 2.3.

Finally, Section 2.4 summaries the main �ndings of this chapter.
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1.2 Outline of the Thesis

Chapter 3 focuses on the QoE monitoring for HAS in the network using VNF.

Di�erent QoE assessment methods, QoE monitoring at di�erent layers, and pre-

vious studies are highlighted in Section 3.1. In Section 3.2, we propose the use

of VNF for QoE monitoring using deep packet inspection technique and design

an algorithm to estimated the video quality based on application layers param-

eters. The performance of the VNF QoE monitoring for HAS is evaluated in a

practical emulation testbed. Section 3.3 investigates the side-e�ects of deploying

the VNF QoE monitoring in the Amazon Web Service cloud environment. The

impact of mobile access network on the accuracy of the VNF is also examined

in this section. Our insights about the performance of the VNF QoE monitoring

for HAS is summarized in Section 3.4.

Chapter 4 investigates the performance of di�erent placement algorithms for

SFC in the context of the edge cloud. There, we �rst introduce the NFV paradigm

and the state of the art in SFC research area in Section 4.1. Subsequently, four

placement algorithms are presented in Section 4.2 consisting of two heuristic

approaches and optimized solutions obtained by using the ILP model. In Sec-

tion 4.3, we �rst introduce the extension of EdgeNetworkCloudSim simulator

and the network topology for the simulation. Thereafter, several SFC character-

istics and performance metrics are given. The performance evaluation of di�er-

ent placement algorithms with respect to the service response time and server

utilization is detailed in Section 4.3.5. Section 4.4 concludes this chapter with

lessons learned.

Finally, Chapter 5 highlights the major contributions of this monograph and

gives an outlook to future research works.
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2 QoE Assessment and Placement

for Cloud Applications

Cloud computing and Software as a Service (SaaS) have received considerable

interest by both the research and the industrial community. Cloud computing

refers to a pool of con�gurable, virtualized resources such as computation, mem-

ory, storage, and network that can be dynamically allocated for applications,

services, and user virtual machines. In cloud computing, SaaS provides the user

with software that can be accessed anywhere by using a thin client or a web

browser over the Internet.

The bene�t of SaaS is scalability and the provisioning of almost unlimited

resources compared to legacy software solutions. Unlike locally launched ap-

plications, since cloud applications are hosted in data centers, the quality of

provisioned applications is no longer only dependent on the cloud provider in-

frastructure and allocated resources, but also on the condition of the network

connection to the user. For instance, the users who are far away from the data

center might experience a lower quality connection with much delay compared

to the one who is nearby. Moreover, users typically are not interested in techni-

cal problems of the network such as delay, packet loss rate, or throughput. They

only care about the performance on the application layer.

As a consequence, a network problem may cause a bad experience perceived

by the user when using even a well-designed cloud application. Thus, network

operators now, more than ever, need to understand the expectation of the user

and provide services accordingly if they want to support cloud applications. In

other words, technology-centric network management is no longer the only ap-

11



2 QoE Assessment and Placement for Cloud Applications

proach in today’s Internet, but rather user-centric approaches play an increas-

ingly important role.

For this reason, Quality of Experience (QoE) has emerged as a popular topic

in recent years. QoE is a measure of satisfaction or annoyance of a user with a

particular application or service [12]. QoE for a service re�ects the degree of hu-

man expectations, feelings, or perceptions for that service. Thus, it is important

to be aware of the QoE for an application or a service. Being able to estimate the

QoE perceived by the users for a particular application will help the network

operators to understand what is maybe wrong with the application and they

can react to improve it.

To measure the QoE for a speci�c application, the QoE in�uence factors must

be taken into account. The authors in [25] classify QoE into three categories of

human, context, and system in�uence factors, in which human factors refer to

age, gender, or visual and auditory acuity. Context factors are spatial or tem-

poral, economic or social factors that in�uences the QoE. Among the others,

system in�uence factors receive the most considerable interest by the research

community. It is primarily due to a strong relationship between the QoE and the

Quality of Service (QoS) in network engineering domains [11] [26]. System in�u-

ence factors consist of application layer factors (e.g., media content, encoding, or

resolution), network layer factors (e.g., latency, packet loss rate, or throughput),

and physical layer factors (e.g., transmission media or user devices). Since the

QoE assessment based on human and context in�uence factors is costly, network

operators can e�ciently estimate the QoE based on system in�uence factors that

can be measured using a dedicated testbed.

Since cloud applications are hosted in data center and delivered to the users

over the Internet, the performance of the cloud applications is highly dependent

on the network condition. To ensure the user satisfaction with the applications,

new studies on the QoE for the cloud-based applications are required. Espe-

cially, the in�uence of the network connection on the QoE perceived by the end

user need to be taken into account. In this chapter, we tackle the problem by

studying the QoE assessment based on system in�uence network factors which

12



are latency, packet loss rate, and link capacity of the network connection to the

user. Speci�cally, we �rst investigate the impact of delay and packet loss on the

performance of a cloud-based word processor namely Google Docs. This is the

�rst step to further evaluate the in�uence of network factors on the QoE for

the cloud-based word processor service. Secondly, we focus on the in�uence of

content placement on the QoE. This corresponds in particular to the proximity

of the service to the user. To achieve the goal, we study a cloud-based photo

service and investigate the relationship between the photo loading time and the

QoE perceived by the user. We �nd out that the geographical placement of the

content is one of the key factors that a�ects the user satisfaction. The closer

the content to the user geographically is, the faster it will be delivered to the

user that will also increase the user perceived QoE. Thereby, migrating the con-

tent near to the users is a prominent approach in this situation. For instance,

Figure 2.1 shows an overview of possible content placements in the cloud data

center or edge server to adjust the QoE.

edit slide master to edit author name
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Figure 2.1: Overview of Possible Content Placements

In this �gure, the content is assumed primarily to be stored in a data center

and can be accessed anywhere. The users access the content over the Internet, in

which the locations of the users are di�erent from each other. If the users are far

away from the data center, their access might be a�ected by a high latency and

possibly network congestions. In this case, the loading time of the content might

be signi�cantly higher than the one who is closer. The users therefore experi-
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2 QoE Assessment and Placement for Cloud Applications

ence a lower quality (e.g., lower photo resolution due to progressive download)

and they may stop using the service. A possible solution is to migrate the con-

tent closer to the users. To this end, the network operators need to be aware of

the QoE perceived by the users for the service at �rst. If a low QoE is encoun-

tered, the content is then managed to migrate to edge server as shown in the

Figure 2.1. By doing this, the problem of low QoE due to long distance access is

solved. Although Content Delivery Network (CDN) [27] [28] can also act simi-

larly, this network technology only caches a part of content on the edge server.

Additionally, replicating the same content over the Internet is not always an ef-

�cient solution, since it increases overhead and the cached content may not be

the one that the users are interested in. Thus, a better solution for the network

providers is to investigate the QoE for the service, then manage the network

and the content placement accordingly to improve the user satisfaction.

The contribution of this chapter is twofold. First, we analyze the performance

of a cloud-based word processor, namely Google Docs regarding the identi�ed

performance metrics with respect to QoE. Herein, we provide a model used to

derive Google Docs performance metrics given a set of network parameters and

quantify the goodness of �t. This contribution is the �rst step to further evaluate

the QoE for such a cloud-based application. Especially, the derived model can

be further used in analytical models for optimization or estimate the QoE for

Google Docs based on monitored network QoS parameters. Secondly, we pro-

pose a method to investigate the relationship between the content placement

and network parameters to derive a QoE mapping model for the content load-

ing time. This contribution may help the network providers to have an alter-

native approach to monitor the QoE for content loading time based on various

parameters that is also important in QoE and network management.

The content of this chapter is mainly taken from [5], [3]. The remainder of

this chapter is structured as follows. Section 2.1 highlights the background and

related work that is divided into four di�erent subsections. Firstly, SaaS deploy-

ment model of cloud computing is introduced in Section 2.1.1. Subsequently,

Section 2.1.2 presents a cloud-based photo service in the context of edge net-
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works, followed by the discussion about the relationship between QoE and net-

work QoS in Section 2.1.3. Thereafter, Google Docs and its technology behind

is described in Section 2.1.4 adding related work on the impact of network con-

ditions on word processors in general. In Section 2.2, we evaluate the impact

of di�erent network parameters on the performance of Google Docs service in

both single and collaborative scenarios. Next, Section 2.3 presents the trade-o�

between the QoE for photo loading time and its placement in the cloud by using

a mapping model. Finally, Section 2.4 concludes this chapter with lesson learned.

2.1 Background and Related Work

In this section, we �rst present the SaaS architecture in Section 2.1.1. Then,

we introduce the two popular cloud-based services, namely photo album and

Google Docs. Firstly, we present an overview of photo album service in the

context of edge network and discuss the relationship between QoS and QoE

in Section 2.1.2 and Section 2.1.3, respectively. Thereafter, the technology be-

hind Google Docs and researches on the impact of network conditions on word

processors in general is presented in Section 2.1.4.

2.1.1 So�ware as a Service Architecture

The paradigm of SaaS has gained great attention in the last decade. SaaS allows

end users to use complex software directly from their browsers, transferring

heavy computation to servers in the cloud. By doing this, users bene�t from

using demanding services on lightweight devices without installation and op-

eration of applications on their own computer. Moreover, service providers can

also bene�t from simplifying service maintenance, management, and support.

In SaaS, most of solutions are based on multi-tenancy model. With this model,

one application instance can be operated for multiple enterprises and provided

for multi-tenants that can reduce tremendously capital and operational costs.

Figure 2.2 shows an overview of multi-tenancy model where users can either
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Figure 2.2: Overview of SaaS Multi-Tenancy Model

choose a more isolated model with their own database or share the database to

reduce cost. On the one side, SaaS applications can be delivered to the tenants

with di�erent degree of isolation depending on business requirements. In this

model, each user can own an individual database that is completely separated

from the others to ensure privacy and security (e.g., a personal photo album).

The cost of ownership is therefore higher than in the shared model. On the other

side, with the success of social network, multi-tenant architecture with shared

model also allows users to collaborate and share information in a joint space

(e.g., collaborative editing in Google Docs). This model is the most preferred

approach where one database can be shared for multiple users. Hereby, the cost

and maintenance of the share model is signi�cantly lower.

Although SaaS paradigm brings advantages and reduces costs, one of the main

drawbacks of SaaS is latency. With the centralized architecture of the cloud

computing, users who are far away from data centers will face the problem of

network latency. This may in�uence the delay-sensitive applications (e.g., live

streaming, online gaming, or collaborative wording). As a consequence, users

may dissatisfy and stop using the applications, so decrease the QoE. In the fol-

lowings, we introduce the two well-known SaaS applications and analyze the

in�uence of di�erent network conditions and content placement on the appli-

cations and the level of QoE perceived by the users in the next sections.
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2.1.2 Cloud-based Photo Service in the Context of Egde
Networks

Photo has been one of the most popular content delivered over the Internet in

the last decades. In 2016, it was reported that over 95 million photos are shared

on Instagram every day (Instagram Inc., 2016). To store and share this type of

content, the common way is using a web-based photo album in the cloud. In-

deed, along with the increasing diversity of SaaS, a trend is the replacement of

entertainment applications running on PC by a SaaS (e.g., online cloud gam-

ing, YouTube video streaming). An Edge network Photo album Cloud service

(EPC) is another example. While a desktop-based album application manages

and stores photos predominantly on a PC, an cloud-based album provides almost

unlimited space to store the user photos, accessible everywhere. Furthermore,

an edge network cloud service refers to a location-aware, �exible placement of

the service, and the content among multiple resources in the cloud and in the

edge network. This means, the service providers can decide to place the EPC

in a resource-e�cient manner, such that the user perceived QoE for the photo

album service is high.

An EPC is a SaaS, which allows users to upload and manage photos created

by any digital device (e.g., digital camera, smart phone, etc). As a web-based

service, an EPC typically uses HTTP or HTTPs over TCP to deliver stored photos

over the Internet. Users can access and manage an EPC using any modern web

browser. Thus, the photo loading time is in�uenced primarily by the �le size,

the distance between server and client, and the network QoS. If the user has to

wait too long to view or upload a photo, the user may stop using the service. In

order to achieve a high satisfaction with the photo album service, the challenge

is to e�ciently place the photo content in appropriate geographical location to

achieve a high QoE perceived by the user. In other words, the trade-o� between

user perceived QoE, network QoS, and placement of content is an important

factor for developing such an EPC service.
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2.1.3 Relationship Between Network QoS and �ality of
Experience

As de�ned in [12], "Quality of Experience (QoE) is the degree of delight or an-

noyance of the user of an application or service". The de�nition is possibly suit-

able in the context of cloud-based multimedia services. In this context, QoE is

the level of user satisfaction and/or enjoyment of an application or a service.

The QoE is typically evaluated using Mean Opinion Score (MOS) [29].

In fact, the QoE evaluation of a cloud service, as well as the relationship be-

tween QoE and QoS, is widely studied. However, we observe rare research about

the QoE-aware placement of content for cloud services. The concept of QoE

refers to the overall level of customer enjoyability with a service is introduced

in [30]. Regarding the web-based services, QoE has a strong relationship with

the network QoS. The IQX hypothesis is proposed in [11], which described a

natural and generic exponential relationship between QoE and network QoS.

Meanwhile, the authors in [26] reported a logarithmic relationship between QoE

and network QoS. However, the relationship between QoE of a speci�c applica-

tion and network QoS highly depends on the application.

In [31], Mok et al. investigated the relationship between QoE for HTTP Adap-

tive Video Streaming (HAS) and network QoS using analytical models and em-

pirical evaluation. In [32], Casas et al. provide a result of concrete cloud QoE

studies, in which Cloud Storage and File Synchronization, Remote Virtual Desk-

top and telepresence system such as Microsoft Lync Online were conducted by

subjective lab experiments. While, HAS (e.g., YouTube) is evaluated by �eld trials

approach. The relationship between waiting times of interactive data services

and QoE is discussed in [14] and [15]. The authors focus on the time percep-

tion and its relation to the user satisfaction rather than the trade-o� between

the placement of content and QoE as our main consideration. Nevertheless, the

authors explained a logarithmic relationship between user perceived QoE and

photo loading time which bene�ts us as a QoE reference model as it will be

described in more detail in Section 2.3.
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2.1.4 Cloud-based Collaborative Word Processor

Another popular cloud-based service, used for multiple purposes is Google Docs.

This cloud SaaS is a web-based word processing application whose client side

front end is based on HTML and JavaScript and can be accessed using any mod-

ern web browser [33]. In contrast to standalone o�ce software products, e.g.,

Microsoft O�ce or LibreO�ce, Google Docs requires a permanent Internet con-

nection as documents are not stored locally on the client but on the Google

server infrastructure. Google Docs does not provide rich feature sets like stand

alone o�ce products, however, it o�ers an easy way to share documents and

enable collaboratively editing with up to 10 users simultaneously by sharing a

link to the document or granting explicit rights to other registered users. Nev-

ertheless, since Google Docs is an Internet-based word processor, its perfor-

mance might be in�uenced by di�erent network conditions and to the best of

our knowledge, the evaluation of the quality of service for Google Docs has not

been taken into account so far.

Considering the impact of network conditions on other network-based word

processors, Schlosser et al. analyze the behavior of Microsoft Word and Ex-

cel running in a remote desktop environment under di�erent network condi-

tions [34]. They consider the Microsoft Remote Desktop Protocol (RDP) and

Citrix Presentation Server (CPS) as possible thin-client solutions. Their results

show that delay less than 500 ms or packet loss less than 2 % does not have any

in�uence. However, the combination of delay and packet loss results in measur-

able impairments.

In [35], the authors focus on how Input Bu�er and Speedscreen options can

improve the performance of CPS in a WAN scenario. They perform measure-

ments with a user typing a text, scrolling a text, and selecting speci�c sub-menus

on Microsoft Word and Textpad, respectively. The test duration under di�erent

network conditions is the main criteria to evaluate the performance of CPS.

From the results, the author conclude that with an increasing of network de-

lay up to 500 ms in combination with packet loss lower than 2 %, CPS with the

combination of Speedscreen and Input Bu�er takes less time to �nish the test
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than without these options.

In both studies, the applied methodology is similar to the one used in this

work. However, we are not focusing on traditional thin-clients but rather study

a web based solution. Further, we also consider a collaborative use case, which is

not studied in previous publications. Other works study cloud services and theirs

network requirements. In [36], the authors focus on �ve fundamental challenges

for wide adoption of cloud computing using the OPTIMIS toolkit. Amrehn et al.

conclude that for general �le storage services, the upload and download speed,

�nancial aspects, privacy, and security are important QoE in�uence factors [37].

The authors in [38] use a prediction system to forecast the CPU demands for web

based cloud services. Other studies evaluate the subjective user satisfaction, i.e.

QoE, with cloud services [39, 40]. These studies focus on di�erent aspects of

cloud computing. However, the authors do not evaluate a speci�c cloud appli-

cation or investigate the impact of network conditions on the performance of

cloud applications.

2.2 Impact of Delay and Packet Loss on Google Docs

While a traditional desktop word processing application such as Microsoft Word

provides a more complete feature set, Google Docs is a lightweight utility with

su�cient o�ce features and high �exibility. As an additional feature, Google

Docs enables users to share created documents with other users or even col-

laboratively edit them. However, as Internet-based cloud application, the per-

formance of Google Docs depends on the network quality between server and

client. In this section, we evaluate the performance of Google Docs with regard

to di�erent network conditions in two scenarios. First, a single user scenario is

studied. In this scenario, a user has to take several subprocesses such as Login or

Typing. We consider the time required to complete the subprocesses as a metric

for the performance of the service. In the collaborative scenario, with two users

login to Google Docs. The �rst user edits a document while the other user ob-

serves the editing. Here, we consider the time both users require to complete the
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total process as well as all composite subprocesses as a measure of the applica-

tion performance. To evaluate the in�uence of di�erent network conditions on

the processing time in both scenarios, we emulate various network delay condi-

tions and packet loss settings in a local testbed that is described in Section 2.2.1.

In the sequence, the impact of di�erent network conditions on scenarios is an-

alyzed in Section 2.2.2 to 2.2.4.

2.2.1 Methodology and Testbed Setup

We use a dedicated testbed including a network emulator to analyze the in�u-

ence of di�erent network parameters on the behavior of Google Docs, allowing

for an easy adaption of network parameters such as delay and packet loss. In the

following we �rst detail on the methodology and then test setups for the single

user case and the collaborative scenario.

Method

In the reminder of this section, we analyze how network parameters in�uence

the behavior of Google Docs. To assess this in an objective manner, we are going

to emulate user interactions and measure the time it takes to complete them. We

consider two scenarios, which are derived from common Google Docs use cases.

First, we discuss the single user scenario with one user editing a document. Here,

a session is divided in �ve steps, which we will refer to as subprocesses. In a �rst

step, the user logs into the system to gain access to a previously created docu-

ment or to create a new document (Login). In the next step, the user creates a

new document (Creating). Then, the user starts typing while the client contin-

uously sends updates to the server to stores entered text at the server (Typing).

After entering the text, it takes a short amount of time to save the last changes to

the text (Saving). The session is then ended with the logout of the user (Logout).
The durations ∆tlogin, ∆tcreating, ∆ttyping, ∆tsaving, and ∆tlogout of the �ve sub-

processes Login, Creating, Typing, Saving, and Logout, as well as the total time

of the session ∆ttotal are considered as an objective metric to assess the impact
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of network conditions on the performance of Google Docs. While it is intuitive

that most of the aforementioned metrics depend on the network parameters,

Emmert et al. [41] showed that the e�ective typing speed of an user also de-

pends on network parameters in thin client environments. We will refer to this

scenario as single user scenario in the remainder of this section.

As mentioned before, one of the major bene�ts of Google Docs is collabora-

tive editing. In this case, the user session is more complex than in the single

user case. For this scenario, we assume that user 1 is creating the document and

shares it with a collaboration partner user 2. Therefore, the work �ows of user 1
and user 2 are almost similar to the work �ow in the single user scenario. How-

ever, to share the document, user 1 sends a link to user 2 which grants him access

rights to the newly created document. In this scenario, we additionally de�ne

two waiting times: (1) the duration user 1 has to wait until user 2 is ready to

receive text, (2) the duration that user 2 has to wait until Receiving starts. After

user 2 accessed the document, user 1 starts writing and the content is automati-

cally synchronized with user 2 via Google Docs. As user 2 is not actively editing

the document, he does not observe a Saving phase.

Testbed Setup for Single User Scenario

The testbed setup for the single user scenario is schematically depicted in Fig-

ure 2.3. It consists of one measurement server, one network emulator, and a

control PC. The measurement server hosts the virtual machine VM1 used as

Google Docs client for user 1. The virtual machine is connected to the Internet

via another server running NetEm
1

, which enables us to adjust packet loss and

delay on the connection. To control the measurements, we use a control PC that

is connected to the network emulator and the Google Docs client via a dedicated

control network to avoid interference with the tests.

The measurement server and the network emulator are SUN FIRE X4150

servers with 8 CPUs 2.5 GHz, 16Gb RAM, and 4 Ethernet 1Gbps NICs. VMware

1

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
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Figure 2.3: Overview of Testbed Setup for the Single User Scenario

ESXi 5.5
2

is used as virtualization solution and both the Google Docs clients and

the network emulator use Ubuntu 12.04 LTS as operation system. The testbed is

connected to the Internet with a research network. We measure the baseline net-

work parameters with a round trip time of 3.91 ms and no packet loss over 1000

packets. For later evaluation, we consider network delays from that baseline up

to 1000 ms. Such high delay values can, e.g., occur due to long distance Internet

access [42] or bottlenecks [43]. We consider packet loss from the baseline up to

4% which may occur in a wireless link in urban area [44].

As discussed in Section 2.1.4, we assess the in�uence of the network param-

eters by measuring the duration of the subprocesses. To this end we use the

Selenium Webdriver
3

to automatically generate user interactions. Figure 2.4a

depicts the program �ow of the measurement script and the recording of the

time stamps used for measuring the duration of the subprocesses.

First the control PC sets up the network emulator with the desired con�gu-

ration. Thereafter the Selenium script is started, which signs in to Google Docs

2

https://www.vmware.com

3

http://www.seleniumhq.org

23



2 QoE Assessment and Placement for Cloud Applications

Yes

No

∆���������∆������ ∆������� ∆������� ∆�������

SavingLogin Creating Typing LogoutFinish

(a) Single User Scenario

LogoutLogin
Send 

READY
Open 
link

Saving

Receiving

Share 
link

Creating Typing

No

No No

No

No

Yes

Yes

Yes

Yes

Yes

∆������
��� ∆���������

���

∆��������
���

∆�������
��� ∆�������

��� ∆�������
���

∆������
���

∆��������
���

∆����������
��� ∆�������

���

VM1

VM2

Receive 
Link

Receive
START

Login LogoutFinish
Receive
READY

Finish

(b) Collaborative Scenario

Figure 2.4: Measurement Work�ows

24



2.2 Impact of Delay and Packet Loss on Google Docs

and creates a new document. The content entered by the script is an English

text taken from the introduction part of Selenium webpage. To evaluate the in-

�uence of the length of the text of the duration of the typing process, we use a

short text of 1548 characters, which corresponds approximately one paragraph

in a document. Besides this we also use a long text with about 6189 characters,

which corresponds to about two pages of A4 document. After the automatic

typing is complete, the Selenium script waits until the document is saved and

logs out of the Google Docs. For each network parameter setting we produce 50

replications within several days to avoid measuring diurnal e�ects.

Testbed Setup for Collaborative Task Scenario

In the collaborative scenario we consider two users working simultaneously on

the same document, with one user editing the content of the document and the

other user reading the document. To analyze this scenario we extend the testbed

con�guration described in Figure 2.3 by adding another virtual machine (VM2)

as user 2 on the measurement server. In this scenario we require synchronized

clocks for both client PCs. While this is challenging when using two di�erent

physical machines, it can be accomplished using two virtual machines sharing

the host clock. Similar to VM1, VM2 is connected to the Internet via the net-

work emulator, so that both VMs share the same network parameters. VM2 is

also connected to the control PC using a dedicated control network. Addition-

ally a second control network is established between the two virtual machines

to synchronize the work�ows of the machines as describe below. In the mea-

surement, we use short sample text from the single user scenario and the same

network settings.

