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1 Introduction

Computer networks play a critical role in nowaday’s connected world—seen from

both viewpoints—the regional scale with provider networks, mobile networks,

and enterprise networks, as well as on a global scale with the Internet as inter-

connection of networks. Novel applications and services use and the underlying

network infrastructure and are created literally every day. These applications and

services also come with new requirements for the networks and could as well pro-

vide a better user experience, if the network-side would provide better support

for these applications.

However, the underlying protocols and mechanisms that are used in nowa-

days communication networks have, however, barely changed since decades. This

often prevents the deployment novel services with very speci�c requirements,

e.g., regarding latency, availability, or throughput, or increases costs for using

the service. Because interoperability and backward compatibility, which are the

requirements of the networks, most innovations have been essentially blocked,

very much in contrast to changes on the end devices.

These historic remnants range from the exchange of data among di�erent hosts

using the Internet Protocol (IP), the addressing schema of hosts, again based on IP,

to the exchange of routing information among providers using the Border Gate-
way Protocol (BGP). Novel concepts like Locator-Identi�er Split (LISP) for address-

ing or Path Computation Element Protocol (PCEP) for routing stagnate in academic

research without real-world deployments, as too many stakeholders would have

to agree on and coordinate such changes.

However, few institutions considered taking di�erent paths to bring innovation

at least into their very own network, without involvement of external stakehold-

ers and hosts. The need to innovate rapidly led cloud providers like Google and
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1 Introduction

Facebook, which have to deal with massive amounts of data, into development of

custom, software-based solutions according to very own needs within their own

networks. By altering the behavior of their network components, these compa-

nies are able to use custom routing schemes, increase �exibility, and their link

utilization [25], thus lowering the costs without requiring technological changes

at end users.

Such in�uence, however, has not always been possible due to the role of equip-

ment vendors, on which most innovation used to depend on. The functionality of

a network device used to be implemented in its �rmware. This prevented opera-

tors to deploy additional networking functionalities even in their local networks,

i.e., routing protocols, tra�c engineering and monitoring mechanisms, or custom

addressing schemes. Through the advent of mechanisms providing an interface

to device behavior, or allowing to replace entire networking devices with soft-

ware running on commodity hardware, totally new levels of innovation become

realistic.

1.1 Classification from Scientific Viewpoint

The scienti�c background of this work is based on the concept of softwarized net-

works, where innovation can be brought into network infrastructures by custom-

built software instead of hardware shipped and programmed by device vendors.

This removes functionality out of device �rmware and instead lets it run as soft-

ware application on a standard server.

Such software-based networks evolved over the past years by the introduc-

tion of multiple concepts and technologies, which are investigated and applied in

several research projects, e.g., Saser as well as Sendate [26]. In the following, a

brief overview over the technologies that transform network infrastructures from

hardware-focused to software-driven is given.
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1 Introduction

Linux. This allows an operator to let the controller software run together

with other business applications and without requiring dedicated hard-

ware appliances.

Through the increased development speed of software compared to hard-

ware devices and their respective �rmware, changes and innovations are

simpli�ed. Finally, the development of this software can follow common

software development processes.

Be�er resource usage. The central view on all network devices allows the con-

troller to optimize the network’s performance and resource usage. Knowl-

edge of the complete network topology and link utilizations allows the

controller software to better coordinate tra�c �ows [25] within the net-

work so that a global optimum can be reached.

Vendor-independence. The separation between hardware devices being re-

sponsible for packet forwarding and a controller software, which decides

about how to forward, requires a communication protocol between these

to entities. As this protocol should be standardized instead of proprietary,

network devices and controller software using such interface can origin

from di�erent sources such as commercial, open source, or custom devel-

opment. The most popular southbound API protocol (also called Control
Data Plane Interface (CDPI)) that devices such as switches implement is

OpenFlow [28, 29].

Similar to other software projects, controller software can o�er means for

extensibility through plugins. Again, these plugins that add functionality

might be o�ered by vendors or extend the network control plane very spe-

ci�c to the needs of the operator.

Motivated by these advantages, many hardware vendors introduced SDN inter-

faces into their devices. Further, network vendors as well as software companies

o�er controller software, either as commercial products or as open source project

with commercial add-ons. In addition, large community projects spanning multi-

ple companies were set up during the past years and are shepherded by non-pro�t

4



1.1 Classi�cation from Scienti�c Viewpoint

organization like the Linux Foundation [30, 31]. The di�erent implementations

make the SDN ecosystem very diverse and in many places, it is unclear, where to

draw the line between SDN and non-SDN.

1.1.2 Network Functions Virtualization (NFV)

Network Functions Virtualisation (NFV) [32] leverages standard IT hardware in

order to replace proprietary hardware appliances. Such appliances include all

network functions, such as �rewalls, Deep Packet Inspection (DPI), or Customer
Premises Equipment (CPE) in general, as well as entities of the mobile core net-

work. Through the execution as software application on standard server hard-

ware, similar to the SDN controller, di�erent advantages can be expected, many

of them overlapping with those of SDN.

These software instances, the Virtualised Network Functions (VNFs), run vir-

tualized in cloud environments and can thus be scaled according to the actual

need. This avoids over-provisioning of hardware for peak load and reduces en-

ergy consumption. In addition, the decomposition of previously bundled func-

tionality into smaller function blocks, similar to the Microservices concept [33],

allows more �ne-grained resource scaling and allocation, as well as higher devel-

opment speed.

The risk of a vendor lock-in is further decreased, as long as standardized inter-

faces are used and implemented. The decomposition into functional blocks fur-

ther allows to combine components of di�erent vendors instead of relying com-

pletely on one supplicant, which makes the system hard to replace.

This �ne-grained architecture also allows to reduce the overall functionality to

the actually needed feature set. Traditional hardware devices usually bundle a lot

more features than any operator uses and the vendor decides about what features

are included and which are removed.

While NFV does not explicitly rely on SDN, these two techniques merge to-

gether very well. The network functions (VNFs) run in software on commodity

servers and the tra�c �ow between those are de�ned through SDN mechanisms.

In order to streamline NFV activities, a working group within the European
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1 Introduction

Telecommunications Standards Institute (ETSI) de�nes standards for di�erent as-

pects of NFV, including its terminology, architecture, and management mech-

anisms. The reference implementation Open Platform for NFV (OPNFV) [34] is

currently under early development and coordinated by the Linux Foundation. In

this collaborative project, nearly all vendors and many operators in the telecom-

munication �eld are participating. In contrast to SDN, the NFV activities seem

very well-aligned between di�erent vendors following the ETSI speci�cations.

1.1.3 Packet Processing in COTS Hardware

By running VNFs on standardized server hardware that is historically not de-

signed for such extremely network-focussed applications, a performance imped-

iment compared to the very specialized Application-speci�c Integrated Circuits
(ASICs) in hardware appliances can be expected. The architecture of x86 oper-

ating systems and how network data is processed results in a high overhead per

packet. These systems were not designed for heavily packet processing oriented

applications, but for running applications that receive requests over the network

instead and have resource requirements major on compute power.

Modern operating systems already apply optimizations, which overcome the

peculiarities of the underlying hardware, such as Interrupt Moderation. Besides

potentially unwanted e�ects, the performance of general purpose networking

stacks only allows processing in the order of some Gigabits per second.

Therefore, numerous optimization techniques were introduced that allows an

application to bypass the operating system’s network stack for high speed packet

processing. Software frameworks implementing such techniques vary in com-

plexity and the degree of optimization, as well as on the requirements of the un-

derlying software and sometimes even hardware. While implementing a VNF, the

development team has to decide, which framework to use based on the charac-

teristics and requirements of the application. Using frameworks such as Intel’s

Data Plane Development Kit (DPDK) [35], the throughput can be increased, as the

overhead per packet is reduced. Intel reports “usually less than 80 [CPU] cycles”

for receiving and sending a packet [35].
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1.1 Classi�cation from Scienti�c Viewpoint

Cloud SDN NFV

Main

goals

• Cost savings

• Increased agility

• Cost savings

• Cost savings

• Increased agility

• Vendor indepen-

dence

• Cost savings

• Increased agility

• Vendor indepen-

dence

Methods • Virtualization

(compute, stor-

age, network)

• Everything-as-a-

Service approach

(XaaS)

• APIs for every-

thing

• Centralized con-

trol plane

• Run control

plane in software

• APIs for the net-

work

• Replace applian-

ces with software

instances

• Run network

function (CP +

DP) in software

• common APIs for

network func-

tions

Issues • Applications

need to be made

for the cloud

• Privacy

• Focus on appli-

cations, not the

network

• Scalability vs.

degree of con-

trol/detail

• Little bene�ts

when used

“standalone”

• Implementation

detail

• Data plane per-

formance

• Management &

Orchestration

• Mind shift for

dealing with

failure

Table 1.1: Comparison of technologies cloud, SDN, and NFV.

1.1.4 Open Issues

Besides all the appealing bene�ts of more agile, �exible, and e�cient network

infrastructure, numerous issues hinder the migration to completely softwarized

networks. Table 1.1 provides an overview over the technologies of softwarized

IT environments, such as SDN, NFV, and cloud. We compare the di�erent goals,

methods, as well as the open issues.

The open issues of SDN and NFV will be covered in this monograph. The con-

trol plane performance of SDNs will be investigated in Section 4.2, while its ben-

e�ts in combination with extensions for improved network management as well

as network security will be described in Section 3.2 and Section 3.4. One of the
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1 Introduction

core NFV challenges is the packet processing performance, which will be investi-

gated based on measurements in Sections 4.3 and 4.4. Performance prediction for

VNFs will be aided by the analytical model provided in Section 5.2. By describing

guide lines for lifecycle of VNF software versions, Section 3.2 contributes to the

management of NFV-based networks.

1.2 Scientific Contribution

This monograph addresses challenges that arise by applying the previously de-

scribed techniques for software-based networks to di�erent use cases. First,

mechanisms to assess and to improve the performance of software-based net-

working components are described. Second, possible architectural changes

caused, as well as enabled, by SDN and NFV are addressed. Finally, new ways

to manage these softwarized networks are introduced.

An overview of the contributions of this work is given in Figure 1.2. It classi-

�es the individual research studies that were carried out during the course of this

work based on the methods applied by the author. Conducted experiments, mea-

surements, and proof-of-concept implementations make up the practice-oriented

part. The theoretical contributions use simulation and queueing theory, or pro-

vide design guide lines for a potential implementation. The color coding indi-

cates the chapter, to which a particular scienti�c publication or demonstration

contributes.

The �rst area of contribution covers the performance of particular components.

On the one hand, this include the controller software that represents the network

control plane. The performance of these components is an important indicator,

how on what granularity and how rapidly the network can react, i.e., how fre-

quently new �ows can be programmed based on new �ow arrivals.

To evaluate the performance characteristics of network functions implemented

through the means of NFV, two commercially available �rewall products were

compared regarding their data plane performance. While the hardware device

provided lower and especially more consistent latencies, the increase in process-

ing time when using the software implementation might be neglected, based on

8



1.2 Scienti�c Contribution

the particular use case. Finally, a performance assessment for a prototypical VNF

for a mobile network highlights the big potential o�ered by acceleration frame-

works such as Intel DPDK compared to standard Linux networking.

Finally, the last signi�cant contribution related to the performance of network

components is an analytical model for packet processing on a physical server

using the Linux operating system and its networking implementation. Based on

given service times of the VNF and distributions of the inter arrival times of new

packets, the e�ects of tuning parameters can be evaluated in regard to their in-

�uence on processing times, induced jitter, and packet loss.

The second area of contribution covers novel networking architectures that are

required either for, or enabled by softwarized networks. One use case, S-BYOD,

illustrates how SDN allows to implement micro segmentation to safely isolate the

tra�c of di�erent devices and services within a corporate environment.

This part further covers the placement of entities of a softwarized networks,

with a major focus on the placement of SDN controllers within wide area net-

works. The planning tool that was further developed respects multiple, often com-

peting objectives, like controller load, distance to the nodes, or distances between

multiple controllers. As particular thresholds for reaction times and resiliency

vary among di�erent operators, this framework does not make any assumption

about good or bad placements. Due to the fact that many operators are not even

able to de�ne thresholds for several of the metrics, Pareto-optimal placements are

returned and available for manual selection.

The �nal third area, which this monograph covers, are management aspects of

softwarized networks. By providing APIs, the network infrastructure now o�ers

better means for monitoring, optimization, and automation. How such APIs allow

for implementing novel monitoring approaches is illustrated by the ZOOM algo-

rithm. Network programmability is exploited to instantiate new hardware coun-

ters for varying �ow aggregates in the switches. By evaluating these counters in a

controller software and iteratively programming more speci�c �ow rules, moni-

toring tasks like elephant detection can be implemented in a completely di�erent

and more dynamic way than with traditional networking gear and protocols like

NetFlow.
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1.3 Outline of This Thesis

After detailing the conducted studies and describing the scienti�c contribution,

the chapter close with a section summarizing the lessons learned.

The remainder of this thesis is structured as follows. Chapter 2 focuses on im-

proving the planning process of optical multi-layer networks. By modifying the

input parameters supplied to an existing network planning tool, it is evaluated,

how much Operating Expense (OPEX) in terms of energy spent for �ber links and

adapters can be saved.

Chapter 3 elaborates on novel management approaches for software-based net-

works. The �rst part describes, how continuous delivery and automated accep-

tance test help a network operator to reduce lead times for changes. In contrast

to traditional, big-bang deployments, automated tests help to move faster and

deploy in smaller changes within shorter time frames. Further, an example how

programmability and APIs help to ease network management is given using a

monitoring implementation for elephant detection monitoring.

Chapter 4 investigates the performance of the components within softwarized

networks. The benchmarking studies for di�erent VNF implementations reveal

di�erent performance characteristics, on the one between physical and software

implementation, but also between software implementations using the operat-

ing system APIs or those using specialized acceleration frameworks. Further, a

benchmarking software to assess the control plane performance of OpenFlow-

based SDN is described. This helps operators for capacity planning when moving

towards such software-based network.

Chapter 5 introduces an analytical model for computing the key characteris-

tics of a VNF using the Linux networking APIs. Based on incoming packet inter-

arrival times and the service time of the network function, the estimated packet

loss and added delay can be computed. Additionally, the e�ects of parameter tun-

ing of Network Interface Cards (NICs) can be foreseen.

Finally, Chapter 6 concludes this monograph and summarizes the presented

results and achievements.
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Computer networks range from small ones, the Local Area Networks (LANs), to

large ones, the Wide Area Networks (WANs), which �nally form the Internet.

Nearly all WANs use optical �ber as media, as a single �ber strand provides band-

width capacities in the order of tens of terabits per second.

As no equipment exists that nearly exploits this capacity in form of allowing

to establish such high-bandwidth connection directly between two devices, mul-

tiplexing techniques are used to aggregate the tra�c of multiple links. The mul-

tiplexing scheme used in the optical domain based on Frequency Division Multi-
plexing (FDM) isWavelength-DivisionMultiplexing (WDM): Using di�erent wave-

lengths, i.e, colors of light, multiple connections can be mixed, sent over one sin-

gle �ber, and split into multiple links at the receiver side, e.g., at the other site of

the ocean. The highest link speed that is currently deployed transfers 100 Gigabit

per second (Gbps) – and occupies one wavelength. The e�ciency of WDM and

the thus available high bandwidth results in Space-Division Multiplexing (SDM)

being applied only conservatively: Even transatlantic �ber cables contain only

four pairs of optical �ber [36].

As 100 Gbps links are in most cases again an aggregation of multiple slower

links, more multiplexing happens on top of these optical links. Based on Time-
DivisionMultiplexing (TDM), multiple virtual connections with a �xed bandwidth

can be established over a single link, or statistical multiplexing allows to dynam-

ically allocate bandwidth to the multiplexed connections.

The availability of a multitude of such multiplexing techniques, as well as the

practice to apply multiple of these techniques on top of each other in form of

logical layers, lead to the term multi-layer networks.
On each of these logical layers, virtual paths spanning multiple hops between
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the di�erent sites of the network can be established. This abstraction allows to

simplify the network con�guration and helps increase to processing speed, as not

every hop needs to apply compute-intense forwarding techniques like IP routing.

Instead, an optical signal can be directly passed from one optical �ber to another

without even converting it into an electrical signal.

Combined with a bandwidth contingent, such virtual paths are referred to as

demands, either uni- or bidirectional between the two sites of the network. Con-

trary to the end customer area, where a link’s capacity is often shared between

many customers and thus not available to everybody at the same time, bandwidth

contingents are here usually reserved and guaranteed per demand.

The particular realization of a demand, which is computed in the network plan-
ning phase, can rely on any of the previously mentioned multiplexing techniques.

The multi-layer network planning process will be covered in depth in the follow-

ing sections, where special emphasis will be put on energy e�cient planning of

multi-layer networks.

2.1 Background and Related Work

This section introduces the techniques behind multi-layer networks and high-

lights the most relevant research work done in the �eld of multi-layer network

planning with a focus on energy e�ciency and resilience. Further, an overview

over the challenges of the planning process will be given.

2.1.1 Network and Internet Architecture

The Internet is not a single, homogeneous network, but an interconnection of

many networks owned, managed and used by di�erent parties. However, not all

of these interconnected networks provide the same functionality or exist for the

same purpose. Traditionally, networks can be categorized into the following three

types of networks (cf. Figure 2.1).

Access networks. Private users as well as smaller business customers are con-

nected to the access network of their Internet Service Provider (ISP). Typi-
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Figure 2.1: Network hierarchy.

cal technologies used in these networks are Digital Subscriber Line (DSL),

based on the telephone system, and Data Over Cable Service Interface Speci-
�cation (DOCSIS), which uses the cable TV system. Both of them are based

on copper cables, while optical techniques such as Gigabit Passive Optical
Networks (GPON) are more and more being deployed. In the wireless area,

the xG mobile standards (3G/UMTS, 4G/LTE) are dominating at least in

western countries.

Metro networks. The interconnection of multiple access networks as well as

networks of enterprise customers that are spanning multiple campuses

are examples for metro networks. Such networks mostly rely on optical

network technologies given their span of a city or region level. The capac-

ities of metro links vary, ranging from few Gbps for connecting di�erent

enterprise sites or aggregation of customer premise links to data center

interconnects of tens or hundreds of Gigabits.

Core networks. The highest bandwidths occur in core networks, the “heart” of

each provider network. These networks provide capacities for connect-

ing millions of customers with data centers comprising tens or hundreds

of thousands servers, as well as transoceanic connectivity. The previously

mentioned fastest link rates of 100 Gbps are mostly deployed in core net-

works, combined with multiplexing of multiple such links on one �ber.

Ranging from a country- to worldwide span, and aggregating the previ-
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ously described networks’ tra�c, core networks are the most complex,

critical and expensive type of network. To realize such networks in an

a�ordable way, a combination of several multiplexing technologies have

to be made.

The �rst part of this monograph will focus on the planning process of such

optical multi-layer networks, which is an important concept for nowadays core

networks. The complexity of choice based on several available multiplexing tech-

niques, as well as the costs of required equipment makes a well designed network

essential. The result of this planning process is a list of equipment to buy and a

con�guration of which demand is realized using which technology using a de-

�ned path through the network.

2.1.2 Multi-Layer Networks

The bene�t of the multi-layered network concept is that it simpli�es the network

architecture by hiding the details of lower layers, both in the practical usage as

well as in case of failures, which will be covered later in Section 2.1.4.

Figure 2.2 illustrates the multi-layered network principle for a WAN in a sim-

pli�ed way using three layers. How many layers are used in practice, depends on

the operators’ needs.

The graph G0 of the lower layer is usually the optical �ber that an operator

owns or rents. The time scale of changes in this layer are in the order of months or

years. Due to the immense costs of burying new optical �ber strands across cities

or oceans, such networks are rarely fully meshed. This is illustrated in Figure 2.2,

where e.g. no link e1,3 between sites 1 and 3 exists. Connecting all sites directly

would be simply too expensive. However, this lack of direct links is solved by the

higher layers, which will provide such virtual paths spanning over multiple �ber

links and hops.

When investigating the shown middle layer G1, it can be observed that there

is a link e1,3, which does not exist in the layer below. This logical path is created

using one of many techniques, which will be explained in the following section.
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Figure 2.2: Multi-layered network.

Finally, the graph G2 of the upper layer is fully meshed. In the networking

context, this means that there is full connectivity between all sites of the network.

Multi-Layer Network Techniques

The previously discussed multiplexing schemes that mix optical or electrical sig-

nals are realized using di�erent standardized techniques. In the following, a brief

overview over the most important multi-layer network techniques will be given.

OTH describes the transport technology for the Optical Transport Network
(OTN) [37, 38]. This hierarchy is based on the concepts Optical Chan-
nel (OCh), Optical Multiplex Section (OMS), and Optical Transmission Sec-
tion (OTS). Solely based on optical technology, the OTN directly accesses

the optical �ber including Forward Error Correction (FEC) mechanisms.

As illustrated in Figure 2.3, OTSs span one hop, e.g., between a router

and an optical ampli�er. On top, one wavelength spanning multiple sec-

tions between two Optical Add-Drop Multiplexers (OADMs) provides a
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Figure 2.3: Optical Transport Hierarchy (OTN).

wavelength-multiplexed path, the OMS. Finally, the end-to-end optical

channel (OCh) provides a transparent circuit, which allows to encapsulate

higher layer frames.

SDH/SONET. Based on TDM, Synchronous Digital Hierarchy (SDH) (in Europe)

and Synchronous Optical Networking (SONET) (in the US) provides virtual

circuits. Incoming data from higher layers is encapsulated, multiplexed us-

ing TDM and sent either directly over optical �ber or encapsulated in OCh.

Carrier Ethernet. Following the success of Ethernet [39] in LAN environments,

Carrier Ethernet was created as a cost-e�ective transport while meeting

carrier requirements. This includes the integration with other carrier tech-

niques like SDH/SONET, which allows to establish point-to-point Ethernet

connections. Carrier Ethernet (CE) applies statistical multiplexing.

MPLS/IP. The most expensive layer is the Multi-Protocol Label Switching
(MPLS)/Internet Protocol (IP) layer, where statistical multiplexing is done

based on labels attached to packets. Incoming packets are inspected for

their destination IP address and marked with an MPLS label at the La-
bel Edge Router (LER). This expensive operation, in terms of routing table

lookup, results in bene�ts inside the network, where Label Switch Router
(LSR) can perform less expensive label switching. This process requires

inspection of every packet and large routing/forwarding tables made of
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expensive memory. Still, the cost per bit as well as the power consumption

is way higher compared to the optical techniques [40], yet, it o�ers more

�exibility.

Aim of introducing the most common multi-layer techniques was to give an

impression of the parameter choice that exists when setting up a network in-

frastructure. Based on optical �ber, higher layers realize virtual paths between

distant sites that appear only one hop away. The choice of technology starts with

translucent optical wavelength switching, which can be realized very e�ciently

at line rate, but limits �exibility, as the incoming wavelength needs to match the

outgoing one. In contrast, MPLS/IP routing requires large amounts of electrical

power to take decisions about the path every single packet should take through

the network. Its bene�t, however, is that it o�ers the biggest degree of �exibility

by applying statistical multiplexing and making use of the foundation o�ered by

the underlying layers.

2.1.3 Planning of Multi-Layer Networks

The topic of multi-layer network design is about de�ning the equipment required

to set up a network consisting of multiple layers, i.e. di�erent optical multiplex

layers and MPLS/IP on top. Based on the tra�c demands in the network, a mul-

titude of possible hardware and routing decisions have to taken into account for

computing the optimal con�guration. Further, means to cope with network fail-

ures have to be established. This makes the network planning process such a

complex task. In the following, particular objectives that increase the parameter

space for realizing a multi-layer network will be discussed in detail.

Input Parameters. The network planning process can be based the following

input data, which can be speci�ed by the network operator:

a) an optical �ber topology G0

b) a component list of devices including their possible extensions (e.g.

how many line cards or optical transceivers can be plugged in)
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c) a Capex model for all these devices and their accessories

d) an Opex model including costs for energy, housing, maintenance etc.

e) an end-to-end demand matrix that dictates for what capacities the

network should be dimensioned

f ) information about the required availability of the network resp. what

kind of failures have to be protected.

Objective Function. Not only are the input parameters multidimensional, but

also the objective function that determines, what equipment and path

choices are good or bad. Further, some of the goals are competing. Ex-

emplary contributors to this function include:

a) Capex costs, i.e., the one-time expenditures to buy and set up all

equipment.

b) Opex costs, i.e., the ongoing costs for energy, employee’s wages, li-

cense fees and so on.

c) Path lengths should be minimized so that transferred data takes as

little detour as possible. Long paths not only occupy capacity on mul-

tiple links and nodes, but also increase its failure probability.

d) Routed/protected demands vs. Service Level Agreements (SLAs), i.e.,

while it should be the goal of the network operator to ful�ll all de-

mands, as well as to establish means for keeping connectivity also in

case of multiple failures, it might be more economical to pay a cus-

tomer SLA violation fees compared to preparing for every unlikely

failure case.

Including all of these aspects into the calculation is hardly possible, as, e.g., only

few (publicly available) Capex and especially Opex models exist. Still, this huge

parameter space makes multi-layer planning a complex optimization problem.

This leads to approximations and application of di�erent optimization techniques,

including Mixed Integer Linear Programs (MILPs) [41] and heuristics [42].
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Figure 2.4: Screenshot of the MuLaNEO network planning software, taken from [44].

An example of such a network planning software is MuLaNEO (Multi-Layer

Network Engineering and Optimization, [43]). This open-source network plan-

ning software originating from the 100GET research project allows to plan a

multi-layer network based on a Capex model and an end-to-end tra�c demand

matrix. MuLaNEO’s user interface is shown in Figure 2.4, which depicts the real-

ization on the di�erent layers.

2.1.4 Resilience Aspects of Multi-Layer Networks

One complex aspect that needs to be incorporated in the network planning pro-

cess is resilience.

The state that a network infrastructure correctly provides connectivity to its

users can be harmed by numerous factors. This includes human errors by, e.g.,

network engineers that deploy a faulty con�guration leading to outages, elec-
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tric defects of network equipment, or physical damage, when cables are cut by

diggers.

Resilience Objectives

In relation to the resilience of (wide area) networks, the following three objectives

play an important role:

Availability accounts for the time share, during which a network or network

component is working correctly and provides its service. This time share

is usually measured in percentage over a time span per year and often spec-

i�ed in the SLAs of service providers. Typical availability goals of critical

infrastructure range from 99.99 to 99.999% per year, resulting in a maxi-

mum unavailability of 53 to 5 minutes per year. Given this notation, the

terms “four nines” / “�ve nines” availability is also common.

Lost Tra�ic allows to better describe the operational state of a network and bet-

ter account for the connectivity between particular endpoints. Tra�c is

lost, if a tra�c demand between two points in the network su�ers connec-

tivity issues caused by any kind of failure. The bandwidth amount of this

tra�c demand then counts as lost tra�c either as an absolute bandwidth

measure or relative as share of the total network capacity.

