
Julius-Maximilians-Universität Würzburg

Institut für Informatik
Lehrstuhl für Kommunikationsnetze

Prof. Dr.-Ing. P. Tran-Gia

Optimization of Controller Placement and

Information Flow in So�warized Networks

Stanislav Lange

Würzburger Beiträge zur

Leistungsbewertung Verteilter Systeme

Bericht 3/18

Würzburger Beiträge zur

Leistungsbewertung Verteilter Systeme

Herausgeber

Prof. Dr.-Ing. P. Tran-Gia
Universität Würzburg
Institut für Informatik
Lehrstuhl für Kommunikationsnetze
Am Hubland
D-97074 Würzburg

Tel.: +49-931-31-86630
Fax.: +49-931-31-86632
email: trangia@informatik.uni-wuerzburg.de

Satz

Reproduktionsfähige Vorlage des Autors.
Gesetzt in LATEX Linux Libertine 10pt.

ISSN 1432-8801

Optimization of Controller Placement and

Information Flow in So�warized Networks

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades

der Julius–Maximilians–Universität Würzburg

vorgelegt von

Stanislav Lange

geboren in

Pawlodar

Würzburg 2018

Eingereicht am: 09.11.2018

bei der Fakultät für Mathematik und Informatik

1. Gutachter: Prof. Dr.-Ing. Phuoc Tran-Gia

2. Gutachter: Prof. Dr.-Ing. Markus Fiedler

3. Gutachterin: Prof. Michela Meo

Tag der mündlichen Prüfung: 20.12.2018

Danksagung

In den Jahren, in denen diese Dissertation entstanden ist, haben mich zahlreiche

Menschen motiviert und unterstützt. Da dies auf unterschiedlicheWeise sowohl

die Arbeit an sich als auch ihren erfolgreichenAbschluss ermöglicht hat, möchte

ich mich herzlich bedanken.

In erster Linie möchte ich meinem Doktorvater Prof. Dr.-Ing. Phuoc Tran-

Gia meinen Dank aussprechen. Er hat mir nach meinem Studium nicht nur die

Möglichkeit gegeben, am Lehrstuhl für Kommunikationsnetze zu promovieren,

sondern hat auch während der gesamten Zeit ein hervorragendes Arbeitsklima

aufrechterhalten. Dadurch ermöglichte er mir neben einer schnellen fachlichen

wie persönlichen Integration in die Gruppe auch die Entwicklung neuer For-

schungsideen, welche durch gemeinsame Diskussionen vertieft und schließlich

auf Fachkonferenzen präsentiert wurden.

Weiterhin gilt mein Dank Prof. Dr.-Ing. Markus Fiedler, der das Zweitgut-

achten meiner Dissertation übernommen hat und mich durch sein wertvolles

Feedback sowie die wissenschaftlichen Diskussionen unterstützt hat. Ebenfalls

danke ich Prof. Michela Meo, die das dritte Gutachten angefertigt hat. Des Wei-

teren bedanke ich mich herzlich bei Prof. Alexander Wolff, der sich trotz der

kurzfristigen Anfrage bereit erklärt hat, als Prüfer bei meiner Disputation zu

fungieren.

Besonderer Dank geht an meinen ehemaligen Gruppenleiter Prof. Dr. Tho-

mas Zinner. Durch seine kontinuierliche Motivation und zahlreiche fachliche

Diskussionen hat er meine wissenschaftliche Entwicklung enorm geprägt. Ne-

ben der Förderung in fachlicher Hinsicht möchte ich mich aber auch besonders

herzlich für die Wegbereitung und Unterstützung bei meiner persönlichen Ent-

i

Danksagung

wicklung danken. Dank seiner Art konnte er ein sehr freundschaftliches Klima

in der Gruppe schaffen und hat insbesondere auch Synergien zwischen denMit-

gliedern gefördert, was nicht nur zu Wissenstransfer, sondern auch zur Bildung

von Freundschaften geführt hat.

Bei den Dres. Rastin Pries, Michael Jarschel und Daniel Schlosser möchte ich

mich für die Betreuung meiner Bachelorarbeit sowie für den damit frühen Kon-

takt mit OpenFlow und SDN bedanken. In dieser Zeit habe ich viele Grund-

lagen wissenschaftlicher Arbeit gelernt, die im weiteren Verlauf des Studiums

sehr hilfreich waren. Ebenfalls bedanke ich mich bei Dr. Michael Seufert für die

Betreuung meiner Masterarbeit und die Integration in zahlreiche Aktivitäten

sowohl am Lehrstuhl als auch außerhalb.

Prof. Dr. Tobias Hoßfeld danke ich für meine frühzeitige Integration in den

Lehrstuhl als Hiwi, welche mir zahlreiche wertvolle Erfahrungen bereitet hat

und einen Vorgeschmack auf die Tätigkeit als wissenschaftlicherMitarbeiter ge-

geben hat. Nach seiner Rückkehr nach Würzburg hat er mir sehr viel Vertrauen

entgegengebracht und mir ermöglicht, weitere Erfahrungen bei der Definition

und Organisation von Projekten zu sammeln. Auch für die Funktion als Prü-

fungsvorsitzender bei meiner Disputation danke ich ihm.

Für die durchgehend gemeinschaftliche Atmosphäre am Lehrstuhl sowie

zahlreiche wissenschaftliche Kollaborationen und auch Aktivitäten außerhalb

des Lehrstuhls bedanke ich mich außerdem bei allen ehemaligen und aktuellen

Kolleginnen und Kollegen. Besonderer Dank gilt Dr. Steffen Gebert und Stefan

Geißler, die über die Jahre mit mir ein Büro geteilt haben. Außerdem bedan-

ke ich mich bei den Gruppenleitern Dr. Matthias Hirth, Dr. Florian Wamser und

Dr. FlorianMetzger, die mir mit ihrer Erfahrung in vielen Aspekten geholfen ha-

ben. Auch für die enge Zusammenarbeit mit den Mitgliedern der NGN-Gruppe

– Dr. Steffen Gebert, Stefan Geißler, Nicholas Gray, Alexej Grigorjew, Dr. Anh

Nguyen-Ngoc, Susanna Schwarzmann, Prof. Dr. Thomas Zinner – sowie für die

wöchentlichen Gruppentreffen und die damit verbundenen anregenden Diskus-

sionen bedanke ich mich herzlich. Weiterhin danke ich Kathrin Borchert, Va-

lentin Burger, Lam Dinh-Xuan, Dr. Michael Duelli, Dr. Matthias Hartmann, Dr.

ii

Danksagung

David Hock, Dr. Dominik Klein, Frank Loh, Christopher Metter, Christian Mol-

dovan, Dr. Christian Schwartz und Anika Schwind für die gemeinsame Zeit am

Lehrstuhl.

Darüber hinaus danke ich Alison Wichmann für die Hilfe bei der Projektver-

waltung und auch für die Unterstützung bei der Abwicklung von Dienstreisen.

Zudem bedanke ichmich bei allen Hiwis und Studenten, mit denen ich über Vor-

lesungen, Übungen, Seminare und Praktika oder Abschlussarbeiten in Kontakt

gekommen bin, für die gute Zusammenarbeit.

Abschließend richte ich riesigen Dank an meine Mutter Maria, meine Oma

Hilda, meine gesamte Familie und alle meine Freunde. Ohne deren Beistand, Rat

und Unterstützung wäre diese Arbeit nicht möglich gewesen. Besonders meiner

Mutter Maria danke ich von Herzen für die durchgehende Förderung und Moti-

vation seit Schulzeiten, welche das Fundament für das Studium und damit auch

die Promotion gelegt haben. Dank ihrer Beratung bei kleinen und großen Hür-

den konnte ich die Arbeit letzten Endes abschließen.

iii

Contents

1 Introduction 1

1.1 Scientific Contribution . 4

1.2 Outline of the Thesis . 8

2 Multi-Objective Heuristics for the SDN Controller Placement

Problem 11

2.1 Background and Related Work 13

2.1.1 SDN Control Plane . 14

2.1.2 Controller Placement in SDN-based Networks 15

2.1.3 Facility Location Problem 16

2.1.4 Multi-Objective Optimization Algorithms 17

2.2 Problem Statement . 18

2.2.1 Controller Placement Problem 18

2.2.2 Notation . 21

2.3 Pareto Simulated Annealing . 27

2.3.1 Design of the Multi-Objective Optimization Algorithm 27

2.3.2 Performance Evaluation Methodology 33

2.3.3 Investigation of Main Performance Factors and Re-

source Consumption 36

2.4 Pareto Capacitated k-Medoids 43

2.4.1 Iterative Pareto Frontier Generation 44

2.4.2 Evaluation Environment, Topologies, and Parameters . 46

v

Contents

2.4.3 Performance Comparison and Key Influence Factors . . 49

2.4.4 Integration into the POCO Framework 56

2.5 Lessons Learned . 60

3 Automated Decision Making based on Pareto Frontiers 63

3.1 Background and Related Work 65

3.2 Characteristics of the Network Topologies Under Study 67

3.2.1 Internet2 OS3E . 67

3.2.2 Internet Topology Zoo 70

3.3 Weighting Methods . 73

3.3.1 Uniform Weighting . 74

3.3.2 Entropy-Based Weighting 74

3.3.3 Weighting Based on the Coefficient of Variation 75

3.3.4 Weighting Based on the Standard Deviation 75

3.3.5 Comparison . 75

3.4 Ranking Methods . 79

3.4.1 Case Study of the Internet2 OS3E Topology 81

3.4.2 Broad Evaluation on the Topology Zoo 86

3.5 Lessons Learned . 90

4 Integration ofNetworkManagement Information into the SDN

Control Plane 93

4.1 Background and Related Work 95

4.1.1 ONOS SDN Controller Platform 95

4.1.2 SDN for QoS Control 96

4.1.3 Management Architectures with SDN Components . . 97

4.2 Measurement Evnironment and Components 98

4.2.1 SDN Controllers . 98

4.2.2 Testbed Setup and Interaction between Components . . 101

4.2.3 Experiment Design . 103

vi

Contents

4.2.4 Parameters and Performance Indicators 104

4.3 Performance Evaluation of the NMS-Aware SDN Controller . . 106

4.3.1 Detailed Case Study of the Controller Behavior in a

Bandwidth-Limited Environment 107

4.3.2 Investigation of Throughput, Fairness, and Overhead in

Networks with Dynamic Traffic Fluctuations 110

4.3.3 Implications of the Flow Interarrival Time and the In-

formation Exchange Rate 113

4.4 Lessons Learned . 116

5 Conclusion 119

Bibliography and References 125

vii

1 Introduction

Current communication and networking use cases such as video streaming, ve-

hicular communications, and the Internet of Things (IoT) confront network op-

erators with numerous challenges. Firstly, the continuously increasing num-

ber of devices and services leads to a corresponding growth in terms of re-

source demands and therefore requires systems that can scale appropriately.

Secondly, heterogeneous communication paradigms and requirements as well

as their temporal dynamics require a high degree of automation and adaptabil-

ity in order to maintain high performance levels while operating the network

in a resource-efficient manner.

These challenges are addressed by softwarization paradigms such as Software

Defined Networking (SDN) and Network Functions Virtualization (NFV). By

separating the data plane and the control plane as well as logically centralizing

the latter in a software-based controller that runs on commodity hardware, the

SDN paradigm enables flexible network configuration that is required to quickly

adapt to dynamically changing network conditions. Additionally, by providing

open interfaces for the communication between the control entity and compo-

nents from the data plane, applications, legacy devices, and other SDN domains,

a high degree of network programmability can be achieved [26]. These inter-

faces are referred to as southbound, northbound, eastbound, and westbound

API, respectively and the resulting SDN architecture is depicted in Figure 1.1.

The outlined programmability, in turn, allows automating many vital traffic en-

gineering tasks like policy-based rerouting of specific flows without manual re-

configuration.

1

1 Introduction

SDN Network
Control Plane

Legacy Network
Control Plane

SDN Network
Control Plane

Control
Module

Control
Module

App.
Control

Interface

Application
Control Plane

Control
Module

Control
Module

Control
Module

Switch Switch

Switch

Southbound
API

Southbound
API

Northbound
API

Eastbound
API

Westbound
API

Figure 1.1: Interfaces in the SDN architecture [26].

In the case of NFV, specialized hardware middleboxes that perform network-

ing tasks like firewalling and load balancing are replaced with software in-

stances that run on commercial off-the-shelf (COTS) servers. These software

instances are referred to as Virtualized Network Functions (VNFs) and can

be dynamically deployed, migrated, and scaled. Therefore, following the NFV

paradigm can increase the resource efficiency by instantiating only as many

VNFs as are required to handle the network traffic at a given time. Similarly

to SDN, management and orchestration interfaces that are defined in modern

NFV architectures such as the one by the European Telecommunications Stan-

dards Institute (ETSI) [27] or the OpenStack project [28] enable programmabil-

ity and automation that are required to maintain the aforementioned resource

efficiency.

In order to fully reap the benefits of these paradigms, however, novel chal-

lenges need to be tackled. These include the management and orchestration of

2

softwarized networks as well as performance considerations that result from re-

placing special-purpose hardware with software that runs on COTS hardware.

Due to the fact that numerous tasks that were previously performed by dedi-

cated hardware elements are taken over by software entities, the latter need to be

carefully dimensioned in order to meet stringent performance requirements. In

this context, measurements and performance benchmarks of individual compo-

nents like SDN controllers and virtualized network functions can provide valu-

able insights into aspects like their capacity, resource usage, and operational

regimes. Similarly, performance data of novel components like SDN-enabled

switches that can be either software- or hardware-based is required. While mea-

surements can provide insights into particular constellations regarding param-

eters like traffic characteristics and intensity, they can also serve as input for

analytical models. Such models abstract the components’ behavior and can be

used to predict their performance under various conditions, optimize their pa-

rameters to fit a particular use case, or identify bottlenecks.

Furthermore, both SDN andNFV pose placement problems in which the num-

ber and location of entities such as SDN controllers and virtualized network

functions is optimized according to multiple objectives. On the one hand, this

requires developing algorithms that can cope with the huge parameter space of

such a multi-objective optimization task in a timely manner. On the other hand,

mechanisms that automatically choose one distinct solution from the resulting

set of Pareto optima are required in order to maintain a high performance and

efficiency even in the face of highly dynamic environments. For both placement

tasks, results from the abovementioned benchmarks and models constitute a

crucial input since they provide information on the capacity and imposed delay

of placed components.

Finally, when considering softwarized networks from an architectural point

of view, an interaction between the SDN control plane and existing central-

ized instances like Network Management Systems (NMSs) can be beneficial to

the performance of the entire network. This performance improvement can be

achieved by providing the entities with detailed monitoring and configuration

3

1 Introduction

data that they can integrate into their control and management decisions, re-

spectively.

The following two sections cover research in the area of softwarized networks

that has been conducted by the author and give an overview of the scientific

contributions that are discussed in detail in this monograph, respectively.

1.1 Scientific Contribution

As outlined in the previous paragraphs, the domain of softwarized networks

spans a wide research field that exceeds the capacity of a single monograph.

Hence, in order to provide a clear context, we first provide an overview of re-

search activities in Figure 1.2. The selected subset of topics and references that

this monograph covers in detail is highlighted in the graphic alongside the cor-

responding chapter.

We categorize the research with respect to two dimensions. While the x-axis

represents the main topic of a work, i.e., SDN or NFV, the y-axis is used to

classify by methodology. The latter can be theory-focused as in the case of an-

alytical models, mathematical optimization approaches, and algorithm design

or focused on practical aspects like measurements, benchmarks, and perfor-

mance evaluations of proof-of-concept deployments. Additionally, topics that

are closely related to each other, are grouped via dashed boxes.

Placement Optimization. Placement problems play a crucial role in both,

the SDN [1, 8] as well as the NFV [16, 19] context. On the one hand, they share

similarities in terms of high level goals like finding suitable locations for enti-

ties while simultaneously optimizing multiple objectives. Additionally, they are

usually approached with heuristics due to the fact the corresponding parameter

space prohibits an exhaustive evaluation of all possible placements. On the other

hand, additional requirements in the context of VNF placement like the avail-

ability of different functions and function types, the routing of demands through

function chains, and meeting QoS constraints call for new algorithms that are

specifically tailored to the placement of VNFs rather than SDN controllers. In

4

1.1 Scientific Contribution

SDN NFV

Theoretical

Practical

Monitoring and
Management

VNF Performance
Assessment

Placement Optimization

Benchmarking

VNF
Placement

[16, 19]

Automated
Decision Making

[11, 15]
[3]

SDN Controller
Placement

[1, 8]
[2]

Mechanisms
[12, 17]

Architectures
[18

[4]
, 24]

SDN
Hardware
[7, 14, 22]

Analytical
Model

[3, 13, 25]

SDN
Controllers

[6, 20]

Performance
Measurements

[9, 10]

Figure 1.2: Scientific contribution of this work as a categorization of research
studies conducted by the author. References that use a dark font color
are covered in this monograph while superscript indexes indicate the

corresponding chapter. For example, the notation [1, 8][2] in the case of
the topic “SDN Controller Placement” means that this topic is addressed
in Chapter 2 and is based on references [1] and [8].

5

1 Introduction

both cases, we design generic as well as specialized multi-objective heuristics

that are evaluated on a wide range of real world topologies and parameters in

order to highlight their applicability to realistic large scale problem instances.

These evaluations also cover trade-offs between the different optimization ob-

jectives as well as trade-offs between the available run time and the resulting

accuracy.

Rather than returning one distinct optimum, these multi-objective optimiza-

tion algorithms return a Pareto frontier, i.e., a set of solutions that represent dif-

ferent trade-offs between possibly competing objectives. In the second graphic

of Figure 1.3, an exemplary Pareto frontier is represented by the blue squares

that correspond to trade-offs between minimization objectives f1 and f2 that

are displayed on the x- and y-axis, respectively. Since these solutions are incom-

parable among each other, we study automated decision making mechanisms

for Pareto frontiers. Such decision making mechanisms constitute an important

building block for systems that can adapt to dynamically changing conditions

without human intervention. The latter is particularly error-prone when deal-

ing with thousands of available alternatives and high-dimensional data that are

common in the context of placement problems. We evaluate the mechanisms

using instances of the controller placement problem and show a high level of

agreement in terms of the top-ranked solution [11, 15], indicating the applica-

bility of these mechanisms in this context.

Monitoring and Management. SDN-based networks not only offer novel

approaches to network control and programmability but also enable new mon-

itoring concepts by exposing statistics like packet counters on a per-flow basis.

We leverage this behavior to develop and evaluate a technique for identifying

heavy-hitting flows in a network [12]. In addition to this specific use case, we

investigate selective flow monitoring strategies that aim at increasing the gen-

eral monitoring efficiency in SDN-based networks. In particular, querying long-

lasting flows less frequently usually does not have a large impact on the accuracy

while significantly reducing the amount of sent statistics requests [17].

6

1.1 Scientific Contribution

Furthermore, SDN controllers offer a northbound API for communicating

with external entities like Network Management Systems (NMSs). Hence, it is

not only possible to share monitoring information with these systems in order

to improve their management decisions but also to receive and integrate their

information into the controller’s control plane. We demonstrate the feasibility

of such an information exchange in [18], where detailed information regarding

link utilization in a network is sent from an NMS to the SDN controller in order

to optimize the total throughput and per-flow fairness in the network. Addition-

ally, [24] shows how a heterogeneous network that is comprised of SDN-enabled

switches as well as legacy devices can be managed and configured by synchro-

nizing state information between SDN controllers and NMSs.

Benchmarking. In order to properly dimension and operate an SDN-based

network, it is required to accurately assess the capabilities as well as the perfor-

mance of the components in use, i.e., switches and controllers. To this end, we

conducted several performance benchmarks of SDN-enabled hardware switches

w.r.t. the flow rule installation time [14] and its sensitivity towards control plane

delays [22]. While these benchmarks allow quantifying the heterogeneous per-

formance of available hardware, functional tests regarding the isolation between

virtual networks [7] can be used to determine the suitability of a switch for a par-

ticular use case. Likewise, performance benchmarks of various SDN controllers

demonstrate that characteristics of the network topology like the number of

switches and links can have a significant impact on crucial performance metrics

like the path provisioning time and the network discovery time [6, 20].

VNF Performance Assessment. Similarly, performance aspects need to be

taken into consideration when migrating from dedicated hardware to VNFs on

COTS servers or deciding between different implementations of the same net-

work function. On the one hand, we demonstrate the performance gap in terms

of the processing time andmaximum capacity between a dedicated firewall mid-

dlebox and a software-based implementation in [10]. On the other hand, we il-

lustrate that while the use of acceleration techniques can significantly improve

7

1 Introduction

the packet processing performance of VNFs, it might also reveal new bottlenecks

that need to be addressed to maximize the overall throughput [9].

With an in-depth understanding of the technical system and its components

as well as measurements of characteristics like the service time of individual

packets, analytical models of VNFs are derived [25, 13, 3]. Firstly, these models

allow to predict the performance of network functions under various conditions

like different load levels, packet arrival processes, and parameter settings. Sec-

ondly, the reported performance indicators such aswaiting and processing times

are provided not only in terms of their mean but also w.r.t. their distribution, al-

lowing a detailed assessment of the performance as well as an optimization of

parameter settings. Finally, measurements in a dedicated testbed confirm the

agreement between the output of the abstract model and the actual VNF.

1.2 Outline of the Thesis

The remainder of this monograph is organized as follows. Chapters 2 to 4 cover

the SDN controller placement problem, automated decision making mecha-

nisms, and the improved NMS-aware SDN controller, respectively. In each of

these chapters, a brief discussion of related work, our proposed approach, as

well as its performance evaluation methodology and results are provided. Fi-

nally, Chapter 5 concludes themonographwith a summary of results and contri-

butions. Figure 1.3 displays the structure and interplay between the three main

chapters that are outlined in the following.

SDN Controller Placement. A particularly important task in SDN archi-

tectures is that of controller placement, i.e., identifying controller locations that

simultaneously optimize multiple objectives such as the number of controller

instances, network delays, and the load distribution among instances. Due to its

complexity and large parameter space, we approach this problem with heuris-

tics that trade-off accuracy against run time [1, 8]. The top part of Figure 1.3

illustrates this step. Given an input topology, multi-objective optimization al-

gorithms calculate a Pareto frontier, i.e., a set of possible solutions that repre-

8

1.2 Outline of the Thesis

Optimization

Pareto Frontier𝑓2

𝑓1
Decision
Making

Placement

Problem Instance

Deployment

Information Flow

Control
Plane

Data
Plane

NMS

Information
Exchange

Forwarding
Rules,

Statistics

Monitoring
Data

Chapter 2
Multi-Objective Heuristics

for the SDN Controller
Placement Problem

Chapter 3
Automated Decision Making

based on Pareto Frontiers

Chapter 4
Integration of Network

Management Information
into the SDN Control Plane

Figure 1.3: Overview of the structure and contribution of this monograph.