Figure 2.4b shows the work�ow in the collaborative scenario. The upper and

the lower part of �gure represents the processes on VM1 and VM2, respectively.

The work�ow for VM1 is similar to the one in the single user scenario. However,

after creating the new document, VM1 shared the document with VM2 by send-

ing a link. The work�ow of VM2 di�ers in such a way that VM2 does not create

a new document itself, but just waits for the link to the shared document. In or-
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der to synchronize the work�ows of the two virtual machines, VM1 waits after

sending the link to VM2, until VM2 places a marker in the shared document.

Thereafter, VM1 starts typing in the document and VM2 observes the changes.

In addition to the times measured in the single user scenario, we also consider

the waiting times of the two virtual machines in this case. This is for VM1 the

time between creating the document and the noti�cation from VM2 that it suc-

cessfully accessed the shared document, and for VM2 the time between logging

in and observing the �rst changed by VM1 in the shared document. Moreover,

we also measure the time it takes until all changes on the document made by

VM1 are visible on the document seen by VM2.

2.2.2 Impact of Di�erent Network Conditions on
Subprocesses in Single User Measurements

Based on the methodology and measurement setup discussed in Section 2.2.1,

we study the impact of network parameters, i.e. packet loss and delay, and text

length on the single user and collaboration scenarios, with regard to the subpro-

cess and total durations introduced earlier. All measurements were performed

between February 12, 2015 and March 24, 2015. For each parameter setting 50

repetitions of the measurement were performed, in order to increase statistical

signi�cance. The measurement settings are chosen according to the values dis-

cussed in Section 2.2.1. In order to avoid measuring diurnal e�ects, we did not

perform measurements with the similar settings consecutively, but distributed

them over di�erent times of day.

In this section, we �rst investigate the single user scenario and show the

results in Figure 2.5. For all �gures, the y-axis gives the subprocess duration

with 95% con�dence intervals in seconds. For sake of readabilities the y-axis is

cropped to 30 s, but the measurement values are given in the �gure description.

In Figures 2.5a and 2.5b, we study the impact of di�erent network parame-

ters for di�erent text lengths. Here, the x-axis in the left sub �gures shows the

di�erent delay settings in milliseconds, from the baseline unmodi�ed delay, to
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an additional delay of 1000 ms in increments of 250 ms. The right sub �gures

show the impact of packet loss on the single user scenario. Here, the x-axis gives

the additional induced packet-loss from the baseline setting without additional

packet loss, up to 4% in increments of 1%. All �gures give subprocess dura-

tions as bars, colored depending on the subprocess type. Additionally, for each

subprocess a linear regression is performed, which is shown as a colored line,

depending on the subprocess type. Table 2.1 shows the detailed results of the

linear regression depending on the delay, including the Coe�cient of Determi-

nation (CoD) r2 as a measure for the goodness of �t.

Figure 2.5a and Figure 2.5b show the packet loss in the considered range up

to 4 % does not a�ect the processing time for any subprocess. However, the

increase of network delay results in increased processing times for all subpro-

cesses except the Typing time, with Login andCreating document being the most

sensitive to network delays. When delay increases from baseline to 1000 ms, the

Typing time remains almost constant at 60 s and 247 s for the short and the long

text, respectively. This is due to the fact that updates to the server are sent asyn-

chronously and the typing process does not depend on the reply of the server.

Particularly, the duration of the Login process is about 7 times longer than for

a delay of 500 ms then for the baseline measurement and 12 times longer at a

delay of 1000 ms.

The duration of the Creating document process doubles and almost triples for

the corresponding delay values in comparison to baseline measurement. This is

due to the fact that the Login and Creating subprocesses rely on multiple com-

munications between client and server which are executed in serial order. In

contrast to this, the Saving time only slightly increases and the Logout time

takes approximately 3.30 s at 1000 ms delay compared to 0.60 s at baseline de-

lay. Due to the synchronization of the typed text in a background process, the

saving of a document relies only on few communications with the server and

thus is not in�uenced by a large measure. In the measurement of the long text

as shown in Figure 2.5b, the behavior of the Login, Creating, Saving, and Logout
subprocesses is similar to the behavior observed for the short text.
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Figure 2.5: Impact of Network Conditions on Subprocess Durations in Single User
Scenario
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Table 2.1 summarizes the results of the linear regression for the subpro-

cesses, both for short text and long text measurements for a given delay

x. Packet loss is not considered, as the impact on subprocess duration is

negligible in this scenario. We observe that increasing delay results in a large

increase of the Login time and Creating time, while the e�ect on the other sub-

processes is less signi�cant. The linear function of Typing time has small slope

coe�cient of 3.70 compared to its intercept of 56.71. Therefore, the length of

text is primary factor changing the Typing time, not the network delay or the

packet loss. The durations of the Typing subprocess vary non-linearly with in-

creasing delay, resulting in an inadequate �t and a low CoD value.

Table 2.1: Linear Regression of Subprocesses for Delays in Single User Scenario

Subprocesses Short-text Measurement r2 Long-text Measurement r2

Login 22.07× 10−3 · x+ 2.54 0.99 21.64× 10−3 · x+ 2.26 0.99

Creating 17.50× 10−3 · x+ 4.83 0.96 15.89× 10−3 · x+ 5.14 0.94

Typing 3.70× 10−3 · x+ 56.71 0.49 −4.95× 10−3 · x+ 247.35 0.32

Saving 0.84× 10−3 · x+ 1.29 0.87 1.41× 10−3 · x+ 0.95 0.92

Logout 2.70× 10−3 · x+ 0.65 0.99 3.16× 10−3 · x+ 0.71 0.99

Our measurements show that in the single user scenario, Google Docs is ro-

bust against packet loss. However, delay a�ects the system negatively, especially

during processes depending on multiple serial communication between client

and server, e.g. login or while creating new documents. The actual typing pro-

cess, which represents interaction between the user and the client, is insensitive

to the network conditions, as it is basically a background process, which does

not a�ect the user directly. The measurements show that the duration of the

typing process is mainly depending on the length of the text.
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2.2.3 Impact of Di�erent Network Conditions on
Subprocesses in Collaborative Task

We now analyze the impact of di�erent network conditions on the subprocesses

in the collaborative scenario. As described in Section 2.2.1, we use two virtual

machines. The document is edited by VM1 while VM2 observes the creation pro-

cess. In Figure 2.6, the y-axis shows the duration of each subprocess in seconds,

while the x-axis in the left �gures shows the network delay and the packet loss

rates in the right �gures. Bars are colored by subprocesses and give the mean

and 95% con�dence interval of duration, the lines show the linear regression.

Similar to the results from Section 2.2.2, Figure 2.6a and Figure 2.6b indicate

that a packet loss of less then 4% has no in�uence on the observed subprocess

durations. Increasing delay results in an increasing duration of almost all sub-

processes in both VM1 and VM2, with Login, Creating document and Waiting
being the most sensitive processes. In contrast to this, the Typing time on VM1

and Receiving time in VM2 are only slightly �uctuating around 60 s even for

higher delays. Again, this is due to the fact that synchronization between both

VMs occurs asynchronously and does not depend on the responses of the server.

As expected, the Login times are similar for both machines, since both experi-

ence the same network parameters. Furthermore, we observe that the Waiting
time for VM2 is approximately the sum of theCreating andWaiting time of VM1.

This can be explained, by the fact that both machines start with the login process

at about the same time but VM1 has to create the document �rst. The following

starts the synchronization process for both work�ows, c.f. Figure 2.4b, which

ends with the start of the Typing process on VM1 and the start of the Receiv-
ing process on VM2. These process again mark the end of the waiting periods

of both machines. Interestingly, the Typing and Receiving process take about

the same amount of time on both machines, independent of the network con-

ditions. Again the parameters for the linear regression models are summarized

in Table 2.2. The missing values in the table indicate the subprocesses does not

occur on the corresponding virtual machine.
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Figure 2.6: Impact of Network Conditions on Subprocess Durations in Collaborative
Scenario
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Table 2.2: Linear Regression of Subprocesses for Delay in Collaborative Scenario

Subprocesses VM1 r2 VM2 r2

Login 21.53× 10−3 · x+ 2.51 0.99 21.47× 10−3 · x+ 2.41 0.99

Logout 2.39× 10−3 · x+ 0.59 0.99 2.50× 10−3 · x+ 0.58 0.99

Creating 15.56× 10−3 · x+ 5.95 0.96 - -

Typing −1.73× 10−3 · x+ 59.68 0.29 - -

Saving 1.07× 10−3 · x+ 1.24 0.83 - -

Waiting 8.16× 10−3 · x+ 13.57 0.97 25.94× 10−3 · x+ 20.56 0.98

Receiving - - −2.81× 10−3 · x+ 60.08 0.49

Considering the CoD, we again observe that the Login, Logout, Creating, and

Saving subprocess can be �t using a linear model, in contrast to the Typing and

Receiving which do not show linear behavior regarding the considered param-

eters. For the Typing and Receiving process the intercept is again much larger

then the slope coe�cient, which indicates that the network parameters again

have only little in�uence on the subprocess durations. Again, we do not provide

a linear regression concerning packet loss due to the negligible impact of the

variable.

Our measurements show that in the collaborative scenario, Google Docs be-

haves similar to the single user case. It is rather robust against packet loss and

more sensitive to delay. Processes depending on repeated communication be-

tween client and server are more a�ected by additional delay, then e.g., the typ-

ing process which uses an asynchronous communication pattern.

2.2.4 Impact of Delay and Packet Loss on Total Process in
Collaborative Task

After analyzing delay and packet loss separately, we now consider the total pro-

cess duration given packet loss and delay occurring at the same time. We con-

sider total processing time ∆ttotal required for inputting the short text in the

collaborative scenario. The results for the measurement show that the di�er-
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Figure 2.7: Impact of Combined Delay and Packet Loss on the Total Duration of the
Collaborative Task

ences of ∆tvm1

total
and ∆tvm2

total
are negligible. Therefore we focus our discussion on

obtained values for ∆tvm1

total
depicted in Figure 2.7.

In Figure 2.7, the y-axis shows ∆ttotal = ∆tvm1

total
. The x-axis shows the dif-

ferent packet loss values from baseline to 4%, di�erent delay values are shows

as grouped bars, including the 95% con�dence intervals for each measurement

setting. We show an examples of a more general linear regression parameterized

for the measurement parameters as lines colored according to the speci�c delay.

For the baseline packet loss and the considered delay values we observer that

∆ttotal increases, as discussed in the previous sections. We also see, that ∆ttotal

is almost independent of the packet loss as long as the delay is small, i.e., at the

baseline. This is intuitive, because in this case retransmission of lost packets can

be considered as almost instantaneous and does not a�ect the transmission at

all. However, in case of larger delays, the impact of packet loss starts to increase,

as retransmissions take longer and consequently the time until information is

successfully transmitted between server and client increases, as well.
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This can be modeled using a linear regression with a CoD value of 0.943 as

∆ttotal = 62.247 + 0.077962 · x+ 809.54 · y,

for a delay x and a packet loss of y. Comparing the predicted results of the model

with our measurements, we observe that while �uctuations up to 10% occur at

the bounds of our parameter set, the results are of su�cient quality to be used

in general cases.

These results show that while packet loss alone has no signi�cant impact

on application performance, a combination of both packet loss and delay can

negatively impact application behavior. In real world scenarios, especially if

WiFi or cellular access is concerned, both network parameters can be de-

graded noticeably. However, results from Sections 2.2.2 and 2.2.3 show, that

the impact can be mitigated by using asynchronous communication patterns

between client and server.

2.3 QoE Aware Placement of Cloud-based Photo
Service in Edge Networks

As introduced in Section 2.1.2, the edge network photo album cloud service

(EPC) uses HTTP or HTTPs over TCP to deliver stored photos. Thus, the photo

loading time is in�uenced primarily by �le size, distance between server and

client, and network QoS. If the user has to wait too long to view or upload a

photo, the user may stop using the service. In order to achieve a high satisfac-

tion with the photo album service, the challenge is to e�ciently place the its

content to an appropriate geographical location to gain a high QoE perceived

by the user.

In this section, we propose a mapping function from content size, distance and

di�erent network QoS parameters (i.e., link capacity, delay, packet loss) to the

QoE of photo loading time. This can be used to decide the placement of content.
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To derive this mapping function, we conduct a study with several steps which

are depicted in Figure 2.8.
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Figure 2.8: Measurement Work�ows

First, we investigate the properties of cloud-based photo content through a

well-known photo album service (i.e., Google Photos). In this step (1), we mea-

sure the sizes of downloaded photos at di�erent screen resolutions. The range

of average photo sizes is then selected for QoS measurements of �le download-

ing to validate a TCP model in the next step. In the second step (2), we use a

TCP throughput model proposed in [45] to calculate the downloading time of

di�erent photo sizes at various QoS parameters. We validate this TCP model in

a local testbed, where di�erent network parameters can be con�gured. In the

last step (3), we formulate a mapping function to calculate the MOS value from

a QoE model adding the output of the TCP model. Our mapping function allows

determining QoE for photo loading time, depending on photo size, location, and

network parameters. This helps to investigate the trade-o� between the size of

the photo and its placement in the cloud or edge network to achieve a high QoE

for photo loading time.

The remainder of this section is structured as follows. Section 2.3.1 presents

the QoS model and the testbed setup for the validation. Then, the QoE model

and the discussion of the placement of content are described in Section 2.3.2.
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2.3.1 QoS Model and File Downloading Measurements

In this section, we �rst describe the TCP throughput model used for our evalu-

ation with the input parameters in order to �gure out the relationship between

network QoS and photo QoE. Thereafter, we describe the testbed setup for the

measurements which are used to validate the accuracy of the TCP model.

TCP Throughput Estimation Model

Despite the fact that the TCP CUBIC is currently implemented in Linux oper-

ating systems, most of TCP CUBIC throughput models are complex analytical

models for special purposes, e.g., in the context of wireless environments [46],

or for multiple TCP connections [47]. As the focus of this paper is not to pro-

vide accurate results but rather to present the methodology and to conduct a

qualitative study, we employ a simpler TCP Reno throughput model proposed

by Padhye et al. [45]. This model has an intuitive throughput calculation and

�ts well to the available parameters in our measurement scenario. Note that the

methodology presented here can nevertheless be applied to the recent, more

accurate TCP CUBIC models.

In [45], TCP throughput is computed as follows

Tp ≈ min

(
Wmax

RTT
,

1

RTT

√
2bp
3 + T0 min

(
1, 3

√
3bp
8

)
p (1 + 32p2)

)
. (2.1)

Tp is the estimated TCP throughput, Wmax is maximum TCP window size,

Wmax = 64 KBytes, p is packet loss rate, b is the number of packets that are ac-

knowledged by an received ACK, typically b is 2.RTT is the round trip time, T0

is the retransmission time out. To achieve the objective of the study, we calcu-

late theRTT parameter in more detail. In fact,RTT is a�ected by link capacity

and additional delay in network. It is the sum of transmission, propagation, and
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additional delay. Thus, RTT is calculated as

RTT =
bL

C
+ d+Dpg, (2.2)

where L is average packet length, C is available bandwidth of the link, d is

additional delay and Dpg is propagation delay. In [48], Balej et al. proposed a

geographic distance estimation based on round trip time, where the propagation

delay is calculated as

Dpg =
2s

c · r . (2.3)

where s is geographic distance between server and client, r is parameter of the

velocity of signal propagation, r = 0.335. c denotes speed of light in vacuum.

The propagation delay calculated by Equation (2.3) can give us the hint about

the placement of content in the cloud.

Testbed Setup and Methodology

To validate the TCP throughput model, we measure the TCP throughput of �le

downloads in a testbed. The results show the behavior of TCP throughput un-

der the impact of di�erent network parameters. First, we specify the range of �le

sizes for the download measurements by investigating a real web-based photo

album. We choose Google Photos as an example of a well-known cloud photo

album. By manually uploading and browsing a photo at the di�erent screen reso-

lutions, we summarize the properties of rescaled photos in our tests in Table 2.3.

The photo uploaded to Google Photos is taken from a typical digital camera. It

has 5184× 3456 pixels in resolution and 5711 KBytes in size. Table 2.3 shows

that the resolution as well as the size of original photo is rescaled at the di�er-

ent screen resolutions. This adaptation is also explained in [49] and [50]. From

this result, we select the range of �le sizes corresponded with the rescaled photo

sizes, which are 128 , 256 , 512 , and 1024 KBytes.

To measure the TCP throughput of �le downloads, we setup a testbed which

is schematically depicted in Figure 2.9. It consists of three PCs and one server
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Table 2.3: Rescaled Photos at Di�erent Screen Resolutions

Screen Resolution Photo Resolution Size (KByte)

1920 x 1200 1658 x 1105 472

1680 x 1050 1433 x 956 372

1440 x 900 1208 x 805 276

1280 x 800 1058 x 705 218

running Ubuntu 12.04 LTS. The given �les are transferred from Server to Client

via the server running NetEm [51]. This network emulator server can adjust

available bandwidth, delay, and packet loss of the connection. We use a sepa-

rated Control PC to manage the testbed via SSH protocol. To transfer �les from

Server to Client, we use the Linux netcat command. We use tcpdump to cap-

ture the packets. The TCP throughput is then calculated by the total length and

duration of packets. For the later evaluation, we emulate the di�erent network

QoS on NetEm. These parameters are the typical network characteristics of the

Internet that are documented in [52] and [53] as well. The link capacity is also

limited to evaluate the impact of available bandwidth on the TCP throughput.

Table 2.4 speci�es the di�erent network parameters we emulate on NetEm.

The Baseline round trip time is measured in the testbed without any con�gura-

tion on the NetEm server and we observe an average round trip time of 0.4 ms

over 1000 packets.

Table 2.4: Emulated Network Parameters in the Measurement

Network QoS Parameters

Available Bandwidth (KByte per second) 128; 256; 512; 1024

Round Trip Time (millisecond) Baseline; 250; 500; 750; 1000

Packet Loss (%) 0; 2.5; 5; 7.5; 10
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Figure 2.9: Overview of Testbed Setup for File Download Measurements

Validation

In this section we present the comparison of the values generated by the Equa-

tion (2.1) and the results obtained from the measurements. To calculate the TCP

throughput from the equation, we execute all available network parameters

presented in Table 2.4. Additionally, RTT is calculated in Equation (2.2) with

Dpg ≈ 0 due to the short distance between Server and Client in the testbed.

T0 is the TCP retransmission timeout de�ned in RFC document [54] and it is

usually estimated by RTT and its variation. However, we observe a negligible

round trip time variation in the testbed, therefore T0 ≈ RTT . The packet size is

averaged through the tcpdump trace, given by L = 2557 KBytes. We observe

that the behavior of TCP throughput is mostly similar for di�erent �le sizes.

Hence, we only show the measured TCP throughput of the �le 512 KBytes as

an example in the following graphical results.

In all �gures, the TCP throughput in KByte/s is depicted on the y-axis. The

solid lines and the pluses represent the TCP throughput obtained from the Equa-
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tion (2.1) and the measurements, respectively. The error bars on the pluses show

95 % con�dence intervals over 30 runs. To validate the discrepancy between the

model and the measurements, we calculate the relative error as

(|xm − x|)
xm

∗ 100 (%), (2.4)

where xm and x are the throughput values calculated from the TCP model and

obtained from the measurements, respectively.

Figure 2.10 shows the impact of delay and packet loss on the TCP throughput.

The �le is transferred at link capacity C = 3750 KByte/s to avoid bottleneck

at both sender and receiver. In the �gure, the x-axis indicates di�erent packet

loss rates ranged from 0 to 10 %. The di�erent colors of the solid lines and the

pluses represent the TCP throughput under the impact of speci�c network delay

combined with packet loss. For sake of readabilities the y-axis is cropped to

130 KByte/s, but the maximum actual value is 233.90 KByte/s. As displayed

on the �gure, we observe that the results from the model and the measurements

agree with each other.
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Figure 2.10: Impact of Delay and Packet Loss on TCP Throughput
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Figure 2.11 shows the impact of available link capacity C and packet loss

on TCP throughput. The x-axis indicates the di�erent packet loss rates. The

darker lines and pluses depict the TCP throughput calculated and measured at

lower link capacities, respectively. The graph shows that there are small errors

between the results calculated from the model and measured from the tests.
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Figure 2.11: Impact of Available Bandwidth and Packet Loss on TCP Throughput

Next, we investigate the impact of the path Bandwidth Delay Product (BDP)

described in [55] on the TCP throughput without the presence of packet loss.

The RTT is therefore recalculated as

RTT =
Wmax

C
+ d+Dpg. (2.5)

The results from the measurements and the Equation (2.1) are compared in Fig-

ure 2.12. The x-axis shows the di�erent delay values ranged from Baseline to

1000 ms. The lines and the pluses with di�erent colors represent TCP through-

put at various link capacitiesC . From the �gure, the TCP throughput calculated

from the model and obtained from the measurements are proximately close to

each other. We observe a majority of the results have errors less than 40 % cal-
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Figure 2.12: Impact of BDP Path on TCP Throughput

culated by Equation (2.4).

Figure 2.13 shows the Cumulative Distribution Function (CDF) of relative er-

rors between the results from the TCP model and the measurements, where

the x-axis indicates the error rates, the di�erent lines shows the relative errors

of di�erent experiments. From this �gure, we observe that there are approxi-

mately 60 % of the measurements values have errors less than 30 % compared

to the TCP model. To conclude this section, we believe that the TCP throughput

Equation (2.1) with theRTT calculated in Equation (2.2) and Equation (2.5) has

su�cient reliability to be deployed in general measurements.

2.3.2 QoE Model and the Placement of Content

In this section, we describe a QoE study for photo loading time. The QoE is

estimated as a function of MOS given by the duration of loading a photo. Mean-

while, the downloading time of a photo with a given photo size and network

QoS can be calculated by the TCP model described in Section 2.3.1. Therefore,

this time factor plays a role as a bridge in order to connect the TCP throughput
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Figure 2.13: The CDF of Relative Error Between TCP Model and Measurements

model with the QoE model. The remaining of this section presents our discus-

sion about the placement of content with regard to the user satisfaction.

QoE Estimation Model

In [14], Egger et al. contribute a study of waiting times in the context of in-

teractive applications. They examined the QoE for several web applications in-

cluding web browsing, email processing, VoIP, as well as video streaming. The

authors conclude that the user perceived QoE for web-based services has a log-

arithmic decrease along with the increase in waiting time. In addition, the log-

arithmic behavior of QoE regarding to the time factor is also reported in [26]

and [56]. Regarding the waiting times in the context of browsing photos, in an-

other work [15], Egger et al. proposed a logarithmic �tting function to describe

speci�cally the relationship between picture loading time and the user perceived

QoE as follows

QoE (t) = −0.80 ln (t) + 3.77, (2.6)
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where QoE (t) is the function of MOS given by the picture loading time t. The

authors measured the goodness of �t by calculating the coe�cient of determi-

nation r2 which has value of 1.00 in this case. The veri�cation of the model can

be found in [15]. Despite the fact that QoE model has been widely studied (e.g.

in [11] [26] [56]), we choose model (2.6) as the mapping function due to its high

reliability and it �ts well to our measurements where photo loading time t can

be calculated by the TCP model.

The Placement of Content

We present in this subsection a trade-o� between the photo size, its geographical

placement, and network QoS in which the user perceived QoE can be estimated

from these parameters. Indeed, from model (2.1), we calculate the duration of

loading a photo as

t =
size

Tp (C, rtts, p)
, (2.7)

where Tp is the TCP throughput estimated by monitoring the network QoS with

C, rtts, p are link capacity, round trip time, and packet loss, respectively. Round

trip time rtts is estimated according to Equation (2.2) and Equation (2.3) with

the distance s between server and client. The size is given size of a photo. From

Equation (2.6) and Equation (2.7), the estimated QoE model based on network

parameters, photo size, and distance is formulated as

QoE (size, s) = −0.80 ln

(
size

Tp (C, rtts, p)

)
+ 3.77. (2.8)

Equation (2.8) can completely compute at which photo size and level of network

QoS to gain an acceptable QoE. Figure 2.14 shows an example of the estimated

QoE for loading a photo under the impact of network delay and packet loss.