Robustness represents the networks ability to prevent the occurrence of lost

tra�c during certain kinds of failures, e.g., single or double node or link

failure scenarios. Such robustness against failures also in the case of in-

frastructure failures can be achieved by protection mechanisms.

Protection Mechanisms

In order to allow the network to overcome failures of links or nodes within a

very short amount of time, the ability to provide backup paths that act as pro-

tection against failures on the primary path, is also incorporated in the network

planning process. Such pre-established paths enable mechanisms for fast failover
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mechanisms like IP Fast Reroute (IPFRR) [45] that allow to meet carrier-grade re-

quirements, i.e., failover times in the order of tens of milliseconds.

In the following, a brief overview over the most important protection and re-

covery mechanisms will be given, while more information can be found in [46].

Although only protection mechanisms against link failures will be described in

the following, the same also holds for node failures, i.e., if routers or Recon�g-
urable Optical Add-Drop Multiplexers (ROADMs) are broken or become unavail-

able as a result of environmental in�uences like loss of power, earth quakes etc.

Recovery Extents. Figure 2.5 illustrates two approaches to protect the path p1,3

between nodes 1 and 3 regarding the failure scenario that link e1,2 between

nodes 1 and 2 fails. The two approaches are local and global recovery and

straight black lines denote the primary path, while the dashed lines denote

the backup path.

a) In the case of local recovery, shown in Figure 2.5a, the backup path

{e1,4, e4,2} is realized via a path disjoint to the link failing in the

observed failure scenario. After overcoming the defect link, the rest

of the primary path is used.

b) An alternative approach, namely to use a path that is disjoint to

the complete primary path is global recovery and illustrated in Fig-

ure 2.5b. In case of this protection scheme, the link e2,3 is not in-

cluded in the backup path, although not failing.

Protection Schemes. Protection schemes denote, how the recovery extents are

used to protect the primary path, i.e., if exclusively or shared and resulting

in what degree of resource wastage.

a) Using 1+1 Dedicated Protection, all tra�c is simultaneously trans-

ferred using both paths, similar to Redundant Array of Independent
Disks (RAID) in the storage area. At the receiver side, the data re-

ceived the fastest or with the best quality is used. While this results

in very short failover times, the complete duplication of all tra�c

results in a waste of resources.
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Figure 2.5: Recovery Extents.

b) More e�cient protection – in terms of resource utilization – can be

realized using 1:1 Dedicated Protection with Extra Tra�c, where ev-

ery backup path again protects exactly one primary path, but still

can be used in failure-free times. Once a failure occurs, the tra�c

of the protected primary path is redirected using the backup path,

optionally with a higher priority than other tra�c on that link.

c) M:N Protection with M ≤ N speci�es a set of M paths to protect

the N primary paths, while the N primary and M backup paths do

not share links, i.e., are part of di�erent Shared Risk Groups (SRGs).

This protection scheme exploits the fact that simultaneous failures

on multiple paths are very unlikely and thus reserving full capacity

for every path on the backup links is a waste of resources.

What all of these protection schemes have in common is that primary and

backup paths must not fail at the same time, i.e., not be part of the same

SRG [47]. While it sounds intuitively trivial that both primary and backup

path must not be a�ected by a single failure, ensuring this in multi-layer

networks is more complex. Lower layers might hide the “reality” so that

24



2.1 Background and Related Work

while two paths seem disjoint, they might be sharing the same �ber on the

lowest layer and thus would both be a�ected by a cable cut.

2.1.5 Energy E�iciency of Core Networks

As previously seen, the consolidation of multiple backup links leads to more e�-

cient resource usage. The resulting savings not only include Capex savings by re-

ducing the equipment to buy, but also Opex in form of fewer network equipment

being active and consuming energy. The contributors to the energy consumption

of WANs include cooling systems, power consumption of network devices includ-

ing their line cards and optical transceivers, as well as optical refreshers that need

to be placed every 50-80 km on a �ber link.

Before Section 2.2 introduces a strategy for planning energy e�cient networks,

an overview over related work will be given in the following.

Access networks are currently dominating the power consumption of the In-

ternet [48]. With increasing access speeds, the core network’s capacity and thus

also the power consumed in the core network is expected to increase continu-

ously. In 2017, the power consumption of the Internet core is expected to exceed

the power consumption of access networks [49]. This results in higher opera-

tional expenditures for large ISPs, if the network stays unchanged in terms of its

energy-awareness.

A survey on green networking [50] categorizes research work into four cat-

egories: Adaptive Link Rate, Interface Proxying, Energy Aware Infrastructure and

Energy Aware Applications. Our work touches the �rst category Adaptive Link

Rate, with sleep modes and rate switching of network interfaces as well as the

category of Energy Aware Infrastructure.

As long as the current network utilization allows, rerouting of some demands

along alternative paths allows to temporarily disable some links. That already a

few optimizations per day (three in the example) allow 10% energy savings while

making use of stand-by modes is shown in [51]. In contrast, dynamic adaptation

of the rate speed is more complex, not only from technical side, but also from net-

work planning e�ort. Into a similar direction goes [52], in which the authors state
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that 25% energy can be saved, if primary paths are aggregated over fewer links

and links exclusively used for backup paths are switched into stand-by mode.

Energy e�ciency in IP-over-WDM networks is observed in [53] and three

mechanisms are suggested: Fixed Upper Fixed Lower (FUFL), Dynamic Upper Fixed
Lower (DUFL) and Dynamic Upper Dynamic Lower (DUDL), which determine

the freedom of dynamically rerouting tra�c either on lower (the WDM) or up-

per (the IP) layer. After tra�c aggregation through rerouting, unused line cards

can be switched o�. The authors mention that dynamics, esp. in the lower layer

where a coordinated recon�guration of optical cross-connects has to be done, are

technically more challenging than rerouting to parallel paths, as suggested with

FUFL. Nevertheless, the authors report energy savings in a simulation based on

day/night tra�c demands also for the simple FUFL scenario, while bigger sav-

ings are reported for the DUFL approach, where rerouting takes place on IP layer.

This MILP-based network planning approach requires abstractions, and thus dif-

fers from this work, in which no such abstractions are made, as the design process

and software for the network is not touched, but stays in the way it was before.

2.2 Energy E�icient Network Planning

This part describes an approach for energy e�cient network planning based on a

legacy planning software, which does not care about energy consumption by it-

self. We evaluate the possible in�uence of the network planning process towards

reducing energy consumption of optical multi-layer core networks. In particular,

we propose to remove redundant links in the network, and to route correspond-

ing network tra�c via other links. Based on the reduced network topology, we

compute the required network equipment for realistic tra�c demands using a

network planning tool. Due to the lack of an accurate model for operational ex-

penditures and energy consumption we choose the link length as cost function.

We show the applicability of our idea and demonstrate the energy saving poten-

tial using realistic network topologies.

As described in Section 2.1.3, planning of multi-layer core networks can be-

come very complex. This is due to the sheer amount of possible realizations for
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routing speci�c tra�c demands using the di�erent available layers. Hence, the

planning process is crucial for operators, since on the one hand a smooth and

resilient operation of the network has to be assured, and on the other hand the

costs for the network equipment have to be minimized.

While the Capex for network equipment can be estimated quite accurately,

calculating Opex is complex. Besides the rent for the buildings where equipment

is located or for the dark �ber, Opex also include the wages for sta� managing the

equipment, and �nally, costs for the power consumed by the equipment. Due to

its complexity, network planning software is highly specialized and often solely

focuses on the Capex calculation [42].

By reducing the number and overall length of �ber links, the network’s energy

consumption and thus Opex can be reduced. Additionally, reducing the number

of the active �ber connections not only avoids energy costs, but also lowers the

rent for a �ber infrastructure, if not owned by the operator. By including these

factors already in the planning process, the network’s utilization can be increased

through aggregation of the tra�c to fewer links and avoiding unnecessary equip-

ment not only being bought, but also consuming energy [54].

Therefore, the approach described in the following is to reduce energy con-

sumption by reducing the network topologies. From a given �ber topology, edges

are removed before starting the network planning process. Such a removed edge

is later not used in the network and no energy is consumed for line/port cards in

routers, multiplexers, as well as ampli�ers that are usually placed every 50 km. In

order to guarantee resilience in case of an outage, it is assured that each site is still

connected via two links at least. Due to the lack of publicly available Opex models

for network equipment, the link lengths are chosen as cost function. Based on this

cost function, the e�ect of the proposed mechanisms on the Opex are evaluated

and compared with the original topology.

In the following section, the problem formulation as well as the metrics ap-

plied to network topologies are given in Section 2.2.1, followed by Section 2.2.2

explaining the used MILPs. Results of applying the mechanisms to realistic net-

work topologies are shown in Section 2.3.
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2.2.1 Modeling

This section �rst elaborates on properties of network topologies and metrics that

in�uence the performance and reliability of a network. Afterwards, the four ob-

served types of minimal subgraphs of a network topology graph are presented.

Network Topology Characteristics

We count the following metrics and properties as important, when characteristics

of network topology graphs are evaluated:

Opex Costs. The number of active links and their total length result in energy

and thus Opex costs. Here in this model, we set the Opex costs for a link

proportional to the edge length in the network graph as an approximation.

If an edge is removed from the topology graph, the �ber link is not used

and thus no energy consumed (neither on the way through ampli�ers, nor

at the endpoints through interface cards).

k-connectedness. In order to ensure fault-resilience in case of link or node fail-

ures, disjoint backup paths have to be available. In this work, a value of

k = 2 is used, which means that two separate paths between any node

pair are required, which later enables the design software to establish two

disjoint paths.

Network Diameter. The network diameter denotes the longest of all shortest

paths between any two node pairs in the network.

Network Configuration Characteristics

A network planning or network design software computes a solution for a con-

�guration given the input of a topology, a component list and end-to-end tra�c

demands. The following metrics are of special interest for the following evalua-

tion.

Routed Demands. For every source/destination pair (u, v) ∈ V × V there

exists a tra�c demand Duv with a certain bandwidth requirement. These
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demands are planned by the design software and later established either

as MPLS paths or on lower layers, e.g. translucent optical paths. If no such

path can be established due to capacity shortage, the demand is seen as not
routed.

Protected Demands (Protection). Besides a primary path, also a backup path

has to be planned and later established for every demand. While two-

connectedness of a network graph is required for disjoint primary and

backup paths, two-connectedness is not a su�cient criteria, as the capac-

ity of the equipment can be exceeded. The share of protected demands out

of all demands results in the degree of protection.

Accepted Solution. This true/false criteria sums up the degree of routed and

protected demands. A planned solution (the result of the network planning

process) is accepted only if a degree of 100% protection is reached, which

implies that all demands are routed. A solution is not an accepted solution,

if the degree of protection is lower than 100%. In practice, an operator

might choose to not reach full protection, which however is an economical

aspect and thus not further covered.

Suggested Algorithms

The goal of reducing the energy consumption under the premise that the planning

software is able to �nd an accepted solution is approached from two sides:

ADD. Starting with a reduced topology graph, edges are added, until an ac-

cepted solution is found. The majority of this study will focus on di�erent

subgraphs, which provide a good starting point for such planning.

DEL. Starting with the original topology (GORIG), as many edges as possible

are removed, as long as the solution remains acceptable.
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Algorithm 1: The DEL Algorithm.

Input: Full �ber topology G = (V,E)
1 Set E′ = orderByLengthDecr(E);

2 Set Ei = ∅;
3 for e ∈ E′ do
4 C = callPlanningSoftware((V,E − Ei));
5 if protection(C) == 100% then
6 Ei = Ei ∪ {e};
7 end
8 end
9 return (V,E − Ei)

Removing Edges (DEL)

The DEL algorithm is given in Algorithm 1 and starts with the full �ber topology.

The topology given to the design software as input is modi�ed in each iteration

and the longest active and not yet examined edge of the topology is removed

prior to starting the planning. From a topology (V,E), E′ denotes the list of

edges ordered descending by their length. In every step of the algorithm, the �rst

(longest) edge e ∈ E′ is moved to the set of inactive edges Ei. If the planning

software returns an accepted solution based on the reduced topology (V,E −
Ei), then e is kept within Ei. In case that not all demands can be protected, e

is removed from Ei again (and will be active in the �nal topology). The process

ends after all edges were examined once (E′ = ∅).
By checking the two-connectedness of the topology, the DEL algorithm can be

accelerated, as planning runs that certainly cannot end up with full protection

can be avoided, if the removal of an edge e leads to a one-connected topology.

Adding Edges (ADD)

The ADD algorithm starts from the exact opposite direction and is listed in Algo-

rithm 2. The planning software is invoked with a reduced topology graph (V,E′)

with E′ ⊂ E. Suggested algorithms for creating these subgraphs are described

in the next sections. In case that the planning software is not able to compute a
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Algorithm 2: The ADD Algorithm.

Input: Reduced �ber topology G′ = (V,E′) with E′ ⊂ E
1 // plan the network with the input topology

2 Set C′ = callPlanningSoftware((V,E′));
3 while protection(C′) < 100% AND E′ 6= E do
4 for e ∈ (E − E′) do
5 // add one edge to the topology

6 E′′ = E′ ∪ {e};
7 C′′ = callPlanningSoftware((V,E′′));
8 if protection(C′′) > protection(C′) then
9 // use this as new best solution C′ = C′′;

10 E′ = E′′;
11 end
12 end
13 end
14 return (V,E′)

con�guration C that is not seen as an accepted solution, the following algorithm

is executed: For every edge e ∈ (E − E′), an extended subgraph (V,E′ ∪ {e})
is given as input parameter to the planning software, which is then executed

|E − E′| times. The edge e that increased the degree of protection the most is

kept for the further planning and added to E′. This is repeated as long as the re-

sult of the planning software is not yet giving full protection, thus not an accepted

solution.

A trivial and quicker alternative instead of planning the network for every

potential edge e would be to pick the shortest edge, thus the con�guration that

leads to the smallest increase in Opex. However, tests have shown that this quickly

leads to most or all links being set to active and therefor was not progressed any

further.

The following reduced topologies are subgraphs of the original topology

GORIG in Figure 2.6. All proposed subgraphs have the aim to ful�ll one or more

of the characteristics of well-suited topologies and thus enabling the planning

software to create a solution ful�lling the characteristics described previously.
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Figure 2.6: Original topology (GORIG).

Minimum Spanning Subgraph, two-connected (GMSS).
The �rst subgraph, the minimum spanning subgraph, is a two-connected

graph connecting all nodes with each other with the minimal total edge

length. The result is shown in Figure 2.7a, where the dotted links of the

original topology are deactivated, while the solid black ones stay active.

The number of active links in a subgraph GMSS of a graph G = (V,E)

is |V |.

The resulting subgraph has tendencies to form one or more rings. While a

ring topology is common for networks, the downside of this approach is

that the paths between two nodes can grow very large, especially in case

of a single link failure.

Minimum Spanning Tree, two-connected (GMST+ ). To counter the limita-

tions of theGMSS and to decrease the primary path lengths, all nodes are

�rst connected using a Minimum Spanning Tree (MST). Afterwards, two-

connectedness is ensured in the same way as with the GMSS , namely by

adding the edges resulting in the shortest total length. Figure 2.7b illus-

trates this with solid black lines showing the MST and the dashed lines be-

ing the edges added for two-connectedness. The dotted out edges denote

edges of GORIG that are deactivated in the example for this subgraph.

The availability of more links in the topology in comparison to GMSS

leads to shorter paths, as more direct paths are available in most topology
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2.2 Energy E�cient Network Planning

(a) Minimum Spanning Subgraph, two-connected (GMSS ).

(b) Minimum Spanning Tree, two-connected (GMST+ ).

(c) Minimum Diameter Subgraph, two-connected (GMDS ).

(d) Minimum Diameter Tree, two-connected (GMDT+ ).

Figure 2.7: Reduced network topologies.
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types. However, due to the additional edges added, the total length of active

edges, and thus the Opex costs, are increased.

Minimum Diameter Subgraph, two-connected (GMDS). As long paths

traversing multiple hops can result in diminished network performance,

the objective of the GMDS is to lower the network diameter, the longest

shortest path between any two nodes in a network.

The GMDS is illustrated in Figure 2.7c. Like the GMSS , it has a tendency

to form large rings caused by the two-connectedness criteria. However,

not the shortest edges are picked, but instead the edges leading to minimal

network diameter, in order to achieve a trade-o� between low Opex costs

and diminished network performance.

Minimum Diameter Tree, two-connected (GMDT+ ). As last suggestion for

energy e�cient subgraphs, we introduce the two-connected Minimum

Diameter Tree. Similar to the GMST+ , the initially calculated minimum

diameter tree minimizes the distance between nodes for primary paths,

while still forming a tree, thus keeping the Opex costs low. Routing of ad-

ditional backup paths is enabled through additional links being added to

make the topology two-connected with the measure of further shrinking

the paths between nodes.

So the results suggest theGMDT+as a combination of theGMST+ and the

GMSS . Combining a prioritization for primary paths over backup paths,

saving energy due to a reduced number of active links (respectively shorter

links), as well as avoiding degradation of network performance by avoid-

ing increased network diameters as well as possible.

Figure 2.7d illustrates theGMDT+with the minimum diameter tree in solid

black and the additional edges added for two-connectedness in dashed

black.

Starting from these pre-computed subgraphs, the ADD algorithm adds addi-

tional edges and starts the planning software, until full protection can be reached.

How this iterative process looks like will be illustrated in the following.
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Figure 2.8: Iterative steps of the ADD algorithm for the NTT topology starting from
the GMDS subgraph.

Iterative Steps of the ADD Algorithm

Figure 2.8 shows the evolution of an exemplary run of the ADD algorithm applied

to the GMDS subgraph of the NTT network topology. The algorithm starts in

step 1 on the lower right side, where the red color indicates a low number of

protected demands. All network con�gurations computed during a run of the

planning software in step i are denoted by i (with i− 1 edges added), while the

markers i denote the solution that is selected as best one.

After adding one edge, the solution 2 leads to an improved solution, yet still

lacks full protection denoted by the yellow-ish color. After adding two more links

to the topology, which are added in steps 3 and 4 , solution 4 provides is se-

lected by the algorithm.
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2.2.2 Mathematical Definitions

Network Flow Model

A Network Flow Model [55] can be used to model tra�c �ow and capacity in

communication networks using constraints and an objective function, forming

a MILP. In order to �nd the optimum solution for such an objective function, the

solver Cplex [56] is used to compute the energy e�cient subgraphs of the given

topologies.

Such tra�c �ows can be seen as a �ow with a certain capacity from a source to

a destination, potentially passing intermediate nodes. Like with a �ow of water in

a pipe, a network link carrying reserved bandwidth demands can only be “�lled”

until its maximum capacity.

In the following, the variables and constraints used by all of the introduced sub-

graphs are explained. These are the most basic constraints which ensure common

requirements, like two-connectedness for disjoint backup paths.

Input Data: a) Graph G = (V,E) consisting out of a set of vertices V and

a set of edges E.

b) k-connectedness (k = 2). Two-connectedness is used to require two

disjoint paths between any two nodes.

c) weightuv : weight of the edge from u to v. The weight is denoted by

the geographical distance between u and v.

Variables: a) xuv : 1, if the edge from u to v is used, 0 otherwise.

b) fstuv : 1 if the �ow between s and t is using the edge uv, 0 otherwise.

Note that we are using integral �ows.

Constraints: We pick an arbitrary setS ⊆ V of cardinality k and impose for any

node pair s ∈ S and t ∈ V the following constraints. These constraints

ensure that there are at least k node-disjoint paths between s and t. Note

that this su�ces to ensure k node-disjoints paths between any node pair

s, t ∈ V .

36



2.2 Energy E�cient Network Planning

a) k-connectedness. An integral �ow fst between any two vertices

s and t symbolizes the tra�c demand from s to t. This constraint

ensures that at least k units of �ow are sent to vertex t - or in other

words at least k paths reach the destination node. Setting k = 2 en-

sures the possibility of reserving disjoint backup paths by ensuring

the two-connectedness of the resulting subgraph

∑
vt∈E

fstvt −
∑
tw∈E

fsttw ≥ k. (2.1)

b) Flow conservation. Every �ow that �ows into a vertex v also has

to completely �ow out of v except for the v ∈ {s, t}

∑
uv∈E

fstuv −
∑
vw∈E

fstvw = 0 ∀v ∈ V − {s, t} . (2.2)

c) Vertex integrity. Every vertex can be used only once by the �ow

fst. This ensures that node-disjoint primary and backup paths are

computed ∑
uv∈E

fstuv ≤ 1 ∀v ∈ V − {s, t} . (2.3)

d) Flows and Edges. If there is a �ow using an edge uv, then this edge

has to be used

0 ≤ fstuv ≤ xuv ∀uv ∈ E. (2.4)

Minimum Spanning Subgraph, two-connected (GMSS)

The constraints describe until now are already su�cient to let the MILP construct

the �rst and most intuitive subgraph. Starting from the shortest spanning graph,

the MILP adds additional edges to ensures all nodes are two-connected. In or-

der to minimize the overall length of active links (edge weight in the MILP), the

following objective function is de�ned
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min
∑
uv∈E

weightuv · xuv. (2.5)

Minimum Spanning Tree, two-connected (GMST+ )

As described in Section 2.2.1, �rst a minimum spanning tree is constructed, e.g.,

by using Kruskal’s algorithm. Compared to the MILP of GMSS , the variable xuv

is set to 1 for all edges uv that are contained in the minimal spanning tree to

enforce them being available.

Minimum Diameter Subgraph, two-connected (GMDS)

For this problem, we use the same constraints and variables as the GMST+ . For

any two distinct nodes s, t we additionally introduce two unit �ows f ′
st

, f ′′
st

modeling the primary and the backup path, respectively. Both �ows satisfy all

�ow constraints described previously for k = 1.

The �ow fst models the sum of the two �ows f ′
st

and f ′′
st

f ′
st
uv + f ′′uv = fstuv ∀uv ∈ E. (2.6)

The variable z is an upper bound on the lengths of primary and the backup

path, i.e. it models the diameter

∑
uv∈E

f ′
st
uv · weightuv ≤ z, (2.7)

∑
uv∈E

f ′′
st
uv · weightuv ≤ z. (2.8)

Forcing a Low-Diameter Spanning Tree: For each edge e ∈ E we introduce a

binary variable x′e ∈ {0, 1} indicating whether this edge is used by a primary

path or not. This can be ensured by imposing the constraint (Equation 2.4) for

the primary �ow f ′ and x′. We also add a constraint to ensure that the subgraph
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spanned by the primary �ow forms a tree

∑
uv∈E

x′uv ≤ |V | − 1. (2.9)

Objective Function: Minimize a linear combination of the diameter and the

total length of the network

min z +
∑
uv∈E

xuv · weightuv. (2.10)

Minimum Diameter Tree, two-connected (GMDT+ )

The same constraints, variables and objective function as in the previous section

are used. Additionally, a minimum diameter spanning tree and the xe = x′e = 1

for all edges e of this tree are computed.

2.3 Evaluation

Prior to evaluating the results of applying the ADD and DEL algorithms, we start

with an evaluation of the e�ectiveness of the constructed subgraphs that serve

as the starting point for the ADD algorithm. To evaluate the e�ects of providing

the reduced topologies as input parameter to a network planning software, we re-

duce �ve realistic network topologies prior to supplying it to a network planning

software according to the four minimal subgraphs presented in Section 14.

The evaluated networks are listed in Table 2.1. As resilience mechanisms re-

quire two-connected topologies, the original topologies are modi�ed by removing

the one-connected nodes so that the observed topologies are fully two-connected.

The column Size of Table 2.1 lists the number of nodes (|V |) and edges (|E|) of the

original topology, as well as the number of one-connected nodes being removed

(|VA|).
As exemplary network planning software MuLaNEO (Multi-Layer Network

Engineering and Optimization) [43] is used for this evaluation. Based on a sup-
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Network name and date Size Degree d Geo

|V | |E| |VA| avg. max. location

Commercial Network Topologies from [57].

China Telecom 2010/08 20 88 18 4.40 14 CH

NTT 2011/03 25 112 22 4.48 11 Global

Research and Education Network Topologies from [57].

CESNET 2010/06 19 60 26 3.16 8 CZ

GARR 2010/12 22 72 22 3.27 8 IT

Rediris 2011/03 18 60 1 3.33 10 ES

Table 2.1: Networks under study.

plied �ber topology and the Capex model from the IST NOBEL project [40], Mu-

LaNEO plans the network.

Precomputed Subgraphs

Based on the four subgraphs GMSS , GMST+ , GMDSand GMDT+ , we evaluate

the success of MuLaNEO in computing an accepted solution without applying the

ADD algorithm.

Table 2.2 lists the intermediate results for the �ve networks. It can be seen that,

compared to the original topologyGORIG, Opex costs are reduced for all topolo-

gies with all subgraph types, as with each of them at least one edge is removed.

However, in most cases, not all demands can be protected using disjoint backup

paths. Therefor, except for the China Telecom topology, the returned solutions

are almost never acceptable.

However, the cases when an accepted solution can be computed, Opex savings

of 9 to 43% can be achieved compared to the original topologies GORIG.
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CESNET China T. GARR NTT Rediris
G
O
R
I
G

Prot. 100,00% 100,00% 100,00% 100,00% 100,00%

Opex 100,00% 100,00% 100,00% 100,00% 100,00%

G
M
S
S

Prot. 70,76% 100,00% 99,78% 66,17% 99,67%

Opex 52,72% 56,59% 79,13% 37,47% 66,43%

G
M
S
T

+

Prot. 98,83% 100,00% 100,00% 96,50% 99,67%

Opex 66,64% 59,27% 91,11% 45,39% 66,43%

G
M
D
S

Prot. 98,54% 100,00% 99,35% 64,50% 99,67%

Opex 59,65% 56,59% 85,15% 37,67% 66,43%

G
M
D
T

+

Prot. 100,00% 100,00% 100,00% 99,83% 99,67%

Opex 75,05% 67,40% 87,290% 60,90% 67,71%

Table 2.2: Opex costs relative toGORIG and degree of protection (con�gurations not
acceptable marked red).

Evaluations of Accepted Solutions

After evaluating the ability for a planning software to compute solutions based on

the pre-computed subgraphs from Cplex, we apply the proposed methods ADD

and DEL from Section 2.2.1. Using DEL, the original graph is reduced step by step.

Using ADD, the minimal subgraphs are extended with additional edges until full

protection is achieved. The results are shown in Figure 2.9.

It can be observed that all mechanisms lower the resulting Opex costs. The

savings for the GARR topology (red) are with 9-18% already notable, although

very low compared to NTT (yellow), which shows potential savings between

39 and 54% due to the high node degrees and thus big potential that links can

stay unused. Regarding the resulting Capex, for most of the topologies (except

Rediris and GARR based on GMDT+ ) an increase can be observed compared to
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Figure 2.9: Comparison of reduced topologies with original one.

the original topologies. In these cases, aggregation of tra�c requires more ex-

pensive equipment for the higher data rates. However, these value are results of

the underlying Capex model and not the primary objective of this study. Further-

more, depending on the absolute Opex and Capex costs, this might be acceptable

for operators, as higher initial costs can be returned through big savings during

operation.