9

1 Introduction

sent different trade-offs between the competing objectives and are incomparable

among each other. We design two different heuristics, a generic one that sup-

ports arbitrary objective functions as well as a specialized one that works only

with a particular set of objectives. Our evaluations onmore than 50 different real

world topologies from the Internet Topology Zoo [29] highlight their feasibility

in the context of large scale problem instances and illustrate the performance

gains that can be achieved by means of specialization.

Automated Decision Making. The multi-objective nature of the placement

problem results in sets of Pareto optimal solutions rather than distinct optima.

Therefore, scenarios with dynamically changing network conditions require

mechanisms for automated decision making based on such Pareto frontiers in

order to function without manual interaction. Hence, we investigate techniques

from the domain of multi-attribute decision making that aggregate the perfor-

mance of placements into a single numeric score and compare the resulting

rankings. Evaluations featuring real world topologies demonstrate the viability

of the proposed mechanisms as well as their agreement regarding top-ranked

solutions [11, 15].

Interaction between SDN and NMS. Finally, an integration of SDN compo-

nents into existing ecosystems is required for a smooth transition from legacy

to SDN-based networks. One of the key aspects for this integration consists

of interactions between the SDN controller and other centralized entities such

as Network Management Systems. In particular, we focus on improved SDN

control plane decisions based on monitoring data that is regularly provided by

an NMS. To this end, we design, implement, and compare two variants of the

ONOS controller. Alongside the default implementation, these represent differ-

ent trade-offs regarding the complexity of the resulting system and its perfor-

mance. In addition to evaluations that show a significant performance improve-

ment when using the optimized controllers, a parameter study investigates the

performance impact of network characteristics [18].

10

2 Multi-Objective Heuristics for the

SDN Controller Placement

Problem

Architectures that follow the SDN paradigm are characterized by the separation

of the control and the data plane as well as a logically centralized control plane.

This is achieved by moving control plane functions from individual network de-

vices to a dedicated controller software that runs on commodity hardware. Com-

munication between this centralized control plane and the data plane is then

performed via the southbound API [26] which is implemented by protocols like

OpenFlow [30]. Furthermore, the scalability and resilience of an SDN infrastruc-

ture can be enhanced by physically distributing the logically centralized control

plane as proposed by approaches like HyperFlow [31] and ONOS [32].

However, such a physically distributed control plane also introduces addi-

tional challenges. These include not only identifying the number of SDN con-

trollers that are required for a targeted performance or resilience level, but also

the appropriate placement of these controllers, based on the relevant objec-

tives for a given use case. These objectives cover aspects like load balancing

among controller instances and communication delays between the involved

control and data plane instances in heterogeneous network environments. Fur-

thermore, operators often need to cope with dynamically changing network

conditions [33] which require a periodic recalculation of viable placements in

order to adapt to these changes in an appropriate manner. Various investiga-

tions of traffic characteristics [34, 35] and traffic engineering approaches in data

11

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

center networks [36] have demonstrated that techniques for dealing with such

dynamics need to operate at the time scale of seconds in order to maximize

their effectiveness. Therefore, the time consumption of a placement algorithm

constitutes one of its key performance indicators.

The controller placement problem for the SDN domain was first introduced

in [37], where an optimization regarding the latency from nodes to their as-

signed controller is performed. This optimization is equivalent to the facility

location problem, a task which is known to be NP-hard [38]. The authors of [37]

perform an exhaustive evaluation of all possible placements in order to analyze

the characteristics of the optimal solutions. However, the run time and memory

requirements of the exhaustive approach do not scale well with the network

size and are therefore not sufficient to cope with the abovementioned dynam-

ics. Hence, we explore heuristic approaches to the multi-objective controller

placement problem. While such approaches do not guarantee to find optimal

solutions, they are capable of yielding results significantly faster than their ex-

haustive counterpart.

An extended version of the controller placement problem is investigated

in [39] and deals withmultiple optimization objectives, e.g., resilience considera-

tions and inter-controller latencies. In realistic environments, such performance

objectives are often competing, thus there is usually no definite solution that sat-

isfies all goals optimally. Instead, a trade-off between the competing objectives

that fits the particular use case needs to be chosen. On the one hand, the multi-

objective approach eliminates the necessity to impose constraints on objective

values a priori which might result in excluding feasible alternatives or even a

problem instance without admissible solutions. On the other hand, it allows for

a clearer illustration of the trade-offs between competing criteria. Additionally,

the decision maker’s preferences with respect to the different objectives usually

depend on available alternatives [40]. This, in turn, decreases the feasibility of

transformations to single objective optimization problems, e.g., via a weighted

combination of individual objectives.

12

2.1 Background and Related Work

In this chapter, we design and evaluate two multi-objective combinatorial

optimization heuristics in order to solve large scale instances of the controller

placement problem in a time- and resource-efficient manner while maintaining

a high degree of accuracy. These two algorithms differ in terms of their degree

of specialization. On the one hand, an algorithm that is based on Pareto Simu-

lated Annealing (PSA) [41] allows optimizing with respect to arbitrary objective

functions. On the other hand, a mechanism that is based on the k-Medoids ap-

proach [42] specializes in optimizing a set of exactly two particular objectives

but achieves lower run times and results that are closer to the optimum.

Our evaluations are performed on a collection of over 60 real world network

topologies from the Internet Topology Zoo [29]. Furthermore, we utilize ref-

erence solutions that are obtained by means of an exhaustive evaluation of all

possible placements in order to quantify the gap between optimal and heuristic

solutions. Additionally, the results can also be used to infer guidelines regarding

the parameter and algorithm choice in the context of huge problem instances

where reference values are not available. Finally, we integrate the proposed al-

gorithms into POCO [43], a software framework that deals with the controller

placement problem and features a graphical user interface.

This chapter is based on content that has been published in [1, 8] and is struc-

tured as follows. In Section 2.1, we discuss the main principles of softwarized

networks as well as relevant related work on the mathematical background of

the presented problem andwork that is related to the controller placement prob-

lem in particular. After formally defining the problem statement and the corre-

sponding notation in Section 2.2, the two heuristic algorithms are presented

alongside their evaluation in Sections 2.3 and 2.4, respectively. Finally, we dis-

cuss lessons learned in Section 2.5.

2.1 Background and Related Work

In this section, we first provide the necessary background regarding the control

plane in SDN-based networks. Subsequently, we give an overview of related

13

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

work, including work on the particular problem of SDN controller placement as

well as literature that covers the underlying facility location problem. Finally,

we discuss different approaches to the problem of multi-objective optimization.

2.1.1 SDN Control Plane

The key principle of SDN consists of the separation of data plane and control

plane. The design of the externalized control plane can be performed in different

ways. On the one hand, there is a choice between controller architectures, e.g.,

featuring a single, centralized controller, multiple equally important controllers

responsible for partitions of the network [44], or a set of distributed controllers

arranged in a hierarchy [45]. On the other hand, purely software-based or hard-

ware solutions for the control plane allow trade-offs between flexibility, perfor-

mance, and cost aspects. Furthermore, connections involving controllers may be

realized inband or outband, i.e., either sharing the same physical links as data

plane traffic or utilizing dedicated lines.

Typically, core networks contain pre-configured primary and backup paths

for the aggregated traffic between different nodes in the network. Thus, there is

no need for communication with the SDN controllers regarding each individual

TCP flow but only in case of certain occasions like outages or traffic manage-

ment actions. In such environments, a single controller can be sufficient for a

viable network operation. Nonetheless, growing network sizes and the impor-

tance of resilience against failures increase the amount of required controllers.

Moreover, network functions that are deployed on the SDN control plane fur-

ther raise its load, leading to even higher numbers of required controllers. For

the remainder of this paper, it is assumed that all sites possess the capability to

run a software-based SDN controller. Furthermore, communication with SDN

controllers is assumed to be performed inband, i.e., via the same physical links

as regular traffic.

14

2.1 Background and Related Work

2.1.2 Controller Placement in SDN-based Networks

Apart from the aforementioned publication by Heller et al. [37], more and more

authors have addressed facility location in the context of SDN controller place-

ment.

Bari et al. [33] address dynamic controller provisioning, i.e., controller place-

ments changing over time depending on the number of flows in the network.

They propose an Integer Linear Program (ILP) formulation of their “Dynamic

Controller Provisioning Problem” as well as two different heuristic algorithms

to solve it for larger problem instances. The authors focus their metrics on flow

setup time and minimal communication overhead regarding state synchroniza-

tion. However, controller failures, network failures, or a combination of multiple

criteria such as the controller load imbalance or worst case latencies are not ad-

dressed.

Zhang et al. [46] propose a resilient optimization of the controller placement

that considers the outage of nodes, links, or connections between nodes and

controllers. They do not reassign nodes to new controllers if the connection

to the original controller fails, but assume that these nodes are controller-less

and thus not able to communicate with other nodes anymore. They propose a

placement heuristic and simulationwith the objective of minimizing the amount

of lost node-to-node routes due to link and node failures as well as controller-

less nodes.

The works of Hu et al. [47, 48] go in a similar direction. They introduce and

compare different heuristic approaches to increase the resilience of software de-

fined networks against connection failures between nodes and controllers. Ros

et al. [49] also consider similar scenarios and aim at maximizing the reliability

of the controller placement. They heuristically search for the minimum number

of controllers that are assigned to each node and the controllers’ placement to

reach a certain reliability threshold, e.g., “five nines”.

All these studies [46–48] focus only on resilience against network failures and

do not consider any additional metrics such as the controller load imbalance

or worst case latencies. In particular, the trade-off between their metrics and

15

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

other objectives, such as the worst case latency, is not addressed. Furthermore,

compared to the evaluation of the entire solution space, no guarantee for the

optimality of the presented results can be given.

2.1.3 Facility Location Problem

As already mentioned and indicated by Heller et al. [37], the topic of general

controller placement is well explored. In particular, the very basic version of

controller placement according to the latency of switches to their controller

is also well discussed in the context of choosing the best location for plants,

warehouses, or any other facilities in a given network topology. The problem

is therefore also known as plant, facility, or warehouse location problem and it

is a typical example for a Mixed Integer Linear Program (MILP) provided with

software suites such as IBM ILOG CPLEX [50].

If the objective is to minimize the maximum latency between switches and

controllers, the problem is called k-centers problem, if the objective consists of

optimizing the average latency, it is called k-median or k-mean problem. Further

references to this general problem are provided in Heller’s work [37]. Overviews

of different aspects of the facility location problem and of different methodologi-

cal approaches are also given in [38] for the general case and in [51] with a focus

on uncertainty regarding aspects such as traffic demands or latencies. However,

these works have a rather general and theoretical focus. They do not address

the particular issues of controller placement in SDN networks with respect to

multiple criteria and a focus on resilience. The following overview of related

work focuses on variants of the controller placement problem which are closely

related to the problems discussed in this chapter.

A variant of the problem similar to the node-to-controller balancing discussed

in this chapter has been introduced by Archer et al. [52] as load-balanced facil-

ity problem. However, the authors address this problem in a different context

concerning particular questions arising in the area of computer graphics. Fur-

thermore, they provide only approximations to the problem regarding their par-

16

2.1 Background and Related Work

ticular optimization goals. In the context of load balancing, the terms capacitated

and uncapacitated facility problem are often used, e.g., [53] and contained refer-

ences. In the capacitated version of the problem, the maximum number of nodes

that can be assigned to a single controller is assumed to be limited.

Different authors, among others Khuller et al. [54] and Chaudhuri et al. [55],

look at variants called fault tolerant or p-neighbor k-center problems. These vari-

ants are similar to what is called “controller failure resilient placements” here.

The works focus only on the theoretical methodology of the problem and pro-

vide approximation algorithms.

2.1.4 Multi-Objective Optimization Algorithms

For a given combination of objectives, there are various approaches for multi-

criteria facility location in literature, e.g., [56–61] and references within. How-

ever, most of these works investigate optimization approaches for specific pre-

defined sets of objectives rather than providing generic heuristics. Algorithms

dealing with the aforementioned capacitated facility location problem, for ex-

ample, consider the equivalent of the average switch to controller latency and

controller load imbalance metrics used in this work. Metaheuristics such as the

presented Pareto Simulated Annealing (PSA)[41] mechanism, on the other hand

allow adding arbitrary objectives into the evaluation and are not limited with

respect to the number of objectives that are taken into account during optimiza-

tion. The only requirement is a function that maps elements of the search space

to their performance regarding a particular objective. While techniques from

the domain of evolutionary algorithms [40, 62] or genetic algorithms [63] in

particular are also capable of performing multi-objective optimization, these al-

gorithms are often at risk of getting stuck in local optima [64, 65], i.e., solutions

that are optimal within their immediate neighborhood in the search space but

can be significantly worse than the global optimum. PSA reduces this risk by

accepting some worse solutions in order to escape such local optima while still

achieving convergence by employing a time dependent acceptance probability.

17

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

2.2 Problem Statement

This section provides a formal definition of the SDN controller placement prob-

lem alongside the necessary notation.

2.2.1 Controller Placement Problem

While minimizing latencies between each node and its assigned controller con-

stitutes a crucial aspect of the controller placement problem, there are numerous

other, possibly competing, objectives that require consideration. In the follow-

ing, objectives that are covered in this work are presented along with examples

that motivate their necessity in different use cases. The Internet2 OS3E network

is used as example topology and the best placement with respect to maximum

node-to-controller latency for k = 5 controllers as shown in the work of Heller

et al. [37] acts as reference. Figure 2.1 displays this placement’s performance

when evaluated with respect to different objective measures and different con-

ditions, e.g., latencies and load balance in the presence of node or controller

failures. In contrast to the work of Zhang et al. [46], this work assumes that the

node-to-controller assignment can change when failures occur.

Figure 2.1a illustrates the latency between each node and its assigned con-

troller when multiple controllers stop working. Each node’s color indicates its

latency to the closest functioning controller. The latency is normalized with the

graph’s diameter which is defined as the maximum distance in terms of latency

between any pair of nodes in the graph. In particular, the green color represents

a latency of zero, the yellow color represents a latency that corresponds to 50%

of the graph’s diameter, and the red color indicates a latency that is equal to the

diameter. While the distributed controller structure asserts low latencies in the

failure-free case [37], the illustrated failure scenario highlights the fact that in

the presence of failures, the position of each controller matters. The only con-

troller that is not affected by the failure is located at the edge of the network and

thus, control traffic of many nodes needs to traverse almost the entire network.

In order to better cope with scenarios of this kind, the optimization mechanism

18

2.2 Problem Statement

(a) Latencies when controllers fail.

?

?

? ?

? ?
?

?

(b) Isolated nodes.

(c) Controller load imbalance. (d) Inter-controller latency.

?

Controllerless NodesBroken NodesBroken ControllersNodesControllers

Figure 2.1: Assessing the quality of controller placements with different objective
measures.

for resilient controller placements should consider failure scenarios. Depend-

ing on the specific use case, average and maximum latencies might be useful

measures.

In addition to controller failures caused by software issues, physical network

elements may also suffer from hardware problems and stop working. This type

of failure has more severe consequences as it induces changes in the topology,

which in turn results in changes of shortest paths. Thus, node-to-controller as-

signments tend to change and in extreme cases, the network graph can even

become disconnected. While the nodes in each connected component are still

fully operational, not being able to connect to any controller in the connected

19

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

component prohibits any functionality beyond forwarding according to previ-

ously installed rules. Figure 2.1b displays the case of two network nodes failing

at the same time, which results in both of the aforementioned phenomena. First,

the graph is decomposed into two disjoint components. Second, the right part

of the graph does not contain a controller. Thus, nodes in this part of the graph

lose access to any functionality realized by the controller. These nodes are rep-

resented by question mark icons ? .

Assuming that nodes connect to their nearest controller, certain placements

tend to result in imbalanced assignments, i.e., some controllers provide instruc-

tions for significantly more switches than others. Consequently, environments

with a high intensity or frequency of control plane communication can run into

problems, like increased delays, due to queueing at controller instances. Fig-

ure 2.1c illustrates the imbalance aspect of the latency-optimal placement. Each

node is colored and shaped according to the controller it is assigned to.While the

blue controller is responsible for ten network elements, the green and red con-

trollers need to manage just four nodes, i.e., less than half as many. Additionally,

previous investigations show [66] that for some controller implementations, the

number and order of connected switches might cause unfairness with respect

to aspects like the switches’ flow setup times. Thus, load balancing should be

a part of the decision criteria when choosing a controller placement. Addition-

ally, the link assignment task presented in [44] corresponds to minimizing the

imbalance, further supporting the relevance of this aspect.

Previously discussed scenarios, especially those involving failure tolerance,

indicate the necessity of a distributed control plane. However, such an architec-

ture also requires various forms of state synchronization between the individ-

ual controllers. This ensures proper functionality in case of outages and allows

making decisions that are not limited to a local view on a part of the network.

Therefore, another goal of the controller placement task is to maintain a small

inter-controller latency in order to minimize synchronization times. A visualiza-

tion of this measure is provided in Figure 2.1d, where each controller is colored

according to the distance to the controller that is farthest away from it. Like

20

2.2 Problem Statement

in Figure 2.1a, the distances are normalized with respect to the graph’s diame-

ter. For most controllers, the shown placement results in high maximum laten-

cies to other controllers which might be not acceptable for certain use cases.

Therefore, inter-controller latency is part of the set of objectives that are ana-

lyzed in this work. Additionally, the pair of inter-controller latency and node-

to-controller latency constitutes a set of competing objectives. While a tight

cluster of controllers results in low inter-controller latencies and high node-to-

controller latencies, a spatially widespread distribution of controllers leads to

the opposite. Such relationships between objectives are the motivation for the

analysis of Pareto optimal placements, which allows decision makers to express

their preferences after inspecting possible placements.

Furthermore, the set of objectives taken into account is not restricted to those

presented in this section and can be extended according to use case specific re-

quirements. These also include management aspects which could be introduced

as separate constraints. For example, metrics like the expected service quality

provided by a network in the context of a given placement could be added into

the evaluation and decision process.

2.2.2 Notation

In this section, the notation that is used throughout this chapter is introduced.

For reference, Table 2.1 provides a summary of variables and functions.

Formally speaking, the controller placement problem is a multi-objective

combinatorial optimization (MOCO) problem. The network is represented as a

graphG = (V,E)with the set of nodes V that contains n nodes which are con-

nected by edges from the set E. Additionally, shortest path latencies between

each pair of nodes are stored in a distance matrix D, where di,j denotes the

latency from node i to node j. Latencies in D are normalized with the graph’s

diameter, i.e., di,j ∈ [0, 1]. Given the desired number of controllers k, there is a

finite set of
(

n

k

)

possible placements, hence the term combinatorial optimization.

The goal of the MOCO task is to find controller placements from the set of size k

21

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

Table 2.1: Overview of the notation that is used in this chapter.

Symbol Description

G = (V,E) Network graph.

v ∈ V Set of nodes in the network graph.

n
Number of nodes in the network graph,
n = |V |.

e ∈ E Set of edges in the network graph.

k
Number of controllers to be placed in the
network.

D, di,j ∈ [0, 1]
Distance matrix with entry di,j represent-
ing the normalized latency between nodes
i, j ∈ V .

Pk =
{

P ∈ 2V
∣

∣ |P| = k
}

Set of all size k placements with 2V denot-
ing the power set of V , i.e., the set of all sub-
sets of V .

fi : 2
V → R

+
0

Objective functions that map placements to
numerical values, i ∈ {1, . . . , J}.

wi
Normalization factor for fi,
w−1

i = maxp∈2V fi(p)−minp∈2V fi(p).

c : 2V × 2V → [0, 1]
Distance measure for comparing place-
ments.

δi : 2(
2V) × 2(2

V) → [0, 1]
Distance measures for comparing Pareto
frontiers, i ∈ {1, 2}.

placements Pk =
{

P ∈ 2V
∣

∣ |P| = k
}

that are Pareto optimal with respect to

various objective functions fi (i ∈ {1, . . . , J}). These are discussed informally

in the previous section and are presented in detail in the following. A placement

x is considered Pareto optimal, if and only if there is no placement y such that

y is at least as good as x for all objectives and strictly better than x for at least

one objective, i.e., ∀i fi(y) ≤ fi(x) and fi(y) < fi(x) for at least one i. The set

of all Pareto optimal solutions is referred to as Pareto frontier.

22

2.2 Problem Statement

While it is possible to perform an exhaustive evaluation of all
(

n

k

)

possible

placements for small and medium sized networks, a heuristic approach is sug-

gested in case of instances that are too huge to be fully evaluated in a practical

time frame. For example, when increasing the desired number of controllers be-

yond 7, an exhaustive evaluation of a network with 50 nodes can take between

several minutes and hours on a machine with an Intel Core i7 4770 CPU at 3.40

GHz and 16 GB of RAM.

In order to quantify the loss of accuracy caused by switching to the heuristic

approach, different measures for the difference between the actual and the esti-

mated Pareto frontier have been adopted from [41]. In the following,R denotes

the original Pareto frontier which is used as reference, andM represents the es-

timate provided by the heuristic approach. Before the distance between Pareto

frontiers is defined, a distance metric for two placements is introduced. Accord-

ing to Equation 2.1, c(x, y) defines the distance between two placements as the

maximum weighted difference between individual objective values achieved by

the placements. The weight wj corresponds to objective fj ’s range and is used

for normalization, i.e., c(x, y) ∈ [0, 1]. Adding zero to the argument of the max-

imum asserts that no negative distance is returned. With this distance metric,

it is possible to define measures for the distance between two Pareto frontiers,

of which one is known to be better than the other and is therefore used as ref-

erence. The first metric, δ1, is shown in Equation 2.2 and measures the average

distance between each element in R and its closest element from M . While δ1

measures the average difference and may hide outliers, δ2 considers the maxi-

mum distance between each element from R and its closest element in M . Its

formal definition is provided in Equation 2.3 and allows for a worst case analysis

of the estimateM :

c(x, y) = max
j=1,...,j

{0, wj(fj(x)− fj(y))} , (2.1)

δ1(R,M) =
1

|R|

∑

y∈R

{

min
x∈M

{c(x, y)}

}

, (2.2)

23

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

δ2(R,M) = max
y∈R

{

min
x∈M

{c(x, y)}

}

. (2.3)

As motivated in Section 2.2.1, numerous competing objective functions need

to be considered when evaluating a given controller placement. In the following,

we provide formal definitions of objective functions that are commonly used in

the context of the SDN controller placement problem. Additionally, an overview

of the functions alongside a brief description is provided in Table 2.2.