The x-axis indicates the packet loss rates. The y-axis shows the estimated MOS

values which represent the user perceived QoE. The MOS can take the follow-

ing values: (1) bad; (2) poor; (3) fair; (4) good; (5) excellent. The darker lines
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Figure 2.14: The Impact of Delay and Packet Loss on QoE for Photo Loading C =
3750KByte/s, size = 218KBytes in Table 2.3,Dpg ≈ 0 in testbed

depict the QoE behavior at higher delay. As shown in Figure 2.14, when the

packet loss is not present in the network, the QoE for photo loading is better at

smaller delay. However, the MOS value decreases dramatically with the increase

of delay and packet loss. This is due to the retransmission of lost packets take

longer and consequently, the time until information is successfully transmitted

between server and client increases, which results in a rapid drop of MOS values

as indicated in Equation (2.6).

From the equations (2.2), (2.3), (2.5), and (2.8), the trade-o� between the size of

photo and its geographical placement can be estimated. Figure 2.15 shows the

relationship between the distance and the user perceived QoE represented by

MOS values. We assume that the photos taken from Table 2.3 are transferred on

a typical ADSL link, which has downstream rate of 8 Mbit/s following the ITU-

T G.992.1 standard. Packet loss is assumed not to occur on the link, the round trip

time is calculated by Equation (2.3) and (2.5). In the �gure, the x-axis shows the

various distances between server and client in kilometer, the y-axis indicates the

corresponding estimated MOS values which represent the user perceived QoE.
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Figure 2.15: Estimated QoE for Photo Loading at Di�erent Distances

The darker lines depict the QoE behavior of larger photo sizes.

The �gure shows that the MOS values decline gradually at every longer

distance and the smaller photo sizes (i.e., smaller photo resolutions as shown

in Table 2.3) gain better QoE. We observe that the QoE for loading a photo

472 KBytes with 1658× 1105 pixels in resolution is acceptable if the distance

between server and client is shorter than 4000 kilometers. Besides, the photo

has 218 KBytes in size with 1058× 705 pixels in resolution still gains a good

QoE even it is transferred through a long distance. However, the packet loss may

occur on the link and the probability of occurrence might be higher at longer dis-

tance. In this case, the MOS values will decrease rapidly as shown in Figure 2.14.

To solve this problem, the service providers can rescale the photos resolution or

reduce the photos size to meet the QoE as indicated in Equation (2.8). After all, if

both adjusting photos quality and improving the network QoS do not meet the

user satisfaction, a migration of the user photo album to the edge server next to

the geographical location of the user is recommended.
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2.4 Lesson Learned

Cloud services and SaaS products gained considerable interest recently as a re-

placement for traditional centralized infrastructure and locally installed soft-

ware products. Although the Internet users can bene�t enormously from the

cloud services and the SaaS paradigm, the challenge is how to achieve a high

user perceived QoE for these Internet-based applications.

This chapter focuses on the in�uence of di�erent network conditions and

content placement on the QoE of the two prominent cloud applications, Google

Docs and photo album. In multi-tenancy architecture, Google Docs service is a

more shared model where users are able to collaborate editing a document in a

joint space. Despite the fact that a shared database reduces cost, the centralized

architecture of this model a�ects the users if the service is down. In addition

to this, users at di�erent locations have di�erent access network conditions.

A low network QoS can therefore signi�cantly in�uence the user expectation.

Meanwhile, cloud-based photo album is a more isolated model where each user

can have his/her own photo album. Even though the cost of ownership is higher,

the content of the album can be dynamically migrated to edge network next to

the user if the loading time of photos is high due to a long distance. By doing

this, the user experiences a better provisioned service, so the higher QoE. To

this end, is it important for the network providers to be aware of QoE for this

service regarding the location of the user.

When studying both cloud applications and doing measurements in the

testbed, we draw two major �ndings as follows.

Firstly, to assess the impact of network impairment on the performance of

Google Docs, we consider two scenarios, which are derived from common

Google Docs use cases. In the single scenario, we considered a single user editing

a document. In the collaborative use case, with one user editing the document

and the second user observing the changes. To objectively quantify the impact

of network delay and packet loss, we measure the time it takes to complete the

whole process as well as certain parts of it, e.g., the login or the creation of
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the document. The measurements were performed using a local testbed which

is connected to the Internet via a NetEm network emulator. The user interac-

tions were automated using Selenium. Our results show that in both scenarios,

packet loss below 4% does not in�uence the duration of sub-processes, if there

is no network delay. In contrast to this, network delay negatively in�uences the

performance of Google Docs, even in the absence of packet loss. Hereby, the

login process as well as the process of creating a new document are the most

delay-sensitive subprocesses. Furthermore, we also analyzed the impact of com-

bined delay and packet loss. Here the results show a signi�cant degradation of

the Google Docs performance even for small values of delay and packet loss,

if both occur at the same time. This outcome can help to shed a �rst light of

the behavior of Google Docs as an exemplary SaaS solution under varying net-

work conditions from an objective point of new. This in turn can later be used

to evaluate the impact of this application behavior on the QoE perceived by the

user. Here especially the obtained linear regression models can be used in ana-

lytical models for optimization and trade-o� analysis network resources, energy

consumption and QoE.

Secondly, while considering the cloud-based photo album service, we found

out that the placement of content is one of the key factors that a�ects the user

satisfaction. A long distance access is characterized by a high delay and pos-

sible packet loss which results in a longer data loading time. Thus, the user

perceived QoE for the service is dramatically dropped. To increase the perfor-

mance of services, the placement of content must be considered. The closer the

content to the user geographically is, the faster it will be delivered to the user

that will also increase the user perceived QoE. To achieve this perception, we

propose in this chapter a trade-o� between the size of photo, its placement, and

network QoS to acquire a high QoE for photo loading time in a particular us-

age of a cloud-based photo album service. We �rst validate a TCP throughput

model and use it to calculate the photo loading time from a given photo size

and network QoS. Thereafter, we map a QoE logarithmic function to the TCP

throughput model. From this mapping function, we can estimate QoE for photo
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loading time from a given photo size, its placement, and network QoS. Our re-

sults show that, with the presence of packet loss smaller than 2.5 %, the MOS

value decreases dramatically at the delay larger than 250 ms, even with a small

photo that has only 218 KBytes in size. However, without packet loss, the QoE

for photo loading time only decreases gradually at every longer distance. The

QoE level is still acceptable when a big photo that has 472 KBytes in size and

1658× 1105 pixels in resolution, is transfered over the distance from 6000 to

8000 kilometers. From the results, we can achieve a good QoE of photo load-

ing time by optionally adjusting the size of photo, improving network QoS, or

moving the content next to the user. Our contribution may help cloud service

providers to have another method to estimate the behavior of QoE for photo

loading time based on various parameters.
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Cloud

While the previous chapter focused on QoE assessment and QoE-awareness for

content placement of di�erent cloud applications, this chapter is concerned with

one layer below, the network layer. In this chapter, QoE monitoring in network

for HTTP Adaptive Video Streaming (HAS) is done as a prerequisite for QoE

management. Although the rapid growth of video streaming provides the video

producers with a great opportunity to increase their revenues, it is presented the

challenges for the network operators in the aspect of managing the high volume

of video tra�c and a large number of subscribers. As users expect a good service,

they may stop watching the video if there are interruptions during playback

and consequently, the QoE perceived by the users for the video service drops.

Therefore, to ensure the user experience, the network providers must be aware

of the video quality that prevails on the user device as well as the source of video

quality degradation. On the one hand, this not only helps the network providers

to be aware of the QoE for the video service, but also gives them the ability to

improve their service. On the other hand, it is the mandatory prerequisite to

perform QoE management in the network.

In order to assess the quality of video streaming on the end user side, a video

provider can utilize feedback given by the video player. A network operator,

however, needs his own monitoring mechanism in the network to estimate the

actual video quality at the end user device. To monitor the video quality in the

network, video �ows must be analyzed at packet level. This can be achieved by

using the Network Function Virtualization (NFV) paradigm [20]. The basic idea
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of NFV is to separate software from its underlying physical hardware. By using

virtualization technology, the Virtual Network Function (VNF) can be consoli-

dated on commodity servers. This helps the providers to quickly deploy a service

on multiple hardware platforms. In addition, VNFs can be instantiated, oper-

ated, and/or migrated automatically on one or more commodity servers in an

NFV architecture without having to install new hardware [57–59]. These ben-

e�ts provide us with a solution for the development and implementation of a

VNF for video monitoring at di�erent locations in the network apart from using

a dedicated physical device.

Despite of the advantages of applying the NFV paradigm for the video qual-

ity monitoring, this approach also faces several problems. Firstly, since the VNF

for video monitoring might be placed at di�erent Point of Presence (PoP) in the

network, the video quality measured at these locations may result in di�erent

degrees of accuracy. It is primarily due to a long distance to the user among

the others. Secondly, with the tremendous growth of smart devices [60], more

and more clients are using mobile network to browse the videos. As a result,

the mobile access network may also in�uence the accuracy of video quality es-

timation. On the other hand, to be aware of the user satisfaction with the video

service, QoE for video streaming must be measured accurately. Since the QoE is

estimated mainly by considering stalling frequency and length extracted from

the video monitoring process [16, 17, 61–63], these key in�uence factors might

be overestimated due to the performance of the VNF, the impact of di�erent

VNF placements and the mobile network as well. Thus, a new study is required

to investigate how the VNF placement and the mobile network in�uencing the

accuracy of the video quality and the QoE estimation.

To tackle these problems, in this chapter we conduct a study consisting of two

stages. First, we design a VNF to analyze video �ows in the network by using

deep packet inspection and an algorithm to estimate the video quality based

on video header parameters. In this stage, we set up a dedicated local testbed

with a client, a network emulator, and a middle-box where the VNF is installed.

This testbed allows us to examine the functional operation of the VNF and the
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in�uence of di�erent network conditions on the performance of video quality

and QoE estimation.

In the second stage, to improve the reliability of our approach, we investigate

the feasibility of deploying a VNF for video bu�er and QoE monitoring in the

Amazon Web Service (AWS) cloud. The reason of using cloud infrastructure for

the VNF monitoring is that it is possible to provide the monitoring on demand

and in a reactive way by instantiating the function on a data center server. In

addition to simple instantiation, e�cient use in the cloud brings improved scal-

ability and cost savings. In this stage, we study the in�uence of di�erent PoPs

and a high mobility environment on the accuracy of the VNF for monitoring

the video quality and QoE perceived by the user. Our �ndings show that the

accuracy of the VNF for video bu�er monitoring decreases with the distance of

the PoP to the client. This is not only due to the delay and bottleneck between

the monitoring point and the client, but also due to the mobile access network.

This means, with increasing distance of the PoP to the client in a mobile envi-

ronment, the probability of detecting stalling events also decreases, which is a

key factor to evaluate the QoE for video streaming.

The contribution of this chapter is threefold. First, we propose a VNF-based

video quality and QoE monitoring that can be deployed in the network. In addi-

tion to this, we investigate the performance of the VNF under di�erent scenarios

and network conditions. Second, we propose a cloud-based NFV architecture on

the example of deploying the QoE monitoring VNF on top of the AWS cloud. In

this approach, we study the in�uence of di�erent VNF placements in the cloud

and a high mobility access network on the accuracy of the VNF for monitoring

the video bu�er and the QoE. Lastly, we validate our �ndings with experiments

in a real scenario with a typical moving user in a vehicle.

The content of this chapter is mainly taken from [4]. The remainder of it is

structured as follows. Section 3.1 introduces background of the study and related

work. Subsequently, in Section 3.2 we present the �rst study where we evaluate

the impact of di�erent network QoS and VNF placements on the accuracy of

video quality and QoE estimation. In Section 3.3, we extend our study to a real

53



3 VNF-based QoE Monitoring in the Cloud

deployment of the VNF in the AWS cloud. Here, we investigate the impact of

di�erent PoP and a high mobility access network on the performance of the

VNF. Finally, Section 3.4 concludes this chapter with lesson learned.

3.1 Background and Related Work

This section is divided into �ve subsections. In Section 3.1.1 we introduce HAS

and the technology behind. Subsequently, we present several QoE assessment

and QoE monitoring methods in Section 3.1.2 to 3.1.4. Finally, we summarize

several typical works about the NFV and its combination with cloud infrastruc-

ture in Section 3.1.5.

3.1.1 HTTP Adaptive Video Streaming

HAS was developed to overcome the traditional ine�cient streaming tech-

nology such as real-time streaming protocol or progressive download. The

main idea of HAS is decomposing a video into one or more consecutive non-

overlapping periods that are seamlessly streamed to the client web browser

over HTTP [64]. These periods are so-called video segments or chunks that are

described in a manifest �le named Media Presentation Description (MPD). By

streaming separated video chunks to the client, the streaming server can adapt

the quality of each video chunk to the network condition.

The MPD is transmitted to the client after a video request via HTTP. This �le

contains information about all video chunks, such as their lengths, resolutions

or frame bit rates. Before the client playing back the video, at least the �rst video

chunk has to be fully downloaded, while downloads of subsequent chunks can

still be ongoing. All the downloaded chunks are stored in the client video bu�er.

These bu�ered data are consumed during the video playback and �lled up when

a new chunk is fully downloaded. If the video bu�er is empty during playback,

an interruption of the video playback occurs. This interruption is called stalling

event. The authors in [16, 17, 61] state that the stalling frequency and length are
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the main in�uence factors on the QoE for HAS. The other QoE in�uence factors,

from technical perspectives might be network QoS, video adaptation rate or

segment size, to the user perceptual like initial delay or image quality [65].

3.1.2 QoE Assessment Methodologies

As de�ned in [12], "Quality of Experience (QoE) is the degree of delight or an-

noyance of the user of an application or service". The de�nition is possibly suit-

able in the context of multimedia applications or services. In this context, QoE

is the level of user satisfaction or enjoyment with an application or a service.

Being able to assess QoE helps network providers to react on the network qual-

ity degradations. The following subsections introduce subjective and objective

assessment methods for QoE.

Subjective QoE Assessment

Subjective QoE is the degree of expectation or satisfaction with a service experi-

enced by human [66–68]. In HAS, subjective QoE is the feeling or perception of

a viewer (or a "subject") with the quality of image, stalling frequency, or stalling

length. Subjective QoE assessments are psychophysical experiments where par-

ticipants are asked to designate their opinion on the quality of a speci�c appli-

cation or service (e.g., a video) through a given set of stimuli. The most popular

method to quantify subjective QoE is to use Mean Opinion Score (MOS) de�ned

in [69]. The MOS can take the following values: (1) bad; (2) poor; (3) fair; (4) good;

(5) excellent, which represent the corresponding degree of user satisfaction with

the service. Subjective QoE assessment is considered to have high reliability re-

sults, since the tests are implemented in real scenarios with recruited partici-

pants. This method, however is expensive and time consuming. In addition, the

set of stimuli must be well-de�ned and test sessions also require organization

e�orts that increases the cost of tests. In [70], Hossfeld et al. introduce an al-

ternative to subjective testing, called QoE crowdtesting. This method leverages

the advantage of crowdsourcing [71] by submitting assessment tasks to a global
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worker pool through a web-based aggregator platform such as Microworkers
1

or

Amazon Mechanical Turk
2

. The forefront advantage of this method is reducing

cost. This is achieved from a virtual laboratory with a low capital expenditure

for a single test and limited number of participants. Thanks to a large diversity

and high availability of participants, a test can be done or repeated quickly in

one or di�erent aggregator platforms. However, one of the major disadvantages

of crowdtesting is unreliability of the user rating. This is due to the fact that

cheat users may only try to maximize their payments with minimum e�ort. Ad-

ditionally, the test conditions and environments of the workers are unknown in

most of the cases. Thus, the impact of test conditions on the result is di�erent

from worker to worker.

Objective QoE Assessment

Objective QoE assessing refers to an attempt to predict the user behavior based

on analytical and/or statistical models [18]. Similar to traditional subjective QoE

assessment, this method also outputs the quantitative result re�ecting the user

expectation and satisfaction with an application or a service under test. The

derived QoE model is especially useful for service quality monitoring in the

network where providers can easily estimate the QoE perceived by the end user

from validated input parameters (e.g., [3, 14–16, 72]). However, in contrast to

the ease of use, objective QoE can only provide estimated results with a speci�c

correlation with perceptual quality measured by subjective assessment.

In [73], the authors categorize objective assessment methodologies for IPTV

into �ve types of models. These models are media-layer, parametric packet-

layer, parametric planning, bit stream layer models, and hybrid. Each type of

model can exploit the input parameters for QoE models at di�erent network

layers. For instance, the media-layer model uses video signals to estimate QoE,

while the bit stream layer model captures the packet header and payload to de-

rive input parameters for a QoE model. In this chapter, we use the combination

1https://microworkers.com
2https://www.mturk.com
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of the parametric packet-layer model and the bit stream layer model in the form

of a VNF to monitor video quality and QoE for HAS.

3.1.3 QoE Monitoring Methodologies

QoE monitoring is typically based on software solutions to collect the informa-

tion of how a user experiencing a particular application or service. In network

management, network providers can use di�erent QoE monitoring methods to

assess the user expectation to accordingly react and improve the service. In the

following, we introduce several QoE monitoring methods at the user, applica-

tion, and network layers.

QoE Monitoring at User Layer

Monitoring QoE for a service on the user layer refers to statistical information

collected actively or passively from the user while using the service. Active QoE

monitoring at the user layer can either be done by dedicated subjective user

studies or by customer feedback. QoE monitoring which utilizes subjective as-

sessment methods can be implemented in laboratories, �eld studies, or using

crowdsourcing as described above. A popular active QoE monitoring method

is listening to customer feedback by integrating surveys into the service. Such

quality feedback integrator is widely used in speech and video services where

the user is asked to rate the quality of a conversation after they hang up the

phone (e.g., a Skype call). This method is considered to be lower cost and easy to

deploy for di�erent applications and services. However, the feedback or rating

might be less accurate, since the user may be annoyed by receiving the feed-

back dialog at each time he uses the service. In addition, the reasons for a good

or bad rating is hard to be traced. Nevertheless, the combination of the active

monitoring with other methods may increase the accuracy of QoE monitoring.

In contrast to active monitoring, passive QoE monitoring at the user layer

does not interact directly with the customers, but probes their behavior pas-

sively through di�erent measurement techniques. For example, providers can
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investigate the ratio of user engagement, the volume of sale products or the

number of hotline complaint calls, etc., to estimate the degree of the user sat-

isfaction with the service. This monitoring method is completely transparent

with the customer activities. Moreover, some existing information of the cus-

tomers can also be obtained from business administration departments which

can be analyzed to estimate the customer behavior with o�ered services. How-

ever, QoE estimated by this method has limited accuracy since the user engage-

ment or sales volume are not only in�uenced by the customer but also by other

objective causes. The reasons for a high or low QoE is hard to be traced as well.

QoE Monitoring at Application Layer

QoE monitoring at application layer can be done either inside a service or at the

end user device. In-service QoE monitoring is ordinarily implemented by service

providers who can monitor QoE in�uence factors within the service. These in-

�uence factors are served as input parameters for a QoE model. Afterward, QoE

scores are signaled back to the provider to adapt the service in order to meet

the user expectation. End-device QoE monitoring relies on a monitoring func-

tion installed at the end user device. This additional software is used to collect

the performance indicators of a service or application which can be translated

into QoE scores. The monitored information might be useful for the user or can

be signaled to network operators. Based on this, tra�c management can be ap-

plied to ensure a high QoE level perceived by the user. However, the drawback

of this approach is high complexity and cost to deploy such a solution at the

user end device.

QoE Monitoring at Network Layer

At the network layer, QoE monitoring can be categorized into active and pas-

sive methods, in which an active monitoring mechanism uses probe nodes to

perform measurements. Whereas, in passive monitoring, network tra�c pass-

ing through a measuring point is captured and analyzed.
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To monitor QoE actively for a speci�c service or application at network layer,

one or multiple probe nodes are distributed across end points in the network.

These nodes send extra data tra�c to server and measure the service quality

based on pre-de�ned QoE metrics. The QoE scores are then signaled to a col-

lector server or directly to providers to adjust service in order to improve user

experience. Active QoE monitoring mechanisms depend on the service. In [74,

75], the authors present a method for monitoring the quality of video streaming

using a Pseudo Subjective Quality Assessment (PSQA) technology. This active

monitoring method uses probe nodes distributed in the network. At �rst, the au-

thors capture a relation between the parameters that cause video quality degra-

dations (i.e., I, B, P video frames loss rate) and user perceived quality using PSQA

technique. Thereafter, several experiments are done in a testbed where simu-

lated probe nodes periodically send statistical information about frame loss rate

and mean loss burst size to a data collector server. The QoE for a video delivery

network is estimated at run time using trained data from PSQA technique. The

accuracy of the platform is determined by the loss rate of video frames and mean

size of loss bursts. This method is limited in accuracy and e�ciency. This de-

pends on the fact that the number of probe nodes is �nite and that these nodes

produce more overhead into the network or might change the outgoing data

tra�c for probing purposes.

Passive QoE monitoring approach can use Deep Packet Inspection (DPI) tech-

nique to capture data tra�c passing through a measuring point in the network.

Payload data is then parsed for service performance indicators. In HAS, payload

data contains video request time, segment download time, MPD �le, which can

be used to estimate video bu�er and other video quality in�uence factors. Pas-

sive QoE monitoring using DPI technique does not change the data tra�c or

require any end device. This method is promising to be highly accurate, since

QoE is measured directly from service key in�uence factors extracted from pay-

load data. A softwarized monitoring function can be deployed at any PoP in the

network. However, to be able to measure QoE, one must thoroughly understand

the service and its communication in the network. In addition, it is more di�cult
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to monitor QoE for encrypted data tra�c. In this situation, a service �ow clas-
si�cation method can be used. This method can leverage machine learning to

classify �ows of a service to monitor network layer parameters such as packet

size, packet inter-arrival time, or throughput. This network layer parameters

can be used to directly estimate QoE or to estimate application layer param-

eters. Thereafter, a QoE model is used to map application layer parameters to

QoE. An example of service �ow classi�cation is presented in [76].

3.1.4 QoE Monitoring for HTTP Adaptive Video Streaming

The authors in [62, 63, 77] introduce QoE monitoring for YouTube video us-

ing end device application, namely YoMoApp. This application layer monitor-

ing method is promising to have high accuracy in QoE measuring, since it can

extract video quality parameters directly from the video player on the user de-

vice. This method however only work at the client side, while our approach is

deployed in the network.

Concerning video monitoring based on packet analyzing, in [78], Wamser et

al. model the YouTube stack at three levels, which are transport, application, and

user. These models may help service providers to understand the functionality

of YouTube from controlling video data �ows to user perceived QoE. Our study

is also similar to studies in [79–81] to some extent, where the authors analyze

the YouTube video �ows in the network using DPI to estimate the QoE based on

extracted packet traces. Nevertheless, the authors focus more on QoE monitor-

ing rather than deployment location. In our study, we however concern to the

accuracy of the VNF for video monitoring depending on di�erent placements in

the cloud.

In [82–85], the authors introduce methods and present the results of evaluat-

ing the quality of HAS in mobile environments. The authors observe that most

video streams in mobility scenarios will gain a smooth playback if the adapta-

tion process is improved. In our work, we also deploy a real scenario of moving

client, however, we focus more on the accuracy of VNF monitoring in the cloud.
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3.1.5 NFV Cloud Infrastructure for VNF-based QoE
Monitoring

In the NFV paradigm, network functions are virtualized and deployed on top of

the virtualization layer which is also provided by existing cloud management

systems like Amazon Web Service (AWS). In [86], Oechsner et al. present an

algorithm for deploying VNF on an existing cloud infrastructure. The algorithm

is designed based on adapted zone concept and aims to optimize resilience and

performance of the VNF in the context of OpenStack cloud. In [87], Carella et al.

propose a possible deployment of IP Multimedia Subsystem (IMS) software on

top of the OpenStack cloud. The idea of leveraging a telco cloud environment

to manage Service Function (SF) is presented in [88]. The authors introduce

the Cloud4NFV platform that is built on cloud, SDN, and WAN technologies to

manage SFs as a service. This platform is promising to improve the management

of SFs in the cloud. However, the use of open source platforms like OpenStack or

OpenDaylight for the virtual infrastructure management plane will need more

assessment to ensure the security and feasibility in practice.