Furthermore, it can be seen that neither the DEL method, nor subgraphs en-

hanced with the ADD method, show clear advantages for any of the mechanisms.

The (dis)advantages of the di�erent subgraph types were previously explained, so

that in cases like with the NTT topology, where the simplistic GMSS results in

lower Capex and Opex costs, this graph type might require closer inspection and

comparison with the results of more expensive solutions like GMDT+ , which

tends to result in better network performance through shorter paths.

42



2.4 Lessons Learned

2.4 Lessons Learned

Multi-layer network planning is complex due to the large parameter space in-

cluding technology choices of equipment, protocols, and protection mechanisms,

as well as operator policies. The lack of comprehensive cost models, esp. for op-

erational expenditures, makes it hard to draw universally valid conclusion from

academic research perspective.

This �rst chapter suggested methods for reducing Opex costs during the plan-

ning process through increased energy e�ciency. The link length was chosen as

cost metric as an approximation. Link length contributes to the overall power

consumption, as signal refreshers need to be placed around every 50-80 km link

length.

The presented mechanisms avoid a modi�cation of the network planning soft-

ware and reduce the complexity of the planning software runs, as the size of the

network topology used as input parameter is reduced.

By reducing the network topology, the tra�c is aggregated to fewer links, as

some of the links are removed and thus not available for the planning software.

The derived results indicate Opex savings between 9% and 54%. Depending on

the applied methods and the observed topology, the Capex costs ranged between

90% and 140% compared to the original, unmodi�ed topology. Furthermore, while

not related to energy savings, unnecessary rent for dark �ber can be avoided, if

the network topology still allows equipment to be set up that is able to route and

protect all tra�c demands.

A de�nite conclusion, which of the suggested subgraphs minimizes the energy

consumption is not possible. Given the fact that the subgraphs show di�erent

characteristics regarding performance and resilience metrics, a closer inspection

of the resulting topology is required for a particular network topology. However,

it can be seen that the modi�cation always leads to a reduction of the operational

expenditures for the given topologies.
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Networks

Software-based networks relocate the network control plane into, mostly central-

ized, software running on standard servers instead of decentralized directly on the

network devices. As this software can be developed independent of the network

device hardware and �rmware, changes to the network can be conducted without

independent of the device vendor or hardware replacements.

Such Software De�ned Networks (SDNs) are nowadays typically found in the

data center environments of the Facebooks and Googles. The amounts of data

that these companies process, the scale at which they operate at and the need to

innovate rapidly forced them to search for better solutions than traditional net-

working devices o�er. For being �exible and able to tailor the network infrastruc-

ture to their special needs, they exploit the possibilities provided by softwareized

networks, such as programmability and centralized control. These data centers

are geographically limited regions and operated by a single institution, which is

the owner of computing and networking infrastructure as well as of applications.

One real-world example outside of data centers is Google’s Wide Area Network
(WAN) backbone “B4” [25]. By using SDN and incorporation information from

applications running inside their network, the link utilizations could be increased

to around 95% on average. By using a custom controller software, Google is able to

de�ne and adapt their switches’ forwarding behavior so that tra�c steering and

prioritization happens according to their own needs. A rule of thumb is that the

development cycles of hardware devices are with around 18 months on average

three times slower than those of software with around 6 months. Again, Google

is able to roll out such softwarized networks, as thy own operate the complete
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infrastructure including the �ber backbone.

However, an SDN-based network is not necessarily “better” than a traditional

one, where every device decides about packet forwarding on its own. Through au-

tomation, the management of softwarized networks can be better operated and

at a higher scale, similar to what has happened with applications running in the

cloud. In contrast to traditional devices that mostly o�er very vendor-speci�c

interfaces, such as command line interfaces, SDN follows the API-driven cloud

principle. These open, vendor-agnostic interfaces [27] allow a separation of con-

cerns, easy replacement of particular building blocks, as well as interaction with

other entities. Finally, this essentially allows everybody, from researchers to inte-

grators and operators, to customize and modify the network behavior on a level

that was previously only accessible to device vendors.

The remainder of this chapter is structured as follows: Section 3.1 introduces

the most important aspects of softwarized networks and gives an overview over

related work on this topic. During the past years, IT operations underwent ma-

jor changes by adopting methods from software engineering, which lead to in-

frastructure being de�ned by code. As IT and network operations are merging

through SDN, Section 3.2 describes how such methods can be adopted for the

testing and deployment process in a softwarized networking environment. The

usage of SDN features for network monitoring will be described in Section 3.3.

The described concept will use the integrated byte counters o�ered by switches to

detect the �ows transferring most data in a network. Section 3.4 provides an ex-

ample for service and network separation in a “Bring Your Own Device” scenario.

Through the usage of an application running inside the SDN controller a more

�ne-grained and secure isolation is established. Finally, Section 3.5 describes the

lessons learned.

3.1 Background and Related Work

This section continues with describing the topic Software De�ned Networking.

Further, relevant aspects from the �eld of software engineering will be intro-

duced. Finally, previous work on the topic of network monitoring is described.
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3.1.1 So�ware Defined Networking (SDN)

In the following, the SDN concept will be described in detail, as this technique is

a foundation for most studies described in the following.

Overview

One of the basic di�erentiations between the wide range of SDN implementations

is the one of an underlay versus an overlay SDN.

Overlay SDN. Based on existing network connectivity, tunnels are formed be-

tween end-hosts. Often, these tunnels are created using software switch

instances running on compute hypervisors on both sides. Connected to

these software switches are the network interfaces of virtual machines or

containers. Through the tunnel, a virtual layer 2 network is provided over

a layer 2 (switched) or layer 3 (routed) network spanning multiple physical

hosts. The tunneling protocols used include Generic Routing Encapsulation
(GRE) or Virtual Extensible LAN (VXLAN), which build directly upon IP

respectively UDP. One such tunnel between two hypervisor instances is

established per virtual network.

An exemplary HTTP packet transferred by a VM that is later sent over the

network is depicted in Figure 3.1a. The inner packet is encapsulated in a

VXLAN packet.

The bene�t of such overlay SDN techniques is that they can run on top

of existing Ethernet/IP-based infrastructures. As such traditional infras-

tructure is (usually) unaware of the tunneling protocol, decentralized non-

SDN-based forwarding mechanisms are applied, i.e., shortest-path routing

or Equal-Cost Multi-Path (ECMP). Using the latter, redundant paths be-

tween the two end hosts, e.g., inside a data center network, can be used

to increase throughput, if multiple tunnels are established between the

two hosts. The shortcomings of overlay SDNs include an additional over-

head, i.e., 3% reduced packet size when using standard 1500 ByteMaximum
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(b) Packet sent via underlay SDN.

Figure 3.1: Protocol stack in VXLAN-based overlay SDN compared to OpenFlow-
based underlay SDN.

Transmission Units (MTUs), as well as the loss of hardware o�oading fea-

tures, such as TCP checksum o�oading, which leads to higher processing

delays and CPU load.

Unterlay SDN. Through SDN-enabled networking devices, i.e., routers or

switches, an underlay SDN allows to programmatically describe and mod-

ify the forwarding behavior of these devices through an external, logi-

cally centralized software. This entity, the controller, centralizes the pre-

viously distributed control plane. Figure 3.2 describes such separation and

compares a traditional network element, e.g., a switch or router, with an

OpenFlow-enabled [29] SDN switch. OpenFlow is today’s most frequently

used Control Data Plane Interface (CDPI), often referred to as southbound
protocol.
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Layer Functionality Realization

Data Plane Packet forwarding ASIC, FIB, �ow table

Control Plane Decides how to forward MAC learning, STP, OSPF, BGP

Management Plane Device con�guration SNMP, Netconf, SSH

Table 3.1: Overview over layers/planes of network devices.

Control Plane

Data Path / Forwarding

Management

OpenFlow Client

Data Path / Forwarding

ManagementDevice Firmware

OpenFlow Controller

(a) Traditional network device architecture.

Control Plane

Data Path / Forwarding

Management

OpenFlow Client

Data Path / Forwarding

ManagementDevice Firmware

OpenFlow Controller

(b) OpenFlow-based switch architecture.

Figure 3.2: Traditional network device architecture in comparison with OpenFlow-
based device architecture. [58]

De�ning the contents of the Forwarding Information Base (FIB) of network

elements remotely increases �exibility for tra�c engineering. Every �ow,

i.e., packets sharing common header data, precise decisions about the for-

warding behavior can be made. However, underlay SDNs explicitly require

support from the used hardware.

The remainder of this work focuses on OpenFlow-based underlay SDNs, as

long as a concrete implementation is applied. Many of the introduced studies,

however, are independent of a particular realization of the SDN.

3.1.2 So�ware Engineering Methods

Agile development has changed the way how software is developed. Instead of

extensive manual tests prior the – very rarely happening – release, this style of

software development applies automated testing, frequent releases, and continu-
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Figure 3.3: The deployment pipeline for software projects as suggested by [59].
Red: Test execution resulted in failure; green: tests succeeded.

ous feedback. Large parts of the software engineering world thus improved with

regard to project success, development speed, and ability to incorporate changed

requirements.

Given the new characteristics and potential of software-based networks, this

work aims at exploiting these novel possibilities to improve performance and

agility. An essential part is seen in the chance to learn from the software engi-

neering world and at the core in the concept of Continuous Delivery, which will

be introduced in the following.

Continuous Delivery

In order to mitigate the risk of broken software deployments while keeping a high

pace of software releases, Continuous Delivery (CD) [59] introduces the concept

of the Deployment Pipeline. The stages of such a deployment pipeline that are

executed on a centralized server are described as follows:

Version control: Every change to the software is checked into a Version Control
System (VCS), like Git or Subversion. The use of a VCS allows the team to
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prevent overwriting changes of source code �les, when di�erent develop-

ers modify the same �le in a short time. The traceability of changes by

storing all historic versions of a software’s source code gives the possibil-

ity to revert back to a state of the software that is known to work in case of

regressions. After checking a change of the software into version control,

the deployment pipeline is instantiated and the state of the software code

passed through the following stages.

Build & unit tests: The centralized build server picks up the source code and

creates an executable build artifact by compiling the source code. By creat-

ing the build on a centralized server, it can be assured that not only a single

developer can compile and release software, but the whole team. Building

only on PCs of developers introduces the risk of errors on other devel-

oper’s machines caused by di�erent con�guration or compiler and library

versions. After successfully creating the build and following the technique

of Test-Driven Development (TDD), unit tests are executed against the com-

piled software. In case of any error during the build process or while run-

ning the unit tests, the pipeline is stopped and the developer informed

about the problem. A fast feedback regarding any failure is important for

the success of software development. If the stage is successfully passed,

the next stage is triggered.

Automated acceptance tests: The particular steps in this stage are dependent

on the actual implementation of the deployment pipeline. The result of this

stage, however, is the knowledge that the created build artifact meets the

speci�ed acceptance criteria – or that they don’t. These acceptance crite-

ria range from functional and integration tests over to capacity tests, and

longer-lasting source code analysis. Functional tests assure that the func-

tionality of a software actually meets its speci�cation. Integration tests as-

sure that a part of the software works expected after integrating with other

components. In order to execute all of these tests, a running version of the

software is required, which is therefore deployed into a production-like in-

frastructure. This means that the environment where the tests are executed
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matches the production environment in terms of version and con�guration

of operating system, libraries and installed software. If all tests can be ex-

ecuted successfully, the pipeline execution is continued and otherwise the

delivery team is noti�ed.

User acceptance tests: In order to verify the implementation of a new feature,

the software is deployed into an environment accessible by all team mem-

bers. TheQuality Assurance (QA) sign-o� when testers manually verify the

functionality of the software, is the �rst human intervention after making

the commit to the VCS. An extensive automated test suite that is executed

in the previous steps and veri�es the basic feature set of the software gives

now the QA team time to focus on new features and exploratory testing.

After this manual veri�cation, the build artifact is ready to be released.

Release: The release of the software means that it is installed on the production

servers or, in case of on-premise software, it is made available for cus-

tomers to download. This stage can be either triggered manually, or after

a button click in the software supporting the CD process.

The result of this is the knowledge about the state of the software, which could

be either that it is veri�ed to function or not. Through automated tests, the manual

QA e�orts are reduced and the duration that a change takes to pass through the

deployment pipeline in order to be known as releasable is reduced to minutes or

hours.

Besides to software development, the continuous delivery paradigm has been

successfully applied to other areas. Modern server con�guration management

software follow the infrastructure as code paradigm, which allows to de�ne the

setup of a particular entity, mostly a cloud server including its application stack,

as source code. Any change to the con�guration inside the source code repository

is only brought into production when the new con�guration successfully passes

the continuous delivery process.
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End to 
end tests

Integration tests

Unit tests

Manual 
tests

Figure 3.4: Sofware testing pyramid [60] in its variation from [61].

So�ware Testing

As discussed already for the CD pipeline, quicker software tests should run earlier

than slower ones to allow fast feedback. A similar message is transported by the

concept of the Testing Pyramid [60], as it is shown in Figure 3.4. It is made up of

the following three types of tests.

Unit tests. As shown at the bottom of the pyramid, these tests should make up

the majority of tests, as they are fast, focussed, and reliable. By testing the

return values of a method for given input parameters, it can be checked

very quickly with thousands of such tests per second. All calls to external

systems, e.g., data bases or REST APIs, should be mocked so that none of

these calls is ever made, but instead (de�ned) fake values are returned.

Besides short execution time, unit tests also allow to narrow down the

source of a test failure to a very small piece of the system.

Integration tests. Originally referred to as Service tests, unit tests combine mul-

tiple components together and evaluate the correctness of the business

logic, e.g., a calculation of a complete tax declaration for supplied test in-
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puts. This type of tests takes into account multiple subcomponents, mak-

ing it hard to spot, which component is actually responsible for a wrong

result. As external systems like data bases are often required to run these

tests, they consume much more time and thus should make up only a

smaller portion of all tests compared to the unit tests. However, such tests

verifying the correct interoperability of multiple components, often cre-

ated by di�erent teams, are essential for verifying the overall correctness

of the built system. A prominent example of such failure is the Mars Cli-
mate Orbiter satellite [62], which was lost in 1999 due to a unit mismatch.

As the NASA established the metric system for all data, teams expected in-

put to be in the newton-seconds unit. However, as one US team returned

their value in pound-seconds, the overall system made wrong calculation

leading to the satellite being lost in space. This mistake costed about USD

125 million.

End-to-end tests. Originally referred to as UI tests, end-to-end tests should

make up the smallest part of all automated tests. While these tests are

easy to comprehend, as they directly re�ect the software’s interaction with

the user, they are hard to maintain, often unreliable and slow. In desktop

or web applications, these tests mimic the user’s mouse and keyboard in-

puts, e.g., through the use of testing tools like Selenium [63] or headless

browsers like PhantomJS [64]. Such tests are hard to maintain, as smaller

changes to the User Interface (UI) or di�erences in the rendering of dif-

ferent screen resolutions require updates to potentially many tests. Fur-

ther, rendering di�erences or timing issues result in a high false-positive

failure rate, which stresses developers and testers. Finally, such tests are

slow, as they require everything end to end, from authentication, business

logic, and �nally rendering of the user interface. Organizations still prac-

ticing extensive UI tests end up with immense testing infrastructures, i.e.,

salesforce.com, which runs 50,000 VMs for testing 100,000 end to end tests

multiple times per day. While not to this extend, end to end tests should

be employed for testing the critical and user-interactive paths of the ap-
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plication, e.g., user sign-up, but not the core functionality.

Manual tests �nally should make up the smallest portion of tests, as they are

manually executed by humans, compared to the other automated tests ran

by machines. Traditionally and with grown software, manual tests often

make up the largest part and sometimes take weeks prior a software re-

lease. Instead, manual testing should focus an explorative testing instead

of repeatedly testing core logic.

Embedded in the continuous delivery pipeline, tests of all these �elds help to

ensure more stable software being released within shorter time. Fast unit tests

ensure all building blocks work isolated by themself. More extensive tests that

build upon the acceptance tests should then be made up of integration as well as

end to end tests.

The authors of [65] argue for applying the software engineering concept TDD

to the management of SDNs. In order to prevent a faulty network con�guration

to be deployed, a formal language called Data Path Requirement Language (DPRL)

is introduced. Using the speci�cations made in DPRL, the compliance of an SDN

controller against the speci�ed rules can be veri�ed. The authors provide a pro-

totype implementation that builds upon Mininet and Open vSwitch.

While this work is certainly of signi�cant importance for low-level network

engineering and allows to verify the correctness of aVNF Forwarding Graph (VNF-

FG), albeit its high complexity, it covers only one aspect. The goal of the work

presented later in Section 3.2.2 is a more administrator-friendly, yet powerful,

approach.

3.1.3 Network Infrastructure

While the separation of control and data plane is often seen as one of the main

turning points in SDN, its openness regardingApplication Programming Interfaces
(APIs) also o�ers new possibilities. Network management applications now have

one central endpoint to contact regarding all network matters, the northbound

API of the controller.
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This allows new approaches for network management. In the following, em-

phasis will be put on two aspects, network monitoring (cf. Section 3.3) as well

as isolation of devices following the Bring Your Own Device (BYOD) concept (cf.

Section 3.4).

Network Monitoring

This section covers relevant research work on the topic of elephant detection and

SDN-based monitoring.

The relation between large and small (in terms of bytes), as well as short- and

long-lived �ows is discussed in [66]. The elephant �ows, small in number, carry

the biggest part of the entire tra�c. In contrast, the mice, large in number, only

contribute a small part to the total tra�c volume. This has been observed in di�er-

ent data center measurement studies [67, 68]. Di�erent approaches for elephant

detection are summarized in the following.

Application-side labeling. One approach enabling application-speci�c �ow

monitoring is to label network �ows within the application [69, 70]. Thus,

every �ow present in the network is labeled, e.g., with the type of ap-

plication or the total amount of data to transfer. This approach, however,

requires the modi�cation of all involved applications as well as a dedicated

trust relationship between the hosts and the network.

End-Host-Based detection. Instead of in the application, monitoring can also

be performed in the operating system on the end-hosts. Mahout [71] de-

tects elephant �ows by monitoring socket bu�ers of end-hosts and is real-

ized via a shim layer that marks packets which belong to an elephant �ow

before emitting them into the network. However, the network has to trust

information received from the end-hosts.

Network-side flow statistics. Another approach, and probably the most com-

mon one, is to monitor within the network to keep statistics for every �ow

present at a given time. Statistics are exported from the network entities to

the monitoring stations. Systems using this approach beside sFlow are [72]
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and [73]. Providing such per-�ow statistics for every �ow in the network

requires a severe amount of resources on the network elements, which

might not be possible for all environments, especially data center or WAN

networks. While packet sampling allows to apply this mechanism to even

larger network environments, elephant detection becomes yet harder with

higher sampling factors [74].

Programmability and packet matching in hardware switches o�ers multiple

ways of using OpenFlow for monitoring. The most important approaches are de-

scribed in the following.

NEC FlowSense [75] uses OpenFlow messages (�ow-removed and packet-in) to

measure the duration of �ows. Furthermore, the amount of tra�c mea-

sured via �ow counters and inbound ports is logged in order to provide

detailed information on link utilization.

OpenTM [76] leverages OpenFlow features for passive monitoring and is based

on periodically querying �ow statistics from selected switches. Further-

more, the authors investigate the trade-o� between the load of the switches

and the accuracy in terms of �ow rate estimation. In contrast to the algo-

rithm proposed in Section 3.3, FlowSense and OpenTM do not actively

de�ne �ow rules besides the ones set up by the controller for forwarding

tra�c.

OpenSketch [77] o�ers a large feature set for �exible �ow monitoring in SDN

hardware. However, it relies on specialized, programmable hardware. In

contrast, the approach described in Section 3.3 exploits existing features

of OpenFlow hardware.

Currently available commercial SDN-based monitoring systems often do not

build upon existing features. An out-of-band monitoring infrastructure compris-

ing additional SDN switches is used by Big TapMonitoring Fabric [78]. All produc-

tion tra�c is mirrored into the switching fabric, which then splits up the �ows to
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di�erent monitoring servers. Network Packet Brokers (NPB) follow a similar ap-

proach. A central controller manages a certain number of NPBs, which analyze

and forward the monitoring tra�c through a dedicated network, the vMesh [79].

Isolation and BYOD

Programmable BYOD Security (PBS, [80]) applies SDN/OpenFlow to mobile de-

vices using the PBS-DROID application. This lets the Android device run an

OpenFlow-controlled switch with the smartphone apps connected to it. By run-

ning on the device itself, it allows per-app policies. Compared to the approach

described in Section 3.4, PBS is able to work on a more �ne-grained level, while

the network infrastructure itself does not have to be changed. In contrast, the

motivation behind the approach that we propose is to not require changes to the

devices, but instead providing a high level of security through the support of the

network infrastructure.

3.2 Management of So�warized Networks

SDN lead to a shift away from hardware-centric networking towards open inter-

faces and software-driven network control. The controller running as software

application on a standard server allows short innovation cycles for the network

control plane. In contrast, traditional integrated devices require �rmware updates

to introduce new mechanisms or protocols. The pace of innovation can also be

seen by the number of available OpenFlow controller implementations – and the

number of projects that are stopped being developed any further.

Despite the availability of open source SDN controllers, it is unlikely that many

network administrators outside change its core functionality. However, the plu-

gin architectures of modern SDN controllers allows extensions of this centralized

instance. This includes monitoring, routing, security, application awareness and

quality of experience optimizations. Commercial o�erings for such plugins are

the business case for companies developing an open source controller base plat-

form.
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Network Functions Virtualisation (NFV) in contrast aims at replacing Network
Functions (NFs) provided by monolithic hardware middleboxes with software im-

plementations running virtualized on standard servers, the Virtual Applications
(VAs). An overdimensioning of resources as it is usually done with hardware

can be avoided by applying elasticity mechanisms of nowadays cloud application

stacks, including cluster and replication functionality.

Therefore, NFV promises slim software instances that provide a particular

functionality, like applying Deep Packet Inspection (DPI), �rewalling, or function-

ality of LTE mobile networks [7]. Again, shorter innovation cycles and an in-

creased �exibility are a driver for research, vendors and operators to investigate

the use of virtualised network functions. SDN is the preferred mechanism to pipe

all or only speci�c �ows, like all tra�c on TCP port 80, through a speci�ed set

of network functions. The VNF Forwarding Graph [81] speci�es, which network

functions should be passed, e.g. mirrored tra�c to a monitoring function, or to

let it traverse an intrusion detection function.

Frequently modifying the network software and con�guration of SDN con-

trollers and the NFV infrastructure comes with the big risk of disrupting network

connectivity. Besides bugs and breaking changes in software implementations,

human-made con�guration errors are reasons why traditional networks are pro-

gressing very slowly. The open issue is now, how virtualization of network ele-

ments and functions helps to allow frequent changes without unexpected outages.

An application of CD to softwarized networks will be discussed in the follow-

ing, while special emphasis will be put on the testing part. The content of this

section is taken from [5] and [22].

3.2.1 Continuous Delivery of Network Functions

Regardless of these new accomplishments, even after decades, the Command Line
Interface (CLI) is still the best friend of network engineers when con�guring

switches, routers or other network devices. Furthermore, the network is con�g-

ured decentralized directly on the devices. Thus, there is no simple way to test the

complete network con�guration before applying it device by device. The network
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engineer has to make sure to always enter the correct commands, make no typ-

ing errors and hope for no unforeseen side-e�ects while con�guring the network.

This cumbersome process causes severe problems for the management of today’s

IT infrastructure, as the risk of breaking the production network results in secu-

rity updates, e.g., for the infamous Heartbleed bug, being applied late or never to

network elements [82, 83]. Automatizing particular tasks often requires the use

vendor-speci�c interfaces, which does not allow to apply the same methods to

devices of another vendor.

Installation of updates or con�guration changes are nowadays often scheduled

in maintenance windows, when users are informed beforehand that failures may

occur. This approach tries to increase the Mean Time Between Failure (MTBF), as

downtimes are avoided by deferring changes to be applied in batches – or until

they become urgent. At the same time, the risk of failure when changes are ap-

plied is increased, as multiple changes are applied at the same time. Furthermore,

also identifying the root causes of potential problems becomes harder, when more

than one change is introduced to the network at the same time.

Software development projects faced similar problems before agile project

management methods like Scrum were introduced to reduce the risks of late in-

tegration. Here, methods from DevOps [84], allow for fast feedback cycles and

frequent releases in order to avoid misconception, extensive manual testing, as

well as failures that are hard to identify due to the fact that many changes are

applied to the system simultaneously. Instead, modern web companies release

changes into production more often – in number of hundreds or thousands per

day [85, 86]. These practices aim to increase availability by reducing the Mean
Time To Repair (MTTR) instead of increasing the MTBF. Through automated test

execution and deployments, the quality assurance e�orts per change can not only

be reduced, but also the time to release a �x into production, which might also be

to revert a change, is e�ortless.

Some current network con�guration management tools, allow for the automa-

tized deployment of changes to network devices. However, the proprietary nature

of the con�guration interfaces of traditional network interfaces results in a high

complexity and price for Network Con�guration Management (NCM) tools. Thus,
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many current networks are not using such tools and still maintained manually

by the network engineers.

Recent developments in the area of SDN o�er new opportunities for change.

Besides the bene�ts of a better network performance, a simpli�ed management

and con�guration of the network infrastructure is promised. Most research work

on software de�ned networks, however, focuses on improving network perfor-

mance or reliability by de�ning controllers architectures and roles of entities [87]

or generally the more sophisticated management of network �ows [88]. The life

cycle of the introduced SDN entities, including provisioning and maintenance,

could bene�t from applying CD to SDN in order to not only bene�t from the pro-

vided agility, but also to support the e�ortless and risk-free deployment of new

networking software.

In the following, it will be described, how the concept of continuous delivery (cf.

Section 3.1.2, [59]) can be applied to the area of softwarized networks. The main

building blocks are (a) process automation, (b) automated tests, (c) availability of

realistic test environments and (d) infrastructure as code.

Through process automation, network engineers are supported in their daily

work – instead of being jammed by yet another tool to use and process to follow.

The goal is to reduce the overhead of work that is required to make a con�gura-

tion change. Instead of manually logging into all networking devices, the deploy-

ment will happen automatically on all a�ected entities. An automated test suite
further supports the goal of reducing the overhead, in this case the additional

work of manual testing. Furthermore, automated tests bring (high) con�dence

that any change that passed the automated tests will not be disruptive when de-

ployed into production. The availability of realistic test environments that can be

set up automatically is also a prerequisite of executing automated tests. Compared

to traditional, hardware-centric networks, where devices have to be connected

manually, the softwarization of networks now allows to automatically set up an

environment matching the production environment through instantiation of vir-

tual machines running the same software in the same versions. This allows the

engineer or quality assurance teams also to manually test changes prior to roll-

out, without complicated setup of infrastructure. Finally, infrastructure as code
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case when an administrator uses an existing controller software and con�gures

it according to own needs. If the controller software itself has to be compiled, a

dedicated deployment pipeline following the original version of CD in terms of

software engineering projects should be established. The case that is presented in

the following uses the compiled artifact of an SDN controller software that could

be also a purchased software, which is not available as source code, but only as

binary artifact.