Table 2.2: Overview of the main objective functions that are used in this chapter.

Function Description

πmax latency : 2V → [0, 1] Maximum node-to-controller latency.

πavg latency : 2V → [0, 1] Average node-to-controller latency.

πmax controller-latency : 2V → [0, 1] Maximum inter-controller latency.

πavg controller-latency : 2V → [0, 1] Average inter-controller latency.

πimbalance : 2V → N0 Controller imbalance.

First, the node-to-controller latency provides information on the connectiv-

ity between each node and its assigned controller. Similar to δ1 and δ2, latency

measures can be analyzed either by calculating the average across all latencies

in the examined placement or by taking the maximum value for a worst case

analysis. For a placement P ∈ 2V and distance matrix D, the maximum node-

to-controller latency πmax latency can be defined according to Equation 2.4. In an

analogous fashion, the average node-to-controller latency πavg latency is deter-

mined as per Equation 2.5.

π
max latency(P) = max

v∈V
min
p∈P

dv,p , (2.4)

24

2.2 Problem Statement

π
avg latency(P) =

1

|V |

∑

v∈V

(

min
p∈P

dv,p

)

. (2.5)

When resiliencewith respect to controller outages is part of the analysis, addi-

tional calculations are necessary. Let C = 2P \ {∅} denote all alternative place-

ments that result from the failure of up to k−1 controllers. Then, πmax latency
C de-

notes the maximum node-to-controller latency which, in addition to the failure

free case, also accounts for any failure scenario that spares at least one controller.

Equation 2.6 shows the formal definition of π
max latency
C as well as the average-

based π
avg latency
C .

π
max latency
C (P) = max

P∈C
max
v∈V

min
p∈P

dv,p ,

π
avg latency
C (P) =

1

|C|

∑

P∈C

(

1

|V |

∑

v∈V

(

min
p∈P

dv,p

)

)

.

(2.6)

With the above definition of the node-to-controller latency, the definition of

inter-controller latency follows by means of analogy. For a given placement P

and any pair of controllers p1, p2 in this placement, the inter-controller latency

πcontroller-latency(P) can be defined either with respect to the maximum or with

respect to the average latency between p1 and p2. A formal representation of

these relationships is presented in Equation 2.7.

π
max controller-latency(P) = max

p1,p2∈P
dp1,p2 ,

π
avg controller-latency(P) =

1
(

|P|
2

)

∑

p1,p2∈P

dp1,p2 .

(2.7)

25

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

While metrics regarding latency strive for short communication paths, con-

troller load balance considerations also need to be taken into account when a

reliable network operation is desired. In order to comply with the problem def-

inition and previous metrics, the imbalance metric is introduced rather than a

balance metric so that the goal is to minimize the metric’s value. For each place-

ment P and controller p, the total number of nodes that are assigned to p when

each node connects to its closest controller is defined as np. The imbalance met-

ric πimbalance captures the difference in np for the two controllers with the lowest

and highest amount of assigned nodes, respectively. Additionally, imbalance in

the presence of failures can be quantified by analyzing imbalance in assignments

that result from different failure scenarios. In these cases, ns
p indicates the num-

ber of nodes assigned to controller pwhen failure scenario s occurs. Equation 2.8

defines both imbalance metrics. The indices ∅ andX denote the failure free case

and the set of considered failure scenarios, respectively. Furthermore, the im-

balance metrics can be normalized by division with |V | as this is the maximum

amount of nodes that can be assigned to a single controller in the worst case.

π
imbalance
∅ (P) = max

p∈P
n
∅
p −min

p∈P
n
∅
p ,

π
imbalance
X (P) = max

s∈X

(

max
p∈P

n
s
p −min

p∈P
n
s
p

)

.

(2.8)

Finally, node and link failures can lead to a decomposition of the network

graph, thus isolating nodes from all controllers. As discussed in Section 2.2.1,

nodes that are not connected to a controller have very limited functionality and

are therefore undesired. Hence, πcontroller-less
X (P) computes the maximum amount

of such nodes for any failure scenario specified inX . The calculation of this met-

ric is performed using a connectivity matrix Es whose entries esi,j are equal to

0, if and only if node i can reach node j in failure scenario s and 1 otherwise. As

controller outages that spare at least one controller do not affect the amount of

26

2.3 Pareto Simulated Annealing

controller-less nodes, only node and link failures are considered for πcontroller-less.

These scenarios are summarized in the setN , finally yielding Equation 2.9.

π
controller-less
N (P) = max

s∈N

∑

v∈V

min
p∈P

e
s
v,p . (2.9)

2.3 Pareto Simulated Annealing

A key contribution of this work is the analysis of the trade-off between accuracy

and cost with respect to time and memory resources when employing heuristic

methods or performing an exhaustive evaluation to solve the controller place-

ment problem. In order to incorporate the heuristic mechanisms into real world

decision processes, guidelines for deciding whether to use an exhaustive evalu-

ation or switch to a heuristic approach are derived. Furthermore, the influence

of different parameters of heuristic algorithms is investigated in order to infer

viable parameter values for different use cases and requirements. The heuristic

algorithm proposed in this section is based on Pareto Simulated Annealing [41]

and analyses are performed on numerous realistic network topologies from the

Internet Topology Zoo [29].

After an overview of the Pareto Simulated Annealing algorithm, we describe

the procedure that is used for our evaluations.

2.3.1 Design of the Multi-Objective Optimization

Algorithm

Although an exhaustive evaluation of all possible placements for a given net-

work topology and desired number of controllers guarantees finding all Pareto

optima, its time and memory requirements rapidly increase with the size of the

search space. This stems from the fact that the latter is proportional to
(

n

k

)

, the

number of possible placements of size k in a network that consists of n nodes.

Even for relatively small n, this number rises drastically when the number of

controllers, k, approaches n
2
, e.g.,

(

34
4

)

= 46.376 while
(

34
17

)

= 2.333.606.220.

27

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

When performing just a single network planning task before deployment, an ex-

haustive evaluation is also justified for bigger instances even if it requires a high

computational effort and a large amount of time. However, in the context of a

dynamic and flexible network that needs to adapt to changes in the environment

and usage patterns, time is a limiting factor.

In the context of finding the global optimum of a function that has a large

domain, i.e., the optimization problem has a large search space, simulated an-

nealing [67] is a popular heuristic approach. Simulated annealing is a Monte

Carlo method and has two distinctive properties. First, during the exploration

of the search space, moves to solutions that are worse than the current one are

permitted in order to avoid getting stuck in a local optimum. This is achieved

by incorporating a control parameter that is referred to as temperature, which

determines the probability of accepting such moves. Second, the probability of

moving to a worse solution gradually decreases with the number of iterations.

Additionally, the acceptance probability depends on the difference between the

objective values of the current and the proposed solution. The rationale behind

this behavior is that accepting rather bad solutions at the beginning allows for

a broader coverage of the search space while the lower acceptance probabil-

ity at the end helps with convergence. However, simulated annealing does not

support optimization problems with multiple objectives. Therefore, we utilize a

multi-objective combinatorial optimization (MOCO) algorithm.

While there are many different options in the MOCO domain, we use Pareto

simulated annealing (PSA), an algorithm that is inspired by simulated annealing.

This decision is based on multiple criteria. First, PSA incorporates mechanisms

that assert that the resulting output has a high degree of dispersion, i.e., that

Pareto optima with respect to different objectives are found. This aspect of PSA

is similar to the notion of recall in the domain of information retrieval. Recall

is used to quantify the ratio between the amount of documents relevant to a

given query that are returned by a search algorithm and the total amount of

relevant documents. Second, PSA is an anytime algorithm and can thus provide

a set of solutions at any time. Due to this property, it is not necessary to find

28

2.3 Pareto Simulated Annealing

algorithm parameters that fit with particular time constraints. Instead, it is pos-

sible to just run the algorithm and stop it when results are needed. Finally, a

heuristic approach based on simulated annealing has been successfully applied

to a related single objective problem [33], demonstrating its feasibility in the

controller placement context.

The PSA procedure that is used in this work is based on the algorithm pre-

sented in [41]. Algorithm 1 outlines the structure of the developed approach.

The input consists of two parts. On the one hand, there is problem specific data

like the topology graphG and the desired number of controllers k. On the other

hand, there are parameters for the PSA mechanism. These include the number

of placements that are evaluated during each iteration s, the number of itera-

tions per temperature level m, as well as T0 and ρ which control the annealing

schedule, i.e., the initial temperature and the rate of temperature decrease. Ini-

tially, a set S of s random placements of size k is generated. For each combi-

nation of placement and objective, random weights Λ are assigned. Later, these

weights help achieving the dispersion property discussed in the previous para-

graph. During the whole procedure, the Pareto frontier of all visited placements

M , as well as the corresponding placements are updated.

Starting with temperature T0, the algorithm decreases the current temper-

ature T by a factor of ρ after each m iterations until T falls below 1. Thus,

following Equation 2.10, a total of
⌈

− log T0

log ρ

⌉

temperature levels are traversed.

T0ρ
i ≤ 1

ρ
i ≤

1

T0

i ≤ −
log T0

log ρ

(2.10)

In each iteration, alternative placements that are “close” to those in S are

generated. As usual in the Monte Carlo context, these placements are referred

to as the neighbors of S and are stored in the variable Y . It is possible to define

29

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

Algorithm 1 Pareto simulated annealing.

1: input: G = (V,E), k, s, m, T0, ρ
2: n = |V |
3: S = generateRandomPlacements(n, s, k)
4: Λ = generateRandomWeights(S)
5: M = paretoFrontier(evaluatePlacements(S))
6: T = T0

7: while T > 1 do

8: Y = drawNeighbors
(

S, n,
⌈

kT
2T0

⌉)

9: updateParetoFrontier(M,Y)
10: Λ = updateWeights(S)
11: S := accept y ∈ Y with probability P (S, Y, T,Λ)
12: if m iterations were performed at T then
13: T = Tρ
14: end if
15: end while
16: return M and corresponding placements

different neighbor relations between placements. One common way to define

neighborhood is to allow replacement of at most one element, i.e., two place-

ments are considered neighbors if they share all but one controller location.

However, experiments with different definitions of neighborhood suggest using

another method in the presented use case. Depending on the current tempera-

ture, placements are allowed to differ in up to
⌈

k
2

⌉

elements to be considered

neighbors. This ensures further dispersion at the beginning of the procedure

and thus results in a broader coverage of the search space. At higher temper-

atures, the number of replaced controller locations decreases in order to favor

convergence.

After generation, the proposed neighboring placements are integrated into

M immediately. Then, the weight matrix Λ is recalculated according to [41].

The iteration ends with an update of S. In this step, an element of S is replaced

with its corresponding neighbor from Y with probability P (S, Y, T,Λ). While

this probability equals 1 for placements that constitute an improvement over

30

2.3 Pareto Simulated Annealing

their predecessor, it decreases for placements that are worse. The decrease in

probability depends on the amount of deterioration as well as on the current

temperature T and the weight matrix Λ. At last, the Pareto frontier M and the

corresponding placements are returned.

Figure 2.2 illustrates the described mechanisms by providing different views

of a single PSA run. The particular scenario consists of finding a good place-

ment of size k = 6 for the Internet2 OS3E network topology which con-

tains n = 34 nodes. The input parameters for the PSA algorithm are

m = 90, s = 10, T0 = 50, ρ = 0.9, resulting in
⌈

− log 50
log 0.9

⌉

= 38 temperature

levels in which up to 90 · 10 = 900 distinct placements are evaluated. Thus,

PSA explores only 38·900

(34
6
)

= 2.5% of the search space. Before launching the PSA

algorithm, we perform an exhaustive evaluation in order to provide reference

data. During the run, the current Pareto frontier of the PSA routine is peri-

odically compared to the reference by means of the distance measures δ1 and

δ2 (cf. Equations 2.2 and 2.3). Additionally, the development of the approximated

Pareto frontier is visualized by taking snapshots of the two-dimensional Pareto

frontier with respect to a subset of two metrics. These snapshots are presented

at the top of Figure 2.2.

Each of the four plots displays the original Pareto frontier with respect to

πimbalance on the x-axis and πmax controller-latency on the y-axis alongside the set of

Pareto optimal points explored by the PSA algorithm. Plot captions provide the

relative progress of the PSA algorithm. While at the beginning, the heuristic

solutions are clustered at a πimbalance value of around 0.25, the dispersion mech-

anism manages to explore a wide range of different solutions quickly. Thus, al-

ready at 10% of the algorithm’s run time, many different combinations of metric

values are available.With increasing progress, themargin between the two fron-

tiers narrows and finer trade-offs become visible as more solutions are available.

In some instances, the exact Pareto optimal placements are identified.

In contrast to the limited view on just two metrics that is displayed at the top,

the bottom part of the figure shows how the values of δ1 for the average distance

and δ2 for the maximum distance between the elements of the Pareto frontiers

31

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

●

●

● ● ●

●
● ●

● ●

●

●

●

●

●

●

●

● ● ●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●

● ● ●

●
● ●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

● ● ●

●
● ●

● ●

●

●

●

●

●

●

●
●

●
●

●

First Iteration 10% 50% 100%

0 0.15 0.30 0.45 0.60 0 0.15 0.30 0.45 0.60 0 0.15 0.30 0.45 0.60 0 0.15 0.30 0.45 0.60

0

0.20

0.40

0.60

0.80

π
imbalance

π
m

a
x
 c

o
n
tr

o
lle

r−
la

te
n
c
y

●

●

Original
Heuristic

0

0.10

0.20

0.30

0.40

0 10 20 30 40 50 60 70 80 90 100

Algorithm Progress [%]

δ

 δ1
 δ2

Figure 2.2: Development of the Pareto frontier estimate and corresponding δ1 and
δ2 values during a single PSA run.

with respect to all considered metrics develop. The x-axis shows the percental

algorithm progress while the logarithmically scaled y-axis denotes the δ values.

Two phases can be identified in this plot. First, the segment from 0 to 5%, in

which a rapid decrease of both metrics can be observed. As already mentioned,

this is due to the quick exploration of the solution space when the temperature

setting in the PSA routine is still high. The second phase is characterized by a

slow but steady decrease of δ1 and a stepwise decrease of δ2. The jagged shape

of the curve that displays the development of δ2 can be explained by the fact that

δ2 considers only the maximum distance between any point of the reference set

32

2.3 Pareto Simulated Annealing

and its closest counterpart in the approximation. Thus, not every improvement

in the approximation is immediately reflected by δ2. As soon as the solution that

causes the maximum value is replaced with a better alternative, δ2 represents

the next worst placement. In contrast to this behavior, every improvement is

covered by the average distance δ1, leading to a smooth curve. At the end of

the run, values of δ1 and δ2 reach 1.5% and 5.5%, respectively. This highlights

the efficiency of PSA, i.e., even when evaluating only 2.5% of the entire search

space, a mean error of 1.5% and a worst case error of 5.5% are achieved.

2.3.2 Performance Evaluation Methodology

In order to analyze the performance of the proposed PSA approach, various

evaluation schemes are carried out. Special focus lies on quantifying the trade-

off between the time saved when using the heuristic approach and the loss in

terms of accuracy that is entailed. For this purpose, numerous network topolo-

gies from the Internet Topology Zoo are first evaluated in an exhaustive fashion.

Results from these evaluations serve as reference for the accuracy assessment

of the heuristic. By varying the input parameters of the PSA algorithm as well

as by investigating its behavior in the context of different topologies and num-

bers of controllers, guidelines with respect to viable parameter combinations for

real world scenarios are derived. These allow operators to express their specific

needs in terms of accuracy requirements and time constraints.

The evaluation works as follows. Initially, combinations of network sizes and

numbers of controllers are determined that can be handled by our exhaustive

evaluation routine without exceeding the RAM of the machine in use. The moti-

vation for choosing these scenarios is twofold. First, the described combinations

pose the highest time and memory requirements while avoiding distortive per-

formance degradation due to issues like swapping. Second, resulting computa-

tion times that are beyond multiple minutes exceed many practical constraints,

especially when aiming for dynamic controller placement. Thus, these scenar-

33

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

ios represent use cases in which decision makers need to resort to heuristic

approaches in order to comply with time and resource constraints.

Subsequently, parameters for the PSA algorithm are determined for different

target specifications regarding accuracy and reliability. These specifications are

represented by triples consisting of the reference metric δ ∈ {δ1, δ2} as defined

in Section 2.2.2, a threshold τ for δ, and fmin, the desired fraction of instances

in which δ is below τ . Given such a specification, parameters for the PSA pro-

cedure are calculated as follows. Starting with the lowest amount of iterations

for the PSA routine, i.e., setting m = s = 1, PSA is applied to the problem in-

stance 40 times. For each repetition, the difference between the Pareto frontier

returned by the heuristic and the actual Pareto frontier obtained via exhaustive

evaluation is computed with respect to the metric δ. If the percentage of in-

stances in which δ does not exceed τ is beyond fmin, the current parameters of

the PSA algorithm are returned. Otherwise, the search for parameters continues

in a fashion similar to binary search, i.e., increasingm and s until the constraints

are met and consequently decreasing them in order to obtain the smallest viable

values.

In addition to finding the minimal parameter values for a given specification,

performance statistics are recorded. On the one hand, the time consumption of

the exhaustive evaluation is compared with that of PSA. For this, the Matlab

function timeit
1 is applied to both computation procedures, yielding times

texh and tPSA, respectively. However, absolute times are specific to the used hard-

ware and are thus difficult to interpret. This issue is tackled by combining both

values into a ratio

t
rel =

tPSA

texh
(2.11)

which denotes the speed achieved by PSA relative to the exhaustive approach.

On the other hand, the fraction of the search space that is explored by the PSA

algorithm is recorded in order to investigate possible relationships between this

1h�p://www.mathworks.com/help/matlab/ref/timeit.html

34

2.3 Pareto Simulated Annealing

fraction and the achieved performance. Especially when deciding upon parame-

ters for network configurations for which no reference values are available, this

can provide reasonable settings for PSA. As described in the previous section,

PSA goes through
⌈

− log T0

log ρ

⌉

temperature levels. Withm iterations per temper-

ature level and s proposed neighbors in each iteration, up to m · s ·
⌈

− log T0

log ρ

⌉

distinct elements of the search space are visited. This number is denoted as bPSA

and is referred to as budget. In an analogous fashion to the run time analysis,

bexh =
(

n

k

)

refers to the budget requirement of the exhaustive evaluation and

b
rel =

bPSA

bexh
(2.12)

describes the relative budget.

For all considered scenarios, the parameter k which indicates the desired

number of controllers to be placed is assumed to be known beforehand. This

assumption simplifies the problem by reducing the size of the search space from
∑n

k=1

(

n

k

)

, where all possible numbers of controllers k are considered, to
(

n

k

)

.

All evaluations are carried out with the same set of objectives, namely node-

to-controller latency, inter-controller latency, and controller load imbalance.

This setup results in a total of five objectives as average andmaximum values are

optimized for the latency measures. Due to the fact that each considered place-

ment is evaluated with respect to each of the chosen objectives, the number of

objectives as well as their individual complexity affect the total run time of the

exhaustive and the heuristic method. However, the dependency on the number

of objectives is relative since both methods use the same subroutines for eval-

uating placements and are thus equally affected by changes in the number and

complexity of objectives.

35

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

2.3.3 Investigation of Main Performance Factors and

Resource Consumption

Based on the evaluation technique introduced in Section 2.3.2, computations

with different specifications are performed. On the one hand, the general per-

formance of the PSA heuristic is analyzed. On the other hand, trade-offs be-

tween the invested computational effort and the resulting accuracy are inves-

tigated. Beyond that, guidelines regarding the choice of algorithms and input

parameters for the PSA algorithm are derived from the analysis of real world

datasets. Finally, a comparison of the absolute time consumption of the exhaus-

tive and the heuristic approach is presented. This demonstrates the feasibility of

the heuristic approach in the presence of large problem instances and dynamic

environments where recalculations of controller locations need to be performed

on a regular basis.

0.00

0.02

0.04

0.06

2 × 10
6

4 × 10
6

7.7 × 10
6

1.4 × 10
7

2.8 × 10
7

5.3 × 10
7

1 × 10
8

Size of Search Space

R
e
la

ti
ve

 B
u
d
g
e
t

 τ=0.01, fmin=70
 τ=0.01, fmin=80
 τ=0.02, fmin=70
 τ=0.02, fmin=80

Figure 2.3: Size of the search space and the corresponding relative budget that is
required in order to achieve various performance levels.

When facing an instance of the controller placement problem whose search

space is too large to analyze in an exhaustive fashion while meeting time and

36

2.3 Pareto Simulated Annealing

resource constraints, the heuristic approach presented in this work can be ap-

plied. While the input parameters of the PSA algorithm allow calculating an

upper bound for the amount of analyzed placements, the absence of reference

data in such cases prohibits making a statement about the resulting accuracy. In

order to provide practical guidelines for the parameter choice, the relationship

between performance constraints in terms of accuracy and the required relative

budget brel (cf. Equation 2.12) is investigated. Therefore, an evaluation involving

more than 60 graphs from the Internet Topology Zoo is performed. For each

graph, four different numbers of controllers are tested and range from 5 to 15,

depending on the graph’s size. With graph sizes ranging from 25 to 50 nodes,

these scenarios feature search spaces containing between one and 100 million

different placements.

Figure 2.3 illustrates results from this evaluation. The data is grouped into

logarithmically spaced bins according to the size of the search space in each sce-

nario. Labels on the x-axis indicate the bins’ thresholds, e.g., the first bin contains

all scenarios for which
(

n

k

)

< 2×106 holds. The y-axis displays brel, the relative

budget required for achieving the performance goals set by the specification.