In [89], Yu et al. introduce the network function-enabled cloud computing

(NeFuCloud). This platform was proposed with the idea of separating the control

plane from the data plane underlying cloud infrastructure which is the principle

of Software-De�ned Networking (SDN). The authors believe that NeFuCloud,

with separated control plane will gain better performance and �exible manage-

ment. However, the control plane might be centralized or distributed across the

network. A centralized control plane may lead to a bottleneck when the network

is scaled out and a distributed control plane increases the control overhead. In

our concept, we propose to build an NFV on top of an existing cloud platform

(i.e., AWS) that provides �exible management and implementation.

In an NFV architecture, the deployment location is one of the most important

VNF con�gurations. Where to place the VNF to meet the requirements of re-

sources, performance, network e�ciency is an emerging topic in research com-

munity. In [90], Clayman et al. contribute a placement engine software installed
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in the orchestration layer of an NFV architecture. This algorithm decides, where

to place the virtual routers to meet an adaptive resource utilization. The place-

ment problem of virtual Deep Packet Inspection (vDPI) functions is presented

in [91] for SDN and in [92] for NFV, respectively. In SDN, the authors use ge-

netic algorithms to solve the placement problem, while in NFV, they use integer

linear program with cost constraints. The authors conclude that an appropri-

ate placement of vDPI depends on functional targets, operation cost, and the

number of instances as well.

3.2 Impact of Network QoS on the Accuracy of QoE
Estimation for HAS

In this section, we examine the accuracy of the monitoring function depending

on its placement in the network. We use a prede�ned mapping function to esti-

mate the video QoE based on the number of stalling events calculated from the

function. To this end, we carry out a study in several steps. First, we design a

VNF as a plain software that exploits a Python library, namely Scapy
3

to capture

the video �ows at the network interface. Then, we use an algorithm to estimate

the video bu�er and detect the stalling events based on timestamps of streamed

packets. In the second step, we set up a local testbed with two scenarios to assess

the impact of the function placement on its accuracy. In both scenarios, we val-

idate the accuracy of the function by comparing its estimate to the actual video

quality that is monitored at the client web browser. The result is the accuracy

of the estimation depending on the placement of the VNF in the network.

The remainder of this section is structured as follows. In Section 3.2.1, we

�rst present our research methodology, estimation algorithm, and measurement

setup for di�erent scenarios. Thereafter, the impact of bandwidth and packet

reordering on the accuracy of video bu�er and QoE estimation is discussed in

Section 3.2.2 and Section 3.2.3, respectively.

3

http://www.secdev.org/projects/scapy/
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3.2.1 Methodology and Measurement Setup

In this subsection, we �rst highlight the research methodology of the study.

Then, we present the description of algorithm that is used to estimate the video

bu�er and stalling events from extracted network layer information. Finally, we

describe the measurement setup for di�erent scenarios.

Methodology

To monitor QoE for video streaming in the network, we use a dedicated testbed

including a network emulator and a middle-box to compose two scenarios,

namely, the Edge Server (ES) scenario and the Data Center (DC) scenario, de-

picted in Figure 3.1.
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Figure 3.1: Overview of Scenarios

From the �gure, video content is assumed to be stored in a data center to the

right. In the ES scenario, our function is deployed on an edge server to monitor

all the video �ows passing through from the streaming data center to the client.

The edge server is an essential instance of the edge computing paradigm, which

refers to the enabling technologies allowing computation to be performed at the

edge of the network close to the user [93]. In addition, edge servers are also the

migration target when a service provider has to move the video content to the

edge in order to improve quality. In the DC scenario, we deploy the monitoring

function near to the data center. In this scenario, the function can utilize a high

data rate tra�c from data center network. However, it is placed far away from
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the client, which may cause some performance problems due to the degradation

of network conditions on the path to the client.

In both scenarios, we deploy the same VNF monitoring. The VNF is installed

on the middle-box to sni� the video �ows and outputs necessary video informa-

tion to feed the estimation algorithm. This sni�ng function exploits a Python

library, namely Scapy. This open source software provides real time packet sni�-

ing and decoding. In fact, we can parse the video �ows on the �y. In our measure-

ments however, we do the analyzing task afterwards to avoid the interference

with the performance of the sni�ng task.

We assume that it is a long distance between the server and the edge with var-

ious network segments and routers. The degradation of the network can be con-

sidered as the combination of high round trip time and congestion. We therefore

shape the video tra�c by using a network emulator (NetEm) [51]. This Linux-

based software can adjust di�erent network parameters to evaluate the impact

of network QoS on the service or application in general. To validate the video

quality estimated by the function, we compare it to actual video quality simulta-

neously obtained from the client. This actual video quality is measured by using

a Javascript-based web API. The discrepancy between the estimated and actual

video bu�er shows the level of accuracy of the VNF monitoring.

Video Estimation Algorithm

The video estimation algorithm is designed for the evaluation of performance

and accuracy of video streaming with unencrypted HAS tra�c. Although there

are other techniques available for encrypted tra�c, we focus on the investiga-

tion of the accuracy of such an VNF-based monitoring and the side-e�ects of

network QoS and VNF placement in the network.

In [17], Seufert et al. describe the QoE in�uencing factors of HAS, which are

initial delay, stalling, quality adaptation among others. To achieve the goal of

monitoring QoE for the video, we design an algorithm to estimate these param-

eters based on the extracted packets of the video �ows. To feed the algorithm,

the sni�ng task of the VNF outputs all necessary information such as packet re-
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ceiving time, source and destination IP addresses, source and destination ports,

TCP acknowledgment numbers, TCP sequence numbers as well as the length

of packet and HTTP payload. Figure 3.2 schematically depicts the algorithm of

estimating video bu�er based on analyzing video �ows.
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Figure 3.2: Graphical View of Estimating Video Bu�er Algorithm

The top of the �gure shows an example of transferring four video segments

in sequence. The video �ows are detected by matching pre-de�ned keywords

contained in HTTP payload. After a video request from the client has been sent,

the streaming server provides a Media Presentation Description (MPD) which

contains video segment name and the respective durations. This information is

stored for further analysis. Based on the MPD, the client seamlessly requests

segments in sequence. The downstream packets that compose one segment are

grouped and analyzed based on their common TCP acknowledgment number.

Thereby, the timestamps of fully downloaded segments are recorded.

From the left side of the �gure, tr is the time when the client requests the

video, tdi is the time when segment i is fully downloaded, which is represented

by each vertical arrow. The solid rectangles with faded colors depict the corre-
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sponding segment length seg_len(i) extracted from the MPD. The solid zig-zag

line represents the amount of estimated video bu�er eVideoBuff over playback

time. It drops steadily over video playback and is �lled up when a new segment

is successfully downloaded. The initial_delay is the amount of time mea-

sured from the client requesting the video at the time tr until the video starts to

play out at the time playStart, while playStart ≈ td1 . In fact, through mea-

surements on the client, we observe that the client starts the playback almost

instantaneously after the �rst segment is fully downloaded. The remainBuff is

the amount of video time remaining in the bu�er before �lling up with the next

segment. If the next segment arrives later than expected, then an interruption of

the video playback occurs. This is called the video stalling event. In [16], the au-

thors state that the longer stalling occurs, the lower QoE perceived by the user.

In the Algorithm 3.1, the stallingDur is the length of a stalling event which

serves as an input parameter for QoE estimation. The simpli�ed algorithm is

presented in the following.

In the algorithm, the samplingRate variable is de�ned at �rst. Sampling rate

is the amount of time in milliseconds between two sampled video bu�er values.

Since our algorithm estimates the video bu�er based on segment arrival time, to

avoid missing a bu�er value, the sampling rate must be smaller than the down-

load time of a segment. Through a local experiment and based on analysis at

packet level presented in Section 3.3.4, we observe that the average download

time of a segment is about 350 ms. Based on this analysis, we choose a sampling

rate of 100 ms at the VNF and the client to ensure all bu�er values are captured.

Next, the algorithm estimates playStart with the time when the �rst segment

arrives. The avlPlayBackTime is the available playback time which is built up

by the duration of segments obtained from MPD, named segmentLength. This

amount of time is cumulatively summed by every new segment that is fully

downloaded. To estimate the video bu�er, the amount of video that has been

played out must be calculated �rst. playOut is calculated by the di�erence of

the time between a new segment arrived and the playStart subtracting with

stallingTotal. The video bu�er remainBuff is calculated by the di�erence
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Algorithm 3.1 Estimating Video Bu�er Algorithm

1: De�ne samplingRate and the time when the video starts the playback and to
sample video bu�er

2: timestamps = playStart = td1
3: Available playback time is built from �rst segment
4: avlPlayBackTime = segmentLength(1)
5: for Next segment do
6: Amount of video time has been played out when segment i comes
7: playOut = tdi − playStart− stallingTotal
8: Remaining video bu�er before next segment arrives
9: remainBuff = avlPlayBackTime− playOut

10: if remainBuff <= 0 then
11: Record duration of one stalling event
12: stallingDur(i) = tdi − tend

s(i−1)

13: stallingTotal + = stallingDur(i)
14: Record stalling states with pre-de�ned sampling rate
15: else
16: Amount of video time has been played out when segment i− 1 comes
17: ite = hasBeenPlayedOut
18: Estimate video bu�er and timestamps cumulatively from the time tdi−1

19: while ite <= playOut do
20: Timestamps of sampling video bu�er
21: timestamps + = samplingRate
22: Video bu�er state is sampled every amount of samplingRate
23: eVideoBuff = avlPlayBackTime− ite
24: ite + = samplingRate
25: Save one record [timestamps, eVideoBuff]
26: end while
27: end if
28: hasBeenPlayedOut = playOut
29: Updated available playback time
30: avlPlayBackTime + = segmentLength(i)
31: tend

s(i) = tdi + segmentLength(i)
32: end for
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of avlPlayBackTime and the amount of video which has been played out. This

parameter plays a role as a trigger to detect whether a stalling event occurs. If

the video bu�er is depleted, we record one stalling event and its length. Then,

we sample the stalling state with the corresponding variable timestamps. Con-

versely, if there remains video in the bu�er, we record the video bu�er values

and its timestamps to the variable eVideoBuff and the timestamps, respec-

tively. The variable timestamps is increased until it reaches the last millisecond

of the video.

Measurement Setup

The measurement setup for the ES scenario is schematically depicted in Fig-

ure 3.3, and consists of one NetEm server and three Personal Computers (PCs).

One PC is used to install the VNF monitoring named VNF Moni, another PC is

used for the Client that browses the videos via a testbed network. Additionally,

we use a Control PC that is connected remotely to the testbed via a dedicated

control network to avoid interference with the experiment. The NetEm is run-

ning on a SUN FIRE X4150 server. This server uses Ubuntu 12.04 LTS while other

PCs use Ubuntu 14.04 LTS as operating system. The testbed is connected to the

Internet via a research network. To achieve high reliability in timestamps cal-

culation, in both scenarios we synchronize the clocks of Client and VNF Moni
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Figure 3.3: Overview of the Testbed in Edge Server Scenario
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machines to the same NTP server. For the DC scenario, we use all the same de-

vices, only changing the positions of the VNF Moni and the NetEm. Thus, the

VNF Moni is placed near the data center as shown in Figure 3.4.
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Figure 3.4: Overview of the Testbed in Data Center Scenario

At the implementation, a Python measurement script is used to start the mon-

itoring function at the VNF Moni. Then we use the Selenium Webdriver
4

to au-

tomatically browse the video on the Client after adjusting the pre-de�ned link

capacity parameters on the NetEm. This ensures the network to be con�gured

before the client starts the video playback.
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Figure 3.5: Frame Bit Rate vs. Playback Time

4

http://www.seleniumhq.org
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We choosemetacafe.com5

as video streaming source, since they provide unen-

crypted HAS service. We implement measurements on 10 di�erent videos with

various types of content and lengths, o�ering the same three levels of resolution,

i.e., 240 p (428× 240), 360 p (570× 320), and 720 p (1280× 720). Figure 3.5

shows the frame bit rate over playback time of a typical video
6

at 240 p and

720 p. The �gure shows that at the lowest quality of 240 p, the video has mean

bit rate of 0.325 Mbit/s. This means if the available link capacity is below this

number, stalling event might occur during the video playback. Since we want to

investigate the accuracy of the function in all possible behaviors of video play-

back. We shape tra�c on the NetEm at three levels that may cause some possible

in�uences on the video playback as shown in Table 3.1.

Table 3.1: Shaped Link Capacities on NetEm

Link Capacity Possible impacts on video playback

512 Kbit/s Stalling occurs sporadically

1 Mbit/s No stalling with �uctuated video quality and bu�er

10 Mbit/s No stalling with highest video quality and bu�er

3.2.2 Impact of Bandwidth on the Accuracy of Video
Bu�er and QoE Estimation

Based on the methodology and the testbed setup presented in Section 3.2.1, we

have implemented several measurements between September and October 2016

at the University of Würzburg. To secure the stability of the monitoring func-

tion, we tested with 10 di�erent videos and 5 replications each. We observed

that the performance of the function was similar with di�erent videos. There-

fore, in the following we present the graphical results of the video with frame

bit rate as shown in Figure 3.5. This video has a total length of 75 s. To increase

5

http://metacafe.com

6

http://www.metacafe.com/watch/11419883/homeless-video-mp4
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statistical signi�cance of the measurements for this video, we produced 30 repli-

cations at each link capacity con�guration that is shown in Table 3.1. After the

experiment, we collected 180 log �les given by the sni�ng task of the function

in both scenarios and a corresponding number of video bu�er sampling logs on

the client. To minimize missing the state of video bu�er, we did sampling on the

client every 100 ms as described in Section 3.2.1. Using the Algorithm 3.1, we

conducted the estimation task with all extracted log �les. To compare the esti-

mated and actual video bu�er, we use the timestamps of the �rst video segment

extracted from sni�ng logs as the time reference for all graphs that have video

playback time x-axis.

The Behavior of Video Bu�er Estimation in Di�erent Scenarios

Figure 3.6 and Figure 3.7 show the behavior of video bu�er at di�erent link

capacities in the ES and DC scenarios. In all sub-�gures, the x-axes indicate the

video playback time while the y-axes show the video bu�er. The dashed lines

depict the estimated video bu�er provided by the function and the solid lines

show the actual video bu�er extracted from the client browser.

From the �gures, it is clear that the video bu�er is smaller at lower bandwidth.

Considering our estimation function in comparison with the actual video bu�er
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Figure 3.6: Video Bu�er over Playback Time in Edge Server Scenario
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extracted from the client browser. Figure 3.6 shows that our function has high

accuracy in estimating the video bu�er as well as detecting the stalling events

in the ES scenario. Due to the placement of the function close to the client, the

di�erence in arrival time of video �ows is negligible at both machines, even at

a low bandwidth of 512 Kbit/s.
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Figure 3.7: Video Bu�er over Playback Time in Data Center Scenario

Similarly, Figure 3.7a also shows a good estimation at high bandwidth of

10 Mbit/s in the DC scenario. Although the function is placed far from the

client, it can still estimate approximately the bu�er of video playing on the

client. This is because the bandwidth in this scenario is high, such that the

packet arrival time at both machines is almost the same, which provides us a

good estimation with small error. However, Figure 3.7b shows a bad �t in the

DC scenario for a bandwidth of 512 Kbit/s. As the function is located near the

streaming server, it can utilize a high data rate and receive packets of the video

segments shortly after the client requests them. Due to the bandwidth limitation

of the link after the VNF, the reception of these packets at the client is delayed.

This induces the estimation error since the function calculates the video bu�er

based on the timestamps of downloaded segments.
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The Accuracy of Video Bu�er Estimation

To evaluate the di�erence between the estimated and actual video bu�er at both

scenarios, we calculate the Root Mean Square Error (RMSE) as

RMSE =

√∑n
i=1(ŷi − yi)2

n
, (3.1)

where n is the number of video bu�er samples, ŷi and yi are the video bu�er

values, sampled by the VNF and client browser as a baseline, respectively. Fig-

ure 3.8 shows the Cumulative Distribution Function (CDF) of the RMSE between

the estimated and actual video bu�er at di�erent bandwidth in two scenarios.

The �gure points out that 90 % of estimated samples in ES scenario have errors

less than 1 s compared to baseline values.
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In the DC scenario, the accuracy of the function is acceptable as there are 80 %

of estimated samples have an error less than 2 s at the bandwidth of 10 Mbit/s.

This demonstrates that at high link capacity, our function can still approximately

estimate the bu�er of the video played at the client. Conversely, at lower link

capacity of 512 Kbit/s, the function estimates the video bu�er with a high error

where most of the estimated values have an error larger than 4 s.

Regarding the measurement results of the other videos, Table 3.2 shows the
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mean errors with a 95 % con�dence interval between the estimated and actual

bu�er of the other videos with various lengths. However, we only present the

results of measurements at the bandwidth of 512 Kbit/s in this table. This is

because at higher bandwidth, the mean errors are negligible similar to our con-

clusion above. The table indicates that through di�erent videos, our function can

still estimate the videos bu�er with high accuracy in the ES scenario. In the DC

scenario, the mean errors are higher and various over di�erent videos due to the

di�erences in the number of segments and frame bit rates among themselves.

Table 3.2: Mean Error of Video Bu�er at Bandwidth of 512 Kbit/s

Video ID Length ES Scenario DC Scenario

11419867 201 s 0.84 s +− 0.033 2.81 s +− 0.051

11420085 126 s 0.65 s +− 0.039 2.94 s +− 0.059

11419885 95 s 0.46 s +− 0.037 2.54 s +− 0.071

11419888 71 s 0.57 s +− 0.041 2.21 s +− 0.085

11419938 126 s 0.52 s +− 0.035 2.78 s +− 0.065

11420011 67 s 1.13 s +− 0.068 2.57 s +− 0.078

11420017 158 s 0.54 s +− 0.029 4.47 s +− 0.047

11420019 305 s 0.99 s +− 0.036 2.94 s +− 0.058

11420073 202 s 0.52 s +− 0.029 3.12 s +− 0.051

In [16], Hoßfeld et al. contribute a study of QoE for YouTube video using

subjective crowdtest. They investigated the impact of stalling parameters (i.e.,

frequency and length) on the user perceived QoE. The authors proposed expo-

nential �tting functions to quantify the QoE impact of stalling as

f1(N) = 3.26 · e−0.37·N + 1.65, (3.2)

f3(N) = 2.99 · e−0.96·N + 2.01, (3.3)

where f1(N) and f3(N) are the functions of MOS given by the number of

stalling events N with stalling length of 1 s and 3 s, respectively. It can be seen
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from the equations that the MOS only depends on the number of stalling events

and length. In previous measurements, we observe that there is only constant

time shifting in estimated video bu�er. Thus, the monitoring function can es-

timate almost the same number of stalling events and length that occur at the

client. As a result, the VNF is able to approximately estimate the QoE in both sce-

narios. Indeed, by using Equation (3.2) to calculate MOS values based on number

of stalling events, we observe that there is negligible mean error between esti-

mated and actual MOS in both scenarios. Speci�cally, in the ES scenario, the

mean error between estimated and actual MOS values is 0.53 %, while in the

DC scenario is 8.52 %. Herein, the MOS is averaged over 30 replications with a

95 % con�dence interval.

3.2.3 Impact of Packet Re-Ordering on the Accuracy of
QoE Monitoring for HAS

In the following, we consider another scenario where the network condition is

unstable, i.e., a scenario with packet reordering. In this scenario, packets belong-

ing to one video segment may arrive at the client out of order. Packet reordering

is also reported in several studies. In [94], Leung et al. describe �ve major causes

of packet reordering, including packet level multipath routing, route �uttering,

inherent parallelism in modern high-speed routers, link-layer retransmissions,

and router forwarding lulls. In [95], Gao et al. argue that the packet reordering

occurs with probabilities usually more than 30 % in concurrent multipath trans-

fer system. The network heterogeneity and the use of multiple links in wireless

networks also causes packet reordering which is described in [96].

To investigate the impact of packet reordering on the VNF monitoring for

QoE, we have done several measurements with the same testbed. Speci�cally,

in both scenarios we con�gure the NetEm to immediately dequeue 25 % of the

packets, the others are delayed by 500 ms. There is a correlation of 50 % in�u-

encing on the next packet and the link is set to 512 Kbit/s. Figure 3.9a shows

the CDF of the RMSE between the estimated and actual video bu�er. It can be
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Figure 3.9: The Accuracy of VNF at 512 Kbit/s with Packet Reordering

seen that the error is similar to our previous measurements shown in Figure 3.8.

However, in these measurements, the function additionally fails to correctly

estimate the number of stalling events. Figure 3.9b depicts the QoE estimation

based on the number of stalling events. The x-axis shows the measurements

in two scenarios, the y-axis indicates the estimated MOS values calculated by

Equation (3.2). The MOS can take the following values: (1) bad; (2) poor; (3) fair;

(4) good; (5) excellent. The darker bars describe MOS values calculated from the

actual number of stalling events counted at the client, while the other MOS val-

ues are estimated by the function. The MOS values are averaged over 30 replica-

tions with a 95 % con�dence interval. The �gure shows that the MOS calculated

in the ES scenario and on the client are smaller than 3. While in the DC scenario,

the function estimates a smaller number of stalling events, which is represented

by a high average MOS value of 4.07, and higher than actual value by 31.11 %.

It is due to the fact, that in the DC scenario packet reordering only happens in

the user access network. The result is that some packets arriving at the client

not in order are bu�ered in the memory to wait for reassembly. Additionally, the

bottleneck of the link also produces more delay to packet arrival time. As a con-

sequence, the video segment is decoded at the client later than the one arrives at

the VNF, since packets arriving at the VNF even faster to �ll up the video bu�er

to avoid an occurrence of stalling. Conversely, in the ES scenario, both the client
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and the VNF are in�uenced by the same packet reordering con�guration. Thus,

they have similar behavior of the QoE. It can be concluded that, in the case of

packet reordering occurred in the user access network, the function does not

work properly if it is placed far away from the client.

3.3 Study on the Accuracy of VNF-based QoE
Monitoring in the Cloud

The previous insights show that the VNF-based monitoring for HAS can be de-

ployed in the middle-box to estimate video bu�er and QoE. The results show

that the accuracy of the estimation depending on the placement of the VNF in

the network. Nevertheless, the VNF is installed in a middle-box in a controlled

testbed that still has limitation in reliability. In fact, in the NFV paradigm, VNFs

are required to be automatically deployed in a scalable and �exible ways with

the availability of network appliance multi-version and multi-tenancy [20].

To overcome the limitation of testbed-based VNF and to �nd the best solu-

tion for our approach, in this section, we investigate the feasibility of placing

a VNF-based video bu�er monitoring in the cloud. First of all, we propose an

architectural design of the deployment of VNF monitoring in the AWS cloud in-

frastructure. Then, we describe the monitoring process in the form of a VNF. We

provide results that show the feasibility of monitoring application layer param-

eters within video tra�c with DPI technique. The monitored parameters have

a high correlation with the user-perceived QoE. We compare the performance

of VNF monitoring at di�erent PoP in the AWS cloud with regard to the actual

quality obtained from the client device. Next, we add an investigation of the esti-

mation accuracy where the user is streaming a video in a high mobility scenario

within a mobile network.

The rest of this section is structured as follows. First, in Section 3.3.1 we in-

troduce the architectural design for VNF monitoring in the cloud. Then, in Sec-

tion 3.3.2 and Section 3.3.3 we describe the research methodology and measure-
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ment setup with di�erent VNF placements in the AWS cloud, respectively. Sub-

sequently, in Section 3.3.4 and Section 3.3.5, we present the measurement results

of the video bu�er and QoE estimation in two scenarios of the VNF deployment.

Lastly, in Section 3.3.6, we describe the behavior of video bu�er estimation in a

high mobility environment in a real measurement scenario.