The following stages are suggested for the deployment pipeline applied to an

SDN controller:

Version control: The version control repository for the SDN controller pipeline

contains the con�guration of the servers running the controller and how

the controller has to be installed. This includes an exact speci�cation of

the controller version that has to be installed, as well as the con�guration

�les of the controller software.

Setup & Smoke: As this pipeline does not involve any compilation of soft-

ware, the focus is more on putting the infrastructure components together.

Therefore, a virtual machine that matches the con�guration of the produc-

tion servers is provisioned. The controller software is downloaded from

the de�ned source in the speci�ed version and installed into the virtual

machine. This ensures that the automatic deployment process works and

the controller software and all dependencies can be downloaded and in-

stalled. Finally, the setup is completed by supplying the con�guration �les

as speci�ed in the version control repository.

Following the principle of fast feedback, this stage only includes tests that

can be executed in a very short time frame, while catching many of the

errors that are likely to happen. In [59] it is recommended to not exceed

the 10 min mark. What should �t in this time frame are smoke tests, which

only consist of testing, whether the controller software using the supplied

con�guration is able to start up or not.
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Automated acceptance tests: The tests running in this phase ensure that the

speci�ed acceptance criteria for the software being deployed are met. A

failure in any of the tests means that at least one criterion that is essential

for the software is not ful�lled and thus the pipeline has to be stopped. Be-

sides functional tests, which means that the software works as expected,

the acceptance tests also include non-functional tests, verifying that cer-

tain performance or capacity requirements are met.

The functional test suite of an SDN controller should include at least the

following checks:

a) Accepts incoming southbound connections: This check ensures basic

functionality, namely that the controller is listening to the correct

interface and port for incoming connections. This allows to quickly

identify basic errors and helps to prevent them to fail more complex

tests.

b) Allows a switch to forward tra�c: Independent of an active or reac-

tive setup of rules inside the switches’ forwarding tables, the result

should be that two stations connected to a switch can exchange net-

work tra�c.

c) Accepts incoming northbound connections: The whole bene�t of

SDN can only be exploited, if an integration into and coordination

with the remaining IT infrastructure is happening [27]. Therefore,

the functionality of the northbound API, nowadays usually imple-

mented as a RESTful API, is as essential as the functionality of the

southbound API is. This �rst northbound test ensures that a client is

able to connect. Besides the correct con�guration of the listening in-

terface and port, this also veri�es that the authentication is working

correctly.

d) Required feature set of northbound API is working: Certainly, not all

features of an SDN controller’s northbound API will be used in a par-

ticular setup. However, the subset of functionality that is used should

be veri�ed to work correctly. If the production setup consists of a
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cloud controller that interacts with the SDN controller, the correct

functionality of that part of the REST API should be tested automati-

cally. This ensures that especially updates of the controller software

that might introduce changes or bugs are not deployed without the

con�dence that the used feature set is still working.

Other than functional tests, non-functional tests evaluate characteristics

of a setup that cannot be directly described in a fashion that a certain re-

sponse is expected for a certain request. One of these non-functional re-

quirements is the ability to handle a certain number of connected switches

as well as a speci�c rate of requests per second.

User acceptance tests: If desired, the administrator or a QA engineer can con-

duct further manual tests in the staging environment. Therefore, the tester

can connect an own virtual switch, or even a hardware switch, to the con-

troller software running in the staging environment. For convenience, ad-

ditional virtual machines can be deployed and precon�gured so that the

tester can focus on the actual testing, instead of struggling with setting

up the test environment. The manual tests done here should not test ab-

solutely critical functionality so that they have to be repeated prior to ev-

ery deployment, thus during every run of the pipeline. Instead, such tests

should then be automatized and executed in the previous stage. This allows

the tester to focus on new functionality in detail.

After manual testing, the tester lets the pipeline either proceed to the next

stage, or fails the pipeline and returns back to the delivery team to adjust.

Production Deployment: The �nal stage of the deployment pipeline triggers

the production deployment. This step can either be done automatically

after every successful execution of the pipeline, bundled into e.g. a single

deployment per day, or manually triggered.
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Tra�ic Shaping Network Function

NFV aims at replacing hardware middleboxes through VNFs. The deployment

pipeline for a VNF that is inserted into the �ow of tra�c will be described in the

following using a tra�c shaping function. Besides giving more capacity to other

network �ows, tra�c shaping or rate limiting is a common use case for mobile

networks. After reaching the “�at rate” limit of e.g. 1 GB per month, the mobile

operator is shaping the subscriber’s tra�c to a lower rate. Therefore, received

tra�c is queued inside the entity running the function and then forwarded with

a reduced rate.

The suggested deployment pipeline for a TS-VNF and similar functions is as

follows:

Version control: Similar to the pipeline of the controller, the version control

repository for the tra�c shaping VNF pipeline contains the con�guration

of the servers running the function. If the function is developed as source

code, another deployment pipeline following the original CD for software

projects [59] has to7 be set up.

Setup & Smoke: Again, the main focus of this stage is to ensure the successful

deployment by installing the speci�ed software into a production-like en-

vironment. A smoke test that veri�es that the application implementing

the VNF starts without errors.

Automated acceptance tests: The acceptance criteria for a VNF include crite-

ria that are common for a certain type of network function and some that

are speci�c for a particular function. Tests that are common e.g. for all

middlebox VNFs ensure that incoming tra�c is also sent back as speci�ed,

in order to reach the �nal destination or the next network function. Au-

tomated acceptance criteria that are speci�c to a tra�c shaping function

should include:

a) Sent data matches received data: Using a TCP data transfer it is

checked that the Layer 7 payload sent out equals (bitwise) the pay-
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load that is sent into the function under test. The aim of tra�c shap-

ing is not to falsify the data in any way. Implementation errors which

result in data corruption can be detected this way.

b) Tra�c shaping is successfully applied: In order to verify the core func-

tionality, the throughput or duration of a data transfer is measured.

By de�ning a certain threshold, deviations of some percentage from

the de�ned bandwidth limit are not causing the test to fail, but en-

sure that shaping is applied.

c) Only tra�c that should be shaped is shaped: Assuming that the shap-

ing functionality allows to handle �ows di�erently, this test ensures

that bandwidth limits are only applied to the speci�ed �ows and not

to others that should not be shaped. Therefore, a bandwidth limit

for a certain �ow criteria is de�ned. The duration of a data trans-

fer through the network function that not matches the shaping rule

is measured and the average throughput computed. If the measured

throughput exceeds the shaping limit by a factor speci�ed in the test,

e.g. twice, the test succeeds and it can be assumed that the shaping

is only applied to speci�ed �ows.

While the elasticity of network functions and the automatic up and down

scaling should ensure that additional capacity is provided in case of in-

creased resource requirements, automated capacity and performance tests

are still of big importance. Heavily increased requirements of a certain

functionality can cause various kind of trouble, including additional costs.

Therefore, either static triggers with �xed limits, or a limit of divergence

from previous runs ensures that a by far more resource-intense new im-

plementation or con�guration is not released into production.

User acceptance tests: Again, the network engineer or QA sta� has the chance

to manually verify functionality like already described in the pipeline de-

scribed for the SDN controller pipeline in Section 3.2.1.
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Production Deployment: As already applied in previous testing environ-

ments, the automated deployment is now happening into the production

environment. Depending on the con�guration of the pipeline, this stage is

executed automatically after the QA sign-o� in the previous stage or on

the push of a button in the software supporting the continuous delivery

process.

The deployment pipeline of an SDN controller and of a tra�c shaping VNF

as typical functions of SDN/NFV-enabled networks were used to illustrate how

the agile deployment of such functionality into the production network should

happen.

Discussion

In this section, the aspects that are worth noting to understand the reasons for

introducing a continuous delivery process are discussed. Furthermore, open is-

sues that should be tackled by the software development or network engineering

community in order to further support the adoption of this concept are described.

Releasing more frequently. For agile software development, the “highest pri-

ority is to satisfy the customer through early and continuous delivery of

valuable software” [89]. That quality and productivity is increased through

agile methods in software engineering is shown by a survey in [90]. Also

that more releases do not mean more bugs, instead that �xes are released

faster, is shown in a study of Mozilla Firefox’ long and short release cycles

[91]. In the case of Amazon.com, it is reported that the number of outages

triggered by software deployments was reduced by 75% within 5 years.

The “safety net” provided by a deployment process backed by automated

tests reduces stress for humans. Through the smaller amount of changes

deployed simultaneously, the identi�cation of root causes easier becomes

easier in the case of negative side-e�ects.

Overhead of testing every change. The execution of numerous automatic

tests often results in the feeling that CD would introduce a large over-
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head into software development processes. In order to be able to iden-

tify the particular commit in the source code repository that introduces a

regression, every single change executes numerous automated tests. The

suggested pipeline execution includes the instantiation of multiple virtual

machines and running functional tests with potentially a duration of sev-

eral minutes.

Computing power is cheap. The compute power spent for automated tests is

the replacement for manual tests repeatedly executed by humans. These

manual tests, in the �eld of network software certainly similar to software

development, otherwise bind a large capacity of human resources result-

ing in high operational costs. Compared to manually applying changes,

the delay until a change passed through the deployment pipeline, is no-

tably larger. However, manual con�guration changes are considered bad

practice, as they cannot be tracked (who changed what and when) or eas-

ily reverted and do not scale to a large number of devices. Therefore, the

time for an automated deployment process has to be preferred over manual

�re-and-forget changes in production.

Automated testing of networks. The work in [65] (cf. Section 3.1.2) can be

seen as an important step into the right direction. TDD is an important

building block for continuous delivery of networks. However, the sug-

gested prototype implementation would still require the network engi-

neer to write Python code. The next section will therefore focus on an

administrator-friendly approach based on Behavior-Driven Development
(BDD).

Metrics. An essential part of CD and the related DevOps practices is to monitor

how the production infrastructure behaves. The collection of metrics in

a DevOps context means more than just monitoring of bandwidth usage

and QoS [92]. Instead, a data-driven culture relies on aggregating data from

numerous sources together, in order to allow engineers, as well as business

units to take decisions based on measured truth and not on assumptions
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or feelings. While the change of network parameters does not necessarily

result in a change of measured QoS metrics, it can a�ect performance of

applications running in the network. The collection and aggregation of

metrics can go so far that also the number of transactions in an online shop

is monitored. In case of a large decrease of this metric, the metrics collected

from the network side can be correlated as well as matched with times of

deployments. If a certain behavior is seen after a point in time at which

a change to the network or server infrastructure happened, this change is

likely to be the cause for this changed behavior. Again, it is important that

all changes are tracked in a version control repository to revert to previous

states, as well as that data about the exact time when deployments happen

are stored.

Feature �ags [93] allow to change a particular behavior, like the availability

of a feature, for a group of users, requests, or other types of aggregation.

Transferred to networks, this could mean that a mechanism that should be

evaluated can be tested under production conditions for only a number of

users, devices, or �ows. Metrics then allow to compare one implementation

against the other. The �exibility of steering network tra�c provided by

SDN can be seen as an enabler for techniques such as A/B-testing, where

two di�erent implementations are compared regarding speci�ed metrics.

3.2.2 Testing Methodology for So�ware-based Networks

In order to give network operators more con�dence prior to rolling out changes

into the production network, we suggest to provide an operator-friendly way of

specifying test scenarios and acceptance criteria. Based on a human-friendly way

to de�ne these tests, network operations should be able to move forward quickly.

All components of a software-based network are or, in case of switches, can be

substituted by software. This o�ers the chance to create arbitrary network setups

without dealing with physical equipment.

It is, however, the job of developers to provide the foundation on which op-

erators can build upon. The bene�ts, if infrastructure projects would o�er such
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means, will be demonstrated in the following.

Test Specification

An example for a test speci�cation in the domain-speci�c language Gherkin [94]

could look as given in Listing 3.1. Gerkin allows to express the expected behavior

of a system under certain preconditions. This simpli�ed scenario is formulated in

the domain language of an operator and allows to verify basic network connec-

tivity, which is that two hosts can communicate with each other.

A slightly extended example to verify the network’s behavior during a con-

troller restart or outage is given in Listing 3.2. The aim is to ensure that already

established network connectivity is further maintained, even if the controller be-

comes unavailable.

Another similar test could check wether two hosts which did not yet exchange

data can connect with each other after the controller became unavailable. This

allows to verify the correct implementation and con�guration of the fallback to

the fail-save mode.
Features that a testing framework could provide are tokens like a large

topology with loops or the flows take distinct paths.

By having this layer of natural-language style speci�cation on top of the actual

step de�nition, cf. Figure 3.6, the speci�cations are easy to formulate and – even

more important – easy to read in case of a failure.

Listing 3.1: BDD speci�cation of a reactive controller behavior

Given a network topology with two hosts
When host 1 pings host 2
Then the ping is successful.

Listing 3.2: BDD speci�cation of a reactive controller behavior

Given a network topology with two hosts
And host 1 pings host 2
And the ping is successful
When the controller shuts down
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Step Definition
Mininet

net = Mininet(topo=my)
net.start()

Step Definition
OpenStack

neutron net-create
nova boot --image

Specification

Given ...
When …
Then ...

Figure 3.6: Di�erent drivers can be used for implementing step de�nitions, i.e.,
Mininet or OpenStack. Both run the same speci�cation.

And host 1 pings host 2
Then the ping is successful

Test Implementation

The previously described test speci�cation formulated in Gherkin needs be trans-

lated into actual code. As motivated, these step de�nitions should not necessarily

be created by the network operator, but can be o�ered by vendors, e.g., of the

SDN controllers or third parties like the open source community.

The bene�t of having this layer of abstraction between test speci�cation and

step de�nition can be seen in the possible implementations as illustrated in Fig-

ure 3.6. A BDD testing framework could o�er di�erent drivers that use di�erent
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types of testing infrastructure to verify the test speci�cation.

We illustrate this idea based on the following two drivers, one using Mininet,

the other OpenStack.

Mininet driver. Mininet is a lightweight network emulation tool running lo-

cally in a single Linux host. It uses Linux’ network namespaces to emulate

multiple hosts connected to one or more Open vSwitches connecting to

the SDN controller. Through its Python API, Mininet allows to program-

matically create topologies and execute commands on the emulated hosts.

Listing 3.3: Step Implementation using Mininet.

@given(’a network topology with {numHosts} hosts’)
def step_impl(ctxt, numHosts):

ctxt.mn.addSwitch("s1")
for num in range(numHosts):

# create host names h1, h2, ..
host = ’h’ + num
ctxt.mn.addHost(host)
ctxt.mn.addLink(host, ’s1’)

@when(’host {hst1} pings host {hst2}’)
def step_ping(ctxt, hst1, hst2):

h1 = MnHelper.getNodeFromName(ctxt.mn, hst1)
h2 = MnHelper.getNodeFromName(ctxt.mn, hst2)
packetLoss = ctxt.mn.ping((h1,h2))
context.pingResult = packetLoss

As Mininet is very lightweight, it o�ers short setup times even for rela-

tively large topologies (128 hosts and 128 switches set up in less than 10

seconds). The downside of Mininet is its characteristic of an emulation

tool, which limits the scope of tests to the possibilities o�ered by Mininet.

As BDD tests primarily focus at functional testing, the inappropriateness

of Mininet for performance testing should not be a big disadvantage.
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OpenStack driver. OpenStack as a full-blown cloud implementation o�ers

APIs to instantiate virtual machines and virtual networks, as well as for

orchestration. Assuming that an organization’s production infrastructure

runs in a (public or private) OpenStack cloud, it is desirable to run also

the testing infrastructure in the same. With orchestration tools like Open-

Stack Heat [95] or Terraform [96], it is possible to de�ne complete cloud

infrastructures and instantiate them multiple times.

The actual test implementation logs into the VMs via SSH and executes

test commands. These can range from ping to accessing the web server

via HTTPS or running a bandwidth-consuming download.

While this re�ects a test environment very similar to the production envi-

ronment, it comes at a high cost. Although parallelized, the instantiation

of the infrastructure takes several minutes. For provisioning, e.g., by using

Chef [97] to install the SDN controller, another several minutes are would

be consumed, until test execution can �nally start.

Aim of introducing the two diametrically opposed drivers for BDD tests was

to illustrate the di�erence between di�erent test implementations for the very

same test speci�cation. Given the distinct execution times, step de�nitions using

Mininet can be used for quicker tests, i.e., smoke tests. In contrast, a veri�cation of

critical network functionality in the acceptance stage should rely on more realistic

environments, preferably matching the production environment.

3.3 SDN-based Flow Monitoring

In the following, we propose a detection mechanism for elephant �ows based on

network-side monitoring. As it implemented within the SDN network, no support

by the end hosts or involved applications is required. Instead, it leverages already

existing counters of OpenFlow switches that are automatically updated when-

ever a packet matching an existing �ow rule passes the switch. Through iterative

re�nement of �ow rules, the proposed algorithm allows narrowing down the ag-

gregation level from coarse grained rules to very �ne grained rules and counters.
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Hence, the proposed ZOOM algorithm o�ers a very lightweight monitoring so-

lution focused on elephant detection that requires no additional hardware. The

content of this section is taken from [10].

3.3.1 ZOOM: Network Monitoring using SDN

This section describes the ZOOM algorithm, a lightweight approach leveraging

packet counters in OpenFlow switches for elephant detection. After the algorithm

is introduced, its accuracy is evaluated using a prototypical implementation.

Elephant �ows are often de�ned by a certain, �x data volume they transfer,

e.g. 100 MB. This work follows a slightly di�erent approach based on [98]. Lan

et al. de�ne elephants as �ows that carry more data than the mean of all �ows

plus three times the standard deviation. We base our de�nition on this metric

while introducing a new variable called sele which enables us to de�ne di�erent

elephant thresholds by using di�erent values for sele in the following equation.

S = mean(�owsize) + sele × std(�owsize) (3.1)

Thereby, mean(�owsize) refers to the average size of all �ows present in the

system and std(�owsize) describes the standard deviation of the encountered

�ow sizes. The corresponding threshold for elephant �ows is thus dependent on

the tra�c in the observed network and can thus be used independently of the

monitored network.

The proposed algorithm is based on polling of �ow statistics from OpenFlow

switches. Such statistics are automatically maintained by the switches for each

currently installed �ow rule. Therefore, the main idea is to de�ne �ow entries that

do not modify the forwarding behavior of switches, but still enable �ow monitor-

ing via packet counters. An iterative re�nement of the IP address ranges matched

by the �ow rules then allows to narrow down the elephant �ows. The match �elds

of these �ow entries are set so that – in the simplest case – a binary search over

the whole IP space is performed for source and destination IP addresses. Thus,

the IP range of possible source and destination addresses is divided into sections,

75



3 Management of Softwarized Networks

each covered by one of the created �ow rules, which then trigger statistics col-

lection within the switch. By splitting up IP ranges into more than two parts, the

algorithm can proceed faster, however, at the cost of creating more �ow entries.

In contrast to NetFlow/sFlow-style monitoring, counters are not created for

every single �ow. Instead, the amount of data that needs to be processed by the

algorithm is independent of the number of �ows present in the system. In addi-

tion, if pre�xes of the IP source or destination addresses are known, the run time

can be shortened even further. In particular, the runtime grows linearly with the

number of wildcard bits in the IP range that is to be searched. The following

equation describes the runtime of the ZOOM algorithm.

tZOOM(nbit, nflows, ntop, twait) =
nbit

log2(
nflows

ntop
)
× twait (3.2)

Thereby, nbit ∈ [0, 32] is the number of remaining wildcard bits in the IP range.

The ZOOM algorithm is listed in Algorithm 3, visualized in Figure 3.7, and

described in the following.

a) Initialization. The algorithm’s behavior can be adjusted with three input

parameters. The �rst parameter nflows de�nes the number of �ow entries

that are created per cycle. This de�nes the number of sections into which

the remaining IP range is divided. While nflows = 2 corresponds to a

binary search, higher values allow faster advancing at the cost of more

�ow rules. How many of the nflows sections covering the most tra�c are

treated as candidates to contain elephants and are thus further analyzed

is de�ned by the ntop parameter. This also determines the total number of

elephant �ows contained in the output produced by the algorithm. Finally,

twait de�nes the waiting time in seconds between the creation of �ow rules

and polling of corresponding statistics. Hence, it represents the interval

during which passing tra�c is monitored.

b) Initial Flow Generation As the algorithm searches for source and des-

tination addresses of end-to-end �ows, it is required to search the whole
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Figure 3.7: Flow chart of the ZOOM algorithm.

IP address range for both sources and destinations concurrently. Hence,

the number of �ow rules that are generated is n2
flows. In this �rst step,

nflows �ow entries covering all addresses from 0.0.0.0 to 255.255.255.255

are generated for source and destination respectively. If not the whole IP

range needs to be covered, the initial �ow rules change depending on the

already known bits of the IP address range. For nflows = 2, the resulting

�ow entries are given in Table 3.2. It can be seen that all �elds except source

and destination IP are wildcards. Instead of matching pairs of de�nite IP

addresses, the set of possible pairs of source and destination addresses is

partitioned into a number of n2
flows �ow entries.

c) Tra�c observation.During twait, while the algorithm pauses, the packet

counters of the switch are automatically updated for packets matching one

of the speci�ed �ow rules.

77



3 Management of Softwarized Networks

I
n

p
u

t
P

o
r
t

E
t
h

e
r
n

e
t

T
y

p
e

S
o

u
r
c
e

M
A

C

D
e
s
t

M
A

C

S
o

u
r
c
e

I
P

D
e
s
t

I
P

T
o

S

S
o

u
r
c
e

P
o

r
t

D
e
s
t

P
o

r
t

P
r
o

t
o

c
o

l

* 0x800 * * 0.0.0.0/1 0.0.0.0/1 * * * *

* 0x800 * * 0.0.0.0/1 128.0.0.0/1 * * * *

* 0x800 * * 128.0.0.0/1 0.0.0.0/1 * * * *

* 0x800 * * 128.0.0.0/1 128.0.0.0/1 * * * *

Table 3.2: Exemplary �ow entries matching the whole IP range (nflows =2).

d) Polling of statistics. After twait, �ow statistics are requested from the

switch.

e) Selection of ntop biggest �ows. Packet counters of previously retrieved

�ow statistics are evaluated and the ntop biggest �ows regarding average

bandwidth are selected for further processing.

f ) Termination condition. The subsequent action is to check whether the

termination condition is satis�ed. This is the case if the section covered

by each of the selected ntop biggest �ows contains only connections be-

tween a de�nite source/destination IP address pair, i.e., if all 32 bits of the

source and destination IP match �elds are speci�ed. If this termination

condition is met, the identi�ed ntop biggest �ows are returned as result of

the algorithm. As long as the IP address match still contains wildcard bits,

execution continues.

g) Flow generation (“Zoom In”). Again, a number of nflows �ow entries

is de�ned. Using these, the source and destination IP ranges covered by

the previously found ntop biggest �ows are split up into

nflows

ntop
entries

each. After removing all previously de�ned �ow rules, the newly generated

entries are pushed to the switch and the algorithm is repeated starting from

Step 3.
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Figure 3.8: Example of re�nement (“Zoom In” step) for nflows = 4, ntop = 2.

Figure 3.8 illustrates the re�nement process using nflows = 4 and ntop =

2. Depicting the �rst 4 cycles of the algorithm, it can be seen that the

ntop = 2 sections covering the biggest tra�c (shown in black/gray) get

iteratively re�ned by getting split into

nflows

ntop
= 2 segments each.

Implementation

In order to evaluate the accuracy of the proposed algorithm, a proof-of-concept

has been implemented as a module for the OpenDaylight controller (ODL).

The current implementation is focussed to statistics collection. In order to still

allow correct forwarding of production tra�c, the action of the �ow entries de-

�ned by ZOOM should, e.g., set the goto-table action to a table containing the

actual forwarding rules. This, however, is not relevant for evaluating the ZOOM

algorithm’s accuracy. Contrary to the proposed algorithm, our prototype imple-

mentation is limited with respect to legal values regarding the parameters intro-

duced earlier. This leads to the following constraints:

nflows ∈ {1, 2, 4, 16} (3.3)

ntop ∈ {1, 2, 4, 8} (3.4)

nflows
ntop

∈ {1, 2, 4} (3.5)

Furthermore, ODL does not allow creating �ow entries that match the 0.0.0.0 IP

address. Therefore, the proof-of-concept implementation of the ZOOM algorithm
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has to create more than nflows entries in the initial step (Step 1 in Figure 3.7).

Instead of 0.0.0.0/1 and 128.0.0.0/1, a reasonably low number of matches
1

are de-

�ned. Afterwards, the algorithm continues as originally.

3.3.2 Evaluation

The results that are presented and discussed in the following are obtained by run-

ning the aforementioned OpenDaylight implementation. The accuracy is evalu-

ated by replaying a publicly available tra�c trace from the Waikato Internet Traf-
�c Storage (WITS). Characteristics of the trace that is used to evaluate the ZOOM

algorithm are listed in Table 3.3. In addition to the general trace information,

the Table 3.4 shows statistics of elephant �ows resulting from di�erent elephant

thresholds. The values of sele ∈ {1, 10, 30} are selected as they show that the

total number of elephants and sele behave roughly inversely proportional. The

maximum value for sele = 30 is chosen since, due to the low elephant density,

the accuracy decreases signi�cantly for this threshold. Furthermore, the average

number of active elephants at each point in time as well as the average duration

of elephant �ows is provided. Finally, the table shows the tra�c contribution and

the percentage of elephants compared to the total number of �ows.

The evaluation is performed by using tcpreplay to replay the trace into an Open

vSwitch connected to ODL running the ZOOM module. In order to calculate the

accuracy of the algorithms, the experiment results are compared to the data avail-

able due to global knowledge about the tra�c trace. This is obtained by processing

the packet trace to obtain information on which �ows (and elephants) are active

at which time of the trace. These are then matched against the data obtained by

the algorithm to calculate the accuracy of the results.

In order to conduct the measurements, the algorithm is started at di�erent time

o�sets (5, 10, 20, 30, 40, 50 seconds) for every combination of parameters while

replaying the tra�c trace. In the following, the in�uence of di�erent parameter

settings on the accuracy of the ZOOM algorithm is evaluated.

The evaluation is performed by analyzing the accuracy of the results produced

1

1.0.0.0/8, 2.0.0.0/7, 4.0.0.0/6, 8.0.0.0/5, 16.0.0.0/4, .., 240.0.0.0/4

80



3.3 SDN-based Flow Monitoring

Algorithm 3: The ZOOM Algorithm.