While the bars’ height denotes the mean value of brel in the performed evalua-

tions, whiskers represent 95% confidence intervals and bar colors show different

accuracy specifications. The investigated specifications use δ1 as performance

measure and feature combinations of accuracy thresholds τ ∈ {0.01, 0.02}

and fractions fmin ∈ {70, 80}. There are three main observations. First, in the

context of increasingly large search spaces, the required relative budget brel de-

creases. This behavior demonstrates the efficiency of the PSAmechanism.While

the size of the search space,
(

n

k

)

, grows extremely fast with n and k, the algo-

rithm’s search strategy finds feasible solutions early on. Second, when facing

rather small search spaces that contain around 4 million or less options, the brel

values that are required in order to obtain good results express a high degree

of variation as indicated by an increased width of confidence intervals in this

range. For such sizes of the search space, an exhaustive evaluation is usually

sufficiently fast, and thus is a viable alternative to the heuristic approach. Third,

37

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

for each bin, two groups of bars can be identified. The two groups correspond

to the two values of τ , with brel values for τ = 0.01 being higher than those

for τ = 0.02. This observation confirms the intuition that increased accuracy

demands require a higher search budget. On average, the budget requirements

for τ = 0.01 are 5.6 times higher than for τ = 0.02. The used values of fmin

on the other hand do not have a significant influence on the relative budget brel.

While the mean values of brel corresponding to fmin = 70 are strictly smaller

than those corresponding to fmin = 80, their confidence intervals overlap, thus

prohibiting a statistically significant statement.

In order to provide a size independent view of the evaluation data, Figure 2.4

presents the empirical cumulative distribution function (CDF) of brel values for

different accuracy specifications. The x-axis is logarithmically scaled and shows

the relative budget required for meeting specific performance constraints. On

the y-axis, the fraction of cases in which the required budget is smaller than or

equal to a particular value is displayed. As in the previous figure, different spec-

ifications are represented by different colors. In order to improve readability,

the curves for specifications with fmin = 70 are omitted as they overlap with

those that display values for fmin = 80. Again, a gap between the curves that

correspond to different values of τ can be identified. Furthermore, the CDF rep-

resentation allows for more generic recommendations with respect to the choice

of parameters for the PSA algorithm. In particular, the graph shows that a rela-

tive budget of 1% is sufficient in over 90% of tested cases when the threshold for

δ1 equals 0.02. Increasing the accuracy demand by setting τ = 0.01 raises the

90% quantile to a budget of 10%. However, even in the second case, a budget of

1% suffices in 80% of instances.

As described in Section 2.3.2, not only the budget of the PSA algorithm is

measured but also its relative time demand in comparison to the exhaustive

evaluation. Using the scenarios described at the beginning of this section, Fig-

ure 2.5 presents resulting trel values for different sizes of the search space. The

size thresholds of logarithmically scaled bins are displayed on the x-axis, while

the y-axis shows corresponding values of trel, the relative time consumption of

38

2.3 Pareto Simulated Annealing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 × 10
−5

1 × 10
−4

1 × 10
−3

1 × 10
−2

1 × 10
−1 1

Relative Budget

F
ra

c
ti
o
n
 o

f
S

c
e
n
a
ri

o
s

 τ=0.01, fmin=80
 τ=0.02, fmin=80

Figure 2.4: Distribution of the relative budget that is required in order to achieve
various performance levels.

the PSA algorithm compared to the exhaustive evaluation (cf. Equation 2.11).

Bars’ heights indicate the average value per bin and whiskers mark the respec-

tive 95% confidence intervals. The different accuracy specifications for δ1 are

represented by the bars’ colors. With increasing size of the search space, the

relative time requirement of the heuristic approach decreases steadily, dropping

below 10% for sizes beyond 4million in the case of τ = 0.02 and for sizes beyond

7.7 million in the case of τ = 0.01, respectively. Additionally, the confidence in-

tervals become narrower, indicating an increase in reliability. In contrast to the

budget analysis, the trel values provide a straightforward assessment of the time-

accuracy trade-off offered by the PSA heuristic. For example, PSA can deliver a

set of placements more than 50 times faster than the default exhaustive evalu-

ation when the scenario’s search space contains 14 million placements or more

and an average deviation of 2% with regards to accuracy is tolerable.

Consolidating the different size levels and calculating probabilities of ob-

served trel values yields Figure 2.6, showing CDF curves for different specifica-

39

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

0.0

0.1

0.2

0.3

2 × 10
6

4 × 10
6

7.7 × 10
6

1.4 × 10
7

2.8 × 10
7

5.3 × 10
7

1 × 10
8

Size of Search Space

R
e
la

ti
ve

 T
im

e
 C

o
n
s
u
m

p
ti
o
n

 τ=0.01, fmin=70
 τ=0.01, fmin=80
 τ=0.02, fmin=70
 τ=0.02, fmin=80

Figure 2.5: Size of the search space and the corresponding relative time that is re-
quired in order to achieve various performance levels.

tions. The latter are denoted by different colors, while x and y-axes provide trel

values and corresponding cumulative probabilities, respectively. While the trel

differences between consecutive 10% quantiles are rather small until 80%, they

increase significantly beyond that threshold. This can be explained by the fact

that the CDF also takes into account the evaluation data obtained from instances

whose search space is rather small while PSA exerts its speed advantage in the

context of huge search spaces. Nonetheless, the 80% quantiles for τ = 0.01 and

τ = 0.02with trel values of roughly 15% and 5% indicate a potential speedup by

a factor larger than 6 and 20 when incorporating PSA rather than an exhaustive

evaluation.

While considering the relative time consumption of the heuristic approach

provides a hardware independent comparison, absolute times allow reasoning

about the practical feasibility of the mechanism in the context of a particular

hardware configuration and use case. Hence, Figure 2.7 presents the absolute

time consumption of the exhaustive and the heuristic approach when applied to

40

2.3 Pareto Simulated Annealing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relative Time Consumption

F
ra

c
ti
o
n
 o

f
S

c
e
n
a
ri

o
s

 τ=0.01, fmin=80
 τ=0.02, fmin=80

Figure 2.6: Distribution of the relative time that is required in order to achieve var-
ious performance levels.

the problem instances discussed in this section. In the case of the PSA algorithm,

an accuracy demand of τ = 0.02 is set. All measurements were performed on an

Intel Core i7 4770 CPU at 3.40 GHz and 16 GB of RAM running Windows 7 and

Matlab version R2014a. Again, the x-axis provides the thresholds of logarith-

mically scaled bins that indicate the size of the investigated search space. The

y-axis displays the absolute time consumption of the two mechanisms and is

logarithmically scaled as well. While differently colored bars correspond to dif-

ferent algorithms, bars’ whiskers and heights indicate 95% confidence intervals

and mean values, respectively.

In accordance with previous observations, an exhaustive evaluation can be

completed nearly as fast as the heuristic approach in the context of small prob-

lem instances. On average, the exhaustive approach finished in less than a

minute for problem instances with a search space size of up to four million el-

ements. However, its run time increases dramatically for scenarios that feature

a larger search space. For the largest instances, the exhaustive evaluation takes

41

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

10

100

1000

2 × 10
6

4 × 10
6

7.7 × 10
6

1.4 × 10
7

2.8 × 10
7

5.3 × 10
7

1 × 10
8

Size of Search Space

T
im

e
 C

o
n
s
u
m

p
ti
o
n
 [
s
e
c
]

Exhaustive
PSA

Figure 2.7: Size of the search space and the corresponding absolute run time require-
ments for an exhaustive evaluation and the proposed PSA heuristic with
τ = 0.02.

nearly half an hour while PSA delivers a solution within less than an average of

30 seconds. In general, using PSA is one to two orders of magnitude faster than

performing an exhaustive evaluation.

Furthermore, an interesting effect can be observed in the case of the third and

fourth run time values of the exhaustive approach, where almost identical run

times are reported despite a seemingly twofold increase in problem size. This

increase, however, is with respect to the bin margins and not the actual size

of problem instances in the corresponding bin. Further inspection of the data

shows that, for these particular bins, the average size of contained instances is

almost identical. This stems from the fact that the sizes of problem instances in

the third bin are close to its upper margin while the sizes of those in the fourth

bin are close to its lower margin.

Additionally, the growth of the time consumption in the context of PSA is

slower. While it remains relatively constant at around 5 seconds for the first

five sizes, it rises to 15 and 25 seconds for the last two bins, respectively. Thus,

42

2.4 Pareto Capacitated k-Medoids

even large instances can be handled on a scale of seconds. This behavior high-

lights the practical feasibility of the PSA approach for dynamic environments

where frequent changes require fast reaction times in order to adapt to the new

situation quickly. Hence, the fast computation times allow for an automated

approach to the dynamic controller placement problem. This can be achieved

by summarizing an operator’s preferences with respect to the objectives into

a single score beforehand and choosing the highest-scored placement from the

Pareto frontier returned by the PSA routine.

2.4 Pareto Capacitated k-Medoids

The second heuristic algorithm that is proposed in this chapter combines ideas

from several graph theoretical algorithms in order to construct an approxima-

tion of the Pareto frontier with respect to two objective functions. These func-

tions include the average node-to-controller latency and the imbalance regard-

ing controller load. When considering only the node-to-controller latency, a

clustering based approach is sufficient as it provides the location of controllers

as well as an assignment from nodes to controllers which minimizes the latency

between them. However, such algorithms do not take into account the amount

of nodes that are assigned to each controller and thus might return arbitrarily

bad results with respect to πimbalance.

Therefore, the k-Medoids clustering algorithm [42] is enhanced with a capac-

ity bound ρwhich restricts the number of nodes that can be assigned to a single

controller. By iteratively increasing the bound ρ, the maximum resulting imbal-

ance can be influenced and thus, different trade-offs between the two objectives

can be explored and summarized in a Pareto frontier. While the parameter ρ pri-

marily affects the minuend of Equation 2.8, i.e.,maxp∈P np, it also has an effect

on the resulting imbalance metric. This is caused by the fact that the capacity

bound implicitly limits the range of values πimbalance can attain. In contrast to

other clustering algorithms such as k-Means [68], the centers returned by the

43

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

k-Medoids algorithm coincide with the nodes of the input graph. Therefore, it

is chosen as the foundation for the proposed heuristic.

2.4.1 Iterative Pareto Frontier Generation

Algorithm 2 illustrates the capacitated k-Medoids approach. In addition to the

distancematrixD, the network sizen, and the number of controllers k, the algo-

rithm receives the capacity bound ρ. First, the unmodified k-Medoids algorithm

is applied to the problem instance (line 2). However, instead of assigning each

node to its closest controller, a latency minimal balanced assignment of nodes

to controllers is determined. Finding such an assignment corresponds to find-

ing a cost minimal perfect matching in a bipartite graph which is constructed

in lines 3 and 4 of the algorithm. The first partition, N , consists of n vertices

representing the network’s nodes, while controllers are placed in the second

partition, which is referred to as F . In order to enforce the desired capacity

limit of controllers, each controller is replicated
⌈

n
k

⌉

+ ρ times. Thus, a value of

ρ = 0 corresponds to the tightest bound, i.e., the number of instances per con-

troller prohibits configurations in which one controller manages significantly

more nodes than another controller.

Next, a complete bipartite graph is created by adding an edge between each

pair of nodes from the two partitions. Edge weights in this graph correspond

to the entries in the distance matrix D. Consequently, a cost minimal perfect

matching in the resulting bipartite graph yields an assignment of nodes to the

controllers provided by the k-Medoids algorithm. As this assignment does not

necessarily match the one intended by the k-Medoids algorithm, a shift of cen-

ters inside the partitions defined by the assignment might improve the latency

in each partition without affecting imbalance. Hence, in each cluster, each node

is considered as the new center. If this relocation improves the sum of latencies

inside the cluster, it is accepted. Afterwards, the last two steps (i.e., calculating

assignments given centers and calculating centers given clusters) are repeated

44

2.4 Pareto Capacitated k-Medoids

until convergence with respect to the latency is reached. This process corre-

sponds to the while loop in lines 7 to 12 of Algorithm 2.

The final output consists of C , the cluster centers and A, the assignment of

each node to its center. Due to the fact that the exhaustive evaluation assumes

an assignment that is based on the minimization of shortest path latencies, the

capacitated k-Medoids algorithm can produce placements that are not analyzed

by the exhaustive approach. However, this does not have a negative impact on

the results of the performance evaluation as the distance measure defined in

Equation 2.1 defaults to zero when the estimate performs better than the refer-

ence solution.

Algorithm 2 Capacitated k-Medoids.

1: input: D, n, k, ρ
2: C = kMedoids(D,n, k) (= {c1, . . . , ck})
3: N = {1, . . . , n}

4: F =

{

c11, c
2
1, . . . , c

⌈n
k ⌉+ρ

1 , c12, . . . , c
⌈n

k ⌉+ρ

k

}

5: (A, costs) = match(N,F,D)
6: (C′, costs′) = recalculateCenters(A)
7: while costs′ < costs do
8: C = C′

9: F =

{

c11, . . . , c
⌈n

k ⌉+ρ

k

}

10: (A, costs) = match(N,F,D)
11: (C′, costs′) = recalculateCenters(A)
12: end while
13: return (C,A)

For a single value of ρ, Algorithm 2 calculates a placement which mini-

mizes the average node-to-controller latency while respecting the imbalance

constraint introduced by ρ. However, the goal is to develop an algorithm that is

capable of providing insights into the available alternatives and their associated

trade-offs with respect to different objectives. Therefore, Algorithm 3 combines

the results of multiple runs of the capacitated k-Medoids algorithm with differ-

45

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

ent values of ρ into a Pareto frontier of possible solutions. Additionally, parts

of the k-Medoids heuristic rely on random numbers. Thus, the quality of re-

sults can be further improved by running the algorithm multiple times for each

configuration. In total, there are two parameters that control the run time and

performance of the Pareto capacitated k-Medoids (PCKM) algorithm. First, P,

the set of values for the capacity bound ρ, and second, nr, the number of times

the capacitated k-Medoids routine is called for each ρ ∈ P. The placements

that are obtained during these |P| · nr iterations are stored in the set S which

is constructed in line 5 of the algorithm. Finally, the Pareto optimal placements

are determined by evaluating the elements in S with respect to the two metrics

under consideration and deriving their Pareto frontier.

Algorithm 3 Pareto capacitated k-Medoids.

1: input: D, n, k, P, nr

2: S = ∅
3: for all i ∈ {1, . . . , nr} do
4: for all ρ ∈ P do
5: S = S ∪ capacitatedKMedoids(D,n, k, ρ)
6: end for
7: end for
8: S = {s ∈ S | s ∈ paretoFrontier(evaluate(S))}
9: return S

2.4.2 Evaluation Environment, Topologies, and

Parameters

During the performance evaluation of the proposed Pareto capacitated

k-Medoids (PCKM) algorithm, we focus on two main aspects. First, an analy-

sis of the algorithm’s run time for different sets of parameters and the distance

between the resulting and the actual Pareto frontier provides the data that is

required for quantifying the achieved trade-off between time and accuracy. Sec-

ond, the specialized heuristic is compared to the generic Pareto simulated an-

46

2.4 Pareto Capacitated k-Medoids

nealing discussed in Section 2.3.1 as well as to a baseline algorithm that is based

on randomly guessing placements.

This comparison also explores the consequences of specialization by calculat-

ing Pareto frontier distances with respect to the subset of objectives optimized

by the Pareto capacitated k-Medoids approach as well as with respect to a larger

set of objectives.

Both parts of the evaluation are carried out on a set of real world network

topologies from the Internet Topology Zoo [29]. To provide reference values for

the time and accuracy assessment, an exhaustive evaluation of placements is

performed for each of the selected networks and desired number of controllers

beforehand.

Similar to the evaluation methods that are outlined in Section 2.3.2, investi-

gated problem instances are chosen based on two factors. First, an exhaustive

evaluation of the search space corresponding to the problem instance should not

exceed the available memory of the used machine. We motivate this by the fact

that problem sizes beyond this threshold cause phenomena like page thrash-

ing which in turn make the comparison unfair. Second, the computation times

for an exhaustive evaluation of the chosen instances tend to be in the order of

magnitude of several to tens of minutes. Such run times exceed the constraints

that often appear in practice. Hence, these scenarios correspond to use cases

which can be made tractable by employing heuristics. Overall, more than 60

graphs from the Internet Topology Zoo are evaluated. Their sizes range from 25

to 50 nodes and the experiments cover numbers of controllers between 5 and 15,

resulting in state spaces that contain between one and 100 million distinct possi-

ble placements. All algorithms are implemented in Matlab and are executed on a

server that is equipped with an Intel Xeon CPU at 2.10 GHz as well as 128 GB of

memory and runs the 64-bit version of Ubuntu 13.10 andMatlab version R2014a.

In addition to the absolute run times of all investigated algorithms and param-

eter sets which are recorded via Matlab’s timeit function, the relative time

consumption of the heuristics are computed. While absolute run times provide

insights into the time scales which can be achieved by using heuristics, state-

47

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

ments about the relative time consumption allow for a hardware-independent

comparison of algorithms. The relative run time of a heuristic approach is de-

fined as the ratio of the heuristic’s computation time and the time required for

an exhaustive evaluation.

As discussed in Section 2.4.1, the performance of the Pareto capacitated k-

Medoids algorithm with respect to run time and accuracy can be controlled

with two input parameters. On the one hand, nr, the number of algorithm runs

per configuration, controls the number of investigated placements and can be

used to gather more reliable results. In this work, we use nr = {2, 4, . . . , 10}.

Increasing nr beyond 10 did not show significant improvements regarding the

algorithm’s accuracy. It is worth noting that nr is not the number of experiment

repetitions used in the performance evaluation, but rather an input parameter

to the PCKM algorithm that controls its run time. On the other hand, the pa-

rameter P controls the range of capacity bounds that are evaluated in order to

construct the two dimensional Pareto frontier. Two options regarding the choice

of P are analyzed. First, P = {0, 1, . . . , 9}, which covers 10 consecutive values

for ρ and aims at thoroughly analyzing the trade-off between latency and im-

balance. Second, P = {0, 2, . . . , 18}, which also contains 10 distinct values for

ρ but targets covering a wider range of trade-offs.

In order to provide a context for PCKM’s performance, it is compared with

two additional algorithms. These include the Pareto simulated annealing (PSA)

heuristic [1, 41] that is discussed in Section 2.3 as well as an algorithm that

evaluates a given number of randomly generated placements and calculates the

Pareto frontier of the resulting set of solutions. Due to the fact that the per-

formance and the run time of the different mechanisms depends on their input

parameters, the following methodology is used in order to achieve a fair com-

parison.

For a given set of input parameters of the PCKM approach, the average run

time is determined. Afterwards, the input parameters of the alternative algo-

rithms are tweaked in such a fashion that their run time equals that of PCKM.

Hence, the comparison allows statements about the different algorithms’ per-

48

2.4 Pareto Capacitated k-Medoids

formance when equipped with a particular time budget. In order to obtain sta-

tistically significant results, 10 repetitions are performed and evaluated for each

combination of algorithm, network graph, and set of input parameters.

2.4.3 Performance Comparison and Key Influence Factors

This section presents results of the performance evaluation setup outlined in

Section 2.4.2. On the one hand, the influence of the parameter choice on the per-

formance of the Pareto capacitated k-Medoids algorithm is investigated. On the

other hand, a comparison of the Pareto capacitated k-Medoids (PCKM) mech-

anism with the Pareto simulated annealing heuristic as well as a baseline ap-

proach based on random guessing is presented.

Figure 2.8 illustrates the results that are obtained when using the proposed

evaluation scheme. It shows the cumulative distribution of the Pareto frontier

distance δ with respect to the two objectives that are optimized by the algo-

rithm, i.e., the average node-to-controller latency and the controller imbalance.

The x-axis shows increasing values of δ and the y-axis represents the fraction of

scenarios in which the PCKM approach achieves a distance of at most δ. While

the capacity range P is represented by the line style, with the fine grained ca-

pacity range {0, 1, . . . , 9} as solid lines and the coarse grained capacity range

{0, 2, . . . , 18} as dashed lines, the number of repetitions nr is represented by

the lines’ color and takes on values 2, 6, and 10.

There are three main observations.

a) An increase in nr leads to an increase in accuracy. Increasing nr not only

affects the total number of placements analyzed by the algorithm, but

also adds diversity to the solution as the k-Medoids subroutine starts its

optimization from a different set of centers in each iteration.

b) The accuracy gains between consecutive nr values decrease for

higher nr. For example, the 90% quantiles of the distance in case of

P = {0, 1, . . . , 9} take on values of roughly 5%, 3.4%, and 3.2% for

49

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

Repetitions

nr = 2

nr = 6

nr = 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.02 0.04 0.06 0.08

Distance w.r.t. Optimized Criteria

F
ra

c
ti
o
n
 o

f
S

c
e
n
a
ri

o
s

Capacity Range
0, 1, ..., 9
0, 2, ..., 18

Figure 2.8: CDF of the algorithm’s error with respect to average latency and imbal-
ance for different numbers of repetitions nr and capacity ranges P.

nr = 2, 6, 10, respectively. This phenomenon hints at a converging be-

havior, i.e., the accuracy doesn’t improve significantly beyond a particu-

lar value of nr.

c) The fine grained capacity range yields a higher accuracy than its coarse

grained counterpart for all the scenarios that are covered in this work.

This behavior stems from the fact that the reference Pareto frontier usu-

ally contains many distinct imbalance values in the lower range while

the coverage of higher values is rather sparse. Hence, P = {0, 1, . . . , 9}

is used for the remainder of this work.

In order to determine input parameters for the alternative algorithms that

are used in the performance comparison, the absolute run times of the PCKM

algorithm are measured for the different configurations. Figure 2.9 presents the

distributions of these run times. Differently colored curves represent different

values of the number of repetitions nr. When the number of repetitions nr is

increased from 2 to 10 in steps of 2, the median run time increases from roughly

50

2.4 Pareto Capacitated k-Medoids

0.5 seconds to 2.7 seconds in almost equidistant steps. This behavior is in line

with the fact that each repetition is performed independently of the other, and

thus nr affects the total run time in a linear fashion. However, the interquantile

range also increases with nr in the analyzed scenarios. This can be explained

by the varying run times of consecutive repetitions of the k-Medoids algorithm.

For each repetition, the number of iterations spent inside the k-Medoids routine

can differ. Increasing nr implies a wider interval of possible values for the sum

of these iterations and thus a higher variance is observed.

nr

2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5

Runtime of Pareto Capacitated k−Medoids [sec]

F
ra

c
ti
o
n
 o

f
S

c
e
n
a
ri

o
s

Figure 2.9: CDF of the absolute time consumption of the Pareto capacitated
k-Medoids algorithm for different numbers of repetitions nr.

The proposed algorithm is compared with three reference algorithms by

means of Pareto frontier distances. The results are depicted in Figures 2.10

and 2.11. In addition to PCKM, a two dimensional version of the Pareto sim-

ulated annealing algorithm (PSA2D) and an algorithm based on random guess-

ing (RND) are analyzed.