3.3.1 Architecture for VNF QoE Monitoring in the Cloud

In this section, we propose the architecture of QoE monitoring in the cloud that

utilizes an existing cloud infrastructure to deploy VNFs on the top. This archi-

tecture is used to implement our QoE monitoring measurements described in

Section 3.3.3. Figure 3.10 gives an overview of the architecture.

The design can be divided into two main blocks, the cloud infrastructure plane

and the NFV management plane. This architecture is aligned with the ETSI-NFV

architecture framework [97]. However, VNFs, Management and Orchestration

(MANO) are built on top of an existing cloud infrastructure.
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Figure 3.10: Overview of VNF QoE Monitoring Architecture
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NFV Management Plane

The NFV management plane provides the environment and management for

deploying VNFs. Aligning with the ETSI architecture, it consists of MANO and

VNF instances.

VNF Instance: In the NFV management plane, one or more VNFs are installed

in a virtual machine or a container (e.g., Docker [98]) and are managed by the

MANO. Each block that consists of a virtual machine with operating system (OS)

built-in and one or more VNFs installed, is called a VNF Instance. An instance is

allocated with su�cient resources at run time and can be dynamically scaled-up

or out by an orchestrator. In our measurement setup, the VNF for video quality

monitoring is installed on a virtual machine. This VNF instance is initiated at

di�erent working regions of the AWS cloud.

MANO: In this architecture, the MANO is more lightweight compared to the

ETSI-MANO due to the handover of infrastructure management to a cloud man-

ager. It consists of VNF manager and orchestrator. Aligning with the ETSI stan-

dardization, the VNF Manager is in charge of VNFs life cycle management. The

Orchestrator is responsible for automated provisioning necessary resources and

network for the VNFs. The MANO can also work with the cloud manager via

a REST API to initiate a new instance of VNFs from templates. By doing this,

the VNFs can be scaled out or migrated across di�erent working regions. In this

work, we only present functional overview of the architecture and leave imple-

mentation for future work.

Cloud Infrastructure Plane

The underlying cloud infrastructure plane provides all necessary hardware and

software resources to build a virtual environment where VNFs are deployed.

Virtualization Layer : Virtual resources consist of virtual computing, storage,

and network which are created by a virtualization layer. This layer ensures

the isolation of virtual machines from the underlying physical resources. Thus,

many virtual machines or containers can share limited physical resources using
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a resources sharing scheme.

Cloud Manager : Since the NFV infrastructure is no longer exist in this archi-

tecture, this module is built to manage the underlying cloud infrastructure and

dynamically allocate virtual resources for VNF instances. For example, a new

VNF instance will be allocated with initial virtual resources like computation,

storage, memory, and networking. In addition, a speci�c geographical region

under consideration and other security policies of the instance are also con�g-

ured before launching. Then, the instance is initiated to host a virtual machine

or a container (e.g., Docker). The instance can be automatically scaled-up with

additional resources without any interruption. It also can be duplicated and mi-

grated to another working region.

In this work, we choose AWS as the cloud infrastructure for QoE monitor-

ing VNF, since AWS provides an Infrastructure as a Service (IaaS) platform with

multiple management options. AWS is a collection of di�erent online services

and a subsidiary of Amazon.com, Inc [99]. The most popular services are Elastic

Compute Cloud (EC2)
7

and Simple Storage Service (S3)
8

. S3 is mainly used to

store data in AWS data centers. While, EC2 provides computing nodes on de-

mand, where user can launch instances with di�erent hardware con�gurations

depending on his requirements. Instances are multiple virtualized containers

that can be installed on the same physical machine. In addition, AWS provides a

Virtual Private Cloud (VPC) with security groups for each user, this ensure the

isolation of the containers from the other users.

When launching an instance, the user can select a desired operating system

and a region where the instance is operating. AWS provides EC2 services located

in 16 regions that are totally independent from each other. In each regions, there

are availability zones that are also isolated and connected through low-latency

connections. In this work, we choose EC2 service to deploy our VNF for video

quality and QoE monitoring at two di�erent regions, namely eu-central-1b that

is located in Frankfurt, Germany and us-west-2b that is located in Oregon, USA.

7https://aws.amazon.com/en/ec2/
8https://aws.amazon.com/en/s3/
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3.3.2 Methodology

Our study aims to monitor the quality and the QoE of HAS in the cloud. To this

end, we �rst choose AWS EC2 as cloud environment where we place the VNF at

a PoP. To capture the video tra�c passing through the PoP, we reuse the VNF

as described in Section 3.2.1. To analyze the video �ows, we also reuse Algo-

rithm 3.1 which provides us with an estimated video bu�er based on download

timestamps of video segments. To validate the estimated values, we simultane-

ously sample the video bu�er at the client browser by using a Javascript-based

web API. The discrepancy between the estimated and actual video bu�er shows

the level of accuracy of the VNF monitoring.

To evaluate the in�uence of di�erent placements on the accuracy of the VNF

in high mobility user access networks, we deploy the function at two AWS in-

stances. One located in the central of Europe which is near the client, the other

located at the West of the USA which is far away from the client. Both of these

locations are close to the streaming server or its CDN server. This means the net-

work in between the PoPs and the streaming server has a high quality. For the

high mobility user access network, we divide experiments into two scenarios,

testbed and real scenarios. In the testbed scenario, we emulate a wireless envi-

ronment based on pre-de�ned LTE bandwidth traces measured in real life. With

the network emulation, we can evaluate the behavior of the VNF running in the

cloud in multiple experiments. In this scenario, we provide the results of VNF

accuracy in estimating video bu�er and QoE for video streaming using a refer-

ence QoE model. In the real scenario, we use a vehicle to drive the client machine

around a city and in country side regions. The results provided in this scenario

are used for the validation of our simulation.

3.3.3 Measurement Setup

In this section, we present the measurement setups of testbed and real scenarios

at both local testbed and in the AWS cloud. The installed hardware, network

con�guration, and method of implementation are described in the following.

81



3 VNF-based QoE Monitoring in the Cloud

AWS Cloud Infrastructure Setup

As mentioned in Section 3.3.2, we divide experiments with the VNF deployed

in the AWS cloud into two scenarios. In the testbed scenario, the user access

network is emulated by a network emulator. Meanwhile, in the real scenario,

the user access network is provided by a German telecommunication operator.

Nevertheless, in both testbed and real scenarios, the VNF is installed in an AWS

cloud instance. The instance acts as a PoP for the VNF where a proxy program

is used to route video tra�c passing through the PoP to the client. During the

measurement, the location of the client is varied. In the testbed scenario, the

client is placed in the local testbed, while during the measurements of real sce-
nario, the client is placed in a vehicle moving around the city and country side.

Thereby, this scenario is also used to investigate the in�uence of the mobile net-

work on the accuracy of the VNF. In both scenarios, the VNF is installed in an

AWS t2.micro server with Ubuntu Server 16.04 LTS as operating system. Each

instance has 1 virtual CPU clocked up to 3.3 GHz, 1GB of RAM and low-to-

medium network performance. These instances are located in di�erent regions

as mentioned in Section 3.3.2. The aim of this location distribution is to evaluate

the in�uence of di�erence VNF placements on its accuracy. Table 3.3 shows the

average Round Trip Time (RTT) and the network throughput in between the

AWS regions and the client in the testbed.

Table 3.3: Mean RTT and Throughput of AWS Cloud Regions

AWS Region Mean RTT STD Mean Throughput STD

eu-central-1b 6 ms 0.50 ms 258 Mbit/s 14.00 Mbit/s

us-west-2b 170 ms 0.11 ms 109 Mbit/s 11.60 Mbit/s

Table 3.3 shows that the mean RTT of the client and the eu-central-1b re-

gion is only 6 ms and it is much smaller than the us-west-2b region. The mean

throughput in eu-central-1b region also doubles the us-west-2b region. This is

due to a longer distance between the client and the us-west-2b region that may
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have undesired network congestion compared to a shorter distance between

the eu-central-1b region and the client. Regarding the streaming server, all mea-

surements are conducted with the use of the video streaming platform meta-
cafe.com9

. This platform has the bene�t that it provides unencrypted tra�c for

HAS. The analysis of an MPD �le of this video platform has been introduced in

Section 3.2.1.

Measurement Setup for the Testbed Scenario

The testbed scenario measurements are conducted in a testbed located at the

University of Würzburg. Figure 3.11 shows the topology of the testbed.
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Figure 3.11: Overview of Testbed Scenario Topology

The Client is a Fujitsu PC with 1 Gbit/s NICs. Ubuntu Desktop 14.04 LTS is

used as operating system. The NetEm is a SUN FIRE X4150 server with Ubuntu

Server 16.04 LTS as operating system. The testbed is connected to the Internet

via the German research network backbone for universities (DFN - Deutsche

Forschungsnetz). For the sake of tra�c tracing, we deploy the VNF monitoring at

both the client and the AWS cloud. This allows us to compare the QoE estimation

in the cloud and at the client device as well as to analyze the tra�c at both end

9http://www.metacafe.com
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points. In addition, the Tinyproxy10

software is used to route video tra�c passing

through the PoP from the streaming server to the client. To secure the reliability

in timestamps calculation, we synchronize the system clock of all testbed devices

with the same NTP server.

In this scenario, the Client is �xed in the testbed and measurements are im-

plemented during daytime. We simulate homogeneously a single user watching

a video in every experiment replication. The interval between two replications

is 60 s. To this end, we use a Python library, called Selenium Webdriver
11

for

Google Chrome to automatically browse the video. In the setup, we emulate

a high mobility user access network with a network emulator (NetEm) [51].

This Linux-based software can adjust di�erent network con�gurations to eval-

uate the impact of network QoS on services or applications in general. To start

the measurement, at the Client we use a Python script to remotely activate the

VNF at the AWS instance through SSH protocol. Then, the Client automatically

browses the video after the NetEm is con�gured with pre-de�ned bandwidth.

This ensures the network is shaped before the client starts the video playback.

The bandwidth traces were measured from a real mobile scenario where it was

sampled every 1 s. The duration of the bandwidth traces is about 500 s. In the

measurements, we con�gure the NetEm continuously to ensure di�erent net-

work condition in each replication. Video stalling events therefore only oc-

cur sporadically over all replications. The bandwidth measurements were per-

formed in LTE networks along several routes in and around the city of Ghent,

Belgium, during the period of Dec. 2015 to Feb. 2016 (more details can be found

in [100] and the website below
12

). This setup allows us to produce enough ex-

periments to evaluate the in�uence of wireless network on the accuracy of the

cloud-based VNF as well as QoE estimation for video streaming.

10https://wiki.ubuntuusers.de/Tinyproxy/
11http://www.seleniumhq.org
12http://users.ugent.be/~jvdrhoof/dataset-4g
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Measurement Setup for the Real Scenario

In the real scenario, we use the mobile network for Internet access. Figure 3.12

shows the network topology of this scenario.
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Figure 3.12: Overview of Mobility Client Scenario Topology

The Client is a notebook with Ubuntu 14.04 LTS as underlying operating sys-

tem. The network connection is provided by a tablet via a USB hub. The tablet

connects to the Internet using its built-in LTE modem which supports up to

150 Mbit/s downstream and 50 Mbit/s upstream. The network signal is pro-

vided by a major German telecommunication operator with a maximum down-

stream bandwidth up to 300 Mbit/s. The measurements in this scenario are

implemented in two di�erent con�gurations of location. Figure 3.13 shows the

routes of the vehicle in both city and country side regions.

In the �rst con�guration, as shown in Figure 3.13a, we implemented the mea-

surements while taking the public transport system (electric tram) as our ve-

hicle in the city center of Würzburg. In the second con�guration, as shown in

Figure 3.13b, we pre-de�ned a �xed route over country roads and the Highway

A81 and we used car as the vehicle.
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(a) City (b) Countryside

Figure 3.13: Routes of Vehicle in Mobility Scenario

3.3.4 Video �ality Monitoring in the Testbed Scenario

Based on the research method presented in Section 3.3.2 and measurement setup

in Section 3.3.3, we have implemented experiments between January and Febru-

ary 2017 at both the University and the city of Würzburg. The video we present

in the following measurement results has a typical content with total length of

200 s. The evaluations consider the accuracy of the network function, where

the accuracy is measured as the di�erence between estimated video bu�er by

the VNF and actual video bu�er obtained by the client browser. To minimize

the number of missed video bu�er states, we use a sampling rate of 100 ms at

the VNF and the client as described in Section 3.2.1. Since the video bu�er is

measured and estimated at di�erent devices and locations, we choose the video

starting time calculated by the VNF as the time reference for all graphs that have

video playback time x-axis.

The measurement results in this section are used to evaluate the impact of

VNF placement and high mobility environment on the accuracy of video bu�er

and QoE estimation. The client device is located in a testbed where the mobile
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network environment is emulated by a network emulator as described in Sec-

tion 3.3.3. The monitoring VNF is placed at di�erent regions of the AWS cloud

in Europe and USA. We also deploy a similar VNF at the client machine to cap-

ture all incoming packets from the streaming server. This VNF is referred to the

local VNF. To increase statistical signi�cance of the measurements, we produce

60 replications at each PoP.

Influence of VNF Placement on Video Bu�er Estimation

To intuitively compare video bu�er and stalling events estimated by the VNF and

obtained from the client, we select a typical video experiment that consists of

di�erent video states (i.e., high bu�er, stalling, quality adaptations). Figure 3.14

shows the behavior of the video bu�er and quality in the testbed scenario. In

all sub-�gures, the x-axes show video playback time in seconds. In the upper

parts of the sub-�gures, the y-axes indicate the amount of video bu�ered in the

memory. In the lower parts of the sub-�gures, the y-axes show the video quality

adaptations to di�erent network conditions. The solid lines depict the behavior

of video bu�er and quality sampled by the client browser, while the dashed lines

represent video bu�er and its quality estimated by the VNF.

The results show that in both PoPs, there is a correlation between the quality

adaptations and video bu�er dynamics. The client requests a low quality video

segment at �rst, due to the unawareness of network conditions. As shown in

Figure 3.14a, between the playback time of 71 s and 83 s, the video is stalling.

This is a result of a connection loss. The video bu�er is therefore depleted be-

fore new video segment arrives. The video quality also drops, since the client

requests a smaller segment size. This typical behavior of HTTP adaptive video

streaming is also described in [64, 65]. Considering the accuracy of the video

bu�er estimation, the upper part of Figure 3.14a shows a good �t of estimated

and actual video bu�er as well as detecting stalling events. The VNF estimates

the video quality adaptations with high accuracy as shown in the lower part of

the �gure. In contrast to this, the VNF placed at the US-PoP estimates the video

bu�er with higher error as shown in Figure 3.14b. In this case, there is a short
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Figure 3.14: Video Bu�er and Quality Monitoring at Di�erent VNF Placements
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time shifting at the beginning of the video playback and after the stalling event.

The video bu�er estimation is �uctuated and less accurate.

The Accuracy of Video Bu�er Estimation

As described above, there is a time shifting in the estimated video bu�er and

quality adaptation compared to the actual value obtained from the client. Indeed,

to evaluate the discrepancy between the estimated and actual video bu�er at

both PoPs, we calculate the RMSE using Equation (3.1) described in Section 3.2.2.

Figure 3.15 depicts the CDF of RMSE between estimated and actual video bu�er.

The lines with di�erent colors represent the CDF of RMSE at di�erent PoPs.
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Figure 3.15: RMSE Between Estimated and Actual Video Bu�er

Figure 3.15 shows that the estimated values at the US-PoP have errors larger

than 3 s. The EU-PoP errors are smaller than 0.7 s in 90 % of the cases. Due to

the placement of the VNF at EU-PoP near the client, the di�erence in arrival

time of video �ows is negligible at both machines. In case of packet loss, the

retransmitted packets are received almost instantaneously at both machines as

well. Therefore, high accuracy estimations are obtained at the EU-PoP which is

geographically closer. Conversely, the longer distance in between the client and

the VNF at the US-PoP may cause delay and congestion. This produces a time

shifting in estimating the video bu�er when the VNF is placed at this location.

This means, the estimation error is highly dependent on the RTT. Thus, we be-
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lieve that, the error will increase linearly at every higher RTT or longer distance

or between streaming server and the user. In the next subsection, we present an

analysis at the packet level to understand the cause of the estimation error.

Packet Delay Analysis

In fact, the monitoring function may add a delay caused by the forwarding and

processing of the proxy. This overhead is relatively small compared to the delay

caused by the distance induced by the placement of the monitoring function,

which is the scope of our study. Therefore, we do not consider the overhead of

the video bu�er estimation process in this work. To understand the in�uence of

di�erent VNF placements on its accuracy, we analyze the delay of video segment

arrival through a scheme as depicted in Figure 3.16.
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Figure 3.16: Overview of Packet Delay Scheme

Although packets traveling across the network are in�uenced by queuing

delay or processing delay, we only consider the download time and decoding

time of each video segment. In addition, we analyze the download time of video

segment as measured by the VNF, since analyzing the download time of indi-

vidual packet is not straight forward. Because of the TCP congestion control

algorithm [101], packets passing through the proxy at the AWS PoPs may be re-

encapsulated to adapt the network condition in between the client and the AWS

PoPs. As shown in Figure 3.16, ∆tdecode is the amount of time between a seg-

ment is fully captured at the client and it is �lled up to the video bu�er. The in-

terval ∆tclt_vnf is the segment download time from the VNF to the client. Note
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that, as described above, we also deploy a similar local VNF at the client device

for tra�c analysis purpose. The duration ∆tvnf_ser is the segment download

time from the streaming server to the VNF. This network delay, however, is not

considered in this study. Figure 3.17 shows the average decoding and download

time calculated from measurements at di�erent monitoring points.
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Figure 3.17: Average Decoding and Download Time at Di�erent VNF Placements

In Figure 3.17, the x-axis shows monitoring points at the EU-PoP and the US-

PoP. The y-axis indicates the delay time. The bars with di�erent colors depicts

the mean of decoding and download time over 60 replications with a 95 % con�-

dence interval. The result shows that, the decoding duration is negligible in the

measurements at both PoP. However, the average download time of video seg-

ment measured at the US-PoP is much higher than at the EU-PoP. This means, a

long distance between the client and the US-PoP with additional unstable user

mobile access network are the main factors in�uencing the accuracy of the VNF

for video bu�er monitoring.

3.3.5 Influence of VNF Placement on QoE Estimation

In Section 3.2.2, we employ Equation (3.2) as the reference model for evaluat-

ing the accuracy of QoE monitoring. This model is introduced by Hoßfeld et

al. in [16], and has only one argument number of stalling events for a given
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stalling length 1 s or 3 s. In this section, we refer to another QoE model pre-

sented in [61], where the authors combine both stalling frequency and length in

one formulation to quantify QoE perceived by the user as follow

fMOS(L,N) = 3.50 · e−(0.15L+0.19)N + 1.50, (3.4)

where fMOS is the function of the Mean Opinion Score (MOS) given by the

average number of stalling eventsN and stalling length L. The equation shows

that, the QoE for video streaming only considers the number of stalling events

and length as main in�uence factors. In the following, we present experimental

results that show the behavior of QoE estimation under the in�uence of VNF

placement and mobility environment.

Stalling Frequency and Length Analysis

Figure 3.18 shows an overview of the video stalling behavior over all measure-

ment replications at the EU- and US-PoP.

In Figure 3.18, the x-axes show the monitoring points, which are at the client,

at the local VNF and at the VNF deployed within the AWS cloud instance. The

y-axes indicate the total number of stalling events and the stalling length in

Monitoring Points
EU-PoP US-PoP

N
um

be
r 

of
 S

ta
lli

ng

0

5

10

15

Client
Local
AWS

(a) Number of Stalling Events

St
al

lin
g 

L
en

gt
h

0

10

20

30

40

50

EU EU EU US US US
Client Local AWS Client Local AWS

Monitoring Points

(b) Stalling Length

Figure 3.18: Video Stalling Behavior at Di�erent VNF Placements
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Figure 3.18a and Figure 3.18b, respectively. In Figure 3.18b, each box shows the

maximum, median, and minimum durations of stalling events at a measurement

point. The bottom and top edges of the box indicate the 25th and 75th per-

centiles, respectively. The whiskers extend to the most extreme data points not

considered outliers. The outliers are plotted individually using the ’+’ symbol.

The diamond symbol in the middle of the box shows its mean value.

The result shows that in the measurements at the EU-PoP, less stalling events

occur than at the US-PoP. In fact, when the VNF is placed at the EU-PoP, the

requests from the client will be sent to the CDN streaming server which is also

placed in Europe. Similar to the other scenario, when we place the VNF at the

US-PoP, the client will request the video at a central streaming server in the

USA. Thus, this explains that we receive more stalling events at the US-PoP sce-

nario due to a longer distance and possible network impairments in between

the client and the streaming server. Considering the stalling length in the EU-

PoP scenarios, due to the lower probability of stalling occurrence than at the

US-PoP, the average stalling length in the EU-PoP scenario seems to be higher.

In fact, in the US-PoP scenario, we also observe several stalling events with long

duration. However, due to a higher number of stalling events with several short

stalling lengths, the average stalling length in the US-PoP is lower. Neverthe-

less, the most important result is that the local VNF always delivers an exact

estimate for both stalling frequency and length. Whereas, the VNF deployed in

the AWS cloud shows estimation errors. In the next subsection, we present the

QoE estimation result based on stalling frequency and length described above.

QoE Estimation

Figure 3.19 shows the QoE estimation for video streaming over the course of

the measurements and at di�erent locations. For comparison between the QoE

measured at the client and estimated at the VNF, we only present the measure-

ment replications that have stalling events, since stalling frequency and length

are the main metrics for QoE estimation. In Figure 3.19, the x-axis indicates var-

ious monitoring points where QoE is measured and the y-axis shows the MOS
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Figure 3.19: QoE Estimation at Di�erent VNF Placements

values representative the QoE levels. Each box shows the maximum, median in

the red horizontal line, and minimum MOS values. The bottom and top edges of

the box plot indicate the 25th and 75th percentiles, respectively. The whiskers

extend to the most extreme data points not considered outliers. The outliers are

plotted individually using the ’+’ symbol. The diamond symbol in the middle of

each box represents the average MOS value. The MOS is calculated from Equa-

tion (3.4) based on stalling frequency and length as presented above. The MOS

can take the values: (1) bad; (2) poor; (3) fair; (4) good; (5) excellent.

Figure 3.19 shows that the local VNF can estimate the QoE with high accuracy

in both the EU- and US-PoP. It is reasonable since the video �ows arrive at the

local VNF and show up almost instantly on the web browser due to a negligible

decoding time as shown in Figure 3.17. In the EU-PoP, the VNF can estimate

QoE accurately in most of the cases. Due to the VNF placement at the EU-PoP

near the client, the di�erence in arrival time of video �ows is negligible at both

machines. Additionally, although the mobile network can cause packet loss that

induces video stalling, lost packets are retransmitted to the machines almost at

the same time. This explains a high accuracy of estimated QoE at the EU-PoP.

Conversely, we observe an overestimation of QoE measured at the US-PoP as

indicated in the most right box in Figure 3.19. In this monitoring point, the VNF

estimates a higher average MOS compared to the actual value obtained from the
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client and from the local VNF as well. In fact, at the US-PoP, the VNF receives the

video segments faster to �ll up the virtual video bu�er (i.e., eVideoBu� variable

in Algorithm 3.1). Due to the congestion of the user mobile access network and

a long distance between the US-PoP and the client, the video �ows arrive at the

client slower. In the worst case, the video bu�er at the client has been depleted

while the video segment is on the �y. In the next subsection, we investigate the

in�uence of video segment arrival time error on the accuracy of QoE estimation.

Impact of Video Segment Arrival Time Error on QoE Estimation

Figure 3.20 shows an analysis of the video segment arrival time error between

the US-PoP and the client. The x-axis shows video playback time in second. The

left y-axis shows the video bu�er and the right y-axis indicates the segment ar-

rival time error measured from an analysis at packet level. Note that, the arrival

time of the last packet of a segment is considered as the arrival time of that seg-

ment. The saw-tooth lines show estimated and actual video bu�er as described

in the previous section. The black line shows the segment arrival time error,

which is the di�erence between the estimated and actual segment arrival time.