Input: nflows ∈ {2, 4, 16}, ntop ∈ {1, 2, 4, 8}
1 Assert

nflows

ntop
∈ {2, 4, 16};

2 Spart = {nflows partitions of source IP range};

3 Dpart = {nflows partitions of destination IP range};

4 Generate �ow entries Einit = Spart ×Dpart;
5 Push Einit into switches;

6 Sleep for twait seconds;

7 Set foundFlowRuleToRe�ne = true;
8 while foundFlowRuleToRe�ne do
9 Collect �ow statistics;

10 Set foundFlowRuleToRe�ne = false;
11 for i = 1 to ntop do
12 Select i-th biggest �ow;

13 S = Extract source IP range;

14 D = Extract destination IP range;

15 if |S| > 1 or |D| > 1 then
16 Set foundFlowRuleToRe�ne = true;
17 Spart = {

nflows

ntop
partitions of S};

18 Dpart = {
nflows

ntop
partitions of D};

19 Generate Ei = Spart ×Dpart �ow entries;

20 end
21 end
22 Remove previously installed �ow rules;

23 Push E1, . . . , Entop to switches;

24 Sleep for twait seconds;

25 end
26 Write results;

27 return;
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Trace Metadata

Trace URL http://wand.net.nz/wits/ ...

ispdsl/2/20100106-030946-0.dsl.php

Trace duration 1214 seconds

Tra�c type DSL Subscribers

Total number of �ows 1,124,575

Concurrently active �ows 3,641 / 18,916 / 20,919

(min/avg/max)

Table 3.3: ISPDSL-II Tra�c Trace Metadata.

Elephant Statistics sele = 1 sele = 10 sele = 30

Total number of elephants 2,760 362 91

Average active elephants 1,062 186 56

Average duration (seconds) 443.9 595.0 715.4

Tra�c contribution 77.6% 47.1% 28%

Count contribution 0.2% 0.03% 0.008%

Table 3.4: IPDSL-II Tra�c Trace Elephant Statistics
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twait Mean Accuracy Con�dence Interval

1 0.3969 0.0224

2 0.4710 0.0201

5 0.5236 0.0167

Table 3.5: In�uence of waiting time twait on the accuracy.

by the ZOOM algorithm. Accuracy thereby describes the percentage of retrieved

results that are relevant and represents the precision in a standard precision and

recall scenario. Hence, the accuracy represents the fraction of the detected �ows

that are considered true positives.

a) Time of tra�c observation (twait). The study investigates the impact of

the length of the monitoring interval twait, during which the �ow entries

are active in the switch and passing tra�c is monitored. Therefore, we

examine the in�uence of twait on the mean accuracy over all available

parameter combinations.

Table 3.5 shows the mean accuracy as well as the 95% con�dence interval

of the ZOOM algorithm for twait ∈ {1, 2, 5}. It can be seen that the accu-

racy increases with growing twait for the evaluated trace. This can be ex-

plained by the in�uence twait has on the behavior of the algorithm. While

low twait values decrease the overall runtime of the algorithm and thus al-

low for faster detection of elephants, the short observation time makes the

algorithm vulnerable to short, bursty transmissions that are not elephants

by de�nition. Higher values of twait on the other hand, increase the tra�c

monitoring interval and the algorithm becomes more robust against short-

lived �ows. As the �ows that are to be detected are the ones that transmit

large amounts of data, these �ows also have a higher duration.

Hence, the parameter choice of twait controls the trade-o� between short

runtime and �uctuation resistance.
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Figure 3.9: In�uence of sele and twait on the accuracy.

b) Elephant threshold (sele). This section examines the in�uence of the

elephant threshold sele on the accuracy of the ZOOM algorithm. As de-

�ned previously, the threshold sele describes the total amount of data a

�ow has to transmit during its lifetime in order to be considered as ele-

phant. Figure 3.9 shows the data obtained by calculating the accuracy for

sele ∈ {1, 10, 30}.

The �gure shows that for a high elephant threshold the twait parameter

has signi�cant in�uence on the accuracy. For lower sele on the other hand,

the in�uence is less decisive. This is due to the composition of elephants for

di�erent thresholds. As a high sele leads to a small set of large, long-living

elephants that feature a high mean duration, the high twait value leads to

increased accuracy as short-lived �ows are �ltered by the long observation

period. On the other hand, decreasing sele leads to a larger amount of �ows

that are considered elephants. This reduces the mean duration of elephants

which results in twait not having a signi�cant in�uence. Due to the now

larger set of elephants, the overall accuracy is increased.

c) Number of requested elephant �ows (ntop) and available �ow rules
(nflows). In the following, the relation between the ratio of nflows and
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ntop and the accuracy of the ZOOM algorithm is evaluated. Figure 3.10

shows the accuracy for di�erent parameter combinations and elephant

thresholds. Thereby, the parameter ntop is indicated by the line style while

the color describes the value of twait. The x-axis describes the total num-

ber of elephants resulting from di�erent elephant thresholds as described

previously (sele ∈ [1, 30]). The data indicates that most parameter com-

binations achieve similar accuracies for similar elephant thresholds. Only

the parameter combinations of ntop = 1 and twait ∈ {2, 5} show signi�-

cantly di�erent behavior. This is most likely due to the higher granularity

resulting from nflows = 16 and ntop = 1. This �ne grained segmentation

reduces the risk of falsely selecting a �ow aggregate of many small �ows

instead of a single elephant �ow. As our proof-of-concept implementation

does not support backtracking, a once deselected segment is never investi-

gated again in further steps of the algorithm. We call this the Aggregation
Problem. This may lead to false positives as the algorithm eventually se-

lects an aggregate of many small �ows with a large cumulative size over a

single large �ow.

Furthermore, the results show that if the elephant threshold is set too

high, the accuracy of the algorithm decreases signi�cantly. This can also

be explained by the aggregation problem. As the number of elephants de-

creases with a growing threshold, the average size of non-elephant �ows

and thereby the extent of the aggregation problem increases even further.

This work introduces a lightweight algorithm for elephant detection which

leverages built-in features of OpenFlow enabled switches. In particular, the algo-

rithm combines the dynamic creation of �ow entries and the counters maintained

by switches to perform cost-e�ective elephant detection without introducing net-

work overhead. Thus, the proposed mechanism does not require modi�cation of

software or any additional hardware. Furthermore, the amount of data that needs

to be analyzed is independent of the amount of tra�c present in the network.

The ZOOM algorithm is capable of detecting elephant �ows and their source

and destination IP addresses. To this end, the algorithm de�nes coarse-grained
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nect. These APs form an Extended Service Set (ESS), meaning they all adver-

tise the same Extended Service Set Identi�cation (ESSID) and are connected

to the �xed, OpenFlow-based network. Towards the user, the ESSID looks

like a WiFi network covering a large area, as several APs are used to in-

crease coverage.

Corporate services. Users of the wireless network need to access business ap-

plications that are running in the corporate infrastructure. Such applica-

tions can include browser-based access via HTTPS, email services using

IMAP/SMTP, or other IP-based protocols, e.g., for printing. Furthermore,

Internet access might need to be available to a private device in the corpo-

rate environment. It is assumed that most of these applications are running

within a private cloud environment in the corporate IT infrastructure.

Service discovery. As cloud-based applications scale accordingly to their us-

age, the virtual machines, on which an application is running, change

over time, i.e., when using modern deployment techniques [59]. Hence,

the IP addresses of these applications might change as well, if they are

not served by a load balancer, but DNS load balancing is used. In order

to allow di�erent instances of cloud applications to connect to each other

respectively to connect to their microservice instances [33], service discov-

ery systems [100] are an essential part of modern cloud-based application

architectures. This work makes use of Consul [101] as discovery service.

Captive portal. Finally, a web-based captive portal as shown in Figure 3.13 is

used to authenticate and authorize users. This portal has access to the cor-

poration’s authentication services, i.e., Lightweight Directory Access Proto-
col (LDAP) or Microsoft ActiveDirectory, and further uses Two-factor Au-
thentication (2FA), based on the Time-Based One-Time Password Algorithm
(TOTP) [102] to prevent an attacker from accessing corporate services with

stolen credentials. The captive portal communicates with the S-BYOD con-

troller module using RESTful APIs. In the current implementation, the cap-

tive portal is implemented using Meteor [103] as client- and server-side
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Figure 3.13: Screen shot of the captive portal to activate access to corporate services.
Green: activated services, red: deactivated services, yellow: services to be
activated after 2FA.

web framework. Figure 3.13 shows the portal, in which the authenticated

user can explicitly enable particular applications, while every action that

elevates privileges has to be authenticated using a 2FA veri�cation.

3.4.2 OpenFlow Rule Setup

In order to allow basic network connectivity, redirect unauthenticated users to

the captive portal, as well as to drop all unwanted tra�c, the following rules are

proactively de�ned by the ONOS controller in order of increasing priority:

Table-miss action drop all rmiss. This deny all default rule drops all un-

matched packets by de�ning an all-wildcard rule without any actions.

ARP handling rARP . All ARP packets are forwarded to the SDN controller and

processed by ONOS’ proxyarp app.
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DHCP service rDHCP . All DHCP packets are forwarded to the SDN controller

and processed by ONOS’ DHCP app.

HTTP to controller rHTTP _to_ctrl. For intercepting outgoing HTTP connec-

tions of any unauthenticated client, this low-priority rule redirects any

TCP tra�c to port 80 to the controller. This allows S-BYOD to intercept

the HTTP connection and redirect the client to the portal web site for au-

thentication.

DNS server connectivity rDNS . As soon as a new client is detected, rules are

provisioned to allow DNS tra�c to the corporate DNS server. Therefore,

persistent rules for each direction between a client device and the DNS

server are installed throughout the path for both TCP- and UDP-based

requests. Connectivity to the DNS server con�gured through DHCP is es-

sential also for unauthenticated users, as otherwise no attempts to estab-

lish outgoing HTTP connections will be made, which is necessary for the

portal redirection.

Portal connectivity rportal. To enable connectivity between the client device

and the captive portal via a secure HTTPS connection, the complete path

is provisioned by one rule per direction between client and portal server.

Service connectivity rservice. As soon as a user has successfully authenticated

at the portal and enabled a particular service, these rules permit network-

side access to the IP addresses of the servers o�ering this service, e.g.,

email, web-based service, or any other protocol. Given the higher prior-

ity of rules, the previously applied rules to drop packets are overridden to

successfully forward packets between the client and the destination server.

Internet connectivity rexternal. All tra�c that is routed outside of the layer 2

network, in which clients and the accessed applications reside, require con-

nectivity to the default gateway. Therefore, once the user enables Internet

connectivity in the portal, rules that allow tra�c between the MAC ad-

dresses of the client and the default gateway are installed on switches along
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the path. Given the gateway’s con�guration to not route tra�c inside the

OpenFlow-managed network, access to this MAC address does not allow

the user to bypass security means which prevent accessing other internal

devices.

All client-speci�c rules are installed once the new client is connected. All

service-speci�c rules are installed once a user enables or disables application ac-

cess in the captive portal. Once the BYOD service gets noti�ed by the controller

that a host disappeared from the network, all these rules are removed from the

switches.

Once the controller receives packets originating from an unauthorized user

accessing a web page via the rHTTP _to_ctrl redirection, it instructs the switch to

rewrite the source and destination IP and MAC addresses to the portal using a

OFPT_PACKET_OUT message. As the packets on the way back from the portal

web server to the user also need to match the intercepted connection’s addresses,

further OFPT_PACKET_OUT messages also rewrite the endpoint addresses of

this intercepted connection. As the portal only responds to the HTTP request

with a HTTP Location redirect header to its resolvable address, no �ow entries

are set up in the switches for this short-lived connection.

To ensure high user satisfaction, wireless clients need to be able to roam be-

tween wireless access points, i.e., when moving from one room or building to

another. The security mechanisms and rules installed by the BYOD solution there-

fore have to support this use case.

As the introduced S-BYOD relies mostly on static rules for performance and

scalability reasons, a roaming client needs to be detected quickly and accordant

rules need to be updated as well. RFC 5227 [104] introduces procedures for mobile

clients to detect the correct setup of wireless networks spanning multiple access

points ESS. This is achieved by sending an ARP packet to the previous gateway,

once the client switches to the new AP. As this mechanism is implemented in most

of the current operating systems, this also o�ers a safe way to detect the roaming

device. In particular, the controller immediately notices this through the received

ARP packets which originate from a di�erent switch (port) and thus allows S-

BYOD to update all �ow rules and maintain connectivity for the roaming device.
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3.4.3 Discussion

While ease of use is one important factor for user satisfaction, security of a BYOD

implementation is an important aspect as well. Therefore, di�erent mechanisms

of S-BYOD that mitigate or still allow certain known attacks will be discussed in

the following. Further, an estimation of the resource requirement in number of

�ows in OpenFlow switches will be provided.

IP address spoofing. To allow connectivity to the portal, every device con-

nected to the WiFi has to receive an IP address from the DHCP service.

By spoo�ng the IP address of another, already authenticated client, an at-

tacker could gain access to internal services. Guessing such IP address is

easy, as the used IP address range is known once connected to the network.

Therefore, all client-speci�c �ow rules rservice and rexternal have to also

match against the client’s MAC address and thus lead to all tra�c using a

self-assigned IP address being dropped.

Wireless client isolation. In order to prevent communication between mobile

devices and especially to prevent an attacker gaining knowledge of other

(potentially authenticated) users’ MAC addresses, the access points oper-

ate in client isolationmode. By activating such a setting, no incoming tra�c

of wireless clients is sent directly back to the air interface, but only to the

wired connection. There, the wired OpenFlow-based network takes care

of separation of clients.

Further implications of ARP/MAC spoo�ng will be discussed in later on.

OpenFlow-enabled WiFi-APs, if they would exist, are therefore not even

needed, as long as wireless clients never need to communicate directly.

Estimation of OpenFlow rules. One concern with large-scale OpenFlow de-

ployments is the number of required forwarding rules. Therefore, the us-

age of �ow table entries is discussed in the following. As all rules de�ned

by S-BYOD use exact matches, i.e., MAC and IP addresses, these rules can

be stored in Content-addressable Memory (CAM). In contrast, using wild-
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cards, e.g., matching for nw_dst= ‘192.168.0.*’, would require

expensive and very limited Ternary Content-addressable Memory (TCAM).

In real-world scenarios this is mitigated by utilizing multiple switches and

thus, the client-speci�c rules are distributed over the switches. Then, only

the switches on the path between a client and its connection endpoints

receive the accordant rules. For the extreme case that all users are con-

nected to only a single switch, the number of required rules is calculated

as follows and provides a worst-case estimation:

ntotal = nbase + nclient + nservice (3.6)

With the following rules to provide the basic network setup:

nbase = |rmiss|︸ ︷︷ ︸
1

+ |rARP |︸ ︷︷ ︸
1

+ |rDHCP |︸ ︷︷ ︸
2

+ |rdiscovery|︸ ︷︷ ︸
2

+ |rHTTP _to_ctrl|︸ ︷︷ ︸
1

(3.7)

rdiscovery contains rules which are automatically added by the controller

for discovery of links and broadcast domains.

For each of the c connected clients, 4 additional rules are added to enable

basic connectivity, regardless of the client’s authentication status:

nclient = c · (|rDNS |︸ ︷︷ ︸
4

+ |rportal|︸ ︷︷ ︸
2

) (3.8)

Finally, to estimate the number of rules for enabled services, si,j = 1

denotes service j being enabled for client i and |rservice,j | denotes the

number of rules required for this service:
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Implementations for the “safety net”, which are integrated into the continuous

delivery pipelines, were proposed in the form of automated acceptance tests. In

order to allow frequent changes, automated tests replace extensive manual test-

ing, which is otherwise needed to ensure non-interrupted network operations.

Similar to the adoption of continuous delivery, the popular technique of

behavior-driven development (BDD) and how it can be applied to network oper-

ations is described. BDD allows an network operator to express automated tests

in its own domain language without the need to program.

Section 3.3 suggested a lightweight approach for elephant detection, a common

task in the �eld of network monitoring. Based on existing features provided by

SDN switches, byte counters for di�erent �ow aggregates were dynamically set

up and evaluated. By re�ning these counters iteratively, it was possible to detect

elephant �ows with an accuracy of more then 80 % while applying the prototype

implementation to a publicly available tra�c trace.

Finally, the isolation of devices and services within a network was investigated

for the “Bring Your Own Device” use case in Section 3.4. Compared to existing

commercial approaches, the proof-of-concept implementation applies network-

based separation. Therefore, no changes at the end devices are required, while

security rules inside the network enforce more �ne-grained separation. Based on

the user’s current demand, the virtual network is adjusted to include access to

particular services, i.e., Internet access, business applications, or print services.

The integration with these services follows the common design pattern of cloud

applications by using a service discovery system. By subscribing to changes, the

developed BYOD module within the SDN controller is always up to date - an es-

sential requirement to keep the security rules provisioned to the network devices

in sync with the IP addresses of the service endpoints that a users needs to access.
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Softwarized networks move functionality from specialized hardware devices into

software applications running on server hardware. This shift has – still widely

unknown – implications on the performance of these network functions. The

reasons for this include the novelty of the concepts of Software De�ned Network-
ing (SDN) and Network Functions Virtualisation (NFV) and the rapid innovation

happening in these ares, as well as the underlying hardware platform, which is

using standard server hardware instead of specialized Application-speci�c Inte-
grated Circuits (ASICs). Therefore, this chapter describes conducted performance

benchmarks of key components of softwarized networks that allow to better de-

sign such infrastructures in the future.

Background information and related work will be introduced in Section 4.1 as

a foundation for the following parts. Section 4.2 focuses on the network control

plane and introduces the benchmarking tool OFCProbe. By emulating a speci�ed

number of network elements and a load level to apply, this allows to evaluate the

performance of SDN controllers. The performance of this central component is

critical, as delayed responses to the devices’ requests will impair network perfor-

mance. Additionally, the results of conducted performance benchmarking of two

available controllers will be described.

In the following, two scenarios for evaluating the performance of di�erent im-

plementation types of data plane focussed Virtualised Network Functions (VNFs)

will be described. First, we evaluate two di�erent �rewall implementations in

Section 4.3. Firewalls are a typical network function used in nearly all networks,

thus, a typical example of NFV applied to the domain of Customer Premises Equip-
ment (CPE). We compare the traditional, hardware-based implementation, which

is available as an expansion module for switches, with the software version, which
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is available as virtual machine image. Both products are commercially available

by the same vendor. Such investigation of provided capacities and performance

metrics of these di�erent deployment types allows to better estimate the number

of software instances that are required to replace a single physical device.

In Section 4.4, we compare two software implementation variants of a proto-

typical Serving Gateway (SGW) VNF. Such SGW function is used in mobile net-

works, another typical use case for NFV. Originally, mobile network operators

were the main driver behind the NFV concept. The SGW function acts as mobility

anchor for the mobile subscriber and is responsible for forwarding all subscriber

tra�c towards the Internet. This results in a high tra�c volume to be processed

and forwarded by this VNF acting on the data plane. The two investigated im-

plementation variants di�er in the way how the software accesses the Network
Interface Card (NIC) to send and receive packets. One uses the standard Applica-
tion Programming Interfaces (APIs) of the operating system, while the other makes

use of an acceleration software library, namely Intel Data Plane Development Kit
(DPDK) [35].

These investigations help to better understand the in�uence of the characteris-

tics of server hardware and operating systems on the network performance, both

regarding control plane and data plane.

4.1 Background and Related Work

In the following, background information regarding the topics covered in later

sections is described. Additionally, the most relevant related work is covered. At

�rst, an overview over previous work regarding SDN controller performance is

given. Then, previous work regarding packet processing performance of VNF in-

stances – the part in the NFV concept that processes all tra�c – is described. Fi-

nally, an overview over research work regarding �rewall benchmarking is given,

as such measurements have been conducted several times and help to better asses

the results conducted for NFV-based �rewalling in Section 4.3.
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4.1.1 Controller Benchmarking

The SDN Troubleshooting Simulator [105, 106] addresses the problem of trou-

bleshooting SDN control software that arises with the development of SDN plat-

forms as network management services. These troubleshooting techniques are

quite simple, as they are based on log inspection in the aim of �nding relevant

information. The simulator automatically identi�es a minimal sequence of inputs

to reproduce a given bug. The authors target troubleshooting of distributed con-

trollers running complex applications with their tool.

The in�uence of the controller’s performance on the overall network perfor-

mance is investigates in [107]. They studied the NOX, NOX-MT, Beacon, and

Maestro controllers each running with a Layer 2 switching application. Layer 2

switching is the common denominator, which is implemented by all tested con-

trollers. As the resulting �ow rules are installed on a per MAC address basis, this

is the forwarding mechanism with the lowest request rate towards the controller,

e.g., compared to �ow installation on a per TCP �ow level. The results provided

in the following show that existing controllers perform better than predicted in

the referenced literature. However, they also state that understanding the overall

SDN performance remains an open research problem.

Cbench [108] was the �rst available controller benchmark and emulates a given

number of virtual OpenFlow switches to measure di�erent aspects of controller

performance, speci�cally mean latency and throughput. As Cbench’s functions

are very limited and controllers have been further developed since its release, the

results described in the [108] only give basic information on controller perfor-

mance. Preferable features that still were missing in Cbench are, e.g., to be able

to distribute the program on multiple cores or machines and to provide statistics

for each virtual switch individually.

OFCBenchmark [109] creates a certain amount of virtual switches, which in

turn generate independently con�gured messages and produce their own statis-

tics. Scalability, detailed performance statistics, and modularity were the top de-

sign goals. With the OFCBenchmark distribution enabled, the benchmark can be

spread over multiple hosts with each host running its own client. The virtual
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switch, the key component of the tool, holds a simpli�ed �ow table, to be able

to respond to controller requests, statistics counters and the connections to the

controller.

The investigations with OFCBenchmark yielded important insight regarding

the treatment of individual switches by the tested controllers [109]. Non-ideal

design and implementation decisions became apparent, however, limit the bench-

marking framework’s scalability to large networks. This lead to the development

of OFCProbe, which will be introduced in Section 4.2.

4.1.2 Packet Processing & VNF Benchmarking

By moving network functions out of specialized hardware appliances, which im-

plement functionality using ASICs, a change in the performance characteristics

is expected. The execution on a generalized hardware platform, either Commer-
cial o�-the-shelf (COTS) server hardware or programmable devices, potentially

comes with an increased processing delay and reduced throughput. Depending on

the usage scenario, the gained �exibility can overweight a reduced performance

per instance and might be countered by horizontal scaling of multiple instances

of the same VNF. To investigate the performance characteristics of VNF imple-

mentations, benchmarks have to be conducted.

In 1994, the need for well de�ned benchmarks of network interconnect de-

vices was served by RFC 2544 [110]. It de�nes, how latency and throughput of a

Device Under Test (DUT) should be measured and, thus, developed to a de facto

standard. The de�ned guidelines, including key performance indicators and rel-

evant benchmarking parameters, were used for benchmarks of network devices

like routers, switches, or �rewalls. Subsequent documents extend the methodol-

ogy by tests [111], updates, and remarks [112, 113], adapting it to keep pace with

the capabilities of network devices.

The increased performance of COTS hardware endorsed the change towards

software-based solutions. Compared to the ASICs, this introduces additional ar-

chitectural layers of abstraction, i.e., the operating system, its scheduler, as well

as hardware drivers. The performance of these systems now depends on the hard-

100



4.1 Background and Related Work

ware and software implementation. Rather than performance modeling of black

box hardware, benchmarking of software has moved into the focus. The addi-

tional layer was also used to implement further metering points in it. However,

results of these white box measurements have to be considered carefully, as me-

tering on the DUT may a�ect the tested behavior [114].

Furthermore, a recent IETF draft [115] discusses the novel challenges that are

introduced with VNF benchmarking, e.g., phenomena like shared resources be-

tween multiple VNFs and their impact on the performance of individual VNFs.

In [116], the performance of DPDK-accelerated switching and routing VNFs is

evaluated with respect to throughput and latency. Intel’s DPDK [35] o�ers APIs,

which allow to circumvent the operating system’s network stack and reduces

the overhead per packet. The analysis shows that, when o�ered tra�c to two

Gigabit Ethernet physical interfaces, NFV-based approaches can achieve line rate

throughput as well as a latency that does not impact performance in an enterprise

network. Similarly, [117] describes a virtualized system using DPDK acceleration

that achieves low latencies close to those when running non-virtualized on bare

metal. The authors of [118] focus on benchmarking NFV infrastructures with re-

spect to resilience and the e�ects of faults on their performance. Besides an imple-

mentation solely in software, other generally available hardware o�ers potential

means for accelerated execution of VNFs. This includes Field-Programmable Gate
Arrays (FPGAs) [119, 120] as well as Network Processing Unit (NPU) and Graphics
Processing Unit (GPU) [121, 122], each resulting in di�erent trade-o�s between

�exibility and performance.

Software platforms for VNFs are provided by [123] and [124], which enable fast

packet processing on COTS hardware running VNFs. In the case of forwarding,

both solutions can process packets at line rate on a 10 Gbps link while introducing

latencies in the order of 50 µs.

4.1.3 Firewall Benchmarking

A performance comparison between a Cisco ASA 5505 hardware and the

software-based Linux iptables [125] is presented in [126]. The work focuses on
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three main performance metrics: throughput, latency, and concurrent connec-

tions. While the Cisco ASA outperforms Linux iptables in terms of throughput

and latency, the latter is capable of handling bursts of packets better and achieves

a higher number of concurrent sessions. The authors also show that the �rewall

performance does not only depend on hardware, but also on the implementation

of the involved algorithms.

In [127], a comparison between various �rewalls is provided with respect to

di�erent performance metrics and their ease of operation. The results show that

the Cisco ASA outperforms the Checkpoint SPLAT and the open source packet

�lter available in OpenBSD, but lacks in terms of functionality and user interface.

Nevertheless, all considered �rewalls show basic intrusion detection capability

and can block basic attack types.

An analytical approach for predicting the overall performance of a rule-based

�rewall in the context of di�erent attack schemes is proposed in [128]. Taking

into account performance indicators like throughput, packet delay, packet loss,

and CPU utilization, the authors validate and verify their model by means of sim-

ulations and measurements.

A methodology for the speci�c case of �rewall benchmarking is speci�ed in

RFC 3511 [129]. This document characterizes the performance of a �rewall and

describes formats for presenting benchmarking results. The measurements con-

ducted in Section 4.3 follow this RFC as a guideline.

4.2 SDN Controller Performance

The key component in the SDN architecture is the controller, sometimes also

referred to as the “networking operating system”. The controller provides a plat-

form for the operation of diverse network control and management applications.

However, little is known about the stability and performance of current controller

applications, which is a requirement for a smooth operation of the network–

regardless of what shape the actual architecture of the controller cluster is.