Before aggregated results are presented in Figure 2.11, Figure 2.10 illustrates

the different algorithms’ behavior by displaying the Pareto frontiers returned

51

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

during a single run of each algorithm and comparing them to the reference

Pareto frontier obtained with the brute force approach. For this example, the

Sinet topology is chosen. In this network of 47 nodes, 5 controllers are placed

within a time budget of one second. The Pareto frontiers are determined with

respect to the two objectives that are optimized, i.e., the average node-to-

controller latency and the controller load imbalance. X- and y-positions of in-

dividual points show the values of the objective functions that are achieved by

the corresponding placements. Additionally, the imbalance metric is normalized

with the number of nodes in the topology. As a visual aid, each set of Pareto

optimal points is connected with line segments that are not part of the Pareto

frontier. Different algorithms are represented with different colors and marker

shapes.

●

●

●

●

●

0.05

0.10

0.15

0.20

0.25

0.30

0.07 0.08 0.09 0.10

π
avg latency

π
im

b
a
la

n
c
e

●

RND
PSA2D
PCKM
Reference

Figure 2.10: Exemplary Pareto frontiers that are obtained with the algorithms that
are discussed in this work. Settings: Sinet topology (47 nodes), 5 con-
trollers, and a time budget of 1 second.

There are four main observations.

52

2.4 Pareto Capacitated k-Medoids

a) The Pareto frontier that is returned by the PCKM algorithm has the high-

est cardinality of all discussed approaches. This corresponds to a thor-

ough coverage of the different possible trade-offs between the optimized

objectives and is achieved by PCKM’s iterative approach with respect to

the capacity limits. By imposing different imbalance constraints, the re-

sulting latency is varied and the search space is explored in a systematic

fashion.

b) The PCKM algorithm discovers a solution that is not captured by the

reference Pareto frontier. In contrast to the brute force approach, PCKM

is not restricted to assigning nodes to controllers based on latency and

thus explores a larger search space than the other algorithms.

c) The PSA2D algorithm is also characterized by the diversity of solutions,

i.e., the trade-offs between objectives are reflected in the resulting Pareto

set. However, the available time budget is not sufficient to achieve conver-

gence, so that some regions contain only few solutions or feature outliers.

These phenomena can be observed in the sparse coverage of the 0.2 to 0.3

range of the imbalance metric, where PSA2D yields only two solutions,

as well as the rightmost outlier with respect to the latency objective.

d) Finally, the placements found by the RND approach are scattered

throughout the objective space. While the mechanism finds one Pareto

optimal solution by chance, its result set also features an extreme outlier.

This demonstrates the high variance and thus low reliability of the RND

algorithm.

While the preceding discussion is focused on one individual run, Figure 2.11

presents the algorithms’ performance in an aggregated fashion. Furthermore,

not only the Pareto frontier distance regarding the two objectives optimized by

PCKM and PSA2D is presented, but also the distance from a five dimensional

Pareto frontier is taken into account. The extended set of criteria contains the

53

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

maximum node-to-controller latency as well as the average and maximum la-

tency among controllers. Such an analysis provides insights into the strategies

that are employed by the different algorithms in order to explore the search

space and find feasible solutions.

While the different algorithms are represented by differently colored curves,

the line style indicates the kind of distance measure under investigation. All

three subfigures of Figure 2.11 display cumulative distributions of these dis-

tances, each resulting from different algorithm parameters obtained according

to Section 2.4.2.

A comparison between the algorithms’ performance with respect to the

Pareto frontier distance regarding the average node-to-controller latency and

imbalance shows that the PCKM algorithm consistently outperforms the PSA2D

heuristic for all three time constraints that are used in Figures 2.11a, 2.11b,

and 2.11c. This demonstrates the gain achieved by utilizing a specialized heuris-

tic over a generic method given the same time budget on identical hardware.

Moreover, the distance in case of the RND algorithm is significantly higher than

those of PCKM and PSA2D as the RND approach does not systematically explore

the solution space but rather evaluates random placements. Although the small

absolute differences between achieved Pareto frontier distances for PCKM and

PSA2D might suggest that utilizing PCKM over PSA2D provides only a slight

improvement, the relative increase is significant. For example, when inspecting

the 90% quantiles of the distributions in Figure 2.11b, PCKM achieves a dis-

tance of 3% with respect to the subset of optimized criteria while PSA2D pro-

duces an error of 5%. Hence, choosing PCKM corresponds to a relative gain of

1− 0.03
0.05

= 40% in terms of accuracy.

When extending the distance measure to take into account additional objec-

tives that represent the maximum and average inter-controller latency andmax-

imum node-to-controller latency, two phenomena are observed. First, the abso-

lute distance values increase for all algorithms. Such a behavior is expected as

none of the algorithms explicitly optimizes for the additional objectives and the

available time budget is not increased to accommodate for the increased com-

54

2.4 Pareto Capacitated k-Medoids

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Distance

F
ra

c
ti
o

n
 o

f
S

c
e

n
a

ri
o

s
Algorithm

PCKM
PSA2D
RND

Distance type
Subset
All

(a) One second, corresponding to nr = 2.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Distance

F
ra

c
ti
o

n
 o

f
S

c
e

n
a

ri
o

s

Algorithm
PCKM
PSA2D
RND

Distance type
Subset
All

(b) Two seconds, corresponding to nr = 6.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Distance

F
ra

c
ti
o

n
 o

f
S

c
e

n
a

ri
o

s

Algorithm
PCKM
PSA2D
RND

Distance type
Subset
All

(c) Four seconds, corresponding to nr = 10.

Figure 2.11: Comparison of algorithms’ performance with respect to different dis-
tance types given different time constraints.

55

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

plexity, either. Furthermore, the relative order of algorithms with respect to the

achieved distance changes. In the context of all three time settings, the PSA2D

mechanism provides the highest accuracy, i.e., the lowest distance values. The

reasons for PSA2D’s advantage in this domain are twofold. On the one hand,

it generally explores a larger number of placements than PCKM which results

in a higher chance of coming across solutions which are viable with respect to

the newly added optimization goals. On the other hand, the PSA2D approach

follows a more systematic path through the solution space than RND, which

lowers the chance of visiting the same placement multiple times. Due to having

the lowest amount of evaluated placements, PCKM falls short of RND when the

extended distance measure is of interest.

2.4.4 Integration into the POCO Framework

The two algorithms that are proposed in this chapter are also integrated into

the POCO framework. POCO does not only evaluate the possible placements

for a given topology and number of controllers, but is also capable of providing

a visualization of the corresponding solution space in a graphical user interface.

Furthermore, the parameters of the heuristic algorithms can be changed from

their default values by means of forms that can be accessed via the POCO GUI.

Both the POCO GUI as well as its core are implemented in Matlab and are

available as open source software [43, 69]. Users can choose between metrics

for investigation and are presented with a plot that displays the performance

of all possible placements with regard to the chosen metrics. Each placement is

represented as a point in the plot whose x and y-axes denote its metric value.

Additionally, points located on the Pareto frontier with respect to these metrics

are highlighted and connected with line segments.

Figure 2.12 shows an example session of the POCO GUI featuring the Inter-

net2 OS3E topology with k = 4 controllers. The top half shows the topology in-

cluding the currently selected placement by highlighting controllers with double

circles. The color of each node, based on a traffic light color scheme, denotes the

56

2.4 Pareto Capacitated k-Medoids

latency to the node’s controller, which is selected based on the lowest distance.

Additionally, the implications of a failed node (#16) and a failed controller (#4)

for this particular placement are illustrated. Further information can be added to

the representation of the placement. Check boxes on the right hand side allow

enhancing the graphic with information regarding the number of controller-

less nodes or different latency measures as well as applying a vertex coloring to

visualize node-to-controller assignments for imbalance analyses.

In the bottom part of the interface, the Pareto frontier of all possible place-

ments with respect to the maximum node-to-controller (x-axis) and controller

to controller latency (y-axis) is displayed. By clicking on any point in the Pareto

plot, the detailed visualization at the top is updated according to the selected

placement that corresponds to the clicked point. This allows the decision maker

to interactively explore the search space according to her/his preferences and

current use case.

57

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

Figu
re

2.12:T
h
e
P
O
C
O
G
U
I
d
isp

la
y
s
th
e
cu
rren

t
p
la
cem

en
t
w
ith

th
e
color

cod
ed

sw
itch

to
con

troller
la
ten

cy
a
t
th
e

top
a
n
d
th
e
w
h
ole

solu
tion

sp
a
ce

of
a
ll
p
ossible

p
la
cem

en
ts
a
t
th
e
b
ottom

.

58

2.4 Pareto Capacitated k-Medoids

Features

In order to allow an even more in-depth analysis of the set of placements,

POCO’s GUI [43] is extended with options to display up to four dimensions

of the solution space. This is achieved by applying different transformations to

the size and color of the points presented at the bottom of Figure 2.12. First,

the set of Pareto optimal placements with regard to the four chosen metrics are

calculated. Then, minimum and maximum values for the two additional metrics

are computed. Using the traffic light color scheme as in Figures 2.1 and 2.12,

the points’ colors and sizes are adapted so that they reflect the placements’ per-

formance with regard to the additional metrics. Figure 2.13 illustrates this new,

four dimensional visualization of the scenario that is displayed in the previous

figure.

Figure 2.13: Visualization of the 4-dimensional Pareto frontier in POCO.

While the maximum node-to-controller latency πmax latency and maximum

inter-controller latency πmax controller-latency remain on the x and y-axes, the im-

balance with respect to the number of assigned nodes per controller πimbalance

and the average node-to-controller latency πavg latency are included via the size

and color of the points. This perspective shows further trade-offs and inter-

59

2 Multi-Objective Heuristics for the SDN Controller Placement Problem

dependencies between metrics, and thus allows the decision maker to make a

well-founded choice reflecting her/his preferences for a particular use case.

Through the new functionality “Edit Pareto Range”, a multi-step filtering of

the results can be performed. After investigating the Pareto frontier for a cer-

tain combination of metrics and the performance of all placements, the user can

filter out placements that exceed a certain threshold. These placements are then

removed from the stored result set of placements so that switching to a view

that shows a different combination of metrics will not display these placements

again. In this next step, the user can further reduce the number of Pareto opti-

mal results, in order to finally choose from only a little number of Pareto optimal

results that represents the best trade-off given the objectives that are important

for the particular use case.

Using this improved mechanism, it is possible for a network engineer to set

thresholds for metrics after investigating the whole solution space instead of

having to define upper bounds before starting the computation.

2.5 Lessons Learned

Designing the control plane of an SDN-based architecture poses several chal-

lenges to network operators. Even when the required number of entities in the

control plane is known beforehand, their locations have a significant impact

on numerous performance aspects of the network. This results in the multi-

objective optimization task that is known as the controller placement problem.

Its solution contains sets of controller locations that represent possible trade-

offs between different objectives like control plane communication delays or

the balanced load distribution among controller instances. While an exhaus-

tive approach to this placement problem is practically feasible for small and

medium-sized problem instances, the time and resource demands of large prob-

lem instances call for alternative mechanisms. Suchmechanisms usually involve

heuristics that sacrifice accuracy or optimality guarantees for significantly faster

run times.

60

2.5 Lessons Learned

This chapter works towards quantifying the trade-offs that result from em-

ploying various heuristics as well as providing guidelines with respect to the

choice of algorithms and parameters for different use cases. To this end, we de-

sign and evaluate two multi-objective optimization heuristics for the controller

placement problem.

On the one hand, these heuristics allow analyzing problem instances that are

too large to evaluate in an exhaustive fashion. On the other hand, in the presence

of time constraints in highly dynamic environments, they allow for a trade-off

between run time and accuracy. This trade-off is analyzed in detail via an eval-

uation featuring over 60 real world topologies. Depending on the operator’s

requirements with regards to accuracy, speedups beyond a factor of 20 are pos-

sible when compared to an exhaustive evaluation. For example, the proposed

Pareto simulated annealing (PSA) heuristic can reduce the run time for optimiz-

ing the placement of 7 controllers in a network with 50 nodes from nearly half

an hour to less than 30 seconds if an error of up to 2% is acceptable. Furthermore,

large problem instances that cannot be solved due to their enormous memory

requirements can be evaluated with the proposed heuristics.

Beyond that, the specialized Pareto capacitated k-Medoids heuristic optimizes

a particular subset of objective functions in order to further improve the perfor-

mance within its narrower scope of applicability. This is achieved by leveraging

characteristic properties of the particular objectives that are optimized. For the

scenarios that have been investigated in this work, this specialization results in

relative performance improvements of up to 40% when compared to the generic

PSA heuristic. Hence, operators also need to keep in mind available alterna-

tives in terms of algorithms and the characteristics of their particular problem

instances.

61

3 Automated Decision Making

based on Pareto Frontiers

In current and emerging network architectures, placement problems regarding

SDN controllers and Virtualized Network Functions (VNFs) play an important

role. As discussed in the previous chapter, the location of the distributed con-

troller instances in SDN-based networks can affect performance aspects like the

latency between switches and controllers, resilience, or the synchronization de-

lay between controllers. Similarly, optimizing the locations of VNF instances

in the network functions virtualization (NFV) context can lead to a better re-

source utilization as well as QoS. Finally, cloud service placement strategies aim

towards increasing end-user QoE while minimizing costs.

Conceptually, the abovementioned problems have several similarities. Firstly,

heuristics are used in most real world scenarios since the combination of the

underlying NP hard facility location problem and the huge solution space pro-

hibits exact solutions. Secondly, there are usually multiple, possibly competing,

objective functions that need to be optimized simultaneously. Hence, the output

of the aforementioned heuristics does not consist of a single distinct optimum

but a Pareto frontier that represents different trade-offs between the objectives.

Therefore, the solutions that are returned can not always be directly compared

with each other due to different domains and units of the objectives. The upper

portion of Figure 3.1 demonstrates an exemplary Pareto frontier that is returned

by such a multi-objective optimization algorithm.

Especially in the context of systems that adapt to changing network condi-

tions in an automated and dynamic fashion, however, algorithms need to choose

63

3 Automated Decision Making based on Pareto Frontiers

Pareto Frontier𝑓𝑓2

𝑓𝑓1
Decision
Making

Solution

C
h

a
p

te
r

3

Figure 3.1: Overview of the optimization and decision making process.

one distinct solution. This behavior is highlighted in the bottom part of the

figure where the decision making mechanism chooses a particular placement

from the set of Pareto optima. In this chapter, we design, evaluate, and compare

mechanisms that enable such an automated decision making. To this end, we

follow a three-step-approach. First, four methods for determining the relative

importance of different objectives are selected and compared with each other.

In contrast to approaches that determine such weights a priori, the methods

used in this work take into account characteristics of the solutions that are re-

turned by the multi-objective optimization algorithm. Hence, they can adapt to

the characteristic behavior of objectives in the specific context of a particular

problem instance. Second, four mechanisms for aggregating the performance of

a multi-dimensional solution into a single score are selected. Finally, the rank-

ings of solutions that result from different combinations of weighting and ag-

gregation techniques are characterized. On the one hand, analyzing solutions

64

3.1 Background and Related Work

that consistently achieve high ranks according to many approaches might lead

to more efficient methods for identifying viable placements. On the other hand,

the comparison can help to derive guidelines for choosing the appropriate rank-

ing mechanism for a particular problem.

In a case study featuring the SDN controller placement problem, we demon-

strate the particular behavior of the investigated mechanisms for an exemplary

network and three objective functions, i.e., three optimization goals. Further-

more, we provide an extensive analysis of 58 real-world network topologies from

the Internet Topology Zoo [29], a total of five objective functions, and varying

numbers of controllers that are placed. By aggregating the results of these anal-

yses, we can compare the different weighting and ranking methods in terms of

aspects like agreement and consistency across problem instances.

The content of this chapter is based on [11, 15] and its remainder is struc-

tured as follows. After an overview of related work in Section 3.1, the data set is

presented alongside the resulting problem instances in Section 3.2. The selected

methods for assessing the weight of each objective dimension are introduced

and compared in Section 3.3. These methods are then used as input for aggrega-

tion algorithms that assign a single score to each placement. In Section 3.4, the

four selected aggregation algorithms are discussed and compared with respect

to the rankings of placements they produce. Finally, Section 3.5 concludes the

chapter with an overview of lessons learned.

3.1 Background and Related Work

Placement problems constitute an important challenge in the context of man-

agement and orchestration of softwarized networks. In particular, they include

the SDN controller placement problem [37], the NFV function chain placement

problem [70], as well as virtual machine (VM) placement in the area of cloud

resource management [71].

In the context of SDN controller placement, widely used methodologies in-

clude heuristics whose goal functions are based on weighted sums of objec-

65

3 Automated Decision Making based on Pareto Frontiers

tives [33], integer linear programs (ILPs) [33], as well as multi-objective heuris-

tics [1, 8]. A similar set of techniques is also applied in the domain of NFV func-

tion placement. While the authors of [72] investigate an approach that is based

on a weighted sum, optimal function placements are identified by means of an

ILP in [73]. Furthermore, the authors of [74] combine ILP-based approacheswith

a Pareto analysis in order to investigate trade-offs between different objectives.

Correspondingly, strategies for VM placement in cloud data centers can be

divided into two groups. The first group consists of single objective optimiza-

tion approaches that focus on minimizing the energy consumption [75], min-

imizing the costs [76], optimizing the resource utilization [77], or maintaining

QoS guarantees [78]. In the second group, multi-objective mechanisms that use

heuristics like multi capacity bin packing [75] are used to achieve a viable bal-

ance between objectives that include the power consumption, delays, and costs

simultaneously [76, 79, 80].

However, in the case of all abovementioned multi-objective approaches, no

automated decisions can be made from the Pareto frontiers. In this chapter, we

propose an approach to address this automated decision making problem which

is based on transforming a Pareto frontier into a ranked list of alternatives. To

compare the rankings when the underlying order of alternatives is unknown,

we rely on correlation coefficients and techniques that are based on probabilistic

ranking models.

In [81], the rank correlation between pairs of rankings is calculated using

either Spearman’s ρ or Kendall’s τ . The authors of [82] propose a measure of

agreement between rankings based on removal of disputable elements. A basic

model for order statistics is developed by Thurstone [83], and Luce [84] con-

structs an equivalent model based on choice probabilities. Mallow [85] presents

simplified and analytically tractable models that are induced by paired compari-

son. In [86], concordance between different judges, i.e., rankings, is investigated.

The corresponding mechanism is based on Mallow’s model to detect outlier

rankings. Cohen [87] proposes comparing the distribution of ranks by box plots

and derive a degree of discordance based on the inter-quartile range. The good-

66

3.2 Characteristics of the Network Topologies Under Study

ness of fit of simple ranking models is investigated in [88], and metric-based

ranking models are discussed in [89]. A classification of probabilistic ranking

models can be found in [90].

3.2 Characteristics of the Network Topologies Under

Study

In order to investigate the practical feasibility of the different weighting and

ranking methods that are discussed in this chapter, realistic input data is re-

quired. To this end, we use 58 different network graphs from the Internet Topol-

ogy Zoo [29] and use the freely available POCO tool [39] to exhaustively eval-

uate all possible controller placements with respect to a total of up to five ob-

jective functions. While results are consistent among different networks, some

characteristics depend on statistics like the number of nodes and the diame-

ter of the graph. On the one hand, we present detailed results and statistics for

the Internet2 OS3E topology which is chosen as an exemplary representative.

This allows for accurate insights into the functionality of the different weighting

and scoring mechanisms. On the other hand, we provide aggregated results and

statistics regarding the whole data set in order to identify topology-independent

relationships between the various mechanisms.

3.2.1 Internet2 OS3E

Table 3.1 provides an overview of the Internet2 graph as well as the resulting

problem instance. In order to keep the solution space small enough to visually il-

lustrate the effects and behavior of the presented methods, only four controllers

are placed in the network and the number of objectives is limited to three. Al-

though this results in a total of 46, 376 distinct placements, only ten of those

are Pareto optimal and thus relevant during the decision making process. In the

context of larger search spaces, e.g., when placing more controller instances or

dealing with networks that have more nodes, an exhaustive evaluation of all

67

3 Automated Decision Making based on Pareto Frontiers

possible placements might not be feasible due to time and resource constraints.

For such cases, a trade-off between accuracy and run time can be achieved by

employing heuristic approaches that can approximate the Pareto frontier [1].

Table 3.1: Information regarding the Internet2 OS3E topology and the correspond-
ing problem instance that is used in the case study.

Property Value

Number of nodes 34

Number of placed

controllers
4

Number of distinct
placements

46, 376

Number of Pareto
optimal placements 10

Objective functions

Mean node-to-controller latency πavg latency

Maximum node-to-controller latency πmax latency

Imbalance between controller instances πimbalance

As mentioned in the previous paragraph, three different objective functions

are taken into account when assessing the performance of each placement.

These include two latency-related measures, namely, the mean and maximum

latency between controllers and switches. We use the longitude and latitude

information that is provided for each node to calculate the Euclidean distance

between nodes and approximate the latency of each link. For multi-hop paths,

the latency is defined as the sum of latencies of all involved links. Furthermore,

the load imbalance between controller instances is defined as the difference be-

tween the number of switches that are assigned to the instance with the highest

and lowest amount of switches, respectively.

Several statistical properties of these objective functions are presented in Ta-

ble 3.2. Additionally, Figure 3.2 displays the cumulative distribution function of

objective values that are attained across all placements. Due to the fact that the

68

3.2 Characteristics of the Network Topologies Under Study

Table 3.2: Various statistics of the objective functions that are used in the case study.

Objective Number of distinct values Mean Variance

πavg latency 45, 311 0.195 0.001

πmax latency 244 0.491 0.013

πimbalance 29 0.305 0.019

Average

Latency

Maximum

Latency

Imbalance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Objective Value

F
ra

c
ti
o

n
 o

f
P

la
c
e

m
e

n
ts

Figure 3.2: Empirical CDFs of objective values that are attained in the example sce-
nario.

latency measures are continuous, they yield significantly more distinct values,

resulting in smooth CDF curves. In contrast, the imbalance is always an integer

value which is constrained by the number of nodes in the topology. Hence, indi-

vidual steps are visible in the plot. Since the average node-to-controller latency

is calculated from 34 individual latencies, outliers are smoothed out during the

calculation of the mean and the resulting variance of attained values is rela-

tively low. The values of the maximum latency objective have a higher variance

and fewer distinct values since the maximum does not necessarily change be-

tween similar placements that share multiple controller locations. In summary,

these characteristics suggest that in order to capture the sensitivity of objec-

69

3 Automated Decision Making based on Pareto Frontiers

tives towards changing placements, the relative importance that is assigned to

an objective should correlate with the variance of the attained objective values.