The �gure shows that, the segment number 10 of the video arrives at the VNF

15.6 s faster than at the client. Thus, it �lls up the virtual video bu�er of the VNF
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earlier where a stalling event is avoided, while the client video bu�er has been

empty before it arrives. This is a typical reason of QoE overestimation at the

VNF in this scenario. To achieve a high accuracy in estimating QoE for video

streaming, it is recommended to place the monitoring function at the client in

high mobility environments or at the edge network.

3.3.6 Behavior of the Video Bu�er Monitoring VNF in the
Real Scenario

To validate our �ndings from the testbed scenario, we have implemented several

experiments where the client browses video while moving in a vehicle in the

real scenario as described in Section 3.3.3. First, we measure the mobile network

condition in between the client and the AWS cloud. Table 3.4 shows the average

RTT and downstream throughput of di�erent PoPs.

Table 3.4: Mean RTT and Throughput in AWS Mobility Scenario

PoP Mean RTT STD Mean Throughput STD

EU-PoP 59 ms 15.4 ms 17.9 Mbit/s 8.9 Mbit/s

US-PoP 218 ms 22.5 ms 35.5 Mbit/s 20.5 Mbit/s

The table shows that, the network between the client and the EU-PoP has a

lower delay. However, both network measurements have high standard devia-

tion values. It is due to our limited number of replications and the instability of

the high mobility environment. In fact, we have implemented measurements for

the real scenario in both city and countryside. We, however only present a typ-

ical experiment in country side scenario, since the di�erence in result between

these two locations is negligible. Figure 3.21 shows the behavior of estimated

and actual video bu�er obtained from the VNF and the client browser.

As expected, the results measured at the EU-PoP show a high video bu�er

level and high accuracy estimation as depicted in Figure 3.21a. The bu�er level
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Figure 3.21: Video Bu�er Monitoring at AWS with Mobility Client in Country Side

keeps stable in between about 39 s and 29 s, in which the higher level is the max-

imum amount of video bu�ered in the memory. The lower level is the threshold

at which a new segment is requested. Conversely, the measurement results at

the US-PoP show a time shifting in estimated and actual video bu�er as shown

in Figure 3.21b. To evaluate the accuracy of the VNF monitoring, we calculate

the RMSE between estimated and actual video bu�er from Equation (3.1). Fig-

ure 3.22 shows the CDF of RMSE between estimated and actual video bu�er in

all mobility scenarios.

At �rst, the �gure shows that all errors of estimated and actual video bu�er

are larger than 2 s. Meanwhile, this error in the testbed scenario at the EU-PoP

is generally smaller. It is clear that the instability of the wireless environment
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in�uences the accuracy of the VNF monitoring. Furthermore, with additional

high delay and congestion in the mobile network, the estimation error is dou-

bled in case of the US-PoP scenario where most of the discrepancy between

estimated and actual video bu�er is larger than 4 s. Concerning the accuracy of

VNF monitoring when the client moving at di�erent regions, we observe that

the di�erence between city and country side is small. Note that the density of

mobile stations in the city is higher than in the country side. This means, the

in�uence of mobile signal strength on the video bu�er estimation is negligible.

3.4 Lesson Learned

The problem tackled in this chapter is to implement a VNF for video quality

and QoE monitoring on an existing cloud infrastructure. Thereby, video bu�er,

quality adaptation and stalling events are monitored based on capturing video

�ows in the network by using DPI. The QoE for video streaming was also esti-

mated using QoE models from previous studies where the input parameters are

the extracted stalling frequency and length. To conduct the study, we �rst de-

velop a VNF that can estimate the video quality based on download timestamps

of video segments. Thereafter, to evaluate the performance of the function and

its accuracy under the side-e�ects of di�erent network conditions and function
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placement, we divided the study into two stages.

In the �rst stage, we set up a local testbed with a network emulator to com-

pose two scenarios of VNF placement, called ES and DC scenarios. In this stage,

we evaluate the impact of bandwidth and packet reordering on the accuracy of

the estimation. Our results show that, in the ES scenario, where the function

is placed near the client device, we can estimate the video bu�er and stalling

events with a high accuracy. In contrast, when the function is placed near the

streaming server in the DC scenario, we can accurately estimate the video bu�er

only at high link capacity of 10 Mbit/s. At lower link capacities of 512 Kbit/s,

the bu�er estimation has a constant error. This bu�er error can be reduced by

calculating the packet delay within the estimation algorithm. However, in case

of an unstable network with the presence of packet reordering, additional errors

in estimating the video stalling occur in the DC scenario and lead to an inac-

curate QoE estimation. Wherein, the VNF results in a higher MOS than actual

value obtained from the client by 31.11 %, while in the ES scenario, this error is

less than 1 %. To avoid QoE overestimation in this situation, it is recommended

to migrate the VNF for QoE monitoring near to the client.

In the second stage, we analyze and evaluate the accuracy of a VNF for video

bu�er monitoring in the AWS cloud. Through multiple testbed and real scenario

experiments, we observe that the VNF monitoring for video bu�er gains a high

accuracy if it is placed at the EU-PoP near to the client. Speci�cally, in the testbed
scenario, the estimation error is less than 0.7 s in 90 % of the cases compared to

the actual value. However, in the real scenario, this error is higher than 2 s. This

result re�ects a negative in�uence of mobile access network on the accuracy of

the estimation. Regarding QoE monitoring at the EU-PoP, the VNF can estimate

a similar MOS score with the client in most of the case. Nevertheless, the highest

performance is achieved by the local VNF which is deployed at the client device.

Conversely, when the VNF is placed at the US-PoP far away from the client,

it estimates the video bu�er with higher error. Particularly, the discrepancy in

video bu�er between the VNF and the client is more than 3 s in both scenarios.

Based on this result, we believe that the video bu�er estimation error is highly
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dependent on RTT and it trends to linearly grow up with an increasing distance

between the client and monitoring point. In addition to this, the instability of

mobile network induces QoE overestimation at the US-PoP. In the testbed sce-
nario, we observe that the VNF estimates a higher MOS value compared to the

one obtained from the client. This may cause a misleading performance of HAS

service at the client device.

To conclude this chapter, we believe that the unify of NFV and cloud com-

puting is promising to simplify the deployment of such a VNF QoE monitoring

for HAS on an existing cloud infrastructure. Through multiple experiments, our

VNF shows a high accuracy in estimating video quality and QoE if it is operating

at the edge network, near to the user. However, placing the VNF at other PoP in

the cloud has several issues that one must take into account.

• First, the architecture of NFV-Cloud must be well de�ned. For instance,

since the NFV infrastructure is no longer exist in this approach, the allo-

cation of virtual resources for VNF need to be thoroughly considered.

• Next, the video bu�er estimation error is highly dependent on the dis-

tance between the client and monitoring point. This problem, however,

can be solved by calculating the delay within the estimation algorithm.

• Finally, the mobile access network is an important obstacle that nega-

tively impacts the accuracy of QoE estimation. In this situation, migrating

the VNF near to the client or at the client device is highly recommended.

All in all, the insights in this chapter may help the network operators to learn

the pitfalls and drawbacks of such a VNF-based QoE monitoring in the cloud.
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Placement Algorithms in the Edge

Cloud

In the previous chapter, we evaluated the in�uence of geographical placement

on the performance of VNF QoE monitoring in the cloud. There, the monitoring

function is a combination of DPI and video quality estimation in a single VNF.

In fact, in the NFV architecture, a network service like QoE management typ-

ically consists of separate VNFs in a chain [21]. Thereby, corresponding VNFs

can be placed in one server or distributed over NFV nodes across the network,

improving the �exibility of this paradigm. For instance, the DPI part of the VNF

QoE monitoring could be placed next to the user and the QoE manager could be

�exibly distributed inside a large points of presence of data center.

In this chapter, we focus on the placement problems of VNF chains within data

centers in the edge cloud. As today’s networks typically consist of middle-boxes

that perform individual network functions such as �rewall, load balancer, or net-

work address translation. These hardware appliances are statically installed in

monolithic platforms in data centers or at the edge of the carrier network. Re-

lying on this architecture, ingress data tra�c is sequentially processed at these

boxes before arriving at a destination. The ordered set of required boxes for a

speci�c network service or application is referred to a function chain.

However, the hardware-based function chain has several drawbacks. First,

since a function chain is statically provisioned by the network operator for a

particular service, its architecture is fairly stable and only little changes are pos-
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sible. Additionally, a network device provided by one vendor mostly can not

be replaced by another. Thus, if one box of the chain is malfunction then the

whole chain breaks. In this situation, replacement of a box is time consuming

and complicated. Next, each middle-box is typically designed for a dedicated

network function like a �rewall. Thus, the consolidation of multiple boxes in

one place signi�cantly increases capital and operational expenditures (CAPEX

and OPEX). Moreover, with the rapid growth of global Internet tra�c, the net-

work operators must cope with the increasing demand for �exibly provisioned

and scalable services. If a new service requires a new function chain, it is often

costly and time consuming since a �xed function chain requires new hardware

installation. As a consequence, time to the market of that service is high and the

economic scalability is not given.

To overcome the limitations of the hardware-based function chain, a poten-

tial solution is the use of the NFV paradigm. With the concept of Service Func-

tion Chain (SFC) [22], multiple VNFs are �exibly chained together to provide a

speci�c service. The expected bene�t of SFC is the reduction in the complex-

ity when deploying heterogeneous network services. However, deploying such

a SFC in an NFV system has several challenges. On the one hand, distributing

VNFs in multiple servers will increase the length of the chain if the servers are

placed in di�erent data centers. This will considerably rise the latency within the

SFC itself and can reduce the QoE. In this situation, placement problems of the

SFC must be well-de�ned and optimized to minimize total latency. On the other

hand, since the VNFs can be placed in di�erent servers, their resource utiliza-

tion must be taken into account as well. In fact, complex optimization problems

can be formulated for a given system, but their solution can be time consum-

ing regarding the complexity theory [102, 103]. Thus, heuristics are required to

quickly obtain solutions which achieve a close-to-optimal performance.

To address these problems, we propose and evaluate two heuristics for dis-

tributing VNFs of service chains in data centers of an edge cloud, named central-
ization and orchestration algorithms. These placement algorithms aim to mini-

mize total latency or server utilization. They are evaluated against optimal so-
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lutions for the placement problems, which are formulated and solved by using

Integer Linear Programing (ILP). For the performance evaluation, we extend

the event-based EdgeNetworkCloudSim simulator [24] with the inclusion of the

CPLEX Optimizer toolbox
1

. This toolbox uses Optimization Programming Lan-

guage (OPL) to express the ILP mathematical model. Then, the OPL model is

solved using CPLEX Optimizer.

In fact, the SFC placement problem is widely studied in di�erent directions.

The objective of existing works has focused on cost reduction [104, 105], virtu-

alization trade-o� between di�erent objectives [106, 107], or optimizing energy

consumption [108–110] among others. Our study is di�erent from these works,

since we consider the SFC placement problem in the context of edge cloud com-

puting, wherein the user is close to a data center in an edge cloud. In addition

to this, the user device is included as the end point of the whole chain.

In this study, we use EdgeNetworkCloudSim to simulate a �xed network

topology in an edge cloud. In the simulation, users randomly request service

chains consisting of three VNFs that can be placed on di�erent servers. The

performance of all placement algorithms is evaluated with respect to QoE in

terms of service response time and resource consumption in terms of number of

utilized servers. Herein, the response time or a service may in�uence the QoE

perceived by the user as described in Chapter 2. Therefore, an e�cient place-

ment algorithm helps to increase the user satisfaction with the service. Our sim-

ulation result shows that the optimized solutions obtained by using ILP model

achieve lowest service response time and least server utilization rate compared

to the others. However, the heuristic algorithms are able to come close to the

optimum by simple placing rules. Besides, we observe that the service response

time linearly grows with the increasing number of VNFs in the chain. The ob-

tained linear regression models of the service response time depending on the

number of VNFs in a chain can later be used as analytical models for optimiza-

tion or reference models for QoE monitoring. Our insights may help network

operators and the research community to quickly compute good SFC placements

1

https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
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for NFV infrastructures in an edge cloud context.

The content of this chapter is mainly taken from [6]. The remainder of it is

structured as following. First, Section 4.1 presents background and the state of

the art in SFC. Subsequently, the description of four placement algorithms are

presented in Section 4.2. Thereafter, we describe the extension of EdgeNetwork-

CloudSim, edge cloud topology, and several performance metrics in Section 4.3.1

to 4.3.4. Next, the outcome of our study is detailed in Section 4.3.5. Finally, Sec-

tion 4.4 concludes this chapter with lessons learned.

4.1 Background and Related Work

In this section, we �rst introduce NFV and its architecture in Section 4.1.1.

Note that, this subsection is di�erent from Section 3.1.5 in the Chapter 3, since

NFV Cloud is another approach where the NFV infrastructure is replaced by a

cloud infrastructure. Next, in Section 4.1.2, we present the de�nition of simu-

lated SFCs. Subsequently, we give an overview of cloud computing simulators

in Section 4.1.3 and the state of the art in the SFC research area in Section 4.1.4.

4.1.1 The Emergence of Network Function Virtualization

In this subsection, we �rst introduce the concept of NFV, its advantages and

challenges. Subsequently, we present the NFV architectural framework and the

de�nition of VNF forwarding graph.

Transformation of Legacy Approach into NFV

The tremendous growth of global Internet tra�c has been forcing network oper-

ators to struggle with reducing CAPEX and OPEX [60]. Additionally, they must

cope with the increasing demand for �exibly provisioned services. Thereby, the

network service must be provided by the network operators with a high QoE in

order to achieve high customer satisfaction and to avoid user churn [11].
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To handle these problems, a more innovative and agile network technology

has been emerged, called Network Function Virtualization (NFV). The concept

of NFV was �rst introduced in the conference on Software-De�ned Networking

(SDN) and OpenFlow in October 2012 presented in a white paper [20]. The main

idea of this paradigm is to decouple the network functions from their physical

hardware. Figure 4.1 shows a vision for NFV where physical network devices

are transformed into VNFs by leveraging virtualization technology.
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Figure 4.1: NFV Transformation from Legacy Network Functions

In this concept, a routing function, for example, can be detached from its

expensive hardware router to become a plain software, which can run on any

commodity server. Similarly, other legacy network appliances like �rewall, load

balancer, DPI, or QoE monitoring can also be virtualized as applications, see

also Chapter 3. Such kind of application is called Virtual Network Function

(VNF) [20]. A VNF ful�lls a designated task and can be installed on any standard

industry server. Based on this innovation, NFV is promising to feature a series

of bene�ts opposed to classical hardware-oriented approaches.
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Benefits of the NFV Paradigm

Reduce CAPEX andOPEX: Since VNF is a piece of software, multiple types of VNF

can be consolidated in a high volume server. Herein, each VNF performs a par-

ticular network function like �rewall or routing. Thus, instead of installing new

and expensive network appliances in server racks, the consolidation of VNFs in

a server signi�cantly reduces CAPEX. In addition to this, VNFs can be migrated

to another data center without the installation of new physical hardware. Next,

as plain software can be easily installed, tested, and updated on the same infras-

tructure, this bene�t helps to decrease the development cost of a VNF. Besides,

since the deployment process of a VNF can be automated across a large network,

time to market of a service is considerably reduced. This leads to a substantial

reduction of OPEX [111, 112].

High Flexibility: With the characteristics of an application, a VNF can be �ex-

ibly distributed over various network nodes or at the end user device. It also

can be migrated from a data center to the edge network to avoid high latency

by a long distance to the user. Moreover, VNF can be easily allocated with vir-

tual resources like CPU or memory without the need to upgrade the underlying

physical hardware [57, 58]. This reduces downtime and thereby prevents poten-

tial loss in revenue.

Easy Scaling: Since the traditional network is built from dedicated appliances,

it must be optimally dimensioned to be able to properly handle tra�c in peak

hours. Nevertheless, unexpected tra�c overload still can occasionally happen

that may negatively in�uence QoS, and thus degrade the user perceived QoE.

Moreover, a well-dimensioned network device for peak hours will not be e�-

ciently utilized on average, since high tra�c demand rarely occurs. Therefore,

in o�-peak times, hardware resources and energy might be wasted. To overcome

this limitation, the NFV paradigm allows to quickly scale up a virtual machine

or scale out by deploying additional VNFs to handle peak tra�c load in real

time [113]. Note that, elastic scalability in NFV only requires server resources

like computation or memory that is conventionally inexpensive compared to

dedicated network appliances. Furthermore, in the NFV architecture, hardware
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resources are shared between VNFs. This means, resources released by a termi-

nated VNF can be re-allocated to another one. This dynamic allocation allows

administrators to e�ciently exploit the capability of the NFV infrastructure.

Challenges in the Deployment of NFV

Performance: Despite the many bene�ts of innovation, the deployment of NFV

may be constrained by several challenges which need to be addressed. First, a

VNF is expected to have as high performance as traditional hardware-based net-

work appliance. Since a VNF is software-based, its performance depends on the

virtual environment it is operating on. A bottleneck at the processor or shared

memory may cause a high latency or packet loss [114]. Additionally, several

VNFs like virtual DPI may require a fast packet processing mechanism to re-

duce delay caused by multiple copying processes between bu�ers or memo-

ries [115]. A solution for this issue is the use of a Data Plane Development Kit

(DPDK) [116]. A DPDK is implemented as a kernel bypass, thus packets are pro-

cessed completely in user space without involving the kernel. This mitigates the

problems of memory allocation per packet and context switching.

Legacy Support: One of the most important selling points of NFV is reducing

CAPEX and OPEX, since its infrastructure only requires standard servers and

switches. This advantage becomes a signi�cant challenge keeping it compatible

with the legacy network. It is due to the fact that traditional network products

might not be upgraded to support the co-existent of NFV. Therefore, a well-

de�ned migration path toward NFV is necessary while maintaining traditional

network infrastructure in one place.

Orchestration and Automation: In an NFV architecture, VNFs must be auto-

matically initiated and allocated resources on demand. To this end, an orches-

tration algorithm is required to �exibly allocate and re-allocate resources for

the VNFs. Note that a VNF should only receive su�cient resources it needs.

There, a major challenge is to dynamically react on changing resource demands

without causing any service interruptions or performance delays. To solve this

problem, the resource utilization can either be checked periodically or in any
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other timing pattern by the orchestration algorithm or upon the noti�cation of

the under-provisioned Virtual Machine (VM). Thereby, resource utilization of

the whole infrastructure is monitored and unused resources are reallocated to

other processes or shut down to save energy.

NFV Architecture

Figure 4.2 shows an overview of an NFV architectural framework. The NFV

framework consists of three main components, which are VNF, NFV Infrastruc-
ture (NFVI) and Management and Orchestration (MANO) [59]. A VNF is an ac-

tual network function that is virtualized and can be automatically deployed on

top of the NFVI. An example of VNFs are the Evolved Packet Core (EPC) net-

work elements like Mobility Management Entity (MME) or Serving Gateway

(SGW) [117]. An Element Management (EM) is responsible for the functional
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management of one or several VNFs.

The NFVI is the whole physical hardware and software which creates an envi-

ronment where VNFs are deployed and managed. From the bottom, it consists of

physical resources such as computing, storage, or network. These components

are generally built up from standard commodity servers. The connectivity to

the VNFs is handled by the virtualization layer. This layer is responsible for the

process of abstracting physical resources, enabling the implementation software

of VNFs and providing them with virtualized resources. Based on this, virtual

computing, storage or network are allocated to the VNFs in the form of hyper-

visors and VMs. The virtualization layer plays an important role in the principle

of NFV since it ensures the decoupling of VNF software and isolating the VNF

lifecycle management from the underlying physical hardware.

The MANO consists of three main components, which are the NFV Orches-

trator (NFVO), the VNF Manager (VNFM), and the Virtualized Infrastructure

Manager (VIM). The NFVO has the responsibility for the global management of

the NFV infrastructure and network services. It manages the topology of net-

work services and can create an end-to-end service over multiple VNFs. In the

MANO component, depending on requirements, the NFVO can connect either

with a VIM or directly with the NFVI to coordinate, authorize, release, and en-

gage them. The VNFM is responsible for the lifecycle management of VNF in-

stance. Herein, a VNFM is able to initiate, scale, or terminate a VNF instance. The

VIM is responsible for the dynamic allocation of virtual resources to the VNFs.

Another function of a VIM is to support the management of VNF Forwarding

Graph (VNFG) by organizing virtual links, networks, subnets, and ports [118].

VNF Forwarding Graph

In a traditional network architecture, di�erent network devices can be inter-

connected by bidirectional links to perform a speci�c service together. For in-

stance, a chain of appliances on the path to a web server tier typically consists

of a �rewall, a NAT, and a load balancer. In the NFV paradigm, the virtual form

of these network devices can also be interworked by logical links. ETSI NFV
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ISG describes this interconnectivity in [97, 119] as a VNFG. Speci�cally, a VNFG

de�nes a sequence of VNFs and virtual links that packets traverse, which is

kind of like a virtual network. The VNFs in a VNFG are constituent functional

components of a network service. Thereby, the behavior of the network service

associates with the functionality of each VNF. However, the order or sequence

of the VNFs in a VNFG is not required [120]. A similar concept to VNFG is a Ser-

vice Function Chain (SFC) de�ned by IETF SFC WG in [22]. Typically, in a SFC,

each VNF executes a certain function and all VNFs must be processed in a spe-

ci�c order. Thus, VNFs can be dynamically deployed in a server or distributed

over di�erent data centers to meet various requirements. For example, multiple

VNFs can be instantiated for a particular function in order to increase resilience

or for load balancing.

4.1.2 Definition of Simulative Service Function Chain

In this work, we simulate three types of personal services,Video Streaming (STR),
Web and Database (DB). These services are characterized by their own virtual

machine resource demands and tra�c characteristics, and are requested and

used by only one single user. Note that these services do not resemble real cloud

applications, but were mainly speci�ed in order to have di�erent service chain

characteristic. Each service is requested and processed as a chain of VNFs. Thus,

in the remainder of this chapter the terms SFC and service will be used inter-

changeably. In the simulation, we de�ne a SFC consisting of three VNFs that

must be executed in order to provide full service functionality. This de�nition

is also consistent with the SFC described in [22].

Figure 4.3 shows an overview of communication between a user and a SFC.

There, each VNF is installed at a VM. The arrows represent the direction of

the data �ow and also the sequence of VNF execution in the SFC. Speci�cally,

when the user requests a service, the request is processed at VNF1, followed by

VNF2, and VNF3. Then, the response message will also be sent back in sequence

from VNF3 to the user. Therefore, the placement of VMs primarily in�uences
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the latency between the VNFs in the chain, and thus also the service response

time. This makes it crucial to design placement strategies, which quickly �nd a

good possible placement of SFCs in terms of QoE and resource utilization.

In the SFC, the type of a VM also must correspond to the VNF requirements.

The VM types are prede�ned based on instance types introduced by Amazon

Elastic Compute Cloud
2

. Table 4.1 presents the de�nition of the used VM types

in EdgeNetworkCloudSim. Here, we use three types of VMs which are T2Nano,

T2Small, and T2Large with di�erent computing and memory capacities. Based

on this, three types of simulated personal services are characterized by their

own set of VM types which will be detailed in Section 4.3.

Table 4.1: VM Type De�nition

VM Type CPU RAM

T2Nano 1 1024 MB

T2Small 2 2048 MB

T2Large 4 4096 MB

2

https://aws.amazon.com/ec2/instance-types/
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4.1.3 Cloud Computing Simulator

In [121], Calheiros et al. present their work on an event-based simulator for

cloud computing infrastructure, called CloudSim. This simulation framework is

extensible and enables data center resource scheduling and provisioning. An ex-

tension of CloudSim with a GUI is CloudAnalyst, introduced in [122]. CloudAn-

alyst is designed to overcome the limitation of CloudSim that does not provide

a user GUI. This simulator allows users to easily create their own cloud with

geographically distributed servers over the world map. Based on this, a user can

evaluate the behavior of cloud applications in a large scale. Another extension

of CloudSim that enables networking is NetworkCloudSim [123]. With the in-

clusion of various network topologies and modeled network communication, it

provides users with a general view of data processing and transferring under

di�erent network con�gurations in the cloud.