In the following, we present the �exible OpenFlow controller performance an-

alyzer OFCProbe as a follow up to previous experiences with OFCBench [109]. It
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features a scalable and modular architecture that allows a �ne-granular analysis

of a controller’s behavior and characteristics. It allows the emulation of virtual

switches that each provide sophisticated statistics about di�erent aspects of the

controller’s performance. The virtual switches are arrangeable into topologies to

emulate di�erent scenarios and tra�c patterns. This way, a detailed insight and

deep analysis of possible bottlenecks concerning the controller performance or

unexpected behavior is possible. Key features of the implementation are a more

�exible, simulation-style packet generation system as well as Java Selector-based

connection handling. In order to highlight its features, evaluations with the Nox

and Floodlight controllers in di�erent scenarios are described. The content of this

section is taken from [16].

4.2.1 Design Goals

Based on the lessons learned from the implementation OFCBench, we de�ned the

following design goals:

Platform-Independency. In working environments one is often limited to cer-

tain operating systems and or hardware components. To bypass these re-

quirements, we need a software that is executable on the most common

system architectures.

Scalability. Scalability describes the software’s ability to be run on multiple

CPU cores, or even in a coordinated way on multiple hosts simultaneously.

The tool should be multi-threaded in a meaningful way without excessive

overhead leading to starvation, e.g., as with OFCBench, which su�ered

from launching one thread per emulated switch.

Modularity. Modularity is the key to be able to easily adapt to new OpenFlow

controller versions, new scenarios and/or new types of measurement val-

ues. The separation of the program logic and the controller communication

is also a central goal to simplify the adaptation of the tool itself to possible

new communication protocol versions.
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Performance Analysis. We want to investigate OpenFlow controllers and their

performance by sending generated messages to the controller and record-

ing the controller’s responses. Performance has di�erent meanings in this

context. It is de�ned by throughput and latency in a best-e�ort situation,

but it also means recording the controller’s behavior in di�erent scenarios.

Detailed Statistics. Detailed statistics include a set of features that permit the

investigation of the OpenFlow controller’s behavior, e.g., whether one is

treating particular switches di�erently or changes its behavior over time.

4.2.2 Architecture of OFCProbe

An overview over OFCProbe’s architecture is depicted in Figure 4.1. The Open-
Flow Connection Handler Module is responsible for the connection to the con-

troller. The generation of messages is handled by the Tra�c Generation Module.
Finally, there is a module for the storage of measurement values as well as a cen-

tral management module, which handles the inter-module control messages. To

realize platform independency, we chose Java in combination with the OpenFlowJ
library [130] as programming environment. When starting, OFCProbe loads a

con�guration �le and provides its values to all other modules. After that, the

OpenFlow connection is established and, after a successful OpenFlow handshake,

the tra�c generation begins. Generated messages and their responses are travers-

ing the con�gured statistics module, e.g., round trip time, packets per second, and

are recorded in a data format that enables further analysis.

Modularity enables users and developers to easily adapt the experimental setup

to their needs. This includes updated OpenFlow protocol versions‚, but also a re-

con�guration or the implementation of a new statistics module. A detailed de-

scription of each module follows.

OpenFlow Connection Handler Module. This module one key component

of OFCProbe. It is in charge of establishing and holding the connection

to the OpenFlow controller. Java’s NIO Selector [131] is used for connec-

tion handling. With a selector, it is possible to handle multiple channels
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Figure 4.1: Architecture of OFCProbe.

in one thread, thus reducing the multithreading overhead when dealing

with the sockets of hundreds of emulated switches. The module also con-

tains the �ow table implementation for the virtual switches. Apart from

connection handling, the main task of this module is the acceptance of

messages from the Tra�c Generation Module and their subsequent encap-

sulation into OpenFlow messages, which are then sent to the controller.

The replies from the controller are also handled here and transmitted to

the connected statistics modules for further analysis.

Tra�ic Generation Module. The Tra�c Generation Module is an event-driven

scheduler/queue processor running within its own thread. The module has

one queue in which all future events are stored. Each event consists of an

event time, an event type and an associated virtual switch. When the event

time is reached, the event is taken from the queue and based on its type,

di�erent actions are executed in the virtual switch.

A virtual switch goes through a life-cycle of events that is depicted
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OFSwitch_CONNECT OFSwitch_ConCheck OF_PACKET_IN Generation_END 

Figure 4.2: OFCProbe event chain.

in the state diagram shown in Figure 4.2. The �rst event is the OF-
Switch_Connect_Event, which speci�es when the virtual switch

should start its connection establishment with the controller. Subse-

quently, an OFSwitch_ConCheck_Event for this virtual switch is

scheduled to verify that connection is �nally successfully established.

Once this is done, the �rst Packet_In_Event is scheduled for time

t = 0. When a Packet_In_Event is executed, the virtual switch’s

simulated packet queue is checked. If it is below a con�gured thresh-

old, the queue is �lled up to that threshold with new packet payloads to

ensure that enough pre-generated workload is available. Then the next

Packet_In_Event is scheduled in a pre-de�ned amount of millisec-

onds. This continues until the Generation_End_Event is �red,

which terminates the experiment. The values for the inter-arrival time of

Packet_In_Events and the target �ll threshold of the switch queues

are globally de�ned in the OFCProbe con�guration or through a per-

switch con�guration. In the current version of OFCProbe, the payloads

generated are TCP SYN packets either with static or randomized address

values. For each TCP SYN packet, three headers have to be generated: the

Ethernet and IP headers, with each a destination and source address, and

the TCP header with a destination and source port. OFCProbe uses a pre-

generated master TCP SYN packet that contains a correct TCP SYN packet

with all �elds except the address �elds set. The remaining �elds then are

�lled with generated addresses taken from the corresponding MAC, IP, or

TCP generator.
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Figure 4.5: Topology discovery via LLDP.

nected OpenFlow switch queries the controller about packets that do not

match any �ow entry by encapsulating them into OF Packet-In messages

and forwarding them to the controller (3). The controller then inspects the

payload and reads from the contained LLDP packet information about the

switch, from where this speci�c packet was injected. This way, the con-

troller learns that there is a link between one port of the switch where the

packet was injected and the one from where it received the packet. The

topology emulated by OFCProbe can be de�ned in a separate topology

initialization �le.

ARPing Feature. As an enhancement to the topology emulation, we imple-

mented what we call the ARPing feature. This feature allows to emulate a

large number of devices connected to the ports switches within the topol-

ogy. For every port in the emulated topology, which is not yet connected to

another switch, a device with a unique MAC and IP address is generated.

After the LLDP-based topology detection was executed by the controller,

OFCProbe emulates an ARP request originating from every emulated end

device to every other emulated end device. This is realized by sending an
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OF Packet-In message containing the ARP request to the controller. The

controller’s reaction is an OF Packet-Out message with the action to �ood

this packet out of all virtual switch ports except the ingress port. The ARP

request is then queued in the next virtual switches that are connected to

the original virtual switch in the emulated topology. There, the payload is

again encapsulated in an OF Packet-In message and sent to the controller.

This procedure continues until the ARP request has reached the virtual

switch to which the corresponding end device is connected to. The vir-

tual switch recognizes the target device as one of its connected devices

and then generates an ARP reply in form of an OF Packet-In message to

the controller. As a result, the controller is aware of the location, i.e., con-

nected switch port, of the virtual device.

4.2.4 Evaluation of SDN Controller Performance

Based on the previously described objectives and created tooling, performance

benchmarking of two SDN controllers will be conducted in the following. There-

fore, OFCProbe will be used to evaluate the performance of the NOX [133] and

Floodlight [134] controllers.

As stated before, OFCProbe is capable of an analysis on a per virtual switch

level. This allows a granular inspection of how the controller treats each switch

at a given time during the analysis and how this treatment changes. The number

of outstanding messages that a controller has not yet answer is a result of an over-

load situation. This has a negative impact on network performance, as the packets

which triggered the switch’s messages to the controller are either bu�ered in the

switch until a response is received, or – as soon as the switch bu�er is fully oc-

cupied – are sent entirely to the controller. This worsens the overload situation

even more, as the already overloaded control channel is now also used to store

the payload data that does not �t into the switch bu�er anymore.

Best-E�ort Tests. To investigate the number of messages that a controller can

process, the number of outstanding packets is evaluted. Figure 4.6a dis-

plays the number of outstanding packets, i.e., OF Packet-In messages that
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(a) Outstanding packets (Floodlight) (b) Outstanding packets (NOX).

Figure 4.6: Comparison of the numberer of outstanding packets for di�erent con-
trollers.

have not been answered yet, for the Floodlight controller for a run with

100 emulated switches.

The x-axis shows the number of the virtual switch, the y-axis the seconds

passed since measurement start and the z-axis the number of outstand-

ing packets in units of 10k packets. The controller’s behavior appears to

be quite fair as no switch has at any time a signi�cantly higher amount

of outstanding packets than the others with a maximum of outstanding

packet values lower than 10k packets.

The outstanding packets for the NOX controller are shown in Figure 4.6b.

The arrangement of the axes is the same as for Figure 4.6a. Here, certain

inequalities between the switches and for each switch over the time can

be observed. There are “waves” of outstanding packets in both x- and y-

axis direction. This might be caused by the controller’s implementation.

The controller iterates over a list of connected switches, processing only

one switch at a time. And while one switch is processed, the other con-

nected switches have to wait for replies from the controller. Furthermore,

the numbers of outstanding packets is notably higher than the numbers

for Floodlight, having peaks with up to 30k outstanding packets.
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Figure 4.7: Fat-Tree topology, typical for data center networks.

Topology Emulation and ARPing. In this section, we investigate the con-

trollers’ behavior in a fat-tree topology setup. Such topologies are typi-

cal for data centers, one of the frequent use cases for software de�ned

networks. The particular fat-tree topology considered in this experiment

has 20 virtual switches with 4 ports each. As shown in Figure 4.7, the vir-

tual switches are connected to the emulated host devices with their two

free ports. Each of these emulated devices generates TCP_SYN packets for

�ows to all other host at every packet generation event. Therefore, 15x2

packets are generated per virtual switch per event. The inter-send time for

switches #07, #11, #15 and #19 is set to 15 ms, switches #08, #12, #16 and #20

have a inter-send time of 40 ms. Figure 4.8 illustrates the outstanding pack-

ets for the ingress switches of the Floodlight controller. The x-axis shows

the passed time since measurement start, the y-axis the outstanding pack-

ets in multiples of 10k packets, respectively. The switches with the inter-

send time of 15 ms (type #1) between their packet generation events have

a drastically higher number of outstanding packets than the switches with

the inter-send time of 40 ms (type #2), which have almost no outstanding

packets except for one.

A general characteristic is observable for virtual switches with notable

outstanding packet counts. Within 10 seconds, their count rises above the
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Figure 4.8: Outstanding packets for di�erent tra�c characteristics using Floodlight.

other switches, continuously climbing and reaching a mean value of 4k at

30 seconds from the start. At around 36 seconds, one switch settles at 6k

outstanding packets, while the remaining switches constantly increase up

to 15k packets.

As it can be seen, the con�dence intervals are large for switches with a

high number of outstanding packets. The reason for this is that the actual

number of outstanding packets varies signi�cantly between the di�erent

switches. Figure 4.9 shows a 3D representation to investigate the number

of outstanding packets for each single switches. Here, again, the drastically

higher outstanding packet numbers for the switches #07, #11 and #19 can

be observed as they reach 20k, 10k and 8k outstanding packets. Switch #15

is an exception. The di�erence between the two sets of inter-send times is

signi�cant and observable. The other non-ingress switches all have next

to no outstanding packets.

To summarize, Floodlight’s switch handling appears to be fair in terms of

performance as only switches with a high packet load have to wait for

controller processing. All requests from the other switches are handled
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Figure 4.9: Outstanding packets per switch over time for Floodlight.

immediately.

4.3 Comparison of Hardware and VNF
Implementations

The NFV paradigm promises higher �exibility, vendor-independence, and in-

creased cost-e�ciency for network operators. Its key concept consists of virtual-

izing the functions of specialized hardware-based middleboxes like load balancers

or �rewalls and running them on COTS hardware.

4.3.1 Network Function Under Test

In the following, we investigate the performance implications that result from mi-

grating from a middlebox-based deployment to a NFV-based solution. This work

focuses on the performance evaluation of a �rewall which is commercially avail-

able both as a hardware entity as well as a VNF. In particular, Cisco’s Adaptive
Security Appliance Service Module (ASASM) [135] and its virtualized counterpart
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Adaptive Security Virtual Appliance (ASAv) [136] are utilized in our experiments.

Based on tra�c statistics of a university campus network, the feasibility of the

two deployment types in this environment is investigated. The content of this

section is taken from [11].

4.3.2 Methodology

In order to investigate how a virtualized �rewall compares performance-wise to

its more expensive and in�exible hardware-based counterpart in a particular sce-

nario, we evaluate and compare their performance in a dedicated testbed. First,

the testbed setup is presented alongside the speci�cations of its hardware and

software components. Second, the course of experiments for the aforementioned

performance evaluation as well as parameters and performance indicators are

described.

Figure 4.10 shows the main components of the testbed utilized in this work.

It is comprised of two networks, an external and an internal network, which are

separated by the �rewall. The networks are represented by two switches that are

connected to the �rewall and di�erent types of tra�c are generated using two

Spirent C1 [137] tra�c generators. The Spirent C1 is a dedicated tra�c generator

equipped with four 1 GbE interfaces. Through its implementation using FPGAs,

it allows highly accurate and reliable measurements of various performance in-

dicators like packet delay.

The �rst tra�c generator produces stateful TCP tra�c using the Avalanche

software. In this context, “stateful” refers to the fact that the �rewall needs to

keep track of the state of each connection according to the TCP state machine.

This tra�c is used to set the DuT under di�erent load levels in terms of varying

numbers of active connections. The second C1 device is controlled by the Test-

Center software in order to bene�t from the highly precise hardware-based delay

measurement that, however, only support stateless tra�c. Probe packets are sent

once per second through a TCP connection that was previously opened by emu-

lating the TCP handshake.

As mentioned earlier, two di�erent �rewall deployments are analyzed in the
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Figure 4.10: Hardware setup used in this work.

following and detailed in Table 4.1. The �rst component is the Cisco ASASM, a

hardware solution. While Layer 3 and 4 processing is performed in ASIC respec-

tively Ternary Content-addressable Memory (TCAM), the general purpose Xeon

CPUs of the ASASM are used for tasks like VPN, content inspections, and man-

agement. The Cisco ASAv ASAv30 runs virtualized using VMware ESXi on a Cisco

UCS server and is con�gured as per vendor recommendations. While the data

sheet of the ASASM provides basic information on the processing delay of the

appliance, no information is available in case of the ASAv. This work sheds some

light on the performance di�erences between these commercially available solu-

tions.

In order to achieve realistic testing conditions, around 1300 rules are con�gured

on the �rewalls. These rules correspond to those installed on our campus �rewall.

Hence, the resulting measurements can provide insights regarding the feasibility

of the two �rewall deployment types in such a network.

Using the testbed setup described previously, the performance of the two �re-

wall types is evaluated with respect to the achieved processing time. This section

presents the methodology for investigations regarding the e�ects of di�erent load

levels on the processing time of TCP packets. The test scenarios were developed

together with �rewall administrators and campus network administrators at the

computing center of our university.

The main test case investigates the processing times of TCP packets while the
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Product Hardware Software

Vendor Cisco Cisco

Series ASASM ASAv

Model WS-SVC-ASA-SM1 ASAv30 v9.4(1)3

Deployment Type Physical, Switch Blade Virtual

CPU 2x Xeon 5600 4 vCPUs

2.00 GHz, 6 cores

Memory 24 GB 8 GB

Pricing

Perpetual $97,750 $15,980

Source: ciscoprice.com
On-demand - $1.39 per hour

Source: Amazon AWS

Hardware Base Platform

Platform Catalyst 6509 Switch Cisco UCS C220 M3

CPU VS-S720-10G, 600 MHz Xeon E5-2680, 8 cores

Memory - 64 GB DDR3

Hypervisor - VMware ESXi 5.5

Speci�cations

Max. throughput 20 Gbps 2 Gbps

Connections/sec 300,000 60,000

Concurrent conn. 10,000,000 500,000

Table 4.1: Devices under test.

�rewall is exposed to various amounts of load in terms of open TCP connections.

Before the measurement is started, the TCP connections are opened by utiliz-

ing Avalanche in order to simulate users in the internal network that request �le

downloads from servers in the external network (cf. Figure 4.10). After down-

loading a small 1 kilobyte �le, the TCP connection is left open and users keep on

requesting other �les from di�erent servers until the desired number of TCP con-
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nections is established. In order to avoid completely idle connections, a 1 kilobyte

�le is requested via HTTP for each connection every 10 seconds. The total num-

ber of active connections is varied between 1,000 and more than 500,000 in order

to cover a diverse set of scenarios. Finally, the TestCenter software is used to in-

struct the FPGA to generate one TCP packet per second and capture the resulting

packet delays.

4.3.3 Benchmarking Results

As the �rewall is the access gate to a network where all ingress and egress tra�c

passes, situations where it becomes a bottleneck need to be avoided. Especially

the software implementation of the �rewall raises the question, how performant

it is compared with its hardware counterpart. Therefore, the performance of the

two �rewall deployment types, according to the methodology described before,

is evaluated in the following. Each experiment lasts 5 minutes and is repeated 5

times.

In Figure 4.11, an overview over the distribution of processing times of the

ASASM is provided. While the x-axis displays the processing times, the y-axis

represents the fraction of observations in which the corresponding value was

not exceeded. Furthermore, di�erently colored curves mark di�erent load levels

in terms of concurrent connections. For the sake of readability, only the most

relevant range of x-values is depicted.

There are three main observations. First, the processing time has a low vari-

ability for all scenarios, i.e., an interquartile range of roughly 4 microseconds with

values between 60 and 85 microseconds. Second, processing times show a strictly

decreasing behavior with increasing numbers of concurrent connections. This

phenomenon could stem from interrupt mitigation mechanisms similar to those

of the New API [138], the network I/O API that is utilized by Linux operating sys-

tems. In order to decrease the overhead that results from each individual packet

causing an interrupt, this mechanism accumulates packets until either a certain

amount of packets is collected or processing is initiated by a timeout. Hence,

lower load levels cause higher delays as packets need to wait for the timeout to
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Figure 4.11: Processing times achieved by the ASASM hardware.

trigger processing, while packets exceed the threshold at an increasing rate in

case of high load levels, resulting in lower delays. Finally, the small gap between

the two highest load levels indicates a converging behavior with respect to pro-

cessing times.

Similar to the previous �gure, Figure 4.12 displays the distribution of process-

ing times achieved by the virtualized �rewall ASAv. Again, the x-axis is limited

to the most relevant interval. In contrast to the maximum number of connections

of 540,000 that was used in the context of the ASASM-related measurements, the

maximum for the ASAv-related measurements is at 500,000. The reason for this

parameter choice is a hard-coded capacity limit implemented in the ASAv soft-

ware (cf. Table 4.1).

The ASAv exhibits two modes regarding the processing times. For low num-

bers of TCP sessions, higher delays and a signi�cantly higher variance are ob-

served. In these cases, the ASAv introduces packet delays between 100 and

800 microseconds, roughly ten times higher than when using an ASASM. When

increasing the load, however, the variance and the absolute values decrease and

stabilize in an interval between 100 and 350 microseconds. As in case of the

hardware-based ASASM, there seems to be a mechanism that positively a�ects

packet processing delays of the �rewall at higher load levels.

In order to put the measurement results into the context of a real network, traf-
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Figure 4.12: Processing times achieved by the ASAv.

�c measurements have been conducted in the university’s campus network using

NetFlow. During two working days of observation, the highest number of parallel

connections at the Internet uplink with a capacity of 2×3.5 Gbps was found to be

around 420,000 connections. Further, the highest number of new connections per

second was found to be around 6,500-6,800, with two exceptions, during which

14,700 and 20,300 new connections were opened within one second, respectively.

At the 10 G connection of a single building (computer science faculty), a maxi-

mum of around 177,000 concurrent connections with peaks of up to 4,400 new

connections per second were observed.

Given the ability of ASAv to handle up to 500,000 concurrent connections, it

seems to be a feasible approach for both scenarios. However, the total throughput

of only up to 2 Gbps is the limiting factor, which would restrict the use of ASAv in

the investigated network, e.g., to the protection of clusters of servers or buildings

connecting only few users through smaller links.

While the ASAv does not o�er such working mode, full-�edged VNFs should

be able to operate in a cluster to allow horizontal scaling. Software �rewall imple-

mentations, which support such scale out to overcome the capacity limitations of

a single instance, could then also cope with higher throughput, i.e., the 2 Gbps as

seen here.
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4.4 Comparison of So�ware-based VNF
Implementations

To benchmark the performance of a VNF, the challenges of classical benchmark-

ing get extended by three additional problems: complexity, abstraction, and con-
currency.

The increased system complexity: Software-based network devices introduce

only a single layer of abstraction compared to dedicated bare metal devices. How-

ever, the use of (host) virtualization techniques and the execution in the cloud

adds further abstraction layers that each introduce their own performance limi-

tations, i.e., the hypervisor, the virtual switch, and the physical and virtual inter-

faces [114]. This work investigates whether hardware acceleration mechanisms,

e.g., Intel’s DPDK [35], improve performance or if the performance remains the

same due to higher complexity.

The virtualization of a network function inherits the abstraction of the data

plane from the executing hardware. Therefore, absolute performance values are

less meaningful without an understanding of how they relate to the performance

of underlying components. This, for instance, leads to the following question:

If the processing power of the unit performing NFV is too low, how can it be

accelerated if the employed cloud solution has doubled the amount of physical

CPU cores?

In addition to increased complexity and a higher level of abstraction, the inter-

pretation of results and application on real world setups gets even more challeng-

ing due to concurrency. In real setups, (virtual) network functions interact with

other components, which may be other VNFs or the data plane.

We compare two implementations of a network function acting as a Serving

Gateway (SGW) in the mobile core. After introducing the basic terminology used

in this context, the experiment setup and details of the two alternative implemen-

tations are presented. Finally, the implementations are compared with respect to

various performance indicators. The content of this section is taken from [17]
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Figure 4.13: Structure of the GTP-u packets considered in this work.

4.4.1 Network Function Under Test

The LTE Evolved Packet Core (EPC) is comprised of various specialized compo-

nents. The components’ responsibilities range from purely control plane related

tasks, e.g., in case of Mobility Management Entitys (MMEs), to combinations of

control and user plane processing as in the case of SGWs. In this work, the user

plane functionality of the latter is moved to a virtual network function. In partic-

ular, its task lies in transporting user data tra�c through the LTE network and to

serve as a mobility anchor for mobile subscribers. For this purpose, the tra�c is

encapsulated via the GPRS Tunneling Protocol (GTP). More speci�cally, the UDP-

based GTP-u protocol is used. Figure 4.13 depicts the structure of GTP-u packets

that are sent to the VNF discussed in this work. On top of UDP in the stack, a GTP

header indicates the presence of an encapsulated IP packet that follows immedi-

ately. In order to identify GTP packets’ membership to a particular tunnel, the

GTP header includes a Tunnel Endpoint Identi�er (TEID). In the following, GTP

tunnels are also referred to as bearers.

Little information regarding the number of GTP-u packets that a traditional

SGW can handle is publicly available. According to [139], the signaling load (GTP-

c) of an LTE network is around 94,000 messages per second per million smart-

phone users.
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elements and supports GTP tra�c. In particular, the xDPd software is responsible

for matching incoming packet headers against the installed �ow table entries and,

in the presented case, modifying their TEID. In the xDPd version used in this

work, the matching algorithm consists of a loop that goes through each �ow table

entry and checks for a match. Hence, the runtime of the matching algorithm is

linear in the number of �ow table entries.

The �rst SGW VNF uses MMAP-based xDPd, where packets are copied to the

OS user-space and thus, are expected to have longer processing times. In case of

the used Linux OS, the network I/O API that is utilized by this implementation is

theNewAPI (NAPI) [138]. Hence, in the following, this implementation is referred

to as the NAPI-based approach.

Second, a DPDK-accelerated implementation
3

is evaluated, which promises

faster packet processing through reduced overhead for packet I/O [35, 141]. When

running DPDK-based applications, a core mask can be speci�ed in order to change

the number of cores that are used. In all presented experiments, this parameter is

set to 0x03, which corresponds to utilizing a total of two cores, one core for man-

agement and one for I/O on all ports. Increasing the number of cores did not a�ect

the results, neither with respect to the processing times nor with respect to the

maximum packet rate that can be handled without packet loss. This parameter

may become relevant in the context of link capacities beyond 1 Gbps.

The systems are o�ered loads with varying packet sizes and rates. Each test

run lasts 5 minutes and experiments for each set of con�guration parameters are

repeated 10 times in order to obtain con�dence intervals for the key performance

indicators. In order to �nd the performance limits for use in a practical context,

the load is increased until packet loss occurs. Additionally, the in�uence of the

number of present bearers on the resulting processing times and packet loss is

investigated. When multiple bearers are registered on the server, the tra�c gen-

erator sends GTP packets with corresponding TEIDs in a round robin fashion,

i.e., one GTP packet for each bearer.

3

Version 1.7.1 of the DPDK libraries is used.
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4.4.3 Benchmarking Results

The occurrence of packet loss shall be minimized in order to provide a reliable ser-

vice as well as fast processing of requests. When designing a network architecture

containing SGW components, the operator has to consider feasible alternatives

that meet the requirements of the particular use case. By utilizing the presented

benchmarking methodology, it is possible to quantify the performance and limits

of implementations and thereby assist the decision making process. In nearly all

practical scenarios, packet loss needs to be avoided.

NAPI-based SGW. Figure 4.15 presents an analysis of the in�uence factors on

the occurrence of packet loss as well as limits regarding the maximum

load that can be handled without packet loss. While the x-axis denotes the

number of packets that are sent to the server each second, the bars indicate

the resulting packet loss percentage. Di�erently colored bars correspond

to di�erent packet sizes and whiskers represent 95% con�dence intervals

obtained from 10 experiment repetitions.

Low packet rates, i.e., 120,000 pps and less, are handled without packet loss.

However, rates beyond roughly 130,000 pps result in a steady increase of

loss. As the con�dence intervals for both of the displayed packet sizes over-

lap and the corresponding mean values do not deviate from each other sig-

ni�cantly, the packet rate is identi�ed as the main in�uence factor on the

packet loss rate. As discussed in [142], user space packet frameworks pro-

cess packets of di�erent sizes at an almost identical speed as only headers

are copied and processed. Larger packet sizes are omitted due to the fact

that these can be handled at line rate when only one bearer is installed.

For example, a rate of roughly 89,000 pps corresponds to the capacity of

the 1 Gbps link when a packet size of 1400 Byte is used. However, inves-

tigations regarding the processing times of packets show that not only

packet rate but also packet size in�uences SGW performance.