3.2.2 Internet Topology Zoo

For the evaluation of networks from the Internet Topology Zoo,we use networks

whose size n ranges between 25 and 50 nodes. This ensures that the exhaustive

evaluation of all possible placements with POCO can be performed within a

reasonable time frame. Using each of the resulting 58 topologies, we calculate

placements of k ∈ {3, 4, 5} controllers and evaluate themwith respect to a total

of five objectives, resulting in a total of 174 problem instances. In addition to the

abovementioned imbalance and latency measures, the average and maximum

latency between each pair of controller instances is also taken into account.

These objectives are referred to as πavg inter-latency and πmax inter-latency, respectively.

In the following, we present various aggregated statistics of the set of problem

instances that are discussed in this chapter.

Average

Latency

Maximum

Latency

Imbalance

Average

Inter−Latency

Maximum

Inter−Latency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 × 10
1

1 × 10
2

1 × 10
3

1 × 10
4

1 × 10
5

1 × 10
6

1 × 10
7

Number of Distinct Values

F
ra

c
ti
o

n
 o

f
P

ro
b
le

m
 I

n
s
ta

n
c
e

s

Figure 3.3: Empirical CDFs of the number of distinct function values per problem
instance for each objective function.

Similarly to Table 3.2, Figure 3.3 presents the distribution of the number of

distinct values that are attained by each objective function per problem instance.

70

3.2 Characteristics of the Network Topologies Under Study

In this context, a problem instance is characterized by the number of placed con-

trollers, k, and the network graph. Qualitatively, the statistics across all problem

instances are similar to those in the Internet 2 graph, i.e., the continuous average

latency measures have the largest number of distinct values. They are followed

by the objectives that consider themaximum latency, which are also continuous.

Finally, the imbalance is integer-valued and restricted by the number of nodes

in the network, n. Hence, it attains the lowest amount of distinct values.

In addition to the number of distinct values, the variance plays an important

role when quantifying the relative importance of an objective. For all problem

instances, Figure 3.4 displays the distribution of the variance of each objective

across all possible placements for a problem instance. Although the average la-

tency measures attain the highest number of distinct values, they show the low-

est variance. The reason for this characteristic is that the averages are formed

from many individual latencies and do not differ much between placements.

Furthermore, the variance of the average inter-controller latency is higher than

that of the average node-to-controller latency. This stems from the fact that

πavg inter-latency is based on fewer individual latencies and can take on extreme

values when all instances are placed close to each other in a cluster or are dis-

tributed at the edge of the network, respectively. As discussed in the previous

section, objectives that quantify the maximum latency have a higher variance

due to the wider range of attained values (cf. Figure 3.2). Similarly, the imbalance

measure is based on the maximum load difference between controller instances

and takes on a large number of values, resulting in a high variance. For all objec-

tives, the 90% quantiles of the variance distribution are below 0.05. Addition-

ally, the variance of the five objectives fluctuates significantly between individ-

ual problem instances. This phenomenon indicates that the order of objectives

is a characteristic of the specific problem instances and therefore highlights the

importance of assessing the relative importance of objectives on a per-problem

basis.

To further motivate the need for mechanisms that map a multi-obective re-

sult vector to a single score, the distributions of the number of Pareto-optimal

71

3 Automated Decision Making based on Pareto Frontiers

Average Latency

Maximum Latency

Imbalance

Average Inter−Latency

Maximum Inter−Latency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15

Variance

F
ra

c
ti
o
n
 o

f
P

ro
b
le

m
 I
n
s
ta

n
c
e
s

(a) Variance per objective function across all problem instances that are in-
vestigated in this work.

Number of Controllers

k = 3

k = 4

k = 5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000

Size of Pareto Frontier

F
ra

c
ti
o
n
 o

f
P

ro
b
le

m
 I
n
s
ta

n
c
e
s

(b) Number of Pareto optimal placements for different numbers of controllers
that are placed.

Figure 3.4: Empirical CDFs of the variance per objective and the size of the Pareto
frontier.

placements for different numbers of placed controllers, k, are illustrated in Fig-

ure 3.4b. For a given numberm of Pareto-optimal placements on the x-axis, the

72

3.3 Weighting Methods

value on the y-axis represents the fraction of problem instances whose five di-

mensional Pareto frontier includes up to m elements. The different numbers of

controllers, k, are denoted by differently colored curves. The number of placed

controller instances has a direct impact on the total number of distinct place-

ments, which can be calculated as the binomial coefficient
(

n

k

)

. Hence, the size

of the Pareto frontier also increases due to the increase of incomparable pairs of

objective vectors, in particular. While a human decision maker might compare

and choose from a couple of alternatives in an objective space with few dimen-

sions, comparing one thousand and more different solutions in a practical time

frame is unlikely. This highlights the necessity for the automated decision mak-

ing mechanisms that are developed in this work.

3.3 Weighting Methods

In order to aggregate the performance of a placement that is evaluated with re-

spect to multiple objective functions into a single value, themechanisms that are

analyzed in this chapter require weights for each considered dimension. Hence,

we first discuss methods for obtaining these weights based on the set of place-

ments and the corresponding objective values.

In the following, the weight of the j−th objective is denoted as wj and all

weights are normalized, i.e.,
∑m

j=1 wj = 1 in case of m objective functions.

Additionally, objective values are also normalized prior to applying the weight-

ing mechanisms. The observed values for n placements andm objective dimen-

sions are stored in an n×mmatrixAwhich is transformed into the normalized

matrix R according to Equation 3.1:

ri,j =
amax
j + amin

j − aij

amax
j + amin

j

. (3.1)

In this equation, amin
j = mini aij and a

max
j = maxi aij refer to the minimum

andmaximum values of the j-th objective, respectively. Apart from constraining

the domain of each positive-valued objective to [0; 1), this transformation also

73

3 Automated Decision Making based on Pareto Frontiers

reverses the order of the values. This is done in order to account for the fact that

the underlying optimization goal consists of minimizing objectives that repre-

sent various latencies and the load imbalance among controllers. Consequently,

the lowest values in the objective domain are assigned the highest weights.

3.3.1 UniformWeighting

As a baseline naïve approach, we use a weighting mechanism that does not take

into account any observed data and assigns equal weights to every objective,

i.e., wuni
j = 1

m
.

3.3.2 Entropy-Based Weighting

In information theory, (the Shannon) entropy is used as a means to quantify the

amount of information that is stored in a message [91]. The key idea behind

the entropy-based weighting method consists of assigning higher weights to

objective dimensions that carry more information, i.e., those that have a higher

number of distinct values and low individual occurrence probabilities for each

value. Based on [92], the weights are calculated in three steps. First, observed

values are normalized for each dimension via

pi,j =
ri,j

∑n

i=1 ri,j
, j ∈ {1, . . . ,m}. (3.2)

Then, the entropy is determined by means of

ej = −
1

lnn

n
∑

i=1

pi,j ln pi,j , j ∈ {1, . . . ,m}. (3.3)

Finally, the weight is calculated as

w
ent
j =

1− ej
∑m

i=1(1− ei)
, j ∈ {1, . . . ,m}. (3.4)

74

3.3 Weighting Methods

3.3.3 Weighting Based on the Coefficient of Variation

Intuitively, objectives whose values cover a wide range of different values tend

to have a higher impact on the total resulting performance of a placement than

objectives that attain only few values or values that are very close to each other.

Hence, we investigate the suitability of the coefficient of variation for quantify-

ing the relative importance of an objective. The coefficient of variation is defined

as the ratio between the standard deviation and the mean of observed values.

Thus, the weights are calculated according to

w
cv
j =

σj

µj
∑m

i=1
σi

µi

, j ∈ {1, . . . ,m}. (3.5)

In this equation, σj and µj refer to the standard deviation and mean of the

j-th objective, respectively.

3.3.4 Weighting Based on the Standard Deviation

Similarly to the weighting approach that is based on the coefficient of variation,

the following equation is used to calculate relative weights that are derived from

the standard deviation:

w
sd
j =

σj
∑m

i=1 σi

, j ∈ {1, . . . ,m}. (3.6)

3.3.5 Comparison

In order to allow for a comparison between the different weighting mecha-

nisms, Figure 3.5 presents the weights of individual objectives according to the

four weighting approaches for the Internet2 OS3E topology. The x-axis denotes

the three objectives, the height and color of the bars represent the weight and

weighting method, respectively.

While the weights that are returned by the different mechanisms differ in

terms of absolute values, the relative order of objectives within each weight-

75

3 Automated Decision Making based on Pareto Frontiers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Average Latency Maximum Latency Imbalance

Objective

W
e
ig

h
t

Weighting Based on
Uniform Weights
Entropy
Coefficient of Variation
Standard Deviation

Figure 3.5: Relative weights of objectives according to different weighting mecha-
nisms for the Internet2 OS3E topology.

ing mechanism is consistent. Having the lowest variance and the narrowest in-

terquartile range, the node-to-controller latency is assigned the lowest weights.

As discussed in Section 3.2, the maximum-based measure has a higher variance

and thus also results in higher weights when compared to its average-based

counterpart. The highest weights are assigned to the imbalance measure. This

can be explained by the high variance that is observed for the imbalance objec-

tive.

A comparison of the absolute weights that are assigned by the weighting

methods shows that the mechanisms that are based on standard deviation and

the coefficient of variation return similar values. This phenomenon can be ex-

plained by the fact that objective values are normalized prior to applying the

weighting methods. Thus, the normalization using the mean that is applied in

the context of the latter does not have a large impact on the final weights. Fi-

nally, the entropy-based weighting approach yields the widest range of weights,

i.e., between less than 0.1 and more than 0.6. This indicates a higher sensitiv-

76

3.3 Weighting Methods

ity towards the objectives’ variance, which is a significant influence factor on

the resulting weight for all weighting methods that take into account observed

objective values.

Standard Deviation

Coefficient of Variation

Entropy

Uniform Weights

1 25 50 75 100 125 150 175

1 25 50 75 100 125 150 175

1 25 50 75 100 125 150 175

1 25 50 75 100 125 150 175

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Problem Instance ID

W
e

ig
h

ts

Objective
Average Latency
Maximum Latency
Imbalance
Average Inter−Latency
Maximum Inter−Latency

Figure 3.6: Relative weights per objective, problem instance, and weighting mecha-
nism.

77

3 Automated Decision Making based on Pareto Frontiers

Figure 3.6 shows the weights that are returned when applying each weighting

method to the problem instances of the Topology Zoo and five dimensions. The

first subfigure shows weights for uniformweighting, the second subfigure those

for entropy-based weighting, and the bottom plots show the resulting weights

based on the coefficient of variation and standard deviation, respectively. The

x-axis of each plot represents the IDs of the different problem instances. Each

bar shows the weights of each dimension according to the investigated weight-

ing method. From top to bottom, the weights of average node-to-controller

latency (black), maximum node-to-controller latency (dark brown), imbalance

(light brown), average inter-latency (dark orange), and maximum inter-latency

(orange) are stacked. For better visibility, only the first subfigure features a leg-

end that applies to all four plots.

Since the number of objective functions is the only information that is used

by the uniform weighting approach, this mechanism assigns a weight of 0.2

to each objective in each problem instance. The entropy-based weighting gives

high scores to themaximum inter-latency, which receives a weight of around 0.5

for most of the topologies. As in the case study of the Internet2 OS3E topology,

the high variance of the maximum inter-latency (cf. Figure 3.4a) is responsi-

ble for these high weights. The second highest scores are given either to aver-

age inter-latency or imbalance, which fluctuate significantly depending on the

particular problem instance. Maximum latency and average latency receive the

smallest weights due to their small variance. As already observed for the In-

ternet2 OS3E topology, the weighting based on the coefficient of variation has

a large degree of similarity to the weighting based on standard deviation also

in the context of problem instances from the Internet Topology Zoo. Further-

more, both weight distributions are less skewed than entropy-based weights.

While the weighting based on the coefficient of variation generally gives higher

weights to maximum inter-latency and lower weights to average latency, the

resulting weights of the standard deviation method are closer to the uniform

weighting. In this case, maximum inter-latency, average inter-latency, and im-

78

3.4 Ranking Methods

balance have weights of around 0.25 each, and maximum latency and average

latency share the remaining 0.25 almost equally.

In summary, the choice of the weighting method has a significant impact

on the proposed decision making process. Aside from uniform weighting, the

weighting algorithms emphasize the characteristics of the dimensions differ-

ently, which results in divergent weightings. This is not only observed for the

case study of the Internet2 OS3E graph, but also for the problem instances of

the Internet Topology Zoo. Especially, the entropy-based weighting results in

the most skew weights and shows a high variability for different topologies. In

contrast, weighting based on the coefficient of variation and standard deviation

results in less skew and consistent weights over all graphs.

3.4 Ranking Methods

To aggregate the scores ai,j of the different attributes j of the placement i to an

overall ranking score ρi, four well-known multi-attribute decision methods are

considered.

First, we consider Simple Additive Weighting (SAW) [93], which computes

the overall score of the placement i by adding the normalized attribute scores

ri,j =
amin
j

ai,j
multiplied by the weights wj :

ρ
SAW
i =

m
∑

j=1

wj · ri,j .

A similar ranking method is Multiplicative Exponent Weighting (MEW) [94],

which calculates the overall score as the product of the normalized attribute

scores ri,j =
amin
j

ai,j
, which are given the respective weight as exponent:

ρ
MEW
i =

m
∏

j=1

r
wj

i,j .

79

3 Automated Decision Making based on Pareto Frontiers

When using the Technique for Order Preference by Similarity to Ideal Solu-

tion (TOPSIS) [93], the attributes are first normalized via ri,j =
ai,j∑
i a2

i,j

. Sec-

ondly, the distances to an optimal placement with all best weighted normalized

attribute values vmin
j = mini(wjri,j) and to a worst placement composed of

all worst weighted normalized attribute values vmax
j = maxi(wjri,j) are com-

puted. Thirdly, the separation between the optimal and the worst placement is

quantified by

s
min
i =

√

√

√

√

m
∑

j=1

(wjri,j − vmin
j)2

and

s
max
i =

√

√

√

√

m
∑

j=1

(wjri,j − vmax
j)2.

Finally, the resulting score corresponds to the relative closeness to the ideal

solution:

ρ
TOPSIS
i =

smax
i

smin
i + smax

i

.

VIKOR [95] relies on the best and worst attribute values, amin
j and amax

j . For

each placement, scores are calculated by two strategies,

Si =

m
∑

j=1

wj

amin
j − ai,j

amin
j − amax

j

and

Ri = max
j

(

wj

amin
j − ai,j

amin
j − amax

j

)

.

These two strategies correspond to an average case and aworst case approach,

respectively. A parameter γ represents the relative importance of the two afore-

mentioned strategies and ranges from 0 to 1, i.e., 0 ≤ γ ≤ 1. Finally, the best

80

3.4 Ranking Methods

and worst values of Si andRi are taken into account when computing the final

score of each placement, i.e.,

S
min = min

i
Si,

S
max = max

i
Si,

R
min = min

i
Ri, and

R
max = max

i
Ri.

This leads to the following expression when using the VIKOR approach:

ρ
VIKOR
i = γ

Si − Smin

Smax − Smin
+ (1− γ)

Ri −Rmin

Rmax −Rmin
.

We set γ = 0.5 to give equal weight to both strategies.

Combining the four mechanisms that are discussed in this section with the

four weighting methods that are presented in Section 3.3 results in a total of 16

different ranking methods, i.e., weighting-ranking combinations, for assessing

the quality of solutions to the multi-objective placement problem. Due to the

vast amount of distinct placements, we apply the 16 methods only to the subset

of Pareto optimal placements.

3.4.1 Case Study of the Internet2 OS3E Topology

First, the performance of the weighting-ranking combinations is investigated

for the Internet2 OS3E topology and three dimensions, i.e., rankings of the ten

Pareto-optimal points are compared. Table 3.3 lists the highest and lowest corre-

lations between different combinations in terms of Kendalls’s τ and Spearman’s

ρ rank order correlation coefficients. It can be seen that it is possible to achieve

high correlations between all ranking algorithms. In contrast, small negative

correlations only result from combinations that include the VIKOR approach

81

3 Automated Decision Making based on Pareto Frontiers

with uniform weights. These observations suggest an inherent order of the el-

ements which the investigated algorithms agree upon. Furthermore, it should

be noted that combinations that use uniform weights only achieve high corre-

lations with other combinations that use uniform weights but not with other

weighting mechanisms. This is an indicator for the complementary view that is

provided when using uniform weights.

Table 3.3: Highest and lowest correlations between different combinations of the
weighting and ranking methods on the Internet2 OS3E topology.

Method 1 Method 2 Kendall’s τ Spearman’s ρ

(went, ρSAW) (went, ρMEW) 1.00 1.00

(went, ρSAW) (went, ρTOPSIS) 1.00 1.00

(went, ρSAW) (went, ρVIKOR) 1.00 1.00

(wsd, ρMEW) (wsd, ρTOPSIS) 1.00 1.00

(went, ρMEW) (went, ρTOPSIS) 1.00 1.00

(went, ρMEW) (went, ρVIKOR) 1.00 1.00

(wuni, ρMEW) (wuni, ρTOPSIS) 1.00 1.00

(went, ρTOPSIS) (went, ρVIKOR) 1.00 1.00

(wsd, ρSAW) (wuni, ρVIKOR) −0.11 −0.16

(went, ρSAW) (wuni, ρVIKOR) −0.11 −0.15

(went, ρMEW) (wuni, ρVIKOR) −0.11 −0.15

(went, ρTOPSIS) (wuni, ρVIKOR) −0.11 −0.15

(went, ρVIKOR) (wuni, ρVIKOR) −0.11 −0.15

Another metric for measuring the agreement between rankings is proposed

by Gordon [82]. Gordon’s α is defined as the number of objects that contribute

to the agreement between rankings: α := N−δ. This value can be computed as

the difference between the length of the ranking,N , and the minimum number

of objects that have to be removed to ensure a perfect agreement between the

reduced rankings, δ. Gordon’s α confirms the high correlation coefficients, as

82

3.4 Ranking Methods

there are many pairs of rankings with a perfect agreement of α = N = 10,

cf. Table 3.4. The lowest value of α is 4, highlighting that no weighting-ranking

combination completely inverts the resulting order of placements.

Table 3.4: Highest and lowest Gordon α scores for weighting-ranking combinations
on Internet2 OS3E topology.

Method 1 Method 2 Gordon’s α

(went, ρSAW) (went, ρMEW) 10

(went, ρSAW) (went, ρTOPSIS) 10

(went, ρSAW) (went, ρVIKOR) 10

(wsd, ρMEW) (wsd, ρTOPSIS) 10

(went, ρMEW) (went, ρVIKOR) 10

(wuni, ρMEW) (wsd, ρTOPSIS) 10

(went, ρTOPSIS) (went, ρVIKOR) 10

(went, ρSAW) (wuni, ρVIKOR) 4

(wuni, ρSAW) (wsd, ρVIKOR) 4

(wsd, ρMEW) (wuni, ρVIKOR) 4

(wuni, ρMEW) (wuni, ρVIKOR) 4

(wsd, ρTOPSIS) (wuni, ρVIKOR) 4

(wuni, ρTOPSIS) (wuni, ρVIKOR) 4

Probabilistic ranking models provide another approach for comparing

the obtained rankings. Luce [84] constructs probabilities for a ranking

ρ = (i1, i2, . . . , iN) from conditional probabilities. Thus, after r− 1 stages, pir
is defined as the probability that the element ir is the most preferred element

from the set of remaining elements B = {ir, . . . , iN}. By repeating the choice,

this gives the probability of the rating ρ as:

P (ρ) =

N−1
∏

r=1

pir
∑

j∈B pj
.

83

3 Automated Decision Making based on Pareto Frontiers

The highest Luce probabilities are obtained by a ranking that is created by the

combinations (wuni|wsd, ρMEW) and (wuni|wcv|wsd, ρTOPSIS). This indicates that

this ranking gives high ranks to the elements that are most preferred by many

weighting-ranking combinations. Note that this ranking is also the modal rank-

ing in the resulting set of rankings. All four entropy-based algorithms output

the same ranking, which reaches the second highest Luce probabilities. Towards

the other end, the SAW and VIKOR algorithms and the weighting approaches

that are based on the standard deviation and the coefficient of variation output

rankings with low probabilities, with the abovementioned exceptions.

Mallow’s Φ-model is based on paired comparison of the ranked elements. It

can be formulated as

Pρ0,θ(ρ) =

(

∑

ρ

θ
X(ρ0,ρ)

)−1

· θX(ρ0,ρ), 0 ≤ θ < ∞,

in which X(ρ0, ρ) is Kendall’s τ distance, i.e., the number of disagreements

between ρ0 and ρ. ρ0 is an a priori set location parameter (e.g., themodal ranking

or an averaged ranking), and θ is a measure of variation, which is fitted from

the rankings with a table given in [86]. Following the methodology presented

by Feigin and Cohen in [86], the model also allows detecting outlier rankings.

When using the averaged ranking as location parameter and fitting θ accord-

ingly, the highest probability is obtained by the ranking of (wcv, ρMEW). The

second highest probabilities are achieved by the modal ranking, which already

accounts for the highest Luce probabilities. Again, the entropy rankings have

the third highest probability. This means that these three rankings are closest to

the averaged ranking, which was chosen as location parameter.

When the modal ranking is used as location parameter, the order of the first

and second rating changes, but the entropy rating still receives the third high-

est probability. The outlier detection, which mainly depends on the fitting of θ,

indicates that (wcv, ρMEW) is an outlier ranking whose probability is too high,

84

3.4 Ranking Methods

and that (wuni, ρSAW) and (wuni, ρVIKOR) are outliers whose probabilities are too

low, with values close to 0.

Following the approach described in [87], Figure 3.7 shows a boxplot of the

ranks of the different placements sorted by their median which is highlighted

by the bold horizontal bar in each box. In this plot, the lower and upper hinges

of each box correspond to the first and third quartiles while whiskers cover val-

ues whose distance to the hinges is no further than 1.5 times the inter-quartile

range (IQR). Points that are not within the whiskers’ range are considered to be

outliers and are displayed individually.