In [24], Seufert et al. introduce EdgeNetworkCloudSim as an extension of Net-

workCloudSim. Thereby, EdgeNetworkCloudSim moves from batch-like pro-

cessing of computation jobs to persistent and personalized cloud services that

are implemented in an edge network cloud. To this end, the authors allow to de-

�ne several characteristics of cloud services which can be processed in a chain of

virtual machines. The framework is able to simulate service requests and user

requests to services and can compute response times and resource utilization

among others. In this chapter, we extend EdgeNetworkCloudSim to simulate

and evaluate the performance of di�erent SFC placement algorithms.

4.1.4 State of the Art in Service Function Chaining

The architecture for the speci�cation of SFCs is o�cially described in [22] by

IETF. Since SFCs are promising to decrease the complexity of the service deploy-

ment in an NFV architecture, they receive a considerable interest from research

community. In [124], John et al. introduce several research topics on network

service chaining. In [104], Savi et al. study the impact of processing capability

on the placement of service chains. They model a set of NFV nodes hosting one
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or more VNFs that are used to form a service chain. This model is formulated us-

ing an ILP and solved by CPLEX. The main objective of the model is to minimize

the number of active NFV nodes with regard to upscaling and context switching

costs of processing task. The authors conclude that with the increasing number

of service chains, the context switching costs strongly in�uence the implemen-

tation cost of NFV. Conversely, the number of service chains does not change

how the upscaling costs translate into the cost for NFV implementation.

In [106], Luizelli et at. consider the placement of SFC where the placement

problem is formulated by using an ILP model. The main objective of the model is

to minimize the number of VNF instances mapped to infrastructure. The authors

conclude that the ILP model leads to a reduction of up to 25 % in the end-to-end

delay compared to a baseline. However, their baseline solution is another ILP

model, where the objective function is changed to minimize the chain length.

The authors propose a heuristic algorithm to guide the search for a solution.

This contribution helps to reduce the solving time of the CPLEX Optimizer.

The authors in [107] formalize the chaining of VNFs using a context-free lan-

guage. Then, they formulate the placement problem of chained VNFs as a Mixed

Integer Quadratically Constrained Program (MIQCP) with regard to three dif-

ferent objectives. Their results show a trade-o� between optimizing the remain-

ing data rate, latency, and number of used nodes. In [125], the authors propose

the Merge-RD algorithm to place service functions with respect to minimizing

energy consumption. They use GreenCloud to simulate a data center topology

and to evaluate the performance of the proposed algorithm. Their algorithm

performs better than StEERING, PowernetS and Algorithm H [108, 126, 127].

However, with O(n4), the complexity of the algorithm is quite high and time

consuming. Other approaches in energy-e�cient and bandwidth-e�cient SFC

placement are presented in [109] and [110], respectively. In [105], Bari et al.

propose a heuristic algorithm and an ILP model for optimization for SFC place-

ment. The algorithms aim to reduce CAPEX and OPEX of VNF deployment in

the operator network. They conclude that the heuristic algorithm outperforms

the optimal solution in the aspect of execution time.
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The method of using an ILP model to formulate the placement problem of

VNFs is widely studied. In [92], Bouet et al. propose a study that aims to mini-

mize the overall cost of vDPI deployment in a NFV infrastructure. The authors

conclude that the network structure and costs strongly in�uence the execution

time of a vDPI function. However, the authors do not consider the chaining form

of vDPI in their ILP model. Similar studies on solving the placement problem of

VNFs formulated by using an ILP model are presented in [91, 107, 128].

The existing studies use similar methods as our study to some extents in the

aspect of optimizing SFC placement. Most of the works are based on mixed inte-

ger programming with di�erent objective functions and constraints. Although,

their approaches can deliver optimal solutions for individual problems, the per-

formance of their proposals still need to be assessed in a real scenario. Moreover,

their result is mostly obtained by solving the ILP model using CPLEX. The au-

thors in [125] use GreenCloud simulator for examining their algorithm, however

their focus is on energy consumption only.

Our study is di�erent from the mentioned research works since we compare

four di�erent approaches for SFC placement. This helps the network operator

to have a comparative view of the advantages and drawbacks of each solution.

Moreover, we consider an edge cloud context where the user is close to the data

center. In our heuristic algorithms and ILP model, the user device is also included

as the end point of the whole chain. Furthermore, to the best of our knowledge,

this study is the �rst that uses EdgeNetworkCloudSim to simulate and evaluate

the in�uence of di�erent SFC placement strategies on service response time or

server utilization. Wherein, user requests and SFC placement are done consec-

utively on the same platform that increases the practical of our approach.

4.2 SFC Placement Algorithms

In this section, we present four SFC placement strategies, which are Centraliza-
tion (CEN), Orchestration (ORC), Service Time Optimization (STO), and Resource
Optimization (RO). Table 4.2 shows the summarize of the four algorithms.
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Table 4.2: Summarize of the Placement Algorithms

Reference Algorithm Name Objective

CEN Centralization To �nd the closest servers for VMs

ORC Orchestration To shorten the length of the chain

STO Service Time Optimization To optimize the service response time

RO Resource Optimization To optimize the server utilization

On the one hand, CEN and ORC are heuristic approaches. These algorithms

are designed and included within EdgeNetworkCloudSim to search quickly for

a proper placement of SFCs. On the other hand, STO and RO use the optimiza-

tion model with the objective of minimizing service response time and server

utilization, respectively. Thereby, the placement problems of SFC are formulated

using an ILP model. Then, the problems are solved by using CPLEX Optimizer

to provide the simulator with speci�c locations of all VMs.

4.2.1 Centralization Algorithm

The centralization (CEN) placement algorithm tries to place all VMs of a SFC

as close as possible to the user, meaning to have the lowest delay between the

VMs and the user. This algorithm is useful in classical cloud computing where

independent VMs of a user should be placed close to him. However, it is unclear

how the CEN performs in case of service chains with communicating VMs. Al-

gorithm 4.2 shows the simpli�ed pseudo-code of the centralization approach.

Data provided for the algorithm are an ordered list of VMs in a chain, UserVM
location, and type of service. When receiving requests to create VMs in a data

center (DC), the simulator starts to �nd a closest DC to the user for each VM. If

there is still an available DC, then the VM is placed in sequence and the service

can be processed. All the VMs can be placed in one DC or distributed over dif-

ferent data centers. If at least one VM could not be placed, there are not enough

resources (i.e., CPU or RAM) in the system to deploy the entire SFC. In this case,
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Algorithm 4.2 Centralization

1: Input: List of VMs, requested service, and UserVm

2: Initialization;

3: for each vm in chain do
4: DC = �ndClosestDcToUser(uservm);

5: if DC == -1 then
6: abandonService();

7: else
8: createVmInDc(vm, DC);

9: end if
10: end for

the requested SFC will be discarded or blocked.

In the CEN approach, all VMs of the service chain will be placed around and

close to the UserVM, but the algorithm does not try to reduce the length of the

chain. A large VM might be placed far away from the UserVM due to the lack

of resources at the closer DC, but a smaller VM later in the chain may �t. As

a consequence, the length of the chain is increased and data oscillate between

data centers. This might signi�cantly in�uence the e�ciency of the algorithm

with respect to service response time.

4.2.2 Orchestration Algorithm

The orchestration (ORC) algorithm di�ers from the CEN, where only the �rst

VM in the chain is attempted to be placed as close as possible to the user. For

the subsequent VMs, the aim is to place them close to the previous VM. Based

on this, ORC tries to shorten the length of the chain that reduces the latency.

Algorithm 4.3 shows the simpli�ed pseudo-code of the ORC algorithm.

Similar to CEN, this algorithm is provided with the ordered list of VMs,

UserVM location, and type of service. At �rst, it tries to �nd a closest DC to the

UserVM for the �rst VM in chain. Afterwards, the algorithm tries to place the

next VM in chain as close as possible to the previous one in sequence. Addition-

ally, the next VM is only sent if the previous one has been successfully placed.
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Algorithm 4.3 Orchestration

1: Input: List of VMs, requested service and UserVm

2: Initialization;

3: DC = �ndClosestDcToUser(uservm);

4: if DC == -1 then
5: abandonService();

6: else
7: createVmInDc(�rstVm, DC);

8: for next vm in chain do
9: DC = �ndClosestDcToPreviousVm();

10: if DC == -1 then
11: abandonService();

12: else
13: createVmInDc(vm, DC);

14: end if
15: end for
16: end if

Thus, ideally all VMs are placed in the same DC if it has enough resources. If no

DC is found in any case, the requested service is abandoned.

Figure 4.4 shows a comparative view of the CEN and the ORC algorithms. As

indicated in Figure 4.4a, CEN tries to search all closest servers to place VMs. As

a consequence, the data �ow may not travel in a shortest path that potentially

increase service response time. Conversely, ORC overcomes the limitation of

CEN, as it avoids placing next VMs close to the user rather than close to the

previous VMs, as shown in Figure 4.4b. Based on this mechanism, data �ow can

pass in a possible shortest path that helps to reduce the delay within the SFC.

However, prioritizing the closestDC for the �rst VM is not always the best op-

tion. Especially, when this closest DC has only resources for some VMs and the

other VMs must be distributed to another farther DC. This leads to an increased

hop count within the chain and increased latency. In this case, placing all VMs

in the farther DC might be better, since the delay within the chain would be

zero. However, a heuristic for this idea is not evaluated in this work. In the next

subsection, we present an optimized approach with the use of an ILP model.
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Figure 4.4: Graphical View of CEN and ORC Algorithms

4.2.3 Service Response Time and Resource Optimization

To formulate the problem and align with the de�nition of the infrastructure and

SFC described before, we consider that each server is a member of a data center.

We assume that all servers within a data center are fully connected with links of

practically in�nite bandwidth and zero delay. The �rst node of a network inside

a data center is considered to be the network gateway. A UserVM is declared as

statically allocated in a server within a dedicated UserDC. The UserVM only acts

as the source of requests to a particular service chain. Table 4.3 shows the nota-

tions that are used for the formulation of the optimization problem. Based on the

provided notations and the considerations mentioned before, the optimization

problem is formulated as follows.

Given:

R = {CPU,Memory}

R′ = {Bandwidth}

M = ∅
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Table 4.3: Summary of Parameters Used in the ILP Model

Parameters Description

T Set of application components

C Set of channels between application components, C ⊆ T × T
H Set of hosts

L Set of links between hosts, L ⊆ H ×H
S Set of user application components statically allocated at hosts, S ⊂ T
HS

Set of hosts where static user application components are placed, HS ⊂ H ,

f : S → HS | ∀h′ ∈ HS , ∃t′ ∈ S : h′ = f(t′) (f is subjective)

R Set of unique resources o�ered by hosts

R′ Set of unique resources o�ered by links

M Set of monitored metrics at hosts

M ′ Set of monitored metrics at links

art Amount of resource r demand by application component t

irh Capacity of resource r at host h

βr
h Amount of resource r available at host h

mk
h Measured value of metric k at host h

crsd Amount of resource r demand required by channel (s, d)

bruv Amount of resource r available at link (u, v)

µk
uv Measured value of metric k at link (u, v)

Minimize:

• Objective 1: Minimize service response time (STO) of service chain

Objective1 =
∑

(s,d)∈C

πuv,sdµ
Delay
uv , ∀(u, v) ∈ L. (4.1)

• Objective 2: Minimize resource utilization (RO)

Objective2 =
∑
h∈H

(min{
∑
t∈T

σht, 1}
100βCPU

h

iCPU
h

). (4.2)
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Objective 2 aims to minimize the product of the number of servers used in

a placement and the percentage of available CPU. This optimization procedure

will attempt to collocate VMs in a server but will have the preference to an

already utilized server. Thus, the servers that have zero utilization will not be

activated until the others have been fully utilized. By doing this, unused servers

can be put in the idle state to save energy. However, at the initial placement all

servers will have the same probability to be selected.

Subject to:
πuv,sd ∈ {0, 1}, (s, d) ∈ C, (u, v) ∈ L. (4.3)

In Equation (4.3), πuv,sd is a decision variable and equals to 1 if task channel

(s, d) is routed from link (u, v), 0 otherwise.

σht ∈ {0, 1}, h ∈ H, t ∈ T. (4.4)

In constraint (4.4), σht is a decision variable and equals to 1 if task t is assigned

to host h, 0 otherwise.

∑
h∈H

σht = 1, ∀t ∈ T, (4.5)

σht = 1, h ∈ HS , t ∈ S, (4.6)∑
t∈T\S

σht = 0, ∀h ∈ HS . (4.7)

Constraint (4.5) ensures that a task (or application component) is assigned only

to one host. The static placement of the user task is de�ned in Equation (4.6), it

is given as an input to the problem and not decided. Whereas, constraint (4.7)

speci�es that user applications are only placed in hosts assigned for them.

∑
t∈T

σhtα
r
t ≤ βr

h, ∀r ∈ R, ∀h ∈ H. (4.8)
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Equation (4.8) stipulates that the considered host hmust have enough resources

to allocate the application component t.

∑
(u,h)∈L

πuh,sd + σhs =
∑

(h,v)∈L

πhv,sd + σhd. (4.9)

Constraint (4.9) captures and expresses in one equation,

• the unsplittable �ow constraint: A channel uses a single outgoing link

from source and a single incoming link at destination and does not split,

∑
(u,h)∈L

πuh,sd = 1 if σus = 1,∑
(h,v)∈L

πhv,sd = 1 if σvd = 1,

• the collocation of tasks: A communication path is not required in the

case that both s and d are assigned to the same host (and no capacity

checking),

σhs = σhd,

πuu,sd = 0,

• the �ow conservation constraint: No tra�c is stored in a node unless this

node is the source or the destination or collocated source and destination,∑
(u,h)∈L

πuh,sd =
∑

(h,v)∈L

πhv,sd,

∀h ∈ H : σhs = 0, σhd = 0.

∑
(u,h)∈L

σhsπuh,sd = 0. (4.10)

Constraint (4.10) makes sure that there is no loop in the path before reaching
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destination.

πuv,sd = πvu,ds, (s, d), (d, s) ∈ C, (u, v), (v, u) ∈ L. (4.11)

As determined in Equation (4.11), a bidirectional communication between two

tasks is routed through the same bidirectional overlay path. In addition to this,

upstream and downstream of a �ow is not routed separately.

∑
(s,d)∈C

πuv,sdcsd ≤ buv, ∀(u, v) ∈ L. (4.12)

Constraint (4.12) guarantees that the link (u, v) must have enough resource re-

quired by channel (s, d).

4.3 Simulative Performance Evaluation of SFC
Placement Algorithms

In this section, we �rst present the EdgeNetworkCloudSim extension in Sec-

tion 4.3.1, which is used to simulate and evaluate di�erent SFC placement algo-

rithms in the edge cloud. Subsequently, we introduce the edge cloud topology

and simulation con�gurations in Section 4.3.2, followed by service chain char-

acteristics used for the simulation in Section 4.3.3. Thereafter, in Section 4.3.4,

we present several performance metrics to evaluate the performance of the al-

gorithms. Finally, Section 4.3.5 presents the outcome of this chapter.

4.3.1 EdgeNetworkCloudSim Extension

In this work, we extend EdgeNetworkCloudSim to simulate a SFC running on

the edge cloud and to evaluate the performance of di�erent placement algo-

rithms. Figure 4.5 shows the main components of the simulator. The extended

components are highlighted by colored boxes.
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Figure 4.5: Overview of EdgeNetworkCloudSim Architecture

From the top of the �gure, SimEntity models an entity in the simulation. The

entity can send and receive messages as well as �re and handle events. Next,

NetworkDatacenter models the core cloud infrastructure that is o�ered by a

provider like Amazon Web Services. Each data center contains one or multi-

ple servers that are modeled by the NetworkHost class. Service is a Network-
Cloudlet running on a VM that represents a SFC in this study. Depending on

the service type, each SFC has di�erent resource demand and characteristics.

In the simulation, resources are allocated for each VM by its demand and also

depending on the amount of available resources at the data center. The resource

allocation policy is in charge by VmAllocationPolicy. The detail of other com-

ponents can be found in the original work [24, 121, 123].

In fact, placement algorithms for VMs can easily be implemented in EdgeNet-

workCloudSim. However, the framework did not provide means to compute an

optimal placement with the help of an ILP. Therefore, EdgeNetworkCloudSim

is extended to be able to implement OPL models and solve them with a CPLEX
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Optimizer. Speci�cally, the following new classes are added to the simulator to

achieve the mentioned goal. First, the AvailableResource class is implemented

whenever a new service is requested. It monitors resource utilization (e.g., CPU,

RAM) of all servers in data centers. Additionally, the resource demand of the

VMs in SFCs is also provided. This information is used for the OPLData class.

The OPLModel class contains the pre-de�ned OPL model with two objec-

tives which are minimizing service response time and resource utilization. The

mathematical expression of the model was presented in Section 4.2. The OPL-
Data class contains the data of the OPL model. The data consists of static and

dynamic information. The static information like topology and link resources

between nodes is initially provided. The dynamic information consists of avail-

able resources of the servers (e.g., CPU, RAM), resource demand of the VMs, and

location of the user. Note that the user in EdgeNetworkCloudSim is simulated

as another VM, called UserVM. This UserVM is located in a server of a dedi-

cated data center, called UserDatacenter, which can not be used to place virtual

machines of SFCs. The dynamic information is gathered by the AvailableRe-
source class and regularly updated whenever a new SFC is requested.

Finally, the PlacementSolver class is triggered when a new service has been

requested and theUserVM has been already speci�ed by the simulator. This class

exploits the CPLEX Optimizer toolbox to solve the OPL model and returns one

optimal solution each time. The solution is the speci�c location of each VM of

the service chain. EdgeNetworkCloudSim can now make use of the solution and

place these VMs accordingly to start the service. If no solution can be found due

to insu�cient available resources in the system, EdgeNetworkCloudSim will dis-

card the incoming SFC request. Note that a new optimal placement will also be

computed when a SFC has been terminated and allocated resources are released.

4.3.2 Edge Cloud Topology

Edge computing is a method of enhancing cloud computing systems by of-

�oading applications, services and hardware resources to the edge of the net-
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work [93]. Therefore, the edge cloud introduces a new intermediate layer at the

edge of the network, which is physically placed in between the cloud data cen-

ter and the user. This removes a major bottleneck and reduces high latencies

in services due to long distances to the user. In this chapter, we assume that a

user device is directly connected to an edge cloud with four data centers. The

user requests a service in the edge cloud, and receives a response from servers

located in these data centers. Figure 4.6 shows the topology of the simulation.

This topology is designed based on a real testbed of the EU H2020 INPUT

project [23]. It consists of four data centers (DC) and four user data centers

(UserDC). One of the DCs has two servers, the others have only one. These

servers have di�erent resource capacity. In the simulation, the VMs of SFCs are

distributed over these �ve servers of the edge cloud depending on their avail-
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able resources. The user device is simulated as aUserVM that is installed within a

server in theUserDC. EachUserDC is connected to aDC, thereby, representing all

users which are close to that edge data center. EachUserDC is considered to have

unlimited resources to hostUserVMs. The interconnection ofDCs andUserDCs in

the edge cloud is operated by di�erent link capacities via two types of switches.

The server in each data center is connected to its EdgeSwitch with a 5 ms delay

direct link. However, in DC-1, two servers are set to be interconnected with zero

delay. The EdgeSwitch of a DC is connected to its AggregateSwitch via a 5 ms

delay connection. While, in case of the UserDC, this connection has 10 ms delay.

All AggregateSwitches are interconnected through a link with 50 ms delay. In

the simulation, this topology is mapped with a BRITE �le [129] for modeling

link bandwidth and associated latency. Since we only consider link delay in the

topology of the simulation, we con�gure the link bandwidth of the topology

with a large number to ensure there is not any bottleneck in the network.

4.3.3 Service Chain Characteristics

As brie�y described in Section 4.1, we simulate three types of personalized ser-

vices. Each service chain has a single UserVM with a �xed location in a UserDC
sending requests only to its particular service chain. Each service chain requires

three VMs with various types. Table 4.4 summarizes the simulated services and

their required VM types.

The table shows that the Streaming and Web services require a similar total

size of VMs. However, their characteristics are di�erent. The Streaming service

Table 4.4: Summary of Services and Their Required VM Types

Service VM-1 VM-2 VM-3

Video Streaming T2Small T2Nano T2Large

Web T2Large T2Small T2Nano

Database T2Nano T2Nano T2Small
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is simulated to deliver video with di�erent lengths. Speci�cally, the video length

is distributed exponentially around a mean of 30 s. Each delivered video chunk

has 2 s in length and 1100 KB in size. Consequently, when a Streaming service

is requested, the number of responses is corresponding to the number of video

chunks. That is the reason why a Streaming service has a much longer service

response time than the other services. On the other hand, Web and Database

services have only one response per request, but their response data size is dis-

tributed around a mean of 2000 KB and 50 KB, respectively. Besides, to simu-

late user-like behavior, we use an exponential distribution for service requests

(i.e., the time at which the service is instantiated), service life time (i.e., the time

until the service is terminated), and user request inter-arrival times (i.e., the time

at which the user sends a request to the service) in the simulation.

4.3.4 Performance Metrics

The main goal of the simulation is to evaluate the performance of di�erent SFC

placement strategies. To this end, we de�ne two metrics that are used to compare

these strategies in di�erent aspects.

Service Response Time and Hop Count

Service response time is the amount of time between the user request a SFC and

the reception of its response. In the simulation, the service response time con-

sists of the sum of all link delays and the processing times at all VNFs. Herein,

the processing time at each VNF is set by default of 50 ms in the simulator for

all services. Therefore, the total link delay is the main factor that impacts the

service response time of a SFC. Additionally, the total hop count from the user

to the SFC, which is the number of intermediate nodes including switches be-

tween the UserVM and the data center can be analyzed. It shows insights into

the dispersion of the SFC over di�erent servers in the topology.
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Resource Utilization

Resource utilization is an important metric, since reducing power consumption

saves energy. In that way, additionally greenhouse gas emission is reduced, de-

creasing carbon footprint. To this end, the idea is to place all VMs on the smallest

set of servers capable to deal with all running tasks. Empty servers can then be

shut down to save energy. Based on this, we consider the number of servers,
which are utilized to provide a given number of services.

4.3.5 Performance Evaluation of SFC Placement
Algorithms

In this section, we present the simulation results that compare the performance

of four SFC placement algorithms. We simulated three types of personalized ser-

vices with individual algorithms in the extended EdgeNetworkCloudSim. Based

on the topology and metrics presented above, we implement 20 replications for

each algorithm to increase the statistical signi�cance. After the experiments,

we collect 400 log �les in total and analyze them regarding the mentioned met-

rics. In the next subsections, we evaluate the performance of the algorithms

according to two criteria, service response time and resource utilization. The al-

gorithms under evaluation areCentralization (CEN),Orchestration (ORC), Service
Time Optimization (STO), and Resource Optimization (RO). Wherein, STO and RO
areObjective1 andObjective2 formulated in Equation (4.1) and Equation (4.2),

respectively.

SFC Placement Algorithms vs. Service Response Time

Figure 4.7 shows the average service response time of the three SFCs with dif-

ferent placement algorithms. The x-axis indicates the three services, the y-axis

shows the service response time in milliseconds. The bar group with di�erent

colors of each service shows the mean service response time with a 95 % con�-

dence interval of di�erent placement algorithms.
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Figure 4.7: Average Service Response Time of Di�erent SFCs

Figure 4.7 shows that the Streaming service has a higher service response time

than the Database and the Web service. It is due to the fact that the Streaming

service responds multiple video chunks per request, depending on the video

length as described in Section 4.3.3. Each video chunk is processed at VNFs in

the SFC before transferring to the user. The processing time at each VNF is 50 ms

as default con�guration in the simulator. Thus, the more video chunks delivered,

the higher total processing time adding to the response time of the Streaming

service. In fact, the average total response time of the Streaming service is about

6000 ms. However, for the sake of comparability with other services, we only

show in Figure 4.7 the average service response time of one reception. In other

word, response time of one video chunk. The overhead of sending multiple video

chunks increases the average response time of one chunk as shown in the �gure.