After identifying the range of packet rates that can be handled by the

NAPI-based implementation, benchmarking is performed with respect to
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Figure 4.15: Packet loss in case of small packet sizes when using the NAPI-based SGW
implementation.

processing times in this interval. Figure 4.16 displays mean processing

times for packet sizes between 128 and 1400 Bytes, covering commonly

observed values. The x and y-axis represent the packet rate and the mean

processing time in microseconds, respectively. Again, 10 repetitions are

performed in order to obtain con�dence intervals and bar colors indicate

the packet size. There are three main observations. First, very low packet

rates, i.e., 100 and 1,000 pps, result in high processing times, roughly 230

and 110 µs, respectively. A possible explanation for this behavior is the in-

terrupt mitigation mechanism that is part of the NAPI. In order to decrease

the overhead that results from each individual packet causing an interrupt,

this mechanism accumulates packets until either a certain amount of pack-

ets is collected or processing is initiated by a timeout. Second, the lowest

processing times are observed for rates between 10,000 and 20,000 pps, cor-

responding to scenarios that are not a�ected by interrupt mitigation any-

more and simultaneously do not expose the system to a high load. Finally,
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Figure 4.16: In�uence of packet rate and size on mean processing times using the
NAPI-based SGW.

the processing time increases steadily when the maximum rate approaches

the previously determined limits. While the packet size does not have a

signi�cant impact on the processing times observed at low packet rates,

higher rates have a larger e�ect on the processing times of bigger packets.

This can be explained by the fact that combining a given packet rate with

di�erent packet sizes results in changes to the link utilization, which also

poses an in�uence factor on processing times.

DPDK-enabled SGW. While the NAPI-based SGW implementation is capable

of processing packets of 1400 Bytes in size at line rate, it su�ers from packet

loss when receiving small packets at rates beyond 130,000 pps. In contrast

to this behavior, the DPDK-enabled approach can handle even small pack-

ets, i.e., 128 Bytes in size, at line rate. This corresponds to a packet rate of

around 970,000 pps, or an increase by a factor of more than 7 when com-

pared to the maximum tolerable rate achieved by the previous user-space

approach.
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In addition to the performance gain in terms of maximum packet rate with-

out packet loss, DPDK signi�cantly accelerates the processing of packets

at the SGW. Figure 4.17 presents the processing times measured in various

conditions with respect to packet size and packet rate. In order to �t the

various combinations of these two parameters into one graphic, the x-axis

displays the link utilization, ρ, which is calculated as the ratio between

the bandwidth that results from a particular con�guration and the link

capacity of 1 Gbps. The y-axis shows the mean processing times and bar

colors denote di�erent packet sizes. As processing times of the SGW im-

plementation are very stable for the scenarios under test, the narrow con-

�dence intervals are barely visible. The observed processing times start at

roughly 5 microseconds and do not exceed 8 microseconds, corresponding

to a speedup by a factor larger than 8 when compared to the processing

times of the NAPI-based solution ranging from 40 to 230 µs. Furthermore,

the packet size is the main in�uence factor on the resulting processing

times, as indicated by almost constant values among con�gurations shar-

ing the same packet size parameter. An increase in packet size results in an

increase in the mean processing time. Nevertheless, an additional e�ect is

visible: an increase in the packet rate also results in a slight but consistent

increase of processing times.

Scenarios Featuring Multiple Bearers. All results presented so far are based

on environments that feature only one single bearer. While these provide

important insights into the behavior of the di�erent implementations and

the in�uence factors on their performance, they are not su�cient for de-

riving practical guidelines with respect to the choice of implementation for

a particular use case and dimensioning the system for a given load. There-

fore, an investigation of the relationship between the number of bearers

that are present in a system and various performance indicators is per-

formed. Given a number of installed bearers, the maximum packet rate

an implementation can handle without the occurrence of packet loss is

empirically identi�ed. Then, the processing times are measured for these
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Figure 4.17: Processing times for di�erent link utilizations and packet sizes using the
DPDK-enabled SGW implementation.

scenarios.

Figure 4.18 provides an aggregated view on the packet rates that the SGW

implementations discussed in this work can handle when di�erent num-

bers of bearers are present. The numbers of bearers for which the rate lim-

its are determined are between 1 and 400, as indicated by the x-axis. The y-

axis shows the corresponding maximum packet rate that can be handled by

a particular combination of SGW implementation and packet size, which

are represented by line style and color, respectively. Solid lines denote the

DPDK-enabled implementation, dashed lines denote the NAPI-based im-

plementation. For the sake of clarity, only the two extreme values for the

packet size are shown, i.e., 128 Byte and 1400 Byte.

In case of both implementations, a steady decrease of the maximum toler-

able load is observed when the number of bearers is increased. The main

reason for this behavior lies in the matching algorithm used by the xDPd

software which both implementations have in common. As discussed be-
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fore, the matching procedure that is utilized has linear time requirements

with respect to the number of �ow rules in the SGW’s table. Given the fact

that increasing the number of bearers in the system corresponds to increas-

ing this number of �ows, it follows that a growing number of bearers also

causes higher processing times. Consequently, the process of matching in-

coming packets becomes the system’s bottleneck and a�ects the maximum

packet rate that can be handled without the occurrence of packet loss.

When using the NAPI-based approach, both packet sizes yield almost iden-

tical values for the resulting maximum packet rate. This is consistent with

the results from without DPDK, where no signi�cant in�uence of the

packet size on the maximum tolerable load is observed. Only for num-

bers of bearers below 50, the maximum rate for small packets exceeds that

for big packets. This stems from the fact that the maximum packet rate

is not only limited by the processing time of the server, but also by the

link capacity, i.e., 1400 Byte packets are processed at line rate for up to 10

bearers.

In contrast, the gap between the two curves corresponding to the DPDK-

enabled solution is signi�cantly larger and closes only after 200 bearers

are present in the system. As discussed previously, the DPDK-accelerated

SGW can process packets of all considered sizes at line rate when one

bearer is installed. Hence, the initial gap represents the rate limitation due

to the link capacity. With an increasing number of bearers, however, the

portion of the total processing time that is caused by the packet match-

ing routine outweighs that caused by the network I/O API and the maxi-

mum rate decreases. After the maximum rate for small packets drops below

the rate required for line rate with large packets, the rate limitation is not

caused by the link capacity anymore and thus, both curves overlap.

For all considered packet sizes and numbers of bearers, the DPDK-enabled

SGW implementation outperforms the NAPI-based approach in terms of

maximum packet rate. While the advantage of the former is especially pro-

nounced in the case of small packets and low numbers of bearers, there is
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Figure 4.18: In�uence of the number of installed bearers on the maximum packet
rate without the occurrence of packet loss.

still an improvement by a factor of almost two when considering the high-

est number of bearers. Independent of the network I/O mechanism, the

maximum tolerable rate decreases due to the data plane software that is

responsible for packet matching.

Although the rate limits determined in the previous paragraphs provide

upper bounds for the load that can be applied to the systems without caus-

ing packet loss, the resulting processing times may not be feasible in prac-

tice. Thus, Figure 4.19 highlights the processing times of the SGW VNFs

when facing these circumstances. Like in the previous �gure, the x-axis

shows the number of bearers that are present in the system. The y-axis

displays the mean processing time observed when packets arrive at the

maximum rate for a particular combination of network I/O API, packet

size, and number of bearers. In addition to the bar color representing the

aforementioned con�guration, whiskers denote 95% con�dence intervals

that are obtained from 10 experiment repetitions.
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Figure 4.19: In�uence of the number of bearers on the processing time at the highest
rate that can be handled without loss.

Until a number of 100 bearers is reached, the DPDK-accelerated solution

not only outperforms the NAPI-based approach with respect to the maxi-

mum tolerable packet rate, but also regarding the mean processing time of

individual packets. In this interval, the former achieves processing times

below 20 microseconds while the latter has processing times of roughly 100

and 250 microseconds for packet sizes of 128 and 1400 Byte, respectively.

As soon as 200 or more bearers are installed, however, the processing times

of the DPDK-enabled approach are higher than those of the NAPI-based

implementation. The main reason for this behavior is that the packet rate

and thus, the total amount of table lookups di�er for the two implementa-

tions. As discussed in the context of Figure 4.18, the DPDK-enabled SGW

is capable of processing almost two times more packets.
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4.5 Lessons Learned

This chapter described performance benchmarking of the most important com-

ponents of softwarized networks. Performance aspects of the SDN control plane

were investigated in Section 4.2. At �rst, we introduced and described OFCProbe,
a tool for performance an consistency testing of OpenFlow SDN controllers. By

emulating the control plane part of OpenFlow switches, it allows to emulate a

large number of switches that are sending control messages to the controller.

Using di�erent network topologies, two SDN controllers were evaluated. It was

shown that one of them treated the connected switches disparate. While some

of them received their response faster, others had to wait longer. Such controller

behavior can lead to hard to detect performance issues in parts of the network.

Software-based data plane elements were evaluated in Sections 4.3 and 4.4.

While the �rst part investigated an entity that is typical for Customer Premises
Equipment (CPE), the second one described benchmarking of a mobile network

entity.

A �rewall was chosen as a typical CPE network function example. By investi-

gating two products o�ered by the same commercial vendor, the performance

characteristics of both deployment types was compared. The hardware appli-

ances, as well as the software appliance, available as virtual machine image were

benchmarked regarding their processing delays while set under di�erent load

conditions. It was found that the software version increased the processing de-

lay per packet compared to the hardware appliance. The processing delays were

typically between 100 and 350 µs, compared to 60 to 85 µs for the hardware. De-

pending on the actual usage scenario, such an increase in delay can be neglected.

The di�erences between two implementation variants of the same VNF in the

case of a mobile network entity was described in Section 4.4. The evaluation of a

Serving Gateway (SGW), an entity that forwards all subscriber tra�c towards the

Internet, has shown the resulting performance spectrum between using the net-

work APIs of the operating system and when using a specialized acceleration li-

brary. In this case, the use of Intel DPDK resulted in a seven-fold increase of packet

throughput, as well as a reduction of forwarding delays by factor eight. However,
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it was also seen that other in�uence factors can have a negative impact on the

performance. As soon as the supplied workload contained tra�c of many di�er-

ent user sessions, the throughput decreased signi�cantly. Starting with roughly

200 simultaneous users, the di�erence between the standard implementation and

DPDK vanished as a result of an unfavorable implementation.

The conducted benchmarks gave insights into the di�erent deployment and im-

plementation types of VNFs. Especially when using frameworks that optimize the

application’s network access, high throughput per VNF instance can be achieved

so that it sounds realistic to replace most of the hardware appliances with a lim-

ited, yet dynamically adjustable, number of software instances.

The �ndings with both, unfair behavior of SDN controllers, as well as bad im-

plementation choices when handling many user sessions in parallel, stress the

need for such performance evaluations being applied on a regular basis during de-

velopment. An integration of OFCProbe, as well as an automation of data plane

benchmarking, into a continuous delivery pipeline as it was described in Sec-

tion 3.2 is desired, as any software release or con�guration change might result

in an unexpected performance impediment.
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The previous chapter covered softwarized networks with a focus on performance

benchmarking of the particular instances. The idea to process every single packet

on a generic server platform instead of carefully crafted hardware devices re-

quires the server hardware and the software running on top to be highly opti-

mized.

To estimate and forecast the e�ects the processed tra�c, conducting bench-

marks as in the previous chapter o�ers often only limited insights. In order to

run such benchmarks, the system has to actually exist in this con�guration, as

well as all parameter settings need to be executed, which can be a lengthy pro-

cess.

In contrast, analytical models allow to predict a system’s performance even be-

fore it is actually built. By introducing abstractions, the behavior of a system can

be estimated by taking di�erent implementation options into account or forecast-

ing its scalability under various tra�c patterns. The introduced model helps to

understand the impact of performance-relevant parameters on these metrics to

allow an adequate dimensioning and a proper performance prediction. By eval-

uating “what-if” scenarios, the system performance can be evaluated before im-

plementing one of the various acceleration mechanisms or under the assumption

of a tra�c characteristic as it is expected in the future.

Based on the previously conducted performance benchmarking, this chapter

introduces a �rst analytical model to estimate the performance of Virtualised Net-
work Function (VNF) running on a general purpose server and operating system.

This model allows to estimate the throughput and packet loss rate for given ser-

vice time distributions of a VNF. The content of this section is taken from [8].
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Figure 5.1: Packet processing in a server.

5.1 Background and Related Work

In the following, an introduction into the problem space of packet processing in

generic hardware, as well as the �eld of optimization techniques that allow faster

packet processing, is given.

5.1.1 Packet Processing in COTS Hardware

Applications processing network tra�c send and receive data packets through

functions provided by the operating system’s kernel. This procedure is shown

in Figure 5.1, from the packet being received at the incoming Network Interface
Card (NIC), processing of the packet in the software application and �nally the

packet leaving at the outgoing NIC. Accordingly, packets traverse a complex chain

of forwarding steps between the NIC, the kernel, and the software application

resulting in a speci�c delay overhead.
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One major contributor to these delays are copy operations between the mem-

ory of the NIC, the kernel space and the user space. In the case of insu�cient

Central Processing Unit (CPU) resources, the system drops packets exceeding the

bu�er in user space. To overcome these issues and to speed up packet processing

to enable large-scaleNetwork Functions Virtualisation (NFV) deployments, numer-

ous approaches and techniques exist besides the standard implementation using

the operating system’s networking stack.

The solution space for the implementation of a network function’s data path

is illustrated in Figure 5.2. Starting from the full software implementation on the

lower left side to the full hardware implementation on the upper right side, the

e�ciency and performance, as well as the complexity and thus the costs of the

implementation increase. In between are programmable hardware devices (i.e.

NetFPGAs) as well as optimized software implementations. The reduced perfor-

mance per single instance when applying the NFV paradigm is compensated by

more �ne-grained scale out possibilities, when multiple instances are used per

network function depending on the actual load.
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5.1.2 Interrupt Moderation

The overhead of reading one packet from the NIC and making it accessible to the

application requesting the packet might sum up to a livelock [143]. In such situ-

ation, the CPU is e�ectively busy with packet handling instead of executing the

program that processes incoming data. The trigger to read a packet from the NIC

originates in the interrupt signal that is sent by the network card after assembling

data receiving from the wire. The routine of the NIC driver within the operating

system’s kernel executes with higher priority than the application processing the

data, thus interrupting other workloads from being processed.

In order to avoid such livelocks and to reduce the overhead of packet process-

ing in a server, several approaches that apply interrupt moderation have been

introduced on operating system side as well as in networking hardware.

The networking stack (New API (NAPI), [143]) in the Linux kernel disables in-

terrupt handling for interrupts related to receiving packets, once the �rst packet is

processed. Followed by that, the NIC queue is polled in assumption that multiple

packets arrived in a burst. After a certain number of packets have been processed,

or a timeout occurs, interrupts are re-enabled and the process restarts once the

next packet arrives.

Hardware-based implementations are o�ered in many server network

adapters. The actual feature set varies between di�erent chipsets. For receive as

well as transmit directions, the NIC can hold back interrupts until either a pre-

con�gured number of packets are received or sent, or until a pre-con�gured time

since the �rst packet starting the batch passed by. Further options allow to de�ne

a threshold to di�erentiate between a low and a high tra�c load and to specify

options for both of these conditions. Finally, some NICs o�er adaptive modes, in

which they change their behavior based on the current receive rate.

The e�ects of interrupt moderation and the reduction of end-to-end delay has

been subject of several studies already. The in�uence on passive and active net-

work measurements is investigated in [144]. By identifying packet bursts, ef-

fects of interrupt moderation can be considered when running capacity and delay

measurements using commodity NICs. A similar methodology is applied in Sec-
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tion 5.2.2 in order to estimate the processing time within the application.

By increasing the interrupt rate, more context switches occur in the CPU, when

switching between interrupt handling and data processing. Every context switch

comes at a certain cost, especially when code and data are evicted from the CPU

caches. [145] estimates a time of 3-4.5 µs for a pure context switch without any

computation on a multi-core system and 1.3-1.9 µs when the processes are pinned

to one CPU core. When the CPU’s cache lines are not �lled, experimental results

show context switch delays of 2.2-2.9 µs, when the process is pinned to a speci�c

core and a simple program that writes memory pages is used. With virtualization,

the time for context switches is reported to be increased 2.5-3-fold. As a rule of

thumb, the author estimates 30 µs for a context switch in real-world scenarios. In

contrast, the delays seen in the following are mostly based on one single program

being executed, resulting in much lower overhead, as the contents of CPU caches

are usually not evicted by code or data of other applications.

Latencies of network communication between two servers are studied in detail

in [146]. The authors investigate the contributing factors to latencies in Ethernet-

based TCP/IP connections and try to achieve a minimal end-to-end latency. Using

a modi�ed Linux kernel, the authors make use of nanosecond-precision timers

o�ered by CPUs to break down the packet transmit and receive latencies for a

1 Gbps and a 10 Gbps Ethernet NIC. Based on measurements and estimations, this

study indicates a total receive latency of 7.747 µs for a 1 Gbps card. The main con-

tributors (more than 1 µs) are Interrupt cause register read requirement, SoftIRQ,

Wakeup application to process socket information, as well as the example applica-

tion identifying and acknowledging the received data (ACK the pong received by
the remote sender).

5.1.3 Acceleration Techniques

Besides interrupt latencies, also the process of copying data from the NIC into

the kernel’s memory and once again to the memory segment of the application

increases packet processing overhead.

Multiple techniques are available, e.g., Netmap [142], ClickOS [124], Intel
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DPDK [35], or VPP [147] to bypass the kernel completely during packet reception,

use shared memory bu�ers to avoid additional copy operations, process packets

in batches, or replace the entire network stack. Accordingly, these mechanisms

usually speed up speci�c parts of the stack. An extensive measurement study on

the performance of several of the aforementioned mechanisms in case of packet

forwarding is conducted in [148].

However, the above-mentioned studies have several drawbacks. First, the focus

on simple network functions like pure packet forwarding obscures the in�uence

of the processing time spent in the user space on the total processing time. This

component, however, might account for the majority of the total processing time.

Second, measurements are conducted for very speci�c use cases and cannot be

generalized in order to obtain a holistic evaluation of the proposed mechanisms.

Finally, it is impossible to determine the feasibility of an approach without identi-

fying its key performance indicators. Therefore, a model for analyzing the packet

processing performance on COTS hardware is required. In addition to provid-

ing the capability to derive key performance indicators, model parameters can be

tuned in order to represent di�erent acceleration techniques and quantify their

e�ects in the context of di�erent use cases.

Based on such evaluations, it could be decided, which technique o�ers a good

trade-o� between complexity of implementation and speedup for a speci�c net-

work function. As seen in Section 4.4, operating modes of network functions exist,

in which the overhead of packet handling, and therefore the speedup gained by

techniques like DPDK, might become negligible.

While di�erent network functions have di�erent characteristics in terms of

their behavior and requirements, there is a common ground when it comes to

evaluating their performance. RFC 2544 [110] provides benchmarking guidelines

for networking devices such as routers, switches, or �rewalls. These guidelines in-

clude key performance indicators for various Device Under Tests (DUTs) as well as

the methodology for measuring latency and throughput of these devices. Several

additional documents were released in order to take into account the increased

set of features and capabilities of network elements [111, 112].

When attempting to evaluate the performance of virtualized network func-
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tions that run on COTS hardware, additional challenges need to be addressed.

Due to the additional abstraction layer introduced by the softwarization of net-

work functions, system performance does not only depend on the underlying

hardware but also on the particular VNF implementation, cf. Section 4.4. In con-

trast to ASIC-based packet processing, e�ects like scheduling and caching also

impact the predictability and reliability of software solutions. Furthermore, in-

terdependencies between VNF instances running on the same physical substrate

can a�ect the system’s behavior [115, 116].

In [116], the performance of DPDK-accelerated switching and routing VNFs is

evaluated with respect to throughput and latency. The analysis shows that, when

o�ered tra�c to two physical Gigabit Ethernet interfaces, NFV-based approaches

can achieve line rate throughput as well as a latency that does not impact per-

formance in an enterprise network. Similarly, [117] shows a DPDK-accelerated

virtualized system that achieves performance levels that are close to that of non-

virtualized systems in terms of latency. The authors of [118] focus on benchmark-

ing NFV infrastructures with respect to resilience and the e�ects of faults on their

performance. Further options for hardware acceleration for VNFs include Field-
Programmable Gate Arrays (FPGAs) [119, 120] as well as Network Processing Unit
(NPU) and Graphics Processing Unit (GPU) resources [121, 122], each resulting in

di�erent trade-o�s between �exibility and performance.

[123] and [124] present platforms that enable fast packet processing on COTS

hardware running VNFs. In the case of forwarding, both solutions can process

packets at line rate on a 10 Gbps link while introducing latencies in the order of

magnitude of 50 µs.

5.2 Analytical Model for Packet Processing in NFV

In order to understand the process of packet processing within a Linux x86 sys-

tem, an abstracted description is provided in the following. This process, which

starts with receiving a packet on the wire and ends with the processed packet

being sent over the wire, is also depicted in Figure 5.1.
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Read from media: The network interface card reads data from the transmis-

sion media by interpreting electrical or optical signals within the MAC

layer and transforms it into packets.

Store in receive queue: These packets are saved into a receive queue imple-

mented in hardware inside the NIC. Multiple such queues can exist and,

based on hashing, packets can be distributed among these queues.

Trigger interrupt: In the most simple case, the NIC triggers an interrupt signal

to notify the CPU about the arrival after every received packet. Interrupt

moderation techniques, which are under study in this work, aim at re-

ducing the number of interrupts by processing multiple packets at once.

Depending on the capabilities and con�guration of the network card, this

batch processing mechanism can be triggered by a timeout, by accumu-

lating a speci�ed amount of received packets, or a combination of both.

Some NICs also o�er adaptive modes, which adjust timers and batch sizes

according to the current packet rate.

Read packet from NIC: As soon as the interrupt is sent, the CPU stops other

work in order to load and execute the interrupt service routine of the NIC

driver. This code then fetches the batch of packets from the network card.

This process, which results in a context switch of the CPU, is rather costly

as CPU registers �rst need to be loaded with new code and data. Addi-

tionally, this also purges other applications’ code/data and thus introduces

overhead. The overhead caused by a interrupts can also lead to livelocks, if

all CPU time is spent with interrupt handling. It can be reduced by avoid-

ing interrupts for every single packet at the cost of additional delay.

Store packet in bu�er: The packet data is stored in a bu�er in RAM, until an

application requests them for processing. The size of this bu�er is limited

to a �xed number of bytes
1

. If the application cannot catch up with reading

packets, the kernel drops packets. The process of copying packet data from

kernel space to user space takes additional time per packet.

1

in Linux, net.core.rmem_max = 131071bytes
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A
GI
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queue

GI, B
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Figure 5.3: Queueing Model.

Process packet in application: While the application processes the packet, it

blocks the CPU. Ideally, this part would accumulate for the largest portion

of CPU time, as this is actually executing the VNF’s code.

Send packet: After processing, the packet traverses the same way backwards,

until it is �nally sent to media. The NIC informs the operating system about

this by means of another interrupt.

5.2.1 Model

Abstract Server Model and Performance Metrics

The queuing model used for the performance analysis of the system outlined in

Section 5.2 is depicted in Figure 5.3. It is a generalization of the clocked approach

introduced by [149]. The generation of packets follows an arbitrary distribution

A. The packets are stored in a peripheral queue which is assumed to have in�nite

size. Incoming packets are transferred in a batch to the central queue after a time

interval τ initiated by the �rst packet after a batch transfer. The inner queue is

then modeled as a GI [X]/GI/1−L system and evaluated by means of discrete-

time analysis. Distributions of the batch sizes and burst interarrival times are

derived in the next subsection.
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Model of the Peripheral �eue (NIC)

In the peripheral queue, which represents the network interface card, packets are

aggregated. The resulting batch is then forwarded to the central queue, which

represents the CPU/software.

For the remainder of this work, we use the following notation to distinguish

between random variables (RVs), their distributions, and their distribution func-

tions. A random variable is represented by an uppercase letter, e.g., X . The dis-

tribution of X is denoted by x(k) and is de�ned as

x(k) = P (X = k), −∞ < k <∞.

Furthermore, the distribution function of X is written as X(k) and is de�ned as

X(k) =

k∑
i=0

x(i), −∞ < k <∞.

Finally, E [X] denotes the mean of X and ∗ refers to the discrete convolution

operation, i.e.,

a3(k) = a1(k) ∗ a2(k) =
∞∑

j=−∞

a1(k − j) · a2(j).

The following distributions are used for modeling the peripheral queue:

• a(k): distribution of the packet interarrival time.

• ra(k): distribution of the packet recurrence time.

• τ(k): distribution of the duration of the aggregation interval.

• un(k): distribution of un�nished work in the system before the arrival of

the n-th batch.

• o(k): distribution of the interrupt processing delay.

144



5.2 Analytical Model for Packet Processing in NFV

• s(k): distribution of the interarrival time between batches.

• x(k): distribution of the batch size.

• f (j)(k): distribution of the time between the start of an aggregation inter-

val and the arrival of the j-th packet. Since the aggregation interval starts

with the arrival of a packet, this time equals the sum of j interarrival times.

The corresponding random variable is referred to as F (j)
.

• wi(k): distribution of the waiting time of the i-th packet in the peripheral

queue.

The �rst packet arriving after a burst transferal initiates a new aggregation

interval. All packets arriving in this time frame are transferred to the inner queue

at the end of this interval. Based on the work in [150] and [23], the batch size

distribution x(k) can be computed as follows.

x(k) = τ(0)δ(k)

+

∞∑
m=1

τ(m)

m−1∑
i=0

(
f (k)(i)− f (k+1)(i)

)
, k = 0, 1, ....

(5.1)

The equation allows calculating the number of arrival events in an arbitrarily

distributed time interval. The special case, in which no arrivals are observed in

an interval of length 0, is covered by the �rst term. The function δ is de�ned in

Equation 5.2. For the remaining interval lengths, the law of total probability is

used in the second term in order to calculate the conditional probability x(k|m).

It can be derived from the relationship shown in Equation 5.3.

δ(k) =

1 k = 0

0 otherwise

(5.2)
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x(k|m) = P
(
F (k) < m ≤ F (k+1)

)
= P

(
F (k) < m

)
− P

(
F (k+1) < m

)
=

m−1∑
i=0

(
f (k)(i)− f (k+1)(i)

)
,m > 0

(5.3)

Since the �rst packet after a transfer initiates the next aggregation interval, the

batch interarrival time s can be calculated as the sum of the recurrence time of

one packet, i.e., ra, and the duration of the aggregation interval τ :

s(k) = ra(k) ∗ τ(k) (5.4)

Since the �rst packet in a batch triggers the timeout, the waiting time of con-

secutive packets is reduced. In particular, the waiting time of the i-th packet in

the peripheral depends on the arrivals of the i − 1 packets before it. Hence, the

distribution of its waiting time can be computed as follows:

wi(k) = π0

τ(k) ∗ a(−k) ∗ · · · ∗ a(−k)︸ ︷︷ ︸
(i− 1) times

 (5.5)

Model of the Central �eue (CPU/so�ware)

We model the inner queue as aGI [X]/GI/1−L queue, i.e., a system with batch

arrivals and bounded delay. The waiting time of packets is limited to a maximum

value of L, i.e., jobs which arrive and would have to wait longer than L − 1 are

rejected. Our analysis extends the work presented in [151] by introducing batch

arrivals. A similar notation, as presented in the following, is used:

• un,bi(k): distribution of un�nished work in the system before the arrival

of the i-th packet of the n-th batch.