It can be observed that the boxes for the first five placements are very narrow,

indicating a large agreement among the different weighting-ranking combina-

tions. Only for the last five placements, there is some disagreement among the

different rankings. Despite this, several outliers can be observed for the entire

range of placements. However, a detailed analysis of the data shows that most

of these outlier ratings stem from the uniform weighting mechanism. Hence,

this weighting method can be used to generate a complementary view of the

placements. Such a view can be particularly useful in the context of short algo-

rithm run times during which only a limited number of available alternatives

are observed and can result in highly fluctuating weights as well as unreliable

estimates of the coefficient of variation, standard deviation, and entropy.

In summary, the different ranking methods show a high agreement among

each other, especially for the top-ranked placements. This means that, among

the investigated methods, no weighting-ranking combination stands out and

most of them are well suited to combine the Pareto-optimal placements into a

single score. Furthermore, the results suggest that using uniform weights can

lead to outlier rankings, which do not reproduce the majority rankings. This

stems from the fact that these rankings do not take into account characteristics

of the individual objectives that can be extracted from the Pareto frontier.

85

3 Automated Decision Making based on Pareto Frontiers

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Placement

R
a
n
k

Figure 3.7: Pareto optimal placements and their ranks according to the presented
ranking mechanisms.

3.4.2 Broad Evaluation on the Topology Zoo

The presented case study is generalized by applying the methodology to the

174 problem instances of the Internet Topology Zoo and five dimensions. The

aggregated performance over all instances provides better insights on the per-

formance of each of the weighting-ranking combinations. The first plot of Fig-

ure 3.8 shows the average Kendall τ correlation coefficient for all pairs of

weighting-ranking combinations. Similarly, the corresponding Spearman ρ cor-

relation coefficients are displayed in the second graph. In both plots, the color at

area (i, j) indicates the average correlation coefficient between combination i

and combination j over all problem instances according to the color scale on the

right. A perfect correlation is indicated by an orange area (e.g., (i, i) ∀ i), while

darker colors indicate lower correlations. A correlation coefficient of 0 is shown

in brown, while dark brown to black colors represent negative correlations.

86

3.4 Ranking Methods

Spearman

Kendall

(u
n
i,
 S

A
W

)

(u
n
i,
 M

E
W

)

(u
n
i,
 T

O
P

S
IS

)

(u
n
i,
 V

IK
O

R
)

(e
n
t,
 S

A
W

)

(e
n
t,
 M

E
W

)

(e
n
t,
 T

O
P

S
IS

)

(e
n
t,
 V

IK
O

R
)

(c
v,

 S
A

W
)

(c
v,

 M
E

W
)

(c
v,

 T
O

P
S

IS
)

(c
v,

 V
IK

O
R

)

(s
d
,
S

A
W

)

(s
d
,
M

E
W

)

(s
d
,
T

O
P

S
IS

)

(s
d
,
V

IK
O

R
)

(sd, VIKOR)

(sd, TOPSIS)

(sd, MEW)

(sd, SAW)

(cv, VIKOR)

(cv, TOPSIS)

(cv, MEW)

(cv, SAW)

(ent, VIKOR)

(ent, TOPSIS)

(ent, MEW)

(ent, SAW)

(uni, VIKOR)

(uni, TOPSIS)

(uni, MEW)

(uni, SAW)

(sd, VIKOR)

(sd, TOPSIS)

(sd, MEW)

(sd, SAW)

(cv, VIKOR)

(cv, TOPSIS)

(cv, MEW)

(cv, SAW)

(ent, VIKOR)

(ent, TOPSIS)

(ent, MEW)

(ent, SAW)

(uni, VIKOR)

(uni, TOPSIS)

(uni, MEW)

(uni, SAW)

 −1.0

 −0.5

 0

 0.5

 1.0

Figure 3.8: Average correlation coefficients between rankings that result from dif-
ferent weighting-ranking combinations for all topologies.

87

3 Automated Decision Making based on Pareto Frontiers

It can be observed that both average correlation coefficients give similar re-

sults for all pairs of combinations. The darker colors of row/column 1, 5, 9,

and 13 indicate that the rankings generated by SAW generally have little or

even negative correlations with the other rankings. The average Kendall and

Spearman correlations are especially low for combination 1, i.e., (wuni, ρSAW).

Moreover, using uniform weights (1 – 4) results in lower average correlations,

which is consistent with the prior observations regarding outlier rankings. The

highest correlations are achieved with combinations that feature entropy-based

weighting (5 – 8), which means that those combinations generate rankings that

are likely to have a high degree of similarity not only among each other but also

with rankings that are produced by other combinations.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

w
uni w

ent w
cv

w
sd

Weighting Method

F
ra

c
ti
o
n
 o

f
P

ro
b
le

m
 I
n
s
ta

n
c
e
s SAW

MEW
VIKOR

TOPSIS

Figure 3.9: Fraction of problem instances for which the placement that is proposed
by a weighting-ranking combination is in the top 3 of placements ac-
cording to the ranking that uses Luce probabilities.

Figure 3.9 shows the aggregated performance of all weighting-ranking com-

binations according to the Luce probabilities. While the x-axis indicates the

88

3.4 Ranking Methods

weighting method, the color of each bar represents the ranking mechanism.

For each combination, the y-axis represents the fraction of problem instances

for which the placement that is returned by the corresponding combination is

among the top 3 placements according to the Luce-based ranking of placements.

The rationale for this type of evaluation is to tolerate small perturbations in the

ranking.

We observe that the largest fraction of top 3 placements is identified when

using combinations that are based on SAW and MEW. Several of these com-

binations manage to successfully identify top 3 placements for more than 90%

of the investigated problem instances. In contrast, rankings that are based on

TOPSIS and VIKOR perform significantly worse in this evaluation. In the case

of the latter, this effect can be explained by the fact that VIKOR tries to achieve

a trade-off between the worst and the average case rather than fully focusing on

one aspect. Except for uniform weights that lead to outlier rankings and thus,

poor performance, the chosen weighting technique constitutes a secondary im-

pact factor on the performance. The highest success ratio is achievedwhen using

the entropy and coefficient of variation-based approaches.

All in all, the problem instances of the Internet Topology Zoo reveal findings

similar to those from the case study with the Internet2 OS3E topology. Uniform

weightings are likely to produce rankings that exhibit a low degree of correla-

tion with the rankings of other weighting-ranking combinations. Furthermore,

using the SAW ranking algorithm provides lower correlation coefficients, but

results in rankings that have high Luce probabilities on a significant portion of

problem instances. A worse performance is observed for the TOPSIS and VIKOR

algorithms, which rarely output rankings with high Luce probabilities. Instead,

when aiming towards rankings with high Luce probabilities, combinations that

are based on the MEWmechanism should be considered for ranking the Pareto-

optimal placements.

89

3 Automated Decision Making based on Pareto Frontiers

3.5 Lessons Learned

Many challenges in softwarized networks revolve around placement problems

in which the locations of entities such as SDN controllers, VNF instances or

chains, and VMs are optimized. Since this optimization is often performed in a

multi-objective fashion, operators are confronted with a multitude of possible

solutions that are incomparable among each other.

The goal of this chapter consists of designing and evaluatingmechanisms that

enable automated decision making between such multi-dimensional solutions.

To this end, we leverage techniques from the domain of multi-attribute decision

making that aggregate the performance of placements to a single numeric score.

We investigate a total of four weighting methods that allow determining the rel-

ative importance of individual objectives and four methods for aggregating the

performance of Pareto frontiers that are returned by multi-objective optimiza-

tion algorithms.

Our evaluations are performed in the context of the SDN controller place-

ment problem and feature a case study with an exemplary topology as well as a

broad evaluation on more than 170 problem instances with networks from the

Internet Topology Zoo. A comparison between the resulting rankings of place-

ments demonstrates that many techniques produce similar results in terms of

the highest ranked placements. Hence, decisions based on a majority vote from

multiple mechanisms can be used to identify viable candidates in the context

of automated decision making and improve the robustness of the resulting de-

cision. Moreover, the high degree of agreement between different mechanisms

suggests the presence of an inherent order of placements that can be extracted

with these mechanisms.

Additionally, we confirm our findings by means of two probabilistic models

that derive probabilities for rankings. In this context, we show that in over 90%

of cases, the combination of entropy-based weights and scoring based on multi-

plicative exponent weighting manages to successfully identify a placement that

is among the top 3 according to the probabilistic model.

90

3.5 Lessons Learned

Finally, we demonstrate that using uniform weights leads to outlier rankings

that exhibit a high degree of dissimilarity towards rankings that are based on the

remaining weighting techniques. This phenomenon can be explained by the fact

that uniform weights do not take into account available information regarding

characteristics of the objectives in general and their behavior within specific

problem instances in particular. Nevertheless, such outlier rankings can provide

a complementary view on the ranked placements.

91

4 Integration of Network

Management Information into the

SDN Control Plane

With Software Defined Networking (SDN), operators benefit from a higher flex-

ibility, cost efficiency, as well as programmability of their networks [26]. In

addition to their southbound capabilities for controlling the forwarding plane

of SDN-enabled switches, modern controller implementations also offer north-

bound interfaces (cf. Figure 1.1) that can be used to exchange information with

entities such as Network Management Systems (NMSs). Similarly to the con-

troller, an NMS offers a centralized view of the entire network as well as config-

uration capabilities. In contrast to controllers, however, an NMS can also provide

information regarding legacy devices in the context of hybrid SDN deployments

and usually has access to more detailed monitoring information, e.g., bandwidth

and delay data on a per-link basis. A key difference between these centralized

control and management entities consists of the different time scales and gran-

ularities at which information is collected, processed, and stored [96, 97].

This gives rise to several research questions. Firstly, does exchanging relevant

information improve network performance in terms of aspects like through-

put and fairness? In this context, metrics for quantifying the improvement are

required. Secondly, what are the resulting trade-offs in terms of complexity of

implementation, communication overhead, and additional hardware or software

requirements? Furthermore, themigration fromNMS-managed legacy networks

to SDN-based networks poses a multitude of challenges. A frequently discussed

93

4 Integration of Network Management Information into the SDN Control Plane

question in this context revolves around choosing an architecture and the re-

sponsibilities of involved actors, e.g., whether NMS and SDN controllers coexist

and communicate or their functionalities are merged into one entity [98]. Fi-

nally, options for an incremental migration [99] and mechanisms for handling

the resulting heterogeneity [100] need to be considered.

In this chapter, we study the information exchange between an NMS and an

SDN controller. Ourmain goal consists of evaluating the impact of the additional

information on the quality of control plane decisions. Hence, in order to main-

tain a separation of concerns between the management and control entities, our

main focus is the control loop. To this end, we extend the popular ONOS (Open

Network Operating System) controller [32] with the capability to receive and

utilize NMS-based measurements regarding available link bandwidth as well as

the bandwidth consumption of individual flows via its REST interface. Further-

more, we leverage ONOS’s intent framework and annotation mechanisms to

enable NMS-awareness, maintain a fair bandwidth distribution between net-

work links, and therefore maximize the overall throughput. Our evaluations are

performed in a purely SDN-based deployment without legacy components.

In addition to the abovementionedNMS-aware controller variant, we improve

ONOS’s default path choice algorithm in order to achieve a better flow distri-

bution across multiple equal-cost paths. Furthermore, this modified variant rep-

resents another trade-off between the overall system complexity and required

implementation effort of the NMS-aware controller and the default controller

implementation.

In order to demonstrate the feasibility of the proposed NMS-aware controller,

we perform an in-depth evaluation of the behavior of all three controllers in a

proof-of-concept scenario. Afterwards, we investigate the influence of different

parameters such as flow interarrival times, flow duration, and the number of

active flows on the performance in terms of throughput and several fairness

measures. Finally, the source code of all modified controller versions as well as

94

4.1 Background and Related Work

the corresponding evaluation framework is published via github1,2 so that other

researchers can reproduce the presented results or use them as foundation for

further extensions.

This chapter is based on content that has been published in [18] and is or-

ganized as follows. In Section 4.1, we discuss related work. Section 4.2 covers

details regarding the three controller implementations as well as the evaluation

setup and methodology. After presenting the results of the performance com-

parison and the parameter study in Section 4.3, Section 4.4 concludes the chapter

with an overview of lessons learned.

4.1 Background and Related Work

In this section, we provide the necessary background regarding the ONOS SDN

controller in general as well as its intent and annotation mechanisms in partic-

ular. Furthermore, uses of SDN in the context of enhanced QoS control are dis-

cussed. Finally, we survey literature regarding approaches that combine SDN

with network management techniques in order to improve network perfor-

mance.

4.1.1 ONOS SDN Controller Platform

During the course of this work, we utilize the ONOS SDN controller [32]. Apart

from offering the basic set of features that are necessary for dictating the for-

warding behavior of SDN-enabled switches, the ONOS platform supports ad-

vanced features such as distributed deployments acrossmultiple servers for scal-

ability and fault tolerance as well as an extensible northbound interface that

can be exposed via REST. Since ONOS is an open source project with partners3

that include telecommunication providers, hardware vendors, and research in-

stitutes, it is widely used both in academia and industry.

1h�ps://github.com/lsinfo3/nms-aware-onos
2h�ps://github.com/lsinfo3/nms-onos-meas
3h�ps://onosproject.org/members/

95

4 Integration of Network Management Information into the SDN Control Plane

Furthermore, ONOS provides features that are particularly useful for the pro-

posed interaction with external information sources like NMSs and the integra-

tion of this information into control plane decisions.

Firstly, the annotation framework provides means to enrich the controller’s

internal topology representation with custom information such as the available

and remaining bandwidth of individual links. By exposing this feature via an

API, external entities can supply their monitoring data and the controller can

take it into account during its decision making process.

Secondly, the intent framework offers abstractions for defining QoS-level re-

quirements and policies that are internally translated to appropriate flow rules.

With this abstraction, an operator or network administrator does not have to

explicitly define the desired path from source to destination by means of indi-

vidual flow rules on the corresponding switches. Instead she just needs to spec-

ify source, destination, and possibly constraints as well as requirements w.r.t.

delay or bandwidth and can rely on the controller’s intent compiler to generate

appropriate flow rules, install them on the switches, and even migrate the flows

in order to maintain the requirements. In the latter case, upon receiving up-

dates regarding the network’s state, the controller automatically recompiles the

intents and, if necessary, modifies installed flow rules in order to meet the cor-

responding constraints. In the case that an intent can no longer be fulfilled, the

controller can handle the respective portion of the traffic in a best-effort fashion

and notify the administrator or NMS of the issue. Although intent mechanisms

are in development for other controller platforms such as OpenDaylight [98], at

the time of writing, the one provided by ONOS was the most mature in terms

of documentation, features, and stability.

4.1.2 SDN for QoS Control

Even without using a dedicated network management system, SDN-based con-

trol can be leveraged in order to improve different aspects of network perfor-

mance. For instance, [101, 102] propose new OpenFlow controllers that focus on

96

4.1 Background and Related Work

improving the quality of multimedia applications such as adaptive video stream-

ing. Furthermore, [103] introduces an SDN controller capable of providing suit-

able QoS levels for specific multimedia applications. However, in contrast to

our work, the controller itself is used for data collection and monitoring rather

than an external entity such as an NMS. This places an additional burden on

the controller and is limited to monitoring SDN-enabled devices. Similar issues

can arise with integrated controller platforms like OpenDaylight [98] that pro-

vide plugins for legacy protocols such as SNMP and therefore add responsibili-

ties to the SDN controller. Finally, [104] and [105] focus on the use of SDN for

bandwidth-related optimization. In particular, the authors of [105] demonstrate

that OpenFlow can be used to enable per-flow bandwidth guarantees. However,

the bandwidth requirements and flow-to-path assignments are already preset

whereas they are exchanged and calculated dynamically in our case. Further-

more, this prior knowledge of flows’ bandwidth requirements allows enforcing

said bandwidth guarantees by performing admission control at the controller,

i.e., rejecting flows whose bandwidth requirements exceed the remaining band-

width of available paths.

4.1.3 Management Architectures with SDN Components

Numerous research efforts focus on management frameworks that leverage the

SDN paradigm. By using an integrated network management and control sys-

tem (i-NMCS), [106] proposes a QoS control architecture that can be configured

by means of policies. In contrast to developing and using a specialized SDN con-

troller such as the i-NMCS, our NMS-aware approach is based on the publicly

available and frequently updated ONOS controller. In [107], an NMS is used to

manage an SDN-based network by extending the SDN controller with north-

bound SNMP capabilities. While this approach enables monitoring SDN com-

ponents, it lacks means to configure the controller. We address this by actively

using NMS information in SDN control plane decisions.

97

4 Integration of Network Management Information into the SDN Control Plane

The authors of [108] present two methods of integrating SDN and non-SDN

management mechanisms. In this context, distributed operations centers collect

network information and communicate with SDN controllers either by means

of their southbound or east- and westbound interfaces that are extended with

support for non-SDN entities. We follow a third path by utilizing the global view

of the NMS and minimizing the management overhead that is incurred at the

controller.

A completely new management framework including a high level language

to achieve event driven network control is presented in [109]. By using policies

that evolve based on aspects like time, history, users, or traffic characteristics,

decisions can be made at a fine granularity. In contrast, we enable the integra-

tion of existing NMSs by providing appropriate interfaces at the SDN controller.

Policies can then be implemented on demand by means of the controller’s in-

tent and constraint mechanisms. Finally, a decentralized network management

framework is proposed in [110]. While this framework relies on a novel protocol

for the communication with control entities, we use existing REST interfaces for

the exchange of management information.

4.2 Measurement Evnironment and Components

In this section, the measurement environment is described alongside its core

components. This includes details regarding the three ONOS controller types,

the NMS, and the traffic generator. Finally, we present an overview of our ex-

periments as well as performance indicators and parameters.

4.2.1 SDN Controllers

In order to evaluate trade-offs in terms of complexity and performance gains,

we consider a total of three types of ONOS controllers [32] in this work. As

discussed in the previous section, we chose ONOS for several reasons. Firstly,

its annotation framework provides means to directly integrate external infor-

98

4.2 Measurement Evnironment and Components

mation into the control plane. Secondly, in combination with the intent frame-

work, flow rules can be recompiled and modified automatically upon receiving

updated information.

Default ONOS

Firstly, we use the default ONOS controller that is directly available from the

project’s git repository4. The default controller does not utilize external infor-

mation sources. This ONOS variant uses a path assignment algorithm for flows

that deterministically chooses the first available path in the case of equal-cost

paths. Hence, using this controller can lead to significant load imbalance in net-

works that feature many such paths. In extreme cases, this can lead to one link

or path being overloaded while others are completely idle. Therefore, we imple-

ment a controller type that alleviates this issue.

During the course of this work, we show results from ONOS version 1.7.0

whichwas the latest stable versionwhen ourwork started. However, we updated

the code to work with ONOS version 1.12.1 and verified that the update did not

have a significant performance impact on any of the three controller variants.

Hash-based path assignment

In order to address the abovementioned drawback, we modify the path assign-

ment algorithm that is invoked when packet_in events arrive at the controller

as follows. Like in the case of the default ONOS controller, a list of shortest

paths from source to destination is determined. However, instead of assigning

the flow that corresponds to the received packet_in event to the first path in the

list, a hash of the five-tuple (src IP, src port, dst IP, dst port, protocol) is calcu-

lated. Afterwards, the hash is taken modulo the number of available paths and

assigned to the corresponding path. This serves two goals. On the one hand,

an expected uniform distribution of flows across paths is achieved [111]. On

the other hand, flows that have the same five-tuple are always assigned to the

4h�ps://github.com/opennetworkinglab/onos

99

4 Integration of Network Management Information into the SDN Control Plane

same path since the result of the hash function does not change. All described

changes are performed in ONOS’s ConncectivityIntentCompiler class and have

been submitted to the official repository as a pull request5.

NMS-aware, intent-based ONOS

In the case of the NMS-aware ONOS controller, external information from the

NMS is received regularly via the controller’s RESTAPI. For the presented proof-

of-concept implementation, this information includes the bandwidth utilization

of all flows as well as the capacity and utilization of all links in the network.

While the bandwidth data could be inferred from switch statistics by the con-

troller, we argue that this would put an additional computational burden on the

controller and would also break the separation of concerns. Furthermore, the set

of statistics can be easily extended with more information such as link delays or

application specific estimates of the Quality of Experience (QoE) for end users.

Since ONOS provides a representation of the network topology by default, we

use this TopologyStore to annotate the links according to the information pro-

vided by the NMS. The information is then used in three ways. Firstly, the path

assignment of flows on packet_in events is based on the remaining bandwidth

of involved links. In particular, flows are assigned to the shortest path with the

highest remaining bandwidth. For a given path, this value is calculated as the

minimum remaining bandwidth across all the links it is composed of. The ra-

tionale for this path assignment strategy consists of maximizing the probability

that a flow’s throughput is not limited due to bandwidth scarcity.

The second use of the external information consists of adapting to dynami-

cally changing network conditions. When the NMS provides updated measure-

ments, the controller can reallocate flows onto paths via bin packing in order to

maximize throughput or perform load balancing across links.

Finally, ONOS’s intent framework is used for maintaining flow-level QoS re-

quirements. This is achieved with constraints such as the required or minimum

5h�ps://github.com/opennetworkinglab/onos/pull/41

100

4.2 Measurement Evnironment and Components

bandwidth of a flow that are provided by the NMS. In the case of a constraint

violation, the controller automatically attempts to find an alternative path for

the corresponding flow and reallocates it. Otherwise, a warning can be sent to

the NMS or the network operator who can react appropriately. The majority

of described modifications and adaptations are performed in ONOS’s HostTo-

HostIntentCompiler and its IntentReactiveForwarding application.

4.2.2 Testbed Setup and Interaction between Components

Since one of the main goals of this work consists of demonstrating the feasibil-

ity of the proposed NMS-aware controller, we use a simple network topology

that is emulated in Mininet6. The individual components, such as the controller,

the network, and the NMS are placed in different virtual machines (VMs) on a

Linux PC7. Figure 4.1 shows the measurement setup that is used in the course

of this work. Each VM is assigned one CPU core as well as 2 GB of RAM. The

ONOS controller is deployed on the first VM. This allows to conveniently switch

between controller implementations and logging their respective resource uti-

lization. The emulated network and the traffic generating hosts are deployed on

the second VM. In the context of the NMS-aware controller scenario, the NMS

is also deployed on the second VM.