Conversely, the Database has the lowest average response time of about 250 ms.

Since it requires a lower total size of all VMs, the placement algorithms have a

higher chance to place the VMs in a desired server which decreases the overall

service response time.

Regarding the service response time produced by di�erent placement algo-

rithms, STO gains the lowest service response time of all services, followed by

ORC, CEN, and RO. For instance, when STO is used as placement algorithm for
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the Web service, it takes 272.80 ms for a user to request the service until re-

ceiving its response. Whereas, by using ORC, CEN, or RO algorithms, it takes

277.80 ms, 328.00 ms, and 327.10 ms, respectively. This does not come as a

surprise, as STO was designed to compute a placement, minimizing the service

response time by using the ILP model and considering the whole system state.

Note that, since our topology has only four data centers, the processing time of

CPLEX Optimizer is negligible. However, with a larger network topology, the

solution space created by the CPLEX Optimizer is also large. As a consequence,

the solving time for an optimal placement can negatively impact the overall ser-

vice response time, since the optimal solution is a NP-hard problem.

Thus, heuristic approaches have to be investigated, such as ORC which

reaches the second lowest service response time for Streaming and Web ser-

vices. In this algorithm, all VMs in the chain are placed to have shortest dis-

tance between them. The �rst VM in the chain is placed as close as possible to

the user. As a result, ORC constantly tries to minimize the length of the chain.

In fact, ORC has to scan all servers with multiple loops to �nd the best place-

ment for VMs. The chosen servers must have enough resources for all VMs as

well. This operation is executed each time for a new coming service. Thus, with

an increasing number of requests from the user, it also in�uences the overall

service response time.

In fact, the ideal placement for the lowest service response time is the situa-

tion, where all VMs in the chain are placed in one server. In this case, the delay

between the three VMs in the chain is zero, which substantially decreases the

overall service response time. Figure 4.8 shows the probability of the occurrence

of this situation. The x-axis indicates the three service types, the y-axis shows

the probability of placing the whole chain in one server. The bars with di�erent

colors represent the mean probability for the di�erent algorithms with a 95 %

con�dence interval.

It can be seen that RO exhibits a higher results compared to the other algo-

rithms, since it is specially designed for resource optimization. This behavior is

described in more detail in the next subsection. Regarding the other algorithms,

130



4.3 Simulative Performance Evaluation of SFC Placement Algorithms

Service Types
Streaming Database Web

Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1
CEN ORC STO RO

Figure 4.8: Probability of Placing the Complete Chain in one Server

Figure 4.8 shows that STO has a considerable higher value than ORC and CEN al-

gorithms. In the Streaming service, there is 52.44 % chance that STO places the

whole chain of the service in one server, while this number in case of ORC and

CEN is 36.86 % and 32.29 %, respectively. This tendency is also encountered in

the Database and the Web services. This is reasonable, since STO calculates the

SFC placement based on minimized total delay. Thereby, it is one option to place

all VMs in one server. For instance, the selected server for the whole chain may

not be the closest one to the user. Since the delay between the VMs in the chain

is zero, the total delay is still smaller than the case where the VMs are distributed

over di�erent servers. This is the major di�erence between the optimized solu-

tion and the heuristics. Indeed, ORC and CEN choose the placement of a SFC

based on iteratively scanning every server in data centers. They try to select the

server as close as possible to the user. As a consequence, the closest servers are

rapidly running out of resources. Afterwards, the VMs of the next SFC must be

distributed over di�erent servers. This is the reason why their probability of all

VMs in one server is lower.

Figure 4.9 shows the mean hop count calculated from di�erent placement

algorithms. The x-axis shows the algorithms and the y-axis displays the mean

hop count with a 95 % con�dence interval.
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Figure 4.9: Average Hop Count of Di�erent Placement Algorithms

The �gure indicates that, CEN has the highest average hop count compared

to other algorithms. The average number of intermediate nodes between the

user and SFC calculated by CEN is 6.04, while in case of STO and ORC is 4.7

and 5.3, respectively. In contrast to ORC, the CEN algorithm always selects the

closest server to the user to place VMs, without consideration of the length of the

chain. Consequently, although the chosen servers are near to the user, the data

�ow might be transferred in a long chain that signi�cantly increases the service

response time. RO also shows a high hop count, only slightly lower than CEN.

But still, the response time produced by RO is higher in the case of Streaming

and Database services. This is reasonable, since RO is proposed to minimize

resource utilization and service response time is not taken into account.

To conclude this subsection, we have shown that the STO placement strategy

carried out by using ILP model has the highest performance, since it achieves

the lowest service response time of all types. However, the performance of STO

might be in�uenced by the processing time of CPLEX Optimizer in a larger

topology. In this situation, the solving time for the optimization problem would

be high and might considerably increase the overall service response time. The

heuristic algorithm ORC shows an acceptable performance, since it attempts to

minimize the length of the chain. Although RO has low performance in service
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response time, it is particularly designed for resource optimization as presented

in the next subsection.

SFC Placement Algorithms vs. Server Utilization

As presented in Section 4.2.3, the second objective of our ILP model is to specify

the placement of a SFC, where resource utilization is minimized (i.e., RO algo-

rithm). Figure 4.8 in the previous subsection indicates that RO has a noticeable

higher probability that it places all VMs of a SFC in one server compared to the

other algorithms. To this end, the objective function tries to minimize the num-

ber of servers used for SFCs regarding their available resources. This means, RO

will place as much SFCs as possible in one server and has the preference to an

already utilized server as well. By doing this, the unused servers can be put in

the idle mode or shut down to save energy.

To evaluate the performance of this placement strategy, we calculate the num-

ber of utilized servers along with the number of concurrently instantiated SFCs.

Herein, a server is considered as utilized when at least one CPU is allocated to a

VM of a SFC. Figure 4.10 shows the correlation between the number of utilized

servers and the number of concurrent services. The x-axis shows the number

of concurrent services, the y-axis indicates the average number of correspond-

ing used servers, meaning the Server Utilization (ServUtil) rate. The di�erent

colored lines display the mean ServUtil rate produced by di�erent placement

algorithms. The error bars on each line indicate the 95 % con�dence interval of

the mean values.

Figure 4.10 shows that STO, ORC, and CEN placement algorithms produce

similar ServUtil rate, when all servers are handled by more than ten concurrently

instantiated SFCs. This is reasonable, since these algorithms attempt to minimize

the service response time by selecting the closest servers to the user. Since users

are located at di�erent UserDCs as shown in the topology, their nearest servers

are quickly utilized. However, ORC, CEN, and STO are outnumbered by far by

the RO placement algorithm, which has a much lower ServUtil rate as repre-

sented by the separate yellow line. It can be seen that ten concurrent services
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Figure 4.10: Number of Utilized Servers vs. Number of Concurrent Services

only use 3.6 servers on average. All servers are constantly utilized when there

are 21 services instantiated at the same time. This maximum number of con-

current services doubles the other placement algorithms. This is due to the fact

that the RO algorithm always prioritizes the collocation of VMs in one server

before considering the others. Furthermore, when a SFC has �nished the exe-

cution and releases server resources, but is still used by other services, it has a

higher priority to be chosen for the next incoming service than the unused ones.

Based on this, the number of utilized servers is minimized and the other servers

can be put to standby state. This can signi�cantly reduce the power consump-

tion and save energy. To conclude, it could be seen that the presented heuristic

algorithms show a decent performance in terms of service response time, but

still need improvements in terms of resource utilization.

Influence of the Number of VNFs in a Chain on Service Response Time

A unique feature of a SFC in the NFV paradigm is enabling the operator to �ex-

ibly con�gure network services at the software level without changing the un-

derlying hardware infrastructure. In such a con�guration, a VNF can be involved

in one or multiple SFCs depending on the service requirements. For instance, a

virtual �rewall can be part of both web and other value-added network services.
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Besides, the �exible con�guration also allows the operator to dynamically add

or remove one or more constituent VNFs for a particular purpose. For instance,

a virtual DPI may be added to a live streaming service for QoE monitoring.

Based on this, we consider another scenario where the Streaming service has

a di�erent number of constituent VNFs. We investigate the in�uence of this con-

�guration on the service response time. In this subsection, we only consider the

Streaming service and skip the result of the Web and Database service since they

have similar behavior. Additionally, we only focus on the impact of the number

of VNFs in the chain on the service response time. Therefore, we omit the mea-

surement of the RO algorithm since it is particularly designed to minimize the

server utilization as presented in the previous subsection.

Figure 4.11 shows the behavior of the response time of the Streaming service

where the number of VNFs in the chain is varied. In the �gure, the x-axis depicts

the scenarios where, a SFC contains a di�erent number of VNFs between 2 and 5.

The y-axis indicates the mean service response time in each scenario with a 95 %

con�dence interval. In the �gure, the service response time obtained by di�erent

placement algorithms is given as bars with di�erent colors. Additionally, for

each algorithm a linear regression of the service response time is performed,

which is shown as a colored line, depending on the algorithm type.
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Figure 4.11: In�uence of the Number of VNFs in Chain on Service Response Time
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It can be seen from Figure 4.11 that the service response time of all placement

algorithms linearly increases when the number of VNFs is incrementing. Speci�-

cally, with the CEN algorithm, the service response time increases by 45 % when

the number of VNFs changes from 2 to 3 in the SFC. In case of ORC and STO,

this number is 44 % and 42 %, respectively. It is reasonable since a longer chain

results in a higher end-to-end latency. Additionally, packets traversing the SFC

will be processed at all VNFs in the chain. As a consequence, a SFC with more

VNFs requires a longer processing time compared to a shorter one.

Regarding the performance of the algorithms, the service response time pro-

duced by CEN is higher compared to ORC and STO, as also described in the

previous subsection. However, in the scenario with two VNFs in the chain, the

di�erence in service response time between these placement algorithms is neg-

ligible. In fact, both CEN and ORC try to place the �rst VNFs as close as possible

to the user. The only di�erence between them is the selection of the server for

the second one. With ORC, it should be close to the �rst VNF, with CEN it will

be close to the user. Consequently, the di�erence in service response time ob-

tained by these two heuristic algorithms is small. Based on this, we believe that

heuristic approaches are close to optimal if the number of VNFs in the chain is

small enough. In this experiment, this number is two VNFs in chain.

Conversely, if the SFC contains more VNFs, the STO algorithm still gains a

higher performance represented by a lower service response time. In addition

to this, the velocity of an increase of service response time produced by CEN

is faster than the others. Indeed, Table 4.5 shows the detailed results of the lin-

ear regression of the service response time depending on the number of VNFs

in chain, including the Coe�cient of Determination (CoD) r2 as a measure for

the goodness of �t. The table shows that CEN has the highest slope coe�cient

of 1853.14, with a smaller intercept of 49.12. This means, the service response

time produced by CEN will raise faster with an increasing number of VNFs,

compared to other algorithms. Nevertheless, both ORC and STO also produce

a linear increase of service response time given by an incremental number of

VNFs. This trend is represented by linear regression functions as shown in Ta-
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Table 4.5: Linear Regression of the Service Response Time for Placement Algorithms

Algorithms Service Response Time r2

CEN 1853.14 · x+ 49.12 0.97

ORC 1628.08 · x+ 474.07 0.96

STO 1534.36 · x+ 586.16 0.96

ble 4.5. With high CoD values, these functions can be reliably used as reference

models for analyzing the impact of the number of VNFs in the chain on the

service response time and also the QoE.

QoE Monitoring in the Context of SFC

In Chapter 3, we evaluate the in�uence of virtualization and geographical place-

ment on the performance of the VNF for QoE monitoring. There, the VNF is a

standalone monitoring function deployed in the AWS cloud. In this context, to

e�ciently deploy the VNF we can simply use CEN or ORC algorithm to �nd

a closest server to the user. Thereby, we can achieve a high accuracy in video

quality and QoE estimation. However, a QoE management architecture conven-

tionally consists of di�erent sub-functions. Figure 4.12 shows an example of a

QoE management architecture for HAS. This architecture is also generally in-

troduced in [21].
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As shown in the �gure, to perform QoE management, the QoE Controller ac-

quires video tra�c for the QoE Monitoring, where video quality and QoE are

estimated based on a pre-de�ned QoE model. Thereafter, the estimates are for-

warded to the QoE Manager with an awareness of the current network condi-

tions. Finally, the QoE Manager triggers a network management decision into

the operator network to improve the QoE accordingly. This architecture realizes

a chain of QoE management functions where the network operator is the end

point of the chain. We refer this concept is the QoE Monitoring SFC (QMSFC).

Regarding our monitoring approach in Chapter 3 for a single user, the place-

ment problem of a QMSFC is easily solved since it only requires the lowest delay

between the user and the monitoring point. In this case, the CEN algorithm can

be used. However, in a multiple user scenario, the placement problem of the

QMSFC must be well-de�ned to achieve a high e�ciency in QoE management.

Indeed, with an increasing number of users, more QMSFCs must be initiated

across the network to handle an amplifying tra�c load. In this situation, an ef-

�cient placement strategy for QMSFCs like ORC or STO is required to quickly

deliver the management decisions into the operator network. By doing this, the

operators have timely opportunity to react to improve the network and thereby

to prevent user churn.

4.4 Lesson Learned

With the NFV paradigm, the use of SFCs is promising to reduce the complexity

of heterogeneous services deployment. Nevertheless, the distribution of VNFs

over di�erent hosts increase the overall latency and server utilization rate. In

this chapter, we evaluate four algorithms to e�ciently place SFCs in the con-

text of an edge network. These algorithms aim to decrease the service response

time or minimize resource utilization. To evaluate and compare the performance

of these placement algorithms, we use the event-based EdgeNetworkCloudSim

simulator. Thereby, data centers are located in an edge cloud and the VNFs of the

SFC are placed in the servers of a data center according to a speci�c algorithm.
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While the CEN and ORC algorithms place the VNFs by heuristically scanning

servers for proper locations, STO and RO are optimized solutions obtained by

solving an ILP model.

Regarding the service response time, the result shows that STO performs bet-

ter than the other algorithms in all types of services. This demonstrates that the

use of an ILP model is able to compute an optimal solution. Especially, the proba-

bility of placing all VMs of a chain in one server is higher than with the CEN and

ORC algorithms, which results in reduced service response time. However, the

processing time of the optimizer is a considerable drawback as the placement

problem is NP-hard. Thus, computation times might be unusably high when the

topology is large with a huge number of servers and links connecting them.

Despite of producing higher service response times than STO, the ORC algo-

rithm always tries to shorten the length of the chain. This algorithm can be an

alternative method for STO in a large network topology, if the processing time

of STO is high. However, as ORC iteratively scans all servers for the closest

possible placement of a VM, the scanning time can increase in large topologies.

The CEN algorithm produces higher overall service response time than STO

and ORC, since it only places VMs as close as possible to the user without the

consideration of the chain itself and the communication of the VMs.

In the context of QoE management, the service response time plays an im-

portant role since the management decisions must be delivered to the network

operators in time. To achieve the goal, the VNFs in the QMSFC like QoE monitor-

ing or QoE controller must be e�ciently placed across the network to minimize

overall response time to the network operators. For instance, the QoE controller

should be placed close to the user to reduce the delay in estimating the video

quality. Whereas, the QoE monitoring or QoE manager should be placed close

to the network operator to quickly deliver management decisions. In this sit-

uation, an optimal placement is required to minimize the response time of the

QoE manager into the operator networks. To this end, the STO algorithm is rec-

ommended. Nevertheless, to e�ciently place the VNFs of the QoE management

service using STO, the solving time of the ILP model must be taken into account.
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The second objective of the ILP model is to minimize the server utilization.

Herein, the placement of the SFC is optimized to utilize the least number of

servers. Our result shows that with the optimized placement, ten concurrent

SFCs only require half of all server resources. In contrast, the heuristics and

STO utilize all data centers to handle the same number of concurrent SFCs. This

insight shows that while the evaluated heuristics perform well in terms of ser-

vice response times, they require improvements to have the ability to reduce

power consumption, cost, and thus the carbon footprint of data centers.

Lastly, we extend the simulation to other scenarios, where a SFC consists of

di�erent number of VNFs. Our result shows that with both heuristic and op-

timized placement strategies, the service response time linearly varies with an

increasing number of VNFs in the chain. This behavior is represented by a linear

regression functions with high CoD values. These equations can later be used as

analytical models for optimizing the service response time with respect to the

number of VNFs in a chain.

To conclude, the �ndings in this chapter provide the network operators with

di�erent placement strategies, where they can decide to place the SFC in order

to reduce the end to end latency or to save energy.
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5 Conclusion

The Internet has exponentially evolved in the last decade. In particular, key

developments in the network technology have led to an improvement in the

user experience while using Internet services. There, one of the most important

changes is the emergence of cloud computing. This technology is an e�cient

alternative for desktop-based software that is statically installed on the user ma-

chine. Nowadays, users are able to access an arbitrary type of cloud application

from anywhere with a thin client. Thus, the bene�ts of the cloud paradigm have

attracted a huge number of subscriptions in recent years. However, high service

demands also challenge the network providers maintaining the user expectation

since their resource capacity is limited. To cope with this problem, it is important

to be aware of the user perception when an impairment of the service quality

occurs. Based on this, tra�c management can be performed in a timely manner

to improve the network QoS and the service quality as well. With the establish-

ment of the Quality of Experience (QoE) concept, the network providers have

an ability to understand the user experience through a monitoring mechanism

in the network.

This monograph has focused on di�erent aspects of QoE research. From the

study of QoE assessment of the prominent cloud applications, objective QoE

monitoring was investigated for HTTP Adaptive Video Streaming (HAS). Addi-

tionally, by using Virtual Network Function (VNF) for QoE monitoring in the

cloud, the feasibility of an interworking of Network Function Virtualization

(NFV) and cloud paradigm was evaluated. In the NFV architecture, the imple-

mentation of a service chain is promising to decrease the complexity when de-

ploying heterogeneous network services. Thus, di�erent placement algorithms
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of Service Function Chain (SFC) were proposed and compared in the context of

the edge cloud. On the one hand, this research work targets the cloud service

providers by providing them with methods of assessing QoE for cloud applica-

tions. On the other hand, the network operators can learn the pitfalls and draw-

backs of applying the NFV paradigm for such a QoE monitoring mechanism. In

the following, we summarize the main outcomes of this work and recommen-

dations for the providers.

In the �rst part, we investigated the popular cloud services, which fall into

two models of multi-tenancy cloud architecture. While Google Docs is a shared

multiple user cloud application, a cloud-based photo service features an iso-

lated multi-tenancy model where each user has his own album. Each service has

di�erent characteristics in performance with respect to QoE. Thus, for Google

Docs, we considered the impact of delay and packet loss on di�erent subpro-

cesses such as login or creating document. To this end, we used a practical emu-

lation testbed where the network is arti�cially changed according to pre-de�ned

traces. Our results show that network delay di�erently in�uences the login, cre-

ating, and saving a document subprocesses, while low packet loss rate does not

a�ect at all. As part of the outcome, the derived linear regression models in turn

can later be used in analytical model for optimization or in a reference model

for QoE monitoring.

Di�erent from Google Docs, a cloud-based photo service typically provides

the user with an isolated space to store pictures. Thereby, the whole photo al-

bum is able to be moved next to the user to decrease the latency due to a long

distance access. Thus, QoE assessment for this type of service is necessary to

determine when the photo loading time degrades the user perceived QoE. To

this end, we considered the trade-o� between the content size, geographical lo-

cation of the service, and QoE. In this study, we validated and used a previous

TCP throughput model to calculate the loading time of a photo given by di�erent

network QoS parameters and distance between the user and the service. Then,

the TCP model is mapped with a QoE model to achieve the mentioned goal.

We observed that the presence of delay and packet loss dramatically reduces
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the QoE for photo loading time, while without packet loss, a long distance only

slightly decreases the QoE. Based on the mapping model, the service and net-

work operators can optionally adjust the photo size, improve the network QoS,

or give decision to migrate the service next to the user to improve the QoE.

Second, we focused on one of the most popular and demanding services in

today’s Internet, HAS. Based on the previous studies about the in�uence factors

of QoE for HAS, we designed a monitoring function exploiting Deep Packet In-

spection (DPI) technique in the form of a VNF. This function is able to extract

application layer parameters of the HAS such as video bu�er and quality adapta-

tion, stalling frequency, and length. Thereby, the video quality is observed and

QoE perceived by the user is estimated using a pre-de�ned reference model.

Considering the side-e�ects of the network QoS and the virtual environment

on the accuracy of the estimation, we deployed the VNF QoE monitoring in

di�erent scenarios, either in a practical emulation testbed and on the Amazon

Web Service cloud. We found out that the VNF gains a high accuracy in esti-

mating video quality and QoE for HAS when it is deployed next to the user or

operated with a high bandwidth connection. Conversely, there is a time shift-

ing in estimating the video bu�er if a high latency is present on the network

path. Specially, packet re-ordering and mobile access network have negative in-

�uence on the accuracy of the monitoring function when it is placed far away

from the user. This network behavior induces an overestimation of the QoE that

leads to a misunderstanding for the network providers about the user expecta-

tion. Therefore, it is highly recommended for the network providers to properly

place such a VNF monitoring to achieve a high accuracy in estimating QoE. In

our study, it should be placed at the user device or in the edge cloud.

The third part of the thesis carries out a study about service function chaining

in the edge cloud. In a SFC, separated VNFs are placed in a speci�c order to per-

form the service. For instance, in the QoE management system, QoE controller,

QoE monitoring, and QoE manager must be executed in sequence to manage the

network and to maintain the expected QoE perceived by the end user. Thus, it is

necessary to have a good strategy of placing the VNFs in the SFC to obtain a low
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end to end latency. Other concern is to minimize the server utilization hosting

the VNFs. This contributes to the reduction in power consumption and therefore

decrease carbon footprint. To this end, we proposed four placement algorithms

for SFC with respect to minimizing service response time and server utiliza-

tion. Wherein two heuristic approaches are designed against the optimized so-

lution obtained by using the Integer Linear Programing (ILP) model. The SFC is

simulated in the EdgeNetworkCloudSim simulator software and the algorithms

are installed to place the VNFs whenever a service is requested. Our simula-

tion results show that the optimized solutions produce lowest service response

time and least server utilization rate compared to the heuristic approaches. This

demonstrates that the ILP model can be used to e�ciently compute an opti-

mal placement for the SFC. However, one must consider the size of solution

space when the network topology is large. This can become a bottleneck when

searching for an optimal solution since the placement problem is NP-hard. In

this situation, the heuristic algorithms can be the alternatives since they have

simple placing rules that require less processing time. These insights may help

the network operators to learn the strengths and weaknesses of di�erent place-

ment strategies. Based on this, they have an ability to quickly compute a proper

placement for the SFC in the context of the edge cloud.

To summarize, this monograph covers di�erent experimental methods for the

QoE assessment and monitoring for cloud services in both �xed and mobile

networks. These methodologies are not limited in the scope of this thesis but

can later be applied for other researches in the �eld of QoE assessment and

monitoring. This work provides the cloud service providers with di�erent QoE

assessment methods through the two exemplary cloud applications. Based on

this, they can assess the performance of other cloud services with respect to QoE

perceived by the user. Regarding the QoE monitoring, the network operators can

learn the in�uence factors from this work on the deployment of the VNF for QoE

monitoring in the cloud. There, to achieve an accurate QoE estimation, the side-

e�ects of the virtual environment, network QoS, and geographical placement

must be taken into account. Finally, we propose and evaluate the performance
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of four placement strategies for SFC with respect to service response time or

server utilization. By considering the characteristics of these algorithms, the

network operators can decide whether placing their SFCs to reduce the end to

end delay or to save energy in the context of the edge cloud.

Today’s Internet is continuously changing its shape with the emergence of

new network technologies. The advent of the NFV paradigm inspires the op-

erators to transform the legacy network into a more �exible, scalable, and low

cost approach. Thereby, a new concept of intelligent networks has established

for the future Internet. Nevertheless, the performance of the NFV architecture

is still on the early stage of the evaluation. Thus, more e�orts in future research

are required to actualize and commercialize this network paradigm also in com-

bination with other paradigms like QoE monitoring.
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