• Bn,i: RV for the service time of the i-th packet of the n-th batch.
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• pb: average blocking probability per packet.

• π0(·): sweep operator which sums the probability mass of negative un�n-

ished work in the system and appends it to the state for an empty system.

π0(x(k)) =


x(k) k > 0

0∑
i=−∞

x(i) k = 0

0 k < 0

• σm(·): operator which truncates the upper part of a probability distribu-

tion function.

σm(x(k)) =

x(k) k ≤ m

0 k > m

• σm(·): operator which truncates the lower part of a probability distribu-

tion function.

σm(x(k)) =

0 k < m

x(k) k ≥ m

The development of the batch arrival process is illustrated in Figure 5.4. Ob-

serving the packets of the n-th batch arrival, the i-th packet of the burst is ac-

cepted if the current un�nished work in the system is less than L − 1. In case

the packet is accepted, the un�nished work is increased by the amount of work

Bn,i that is required to process the packet. Otherwise, the packet as well as the

remaining packets of the current batch are rejected.

The following recursive relationship can be used in order to compute the

amount of un�nished work in the system:

un,b1(k) = un(k) (5.6)

un,bi+1(k) = σL−1 [un,bi(k)] ∗ bn,i(k) + σL [un,bi(k)] (5.7)
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Figure 5.4: Exemplary system development forGI [X]/GI/1−L with bounded de-
lay.

Hence, the remaining un�nished work in the system at the arrival of the next

batch can be computed as:

un+1(k) = π0

[(
∞∑
i=1

x(i) · un,bi(k)

)
∗ sn(−k) ∗ o(k)

]
(5.8)

In this calculation, the interrupt overhead o is added to the batch interarrival

time s due to the fact that for each batch, the CPU has to devote time to handle

this interrupt instead of processing packets.

An algorithm for calculating the workload prior to the i-th arrival can now be

derived. It can be used for both stationary and non-stationary tra�c conditions.

Under stationary conditions, the index n and (n + 1) in these equations can be

suppressed, cf. Equation 5.9. Furthermore, we assume that the packet service time

is independent of a packet’s position within the batch. Hence, the RV Bn refers

to the service time for packets in the n-th batch. Similarly to Equation 5.9, the

index n can also be suppressed under stationary conditions, resulting in RV B.
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Figure 5.5: Computational diagram for GI [X]/GI/1− L with bounded delay.

u(k) = lim
n→∞

un(k)

ubi(k) = lim
n→∞

un,bi(k)
(5.9)

The computational diagram of the system is depicted in Figure 5.5. Depending

on the batch size X , the un�nished work after a batch arrival can be determined

by following the corresponding path through the diagram. Each of the X phases

in such a path represents the relationship from Equation 5.7. Finally, the batch

interarrival time sn is taken into account and the sweep operator π0 is used in

order to ensure that a proper probability distribution is returned.

It is also possible to quantify the load ρ of the central queue. This is achieved by
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calculating the ratio between the amount of work that arrives within a given time

interval and the amount of work that is processed in this interval. In particular,

we observe that the amount of work that arrives within a batch interarrival time

depends on the batch size and the packet service time (cf. Equation 5.10). Note

that both the batch size and the batch interarrival time are a�ected by the packet

interarrival time (cf. Equations 5.1 and 5.4).

ρ =
E [X] E [B]

E [S]
(5.10)

Finally, the packet loss probability in statistical equilibrium can be computed

as follows:

pb =

∞∑
i=1

(
1

i
x(i) ·

∞∑
j=L

ubi(j)

)
(5.11)

Depending on the batch size and the amount of un�nished work added by each

packet within the batch, the blocking probability for the latter packets within the

batch increases.

Combined Model

Using the two models described in Section 5.2.1 and Section 5.2.1, it is possible

to determine the distribution of the total processing time. It is comprised of the

waiting time in the peripheral queue, the waiting time in the central queue, and

the service time in the latter. The waiting time in the central queue can be calcu-

lated from the un�nished work in the system and a packet’s position in its batch.

Hence, the following equation can be used to calculate the distribution of the total

processing time of the i-th packet in a batch, di:

di(k) = wi(k) ∗ u(k) ∗ b(k) ∗ · · · ∗ b(k)︸ ︷︷ ︸
i times

(5.12)

Consequently, the distribution of the total processing time for all packets can

be determined via conditional probabilities:
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d(k) =

∞∑
i=1

P(X = i) · di(k) =
∞∑
i=1

x(i) · di(k) (5.13)

5.2.2 Applicability of the Proposed Model

In order to assess the goodness of �t of the introduced model, measurements are

conducted in a testbed and compared with the model’s predictions. In the fol-

lowing, the components of this testbed are described alongside the methodology

for accurately measuring the CPU processing times as well as the results of the

comparison.

Testbed Setup

The testbed setup is depicted in Figure 5.6. The Serving Gateway (SGW) applica-

tion (cf. Section 4.4) runs on the DUT, a server
2

running a recent Linux version
3

equipped with a four-port NIC. Similar to Section 4.4, GPRS Tunneling Protocol
(GTP) tra�c is generated using a hardware tra�c generator

4

. In order to evalu-

ate per-packet processing times, wiretaps that duplicate all tra�c are placed be-

tween the tra�c generator and the receiving NIC of the DUT, as well as between

the emitting NIC of the server and the tra�c sink, which is again the tra�c gen-

erator. The wiretaps are connected to a hardware capture card
5

, which provides

nanosecond precision timestamping of received tra�c.

The processing time of the server is measured by calculating the time between

a packet’s arrival at the �rst wiretap and its arrival at the second wiretap. The

packets at the two wiretaps are matched based on a unique 40 byte signature that

the tra�c generator adds to every packet. In order to verify that the tra�c gen-

erator emits packets at equidistant times and at the correct rate, the interarrival

times seen at the �rst capture card are inspected.

2

Intel Xeon E5-2620 v2 CPU at 2.10 GHz, Intel I350 NICs, 32 GB of RAM

3

64 bit version of Debian 7.7 (wheezy, kernel version 3.2.0-4-amd64)

4

Spirent TestCenter C1

5

Endace DAG 7.5G2 Gig Ethernet
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Server (DUT)

Traffic Generator
Application

Server (DAG)

NIC 2NIC 1

SinkNIC 2NIC 1NIC Wiretap 1 Wiretap 2

Figure 5.6: Testbed setup consisting of the DUT running the SGW application, a traf-
�c generator, and a server with a DAG capture card.

The delay, how long the NIC bu�ers incoming packets, is adjusted using the

ethtool command. In this context, <N> represents the number of the NIC and

<T> re�ects τ , i.e., the number of microseconds to wait after the �rst incoming

packet:

# ethtool -C eth<N> rx-usecs <T>

Listing 5.1: Command to modify aggregation interval of NIC.

Estimating CPU Processing Time

In order to determine the processing time of the application code at a per-

packet granularity, measurements using tcpdump are conducted. The time,

when tcpdump captures a packet is on the kernel level, right after the interrupt

is handled in incoming direction (from NIC 1), i.e., before the packet is copied by

the kernel driver code to the egress NIC (cf. Figure 5.1).

One such exemplary measurement displaying the time between a packet’s ar-

rival at the receiving and the sending side is shown in Figure 5.7a. The two batches
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of packets each show an increasing processing time, as the �rst packet is pro-

cessed �rst by the CPU and the last (10th) packet is processed after all others in

this batch. Therefore, the di�erence in the processing delay between consecutive

packets equals Bn,i, the waiting and processing time in the application.

Given the application used in our experiments, a prototypical VNF implemen-

tation of a mobile network SGW, the measurements result in a distribution of

processing times with a mean of 8.336 µs. This empirical distribution is used in

the following after capping it at the 90% quantile (16 µs) to remove outliers, result-

ing in a mean of 7.25 µs. This distribution is shown as the red curve in Figure 5.7b

and was picked as a representative from multiple measurements. The gray CDFs,

as well as the corresponding means (dashed lines) show the CPU processing times

of other measurements and highlight the variations between the di�erent runs.

Comparison of Model Predictions and Measurements

In order to demonstrate the applicability of the proposed model, we compare its

results with measurements. For that, we conduct �ve independent measurement

runs for constant interarrival times between 5 and 12 µs. Each measurement run

lasts one minute, and the aggregation interval is set to τ = 200µs.

The size of the central queue, denoted by L, corresponds to 5,200 µs of un-

�nished work. Based on the measured mean service time at the CPU E[B] =

8.336µs, the inner queue size of Lbyte = 131, 071 byte as de�ned by the oper-

ating system, and the packet payload of 210 byte, L computes as follows:

L = E[B] · Lbyte
210

= 5200µs

Based on the measurements, we compute the mean processing times and the

corresponding con�dence intervals on a 95% con�dence level, as well as the

packet loss probability. Additionally, we compute the mean processing times and

the packet loss probability using the analytical model. As service time distribu-

tion, we take the empirically measured service time from Figure 5.7. As interrupt

overhead, we use o = 4µs, which is based on the values reported in [146].
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Figure 5.7: Di�erences in processing times of single packets seen in the networking
stack (kernel level) allow deriving the CPU service time per packet.

Figure 5.8a shows a comparison of the measurements and values obtained from

the analytical model. Error bars denote the 95% con�dence intervals from �ve

measurement runs. The bars indicate the mean processing time per packet ac-

cording to the model.

For packet interarrival times below 8 µs, the error bars overlap with the mean

values from the model, indicating the applicability of the model. For larger inter-

arrival times, only a slight di�erence is observed between the model’s prediction

and the measurements. A possible explanation for this phenomenon is the high

degree of variance regarding the empirical function service times shown in Fig-

ure 5.7b.
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In an analogous fashion, Figure 5.8b shows the applicability of the model with

respect to to the packet loss rate. Except in the case of E[A] = 7µs, the error

bars overlap with the values from the model. Based on the huge error bar seen in

the previous �gure, this interarrival time roughly corresponds to the maximum

rate that the server can handle and the �rst occurrence of packet loss can be

observed. For larger interarrival times, the model and measurements both indicate

zero packet loss.

The occurrence of packet loss for an average interarrival time below 8 µs is

consistent with the de�nition of the system load ρ in Equation 5.10 and the mean

service time at the CPU of 7.25 µs that is obtained after removing outliers. Since

the average batch size E[X] can be determined by means of τ and E[A], and the

recurrence time in the context of very low interarrival times is negligible, the

system load can be approximated as follows:

ρ =
E [X] · 7.25

E [S]
=

τ · 7.25
E[A](E[Ra] + τ)

E[Ra]�τ≈ 7.25

E[A]
(5.14)

Hence, in the context of mean interarrival times below 7.25 µs, the system load

is larger than 1, and packet loss occurs. Furthermore, the actual load is slightly

higher due to the fact that the same CPU core also handles the interrupts that are

caused by outgoing packets. These amount to roughly 20,000 IRQs per second in

our scenarios.

Evaluation

In this section, we investigate the behavior of the packet processing server based

on the introduced model. In this context, we focus on the total processing timeD

and the packet loss probability pb. The in�uence of the mean packet interarrival

timeE[A] and the length of the aggregation interval τ are studied. At �rst, coarse-

grained analyses of the resulting mean processing times and packet loss ratios for

di�erent interarrival time distributions and aggregation interval lengths are pre-

sented. Afterwards, we investigate the impact of these two in�uence factors for a

particular packet interarrival time distribution on the distribution of processing

times.
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Figure 5.8: Comparison of analytical model and measurements for τ = 200µs.

Impact of the Arrival Process The sensitivity of the modeled system to dif-

ferent distributions of the packet interarrival time A is studied based on four dif-

ferent distributions, namely deterministic (det), Poisson (pois), geometric (geo),

and negative binomial (nbin). For det, pois, and geo, the distributions are char-

acterized solely by E[A], resulting in a constant coe�cient of variation of 1. The

parameters p and r of nbin are adjusted so that σ = µ holds true. This results in

a constant coe�cient of variation equal to

√
3.

Impact on Mean Processing Times Figure 5.9 presents the mean packet pro-

cessing time D that results from di�erent combinations of the distribution of

packet interarrival time and its mean. While the x-axis displays the mean packet

interarrival time, the y-axis indicates the average packet processing time. Addi-

tionally, line colors represent di�erent values of the aggregation interval length

τ and line styles correspond to the four distribution types.

In most cases, the curve shape is composed of three phases. First, small packet

interarrival times result in high processing times that stem from long waiting

times in the central queue. As soon as the average interarrival time exceeds τ , in

most cases, each batch is comprised of only one packet. As this packet initiated

a new aggregation interval, it has to wait until the timer ends after τ . Due to the
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Figure 5.9: E�ects of di�erent values of E[A] and di�erent aggregation intervals τ
on the mean processing time E[D].

low rate, the un�nished work at the central queue (the CPU) is low or oftentimes

zero, resulting in immediate processing of the packet. Since in this case the pro-

cessing time in the central queue is relatively low compared to the waiting time

in the peripheral queue, the total processing time is mostly in�uenced by τ . For

interarrival times that follow a deterministic or a Poisson distribution, most ag-

gregation intervals contain exactly one packet, resulting in processing times that

are slightly higher than τ . In contrast, the negative binomial and geometric dis-

tributions lead to bursts of packet arrivals that result in lower mean processing

times. After the �rst packet of a batch starts the aggregation interval, consecutive

packets still arrive within the interval and thus, have a lower waiting time in the

peripheral queue.

For interarrival times that are lower than τ , but do not lead to queuing at the

central queue, expected batch sizes for all distributions are larger than one. There-

fore, the mean waiting time in the peripheral queue decreases and thus, the mean

overall processing time E[D] also decreases.

Although the �gure might suggest that decreasing τ , i.e., reducing the interrupt

moderation, leads to lower processing times, this is only true until reaching a
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Figure 5.10: Packet loss depending on E[A] for di�erent τ .
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Figure 5.11: Processing time distributions for varying packet interarrival times and
di�erent interarrival distributions in case of τ = 100µs.

break-even point. Then, the overhead per packet caused by interrupt handling

and context switches accounts for the majority of CPU time.

Impact on Packet Loss As described previously, the processing time increases

with the number of packets per second, as packets experience a waiting time

at the central queue. As this queue is limited by L (cf. Section 5.2), packet loss

occurs once this limit is exceeded as described in Equation 5.11. In the following,

the impact of the mean and distribution of interarrival times on the packet loss

probability is evaluated.
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Figure 5.10 depicts the packet loss probability for the four di�erent distribu-

tions depending on di�erent mean processing times and lengths of the aggrega-

tion interval. It can be observed that the Poisson distributed interarrival times

result in the highest packet loss ratio when the system operates at a high load.

The assumption behind applying interrupt moderation techniques is a certain

burstiness of tra�c. Hence, the packet loss ratio is up to 8% lower for nbin than

for geometrically distributed arrivals in the case of τ = 200µs depicted in Fig-

ure 5.10a. Due to the higher degree of burstiness of the former, longer idle times

after τ �nished occur and thus fewer interrupts are triggered.

As described in Section 5.2.2, the CPU load exceeds 1 when E[A] falls below

7.25 µs (cf. Equation 5.14). This �ts with the observed packet loss at E[A] ≤ 7µs

for all distributions. In case of nbin, packet loss occurs even at E[A] = 8µs due

to the higher burstiness of the tra�c.

However, it is questionable whether this system can be operated in overload

conditions with a packet loss ratio of more than 5 %, which occurs for interarrival

times of 7 µs and less, corresponding to more than 142,857 packets per second.

Thus, the lower rate with E[A] = 8µs, when no packet loss occurs for all distri-

butions except nbin, is more interesting. The reason for this behavior is, again, its

burstiness and higher variation, resulting in short overload situations that lead

to packet loss. In contrast, the other distributions result in more equally spaced

arrivals.

For the largest aggregation interval of 500 µs, this e�ect is visible even for

higher values of E[A]. Caused by the higher expected number of packets per

batch (τ/E[A]), the probability that packets are dropped in the central queue is

increased, resulting in a higher packet loss ratio.

Processing Time Distributions for Varying Interarrival Times In addi-

tion to studying the in�uence of the arrival process on the mean processing

time, we also investigate its e�ect on the distribution of the processing time. Fig-

ure 5.11 shows the CDFs of the processing time D given an aggregation interval

of τ = 100µs combined with di�erent arrival processes and values for the mean

interarrival time E[A].
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For the lowest mean interarrival time of 4µs shown in Figure 5.11a, i.e., the

scenario with the highest system load, the highest processing times are observed.

Furthermore, the distribution of processing times in this scenario has a low vari-

ance and similar values independent of the arrival process. This can be explained

by the combination of the very high load and the fact that the system drops pack-

ets that encounter a full queue. In contrast, the distribution of the processing time

in the context of E[A] = 8µs di�ers signi�cantly across di�erent distributions

of the interarrival time. On the one hand, the relatively stable det and pois distri-

butions result in a narrow range of processing times which is signi�cantly lower

than for E[A] = 4µs. On the other hand, the higher degree of variation of the

geo and nbin distributions result in a larger variety of batch sizes which, in turn,

yield wide intervals of di�erent processing times.

A further decrease of the processing times is observed for the medium inter-

arrival times seen in Figure 5.11b. In these scenarios, the distributions resulting

from the nbin and geo distributions are closer to each other and begin to converge.

This phenomenon can be explained by the evolution of the two arrival processes.

For higher values of E[A], the coe�cient of variation of geo approaches 1, i.e.,

that of the nbin distribution used in this work. Simultaneously, the r parameter

of the nbin distribution approaches 1. Since the geometric distribution is a spe-

cial case of the negative binomial distribution with r = 1, the aforementioned

convergence can be explained.

Finally, Figure 5.11c displays the processing time distributions in case of

E[A] = 30µs and E[A] = 100µs, respectively. When the mean interarrival

time equals the aggregation interval τ , only size 1 batches are processed in case

of a deterministic arrival process. In combination with the fact that arrivals ini-

tiate the aggregation intervals, the processing time is dominated by the waiting

time in the peripheral queue. For E[A] = 30µs, batches consist of four packets,

hence the distribution consists of four segments with similar shapes correspond-

ing to a packet’s position within a batch. The processing time distributions that

result from a geometric and a negative binomial distribution converge further

when E[A] is increased and overlap in case of E[A] = 100µs. Processing times

resulting from interarrival times that follow a Poisson distribution are lower and
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closer to those of det rather than geo and nbin which have a signi�cantly higher

degree of variation.

5.3 Lessons Learned

The introduced model allows to estimate the impact of performance-relevant pa-

rameters of VNFs. By reducing the complexity of the system by taking abstract-

ing, the model is able to compute system’s treatment of every processed packet.

The resulting processing time distribution and packet loss probabilities allow to

estimate the e�ects of particular implementation aspects on the characteristics of

the emitted tra�c.

The validation setup, where measurements of the implementation were con-

ducted with microsecond-precision, demonstrated the applicability of the model

to the real VNF. Based on this, adjustments of input parameters like packet inter-

arrival distributions and the processing time within the VNF together with di�er-

ent interrupt frequencies allows to estimate the e�ects with regard to overhead

and short processing times.

It was found out that there is a “sweet spot” in such system, right between a

high frequency of interrupts, which lead to low delays but lots of wasted CPU

time and, on the other side, larger delays caused by more infrequent interrupts

and larger batch sizes in consequence. The model allows to evaluate such “what-

if” scenarios, without running the complete benchmark and even before altering

the implementation.

Further parameter adjustment allows to predict the system behavior in case

of acceleration techniques like Intel’s DPDK or Cisco’s Vector Packet Processing
(VPP) being applied. Applying the model allows to compare heterogeneous net-

work function implementations and selecting the appropriate technique for a spe-

ci�c use case.
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Increasing tra�c volumes in data center and wide area networks increase the

expenditures of operators. Traditionally, new hardware was acquired once uti-

lization exceeded some boundary, like 50% link utilization. In order to avoid, or at

least delay, such investments in more powerful hardware, a few companies started

to apply novel mechanisms on their own, instead of relying on device vendors.

Network softwarization implements logic in form of software running on servers

instead of as �rmware. This allows operators to develop and deploy custom solu-

tions tailored to their needs within short time. This allows setups that make far

better resource utilization without impairing quality of service.

Software companies like Google and Facebook are leading this trend of soft-

warizing network devices and appliances. They developed new business models

that are consumed by billions of users and generate extreme amounts of data,

which these companies process. Software-based networks help them to not only

reduce expenditures, but also to be more agile with making changes to the infras-

tructure to serve the applications running on top.

Recently, especially through the advent of Network Functions Virtualisation
(NFV), more and more operators of telecommunication networks see the ben-

e�ts of software-based networking as well. Not only that telcos want to reduce

their dependency on proprietary software, they also want to exploit new �elds

of income by o�ering new services to their customer. These operators also lead

the corresponding standardization activities within the European Telecommunica-
tions Standards Institute (ETSI), as well as reference implementations within the

collaborative OpenNFV project.

Prior to a wide-spread deployment of software-based networks using tech-

niques such as NFV and Software De�ned Networking (SDN), several issues have to
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be resolved. Many of these issues are related to performance and novel manage-

ment methods that allow a much higher pace of risk-free changes to the network

infrastructure.

This monograph contributes to solving both types of issues that prevent a

widespread deployment of software-based networks. Chapter 2 investigated, how

the physical infrastructure can be optimized for higher resource utilization and

increased energy e�ciency. With SDN and NFV on the horizon, operators hesitate

to invest in the underlying physical network topology with all its �ber strands.

Further, capacity planning in advance and path planning prior to network deploy-

ment become less critical and too in�exible, given the steadily changing charac-

teristics of modern networks. Therefore, it was investigated, how the planning

process of wide area networks can be tailored more towards energy e�ciency,

without actually changing the software responsible for this planning process. As

such tooling is very complex and expensive, the goal was to in�uence the result-

ing outcome to be more energy e�cient, by only modifying the input parameters

to the planning software. Based on multiple subgraphs of the original �ber topol-

ogy, it was evaluated, how the active length of all �ber links could be reduced.

By avoiding planning runs for subgraph topologies that lack criteria like two-

connectedness, the overall duration of the planning process can be reduced.

The e�ects of di�erent deliberately generated subgraphs were evaluated using

multiple realistic network topologies and an existing and publicly available net-

work planning software. The e�ects have shown that savings between 9% and

54% are possible when using the link length as cost metric.

Novel approaches to network management were described in Chapter 3. By

applying successful methods from software engineering, like continuous delivery

and test-driven development, changes to network infrastructures can be applied

more rapidly and with increased con�dence. Automated tests aid as a safety net

that prevent unexpected side-e�ects to occur, which is a very likely issue in com-

plex network setups. The utilization of such methods now becomes possible, as

networks become less dependent on physical instances and instead make use of

virtualization, allowing to have realistic duplicates of the production infrastruc-

ture available at very low costs and on the push of a button.
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In the case of defects, the mind-changing practices of continuous delivery help

to solve problems faster than with traditional approaches focusing on increas-

ing Mean Time Between Failure (MTBF) [152]. Instead of aggregating changes and

applying many of them at once, novel approaches bring small pieces of change

very quickly into production. This eases the root-cause analysis to �gure out the

source of the failure and helps to deploy a �x way faster, i.e., reducing the Mean
Time To Repair (MTTR) instead. The �rst part of Chapter 3 describes guide lines,

how the deployment process for an SDN controller as well as a Virtualised Net-
work Function (VNF) should look like.

Furthermore, Chapter 3 describes two techniques that exploit the �exibility

and programmability of software-based networks. For conducting elephant de-

tection, a particular network monitoring problem, it was described, how counters

in hardware devices are created dynamically and re�ned iteratively. Compared to

traditional approaches, this provides a very light-weight solution, which can be

further tuned towards the particular needs of the network administrator or ap-

plication consuming the output.

Micro segmentation constraints network devices into their own virtual net-

work, restricting access to only explicitly permitted resources. The described im-

plementation for a "Bring Your Own Device" use case employs SDN and NFV to

dynamically set up virtual networks. In contrast to previous approaches, this nei-

ther relies an on agent installed on the user-owned device, nor does it group all

devices into a common access group. Instead two factor authentication is used

to verify authenticity of requests that result in white listing of services, e.g., to

a email, a business application, or the Internet. Changes in the IP addresses un-

der which rapidly changing cloud services are available are communicated to the

network infrastructure through the very same service discovery mechanisms, as

they are used within the application themselves.

Performance aspects of software-based networks are investigated in Chapter 4,

which further contributes tooling and guide lines for benchmarking of such sys-

tems. Conducted evaluations include a comparison of hardware and software im-

plementations of a �rewall, where it could be seen that the by far more expensive

hardware o�ers more predictable processing times in the order of microseconds.
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Nevertheless, the software variant, which induces sub-millisecond jitter on the

emitted tra�c might still be applicable to a wide range of use cases.

Similar, benchmarking studies of SDN controllers using a custom-built bench-

marking software help to evaluate the performance of the network control plane

prior to a deployment. Given the criticalness of controller for the overall network

stability, such capacity tests should be integrated into the previously described

deployment pipeline.

Finally, Chapter 5 introduces an analytical model for the packet processing in

a server running the Linux operating system. The queuing system implements a

clocked transfer, which initiates the transfer of work - packets from the queue

within the Network Interface Card (NIC) - into operating system bu�ers, from

where the VNF application can read them. The transfer is triggered by an inter-

rupt, itself coming with an overhead. The presented model allows to estimate the

sweet spot between frequent interrupts resulting in low delays and less frequent

ones resulting in lower CPU overhead. Triggering too many interrupts can �nally

lead to starvation of CPU resources and thus packet loss.

The introduced model was validated using a prototypical VNF in a test bed

running hardware tra�c generation and highly precise time stamping. After em-

pirically determining the service time distribution of the VNF, di�erent settings

for the interrupt delay, as well di�erent packet arrival rates were evaluated. It

was observed that the model correctly estimates both, the processing time of the

server running the VNF as well as the packet loss. This model could be further ex-

tended to analyze other implementation choices of a VNF, i.e., packet processing

frameworks like netmap or DPDK.

The combination of mechanisms described in this monograph now �nally

brings long-desired features, like better scalability, increased �exibility, as well as

shorter development cycles. Backward compatibility can be maintained by keep-

ing communication with end hosts, e.g., hosts in the Internet, unchanged. The

network itself, however, can still be optimized under the surface. In contrast, ap-

plications within the own network or those of cooperating peers can interact with

the network to exploit the full bene�ts, including cost e�ectiveness, better user

satisfaction, and higher agility.
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