We use a topology that is comprised of a total of four switches that are con-

nected according to Figure 4.1. This results in two paths between switches S1

and S3 that have equal costs in terms of the hop count. Additionally, emulated

hosts are connected to switches S1 and S3 that act as client and server of the

iperf8 load generator, respectively. During an experiment, these hosts exchange

TCP and UDP packets at varying rates that correspond to different flows in the

network.

In order to limit the resource utilization on the Mininet VM, we restrict the

available bandwidth of each path between S1 and S3 to 1Mbps by using the

6h�p://mininet.org/
7Ubuntu 16.04. Intel Core i5 2520M with 2 cores and 4 threads, 3.2 GHz clock speed. 8 GB of RAM.
8h�ps://iperf.fr/

101

4 Integration of Network Management Information into the SDN Control Plane

VM 2 – Mininet / NMSVM 1 – ONOS

iperf
Clients

iperf
Server

NMS

Measurements (tcpdump)
Traffic Control (tc)

S1

S2

S4

S3 Monitor

Update

Control

Figure 4.1: Measurement setup.

Linux traffic control tool tc on the ingress and egress ports of switches S2 and

S4, respectively (cf. Figure 4.1). To allow an in-depth investigation of achieved

bandwidths, packet loss, and packet reordering phenomena, we use tcpdump at

different points in the network to capture and evaluate packet data. The mea-

surement points are located at the ingress port of S1, representing the offered

load, egress ports of S2 and S4, representing the load distribution between avail-

able paths, and the egress port of S3, representing the traffic that arrives at the

sink.

102

4.2 Measurement Evnironment and Components

The role of the NMS is fulfilled by a Python-based tool that was implemented

during the course of this work and which is also published on github9 alongside

the controller implementations. Using a configuration file, this tool is aware of

the aforementioned bandwidth limits and capacities of each link. Furthermore,

SSH connections are used to instantiate iperf clients on the corresponding host

and monitor the output of the iperf server at the sink. Using this data and in-

formation on the switches’ flow table entries, it can regularly infer the flow

distribution across paths as well as the bandwidth requirements and utilization

of individual links. These updates are transferred to the controller by sending

appropriate messages to its REST API. With this controller interface, it is pos-

sible to integrate external information from an arbitrary source as long as it

implements the interface. This source can be a full-blown NMS or a simple mea-

surement provider such as the one that is outlined above. Using the latter is a

conscious decision to abstract the functionality of involved instances.

In scenarios in which the controller does not use the NMS as external infor-

mation source, the Python tool acts as orchestrator for experiments. In partic-

ular, it sets up the measurement environment and collects as well as processes

measurement information for the evaluation.

4.2.3 Experiment Design

In order to ensure a reproducible and convenient execution of experiments, we

use the procedure that is described in this section. After specifying a set of pa-

rameters in a configuration file, measurement data for our evaluations is auto-

matically collected as follows. As a first step, both VMs are freshly instantiated

in order to avoid side effects from previous runs. These include unexpected for-

warding behavior due to installed flows and intents in the switches and the con-

troller that have not yet timed out as well as performance fluctuations due to

unused data structures inside the controller that have not yet been removed by

the garbage collector. Then, the appropriate controller type is launched inside

9h�ps://github.com/lsinfo3/nms-aware-onos-measurements

103

4 Integration of Network Management Information into the SDN Control Plane

the first VM. Afterwards, the configured network topology is started in Mininet

and connected to the controller. This step also includes setting the bandwidth

limits with tc. To enable the remote instantiation of traffic flows, SSH clients are

launched on the two hosts.

Finally, the NMS regularly performs its monitoring and update tasks accord-

ing to the configuration. During the entire experiment, tcpdump instances at

the four points of interest that are highlighted in Figure 4.1 capture all passing

traffic. After each run, this data is used to calculate the performance indicators

that are defined in the next section.

4.2.4 Parameters and Performance Indicators

Several network parameters can affect the performance of the three controller

types that are discussed in this work. Therefore, our evaluation framework al-

lows varying them and quantifying their impact. The parameters can be subdi-

vided into two categories. The first category is comprised of traffic characteris-

tics. These include the flow interarrival time, the mean number of active flows,

the mean duration and bandwidth of flows, as well as the transport protocol that

is used for transmission. These parameters also implicitly control the offered

load that is applied to the network since it can be derived from the number of

flows and their average requested bandwidth.

Parameters related to the NMSmake up the second category. One of the main

influence factors is the frequency of the information exchange between the NMS

and the SDN controller. This parameter is also referred to as the NMS update

interval, i.e., the number of seconds between consecutive updates. Therefore, it

can also be used to reflect the fact that an NMS usually operates at a coarser

time scale than the controller. While control tasks are reported to have required

response times in the sub-second range, it is sufficient to perform management

tasks in the order of several seconds [96]. Furthermore, measurements in real

world networks might be less accurate than those in a controlled experimental

environment. This, in turn, can affect the controller’s decision making process.

104

4.2 Measurement Evnironment and Components

In order to evaluate the impact of such inaccuracies, our framework allows spec-

ifying a percentage by which measurement data is distorted before being sent

to the controller.

In order to make quantitative statements regarding the performance implica-

tions of the different controller types, we use several metrics that cover differ-

ent performance aspects. One of the most important performance indicators in

a network is the throughput which also represents the resource efficiency when

compared to its theoretical maximum. In this work, we define the throughput

indicator T (t) at time t as

T (t) =
Tout(t)

min (Tin(t), bmax)
. (4.1)

Hence, given Tin(t) and Tout(t), the throughput that is measured at the source

and sink at time t, respectively, we calculate their ratio. This ratio also takes into

account the possibility that more traffic is offered to the network than it can

handle according to the bandwidth limits of the network links, bmax, by using the

minimum operator in the denominator. Therefore, this performance indicator

can attain values between 0 and 1. In this context, a value of 1 represents the best

case, i.e., either the entire traffic that is sent from the source arrives at the sink

or, in the case of overload, as much data as the links can handle is transported.

Apart from the throughput, a fair traffic distribution in the network is impor-

tant in order to avoid overload situations. We represent this fairness from two

perspectives, namely link-based and flow-based. In the case of the link-based

fairness, we strive for a uniform distribution of the ratio between the traffic that

passes a link and its capacity, with respect to all links. Similarly, in the case of

flow-based fairness, the ratio between the throughput that a flow achieves and

its requested bandwidth is considered. In both cases, we use the fairness metric

defined in [112]. In contrast to other fairness metrics like Jain’s fairness index,

this metric has a fixed range between 0 and 1 which does not depend on the

range or the composition of observed values. It is defined as

105

4 Integration of Network Management Information into the SDN Control Plane

F = 1−
σ

σmax
, (4.2)

and is based on the ratio between the standard deviation of observed values

and their maximum possible standard deviation. Again, a value of 1 indicates

the best outcome. This is the case when the standard deviation equals 0 and

therefore yields a perfectly fair distribution where each link or flow achieves

the same ratio between requested and received resources.

Furthermore, we log the CPU and memory utilization of the controller VM

in order to assess the computational overhead that is caused by the additional

processing of external information. To this end, the top tool is invoked once per

second on the corresponding VM and its output is stored in a log file. Since flows

can also be dynamically reallocated in the case of the NMS-aware controller (cf.

Section 4.2.1), we also log the number of flow reallocations per minute in order

to quantify the fluctuations caused by this behavior. In case such reallocation

behavior is unwanted due to sensitivity towards effects like packet reordering,

it can be deactivated by performing few changes in the code.

4.3 Performance Evaluation of the NMS-Aware SDN

Controller

This section provides the results of the experiments that are described in Sec-

tion 4.2. In order to demonstrate the viability of the NMS-aware approach and

illustrate its key mechanisms, we begin with an in-depth investigation into the

behavior of the three controller types in a simple scenario. Subsequently, we

vary several network parameters and evaluate the performance gains across

many conditions, in order to determine whether the performance improvements

persist. Finally, we focus on the influence of individual network andNMS param-

eters on the performance of the NMS-aware controller. This allows identifying

key influence factors and parameter combinations that require special attention

in a real world deployment.

106

4.3 Performance Evaluation of the NMS-Aware SDN Controller

4.3.1 Detailed Case Study of the Controller Behavior in a

Bandwidth-Limited Environment

For the proof-of-concept scenario, we highlight the throughput and traffic dis-

tribution that is achieved with the three controller variants under dynamically

varying load conditions. These range from a low load scenario with few active

flows to an overload situation in which the total requested bandwidth exceeds

the capacity of the available links. To this end, we utilize the following param-

eters and procedure. At the beginning of the experiment, the traffic source that

is attached to switch S1 launches four iperf clients that each send UDP traffic

at a rate of 200 kbps for 300 seconds. After 40 and 80 seconds, additional groups

of four clients are launched with the same settings. The experiment has a total

duration of 400 seconds in order to accommodate the active period of all flows.

During the interval between 80 and 300 seconds, a total of 12 flows are active,

resulting in an offered bitrate of 2,400 kbps. Hence, the bandwidth limit of the

network which is set to a total of 2Mbps (1Mbps per path) is exceeded and

packet loss is expected. In the remaining periods, it is possible to deliver the

entire traffic from source to sink without loss. For the NMS scenario, an update

interval of 10 seconds is used.

Figure 4.2 displays the throughput between source and sink during the exper-

iment when using each of the three controller types. For the remainder of this

section, these are referred to as DEF, MOD, and NMS, respectively.

Additionally, the distribution of the traffic across the two possible paths is

presented in order to highlight each type’s particular behavior in terms of path

assignment. In Figure 4.2a, the y-axis represents the total throughput that is

measured at the ingress port of S1 and the egress port of S3, respectively. Since

the former is identical for all three controller variants, it is represented by one

curve. In contrast, there are three curves that correspond to the throughput

that is achieved by the individual controller types. The x-axis shows the relative

timestamp of each measurement.

107

4 Integration of Network Management Information into the SDN Control Plane

Bandwidth Limit

Input at S1

DEF MOD NMS

0

500

1000

1500

2000

2500

0 100 200 300 400

Time [s]

T
h
ro

u
g
h
p
u
t
[k

b
it
/s

]

(a) Throughput between source and sink for all controller variants.

Bandwidth Limit

S2

S4

0

200

400

600

800

1000

0 100 200 300 400

Time [s]

T
h
ro

u
g
h
p
u
t
[k

b
it
/s

]

(b) Throughput per path for modified ONOS.

Bandwidth Limit

S2 S4

0

200

400

600

800

1000

0 100 200 300 400

Time [s]

T
h
ro

u
g
h
p
u
t
[k

b
it
/s

]

(c) Throughput per path for NMS-aware ONOS.

Figure 4.2: Exemplary development of the throughput at the four measurement
points for all ONOS variants.

108

4.3 Performance Evaluation of the NMS-Aware SDN Controller

In the case of the default ONOS controller, the throughput rises to 800 kbps as

soon as the first batch of flows start. When the number of flows exceeds 5, the

total throughput remains at slightly less than 1Mbit due to the fact that all flows

are routed through the first path while the second remains idle. This behavior

motivates the need for the modification that is used by our hash-based path

assignment mechanism. Using this mechanism results in a significantly better

performance regarding the throughput. Even after more than 5 flows are active

in the network, the throughput increases, up to a value of roughly 1,500 kbps.

However, the gap between MOD and the curves that represent the bandwidth

limit and the offered load at S1 indicates that the two available paths are not fully

utilized. Finally, the NMS-aware controller manages to maintain a near optimal

throughput for the majority of the experiment run. As discussed in the previous

paragraph, it is not possible to achieve an exact match between source and sink

during the entire experiment. This stems from the fact that during the interval

between 80 and 300 seconds, more traffic is offered to the network than it can

candle. However, during that interval of overload, a value close to the maximum

possible throughput according to the 2Mbps limit is achieved.

In Figures 4.2b and 4.2c, the traffic distribution among the two paths for the

MOD and NMS mechanisms are displayed. These help explaining the obser-

vations in the first figure. In the case of the modified controller, the majority of

flows is assigned to the path that contains S2. Therefore, this path is overutilized

while the path that contains S4 has remaining unused capacity. Since the hash

function does not have a memory to take into account the current flow distribu-

tion, such imbalances can occur, especially in cases with a relatively low number

of flows. In contrast, the NMS-aware controller manages to distribute the flows

evenly across the available paths. This results in almost equal throughput on

each path and a high utilization even during the overload phase. Furthermore,

the adaptation and reallocation mechanism can be seen at 60 seconds. Here, a

new flow arrives and is routed through S4. Upon receiving the NMS update re-

garding the imbalance between paths, it is reallocated to S2 in order to maintain

the balance.

109

4 Integration of Network Management Information into the SDN Control Plane

Since this proof-of-concept scenario highlights the poor performance of the

default path assignment strategy, we focus on the results of the MOD and NMS

versions for the remainder of this work. They function as representatives for

controllers that work without and with external information, respectively.

4.3.2 Investigation of Throughput, Fairness, and

Overhead in Networks with Dynamic Traffic

Fluctuations

In order to ensure that the observed performance gains persist beyond the proof-

of-concept scenario, we now present aggregated results that are obtained from

multiple runs and numerous parameter combinations. For each parameter com-

bination, we perform experiment runs that each last 10minutes. Since perfor-

mance indicators are reported on a per-second basis and only minor perfor-

mance fluctuations are observed between different runs for a given parameter

combination, 10 runs are sufficient in order to obtain statistically reliable re-

sults. We use a negative exponential distribution for flow interarrival times and

vary their mean between 20 and 60 seconds with a step size of 10 seconds. The

mean flow duration takes on values between 160 and 480 seconds. We use com-

binations of the flow interarrival time and the flow duration to ensure that an

average of 8 flows with 200 kbps are active in the network. This results in an

average offered load of 80%. In the following, we present average values and

distributions of the performance metrics achieved by the two controller types.

For all runs and all parameter combinations, Figure 4.3 shows themean values

and 95% confidence intervals for four performance metrics. These include the

throughput, link and flow fairness, and the CPU load of the controller VM. In

this plot, differently colored bars correspond to different controller variants.

For all network performance metrics, using the NMS-aware controller results

in an improvement, as indicated by higher mean values and non-overlapping

confidence intervals. In particular, a significantly higher link fairness is achieved

by the NMS-aware controller. This highlights its focus on load balancing with

110

4.3 Performance Evaluation of the NMS-Aware SDN Controller

Throughput Link Fairness Flow Fairness CPU Load

MOD NMS MOD NMS MOD NMS MOD NMS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Controller Version

M
e
a
n
 M

e
tr

ic
 V

a
lu

e

Figure 4.3: Comparison of performance indicators for modified and NMS-aware
ONOS variants across all experiments.

respect to shortest paths. Additionally, the trade-off that is caused by the com-

putational overhead for processing external NMS information is reflected by

an increased CPU load at the controller. Since the two controller types achieve

a similar performance with respect to the mean throughput and flow fairness

metrics, we show their distributions in Figure 4.4.

The distribution of the throughput metric that is displayed in Figure 4.4a pro-

vides two main insights. Firstly, there is a significant difference in quantiles that

correspond to the optimal throughput value of 1. In particular, the modified

ONOS controller achieves this value in roughly 55% of the time while the NMS-

aware controller does so in almost 70% of cases. This observation highlights the

effect of the optimized flow to path assignment strategy that is employed by

the NMS-aware controller. Secondly, using the NMS-aware controller leads to

significantly fewer outliers in terms of the throughput, as indicated by the 10

percent quantiles. These differ by roughly 8% and demonstrate the stability and

reliability of the NMS-aware approach.

111

4 Integration of Network Management Information into the SDN Control Plane

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0

Throughput

E
C

D
F Controller

Type
MOD
NMS

(a) Throughput.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.85 0.90 0.95 1.00

Flow Fairness

E
C

D
F Controller

Type
MOD
NMS

(b) Flow fairness.

Figure 4.4: Distributions of throughput and flow fairness values for modified and
NMS-aware ONOS across all experiments.

112

4.3 Performance Evaluation of the NMS-Aware SDN Controller

Figure 4.4b contains the distributions of the flow fairness metric. The nar-

rower interval of displayed x-values indicates that high values are achieved by

both controller variants. This can be explained by the fact that the utilized trans-

port protocols already take care of many aspects that regard our flow fairness

metric, i.e., fair resource sharing among flows on the same link. Still, the NMS-

aware controller outperforms the modified ONOS controller, as highlighted by

the gap between the two curves. This phenomenon stems from the fact that a

better distribution of flows across links leads to a better throughput, fewer con-

gested links, and therefore, a more stable and fair per-flow resource distribution.

4.3.3 Implications of the Flow Interarrival Time and the

Information Exchange Rate

After confirming the performance improvements that are achieved with the

NMS-aware controller in the previous section, this section is devoted to investi-

gations regarding the performance impact of different network and NMS char-

acteristics on the NMS-aware controller. Again, the presented results are based

on 10 experiment repetitions per parameter value and each experiment has a

run time of 10minutes.

Figure 4.5 displays the influence of the average flow interarrival time on the

throughput and the flow reallocation rate of the NMS-aware controller. Both

subfigures contain empirical cumulative distribution functions for the two met-

rics, i.e., the y-axis shows the fraction of measurements for which the metric

value is smaller than or equal to the value on the x-axis. Differently colored

curves correspond to different flow interarrival times (IAT) that are varied be-

tween 20 and 60 seconds.

The results regarding the throughput metric are shown in Figure 4.5a. There

are two main observations. Firstly, the throughput metric never falls below 75%

and the 25 percent quantile is at roughly 93% for all parameter values. This

highlights the focus of the NMS-aware controller on maximizing throughput.

Secondly, the achieved throughput values increase monotonically with the flow

113

4 Integration of Network Management Information into the SDN Control Plane

IAT [s] = 20, 30, 40, 50, 60

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.75 0.80 0.85 0.90 0.95 1.00

Throughput

E
C

D
F

(a) Throughput.

IAT [s] = 20, 30, 40, 50, 60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6

Reallocations [min
−1

]

E
C

D
F

(b) Flow reallocation rate.

Figure 4.5: Influence of the average flow interarrival time on the performance of
the NMS-aware ONOS controller.

114

4.3 Performance Evaluation of the NMS-Aware SDN Controller

interarrival time. This can be explained by the fact that a higher flow interarrival

time results in a lower fluctuation and that flows remain optimally distributed

across links after an NMS update.

Similar observations can be made regarding the results with respect to the

flow reallocation rate that is presented in Figure 4.5b. A low flow interarrival

time leads to an increased fluctuation of the flow population in the network and

thus, results in a higher number of flow reallocations. Note that since the real-

location rate is computed on a per-run basis rather than for each point in time

as in the case of the remaining metrics, its distribution contains fewer distinct

x-values.

In addition to traffic characteristics like the flow interarrival time, parameters

that govern the behavior of the NMS can have a significant impact on the overall

performance. Hence, Figure 4.6 displays performance results with respect to the

throughput metric when the NMS update interval is varied. For this parameter,

we use values between 10 and 120 seconds and present the empirical CDF of the

throughput. In the figure, differently colored curves represent different update

intervals.

Our first observation is that the throughput metric monotonically improves

for shorter update intervals. This phenomenon can be explained by the fact that

a shorter update interval leads to more optimizations at the controller and there-

fore faster convergence towards configurations that permit a higher through-

put. On the other hand, faster update cycles also lead to more reallocations and

thus, represent a trade-off between stability and optimality. However, it should

be noted that most of the differences occur below the 40% quantile. Even for

an update interval of 2minutes, a median of 97% for the throughput metric is

achieved. This indicates that even though the controller and the NMS operate at

different time scales, the network performance can be improved by the proposed

information exchange.

Further evaluations show the effects of the number of flows and the trans-

port protocol on the performance metrics. When the number of flows is varied

for a given amount of offered load, performance metrics tend to improve with

115

4 Integration of Network Management Information into the SDN Control Plane

Update Interval [s] = 120, 90, 60, 30, 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.5 0.6 0.7 0.8 0.9 1.0

Throughput

E
C

D
F

Figure 4.6: Influence of the NMS update interval on the performance of the NMS-
aware ONOS controller.

a higher number of flows. This can be explained by the fact that a finer gran-

ularity for the flow to path assignment is possible in such scenarios. However,

the number of reallocations also increases with the number of flows. In the case

of offered load, we observe that most metrics achieve better values in scenar-

ios with low loads. This is caused by the resulting absence or low number of

reallocations and therefore stable performance throughout the measurements.

Furthermore, we tested our NMS-aware controller with TCP and UDP traffic

and did not observe significant performance differences between the two.

4.4 Lessons Learned

In order to efficiently control and manage large amounts of heterogeneous de-

vices, several technologies are utilized in today’s networks. On the one hand,

paradigms such as software defined networking (SDN) separate the control

plane from the data plane of forwarding devices and provide open interfaces

in order to improve network flexibility and enable network programmability.

On the other hand, network management systems (NMSs) allow monitoring,

116

4.4 Lessons Learned

configuring, and managing large networks. Due to the centralized view of both,

SDN and NMS, and their different levels of information granularity and time

scales, a mutual information exchange can be used in order to achieve various

performance improvements.

In this chapter, we investigate mechanisms for integrating external NMS in-

formation into the control plane decisions of SDN controllers. Furthermore, we

analyze the trade-offs with respect to the complexity of the resulting systems

and their performance gains over SDN controllers that operate without external

information sources.

To this end, we design and implement an NMS-aware version of the popular

ONOS controller that receives external measurements via its REST API and uses

them in conjunction with its intent framework to improve the decision making

process with respect to the assignment of flows to paths in the network. The

NMS measurements include information regarding the remaining bandwidth

capacity per link as well as the bandwidth utilization per flow. Furthermore, we

fix an issue in ONOS’s default path assignment algorithm in order to allow for

a fair comparison between the mechanisms. We publish the implementation of

all controller variants as well as the framework that is used for their perfor-

mance evaluation on github, enabling reproducibility and encouraging future

extensions.

Our evaluations yield three main contributions. Firstly, a proof-of-concept

study demonstrates the practicability of the proposed NMS-aware controller.

In this context, improvements in terms of throughput and fair load distribution

among flows and links are observed. Secondly, numerous parameters such as the

flow interarrival time, the mean number of flows, and the average flow duration

are varied in order to perform an in-depth performance comparison. Again, us-

ing the NMS-aware controller results in a significantly improved performance

regarding throughput and fairness. However, we also highlight that these ben-

efits come at the price of an increased CPU load that needs to be taken into

account prior to deployment. Finally, we conduct a parameter study to deter-

mine the influence of the aforementioned parameters on the performance of the

117

4 Integration of Network Management Information into the SDN Control Plane

NMS-aware controller with respect to the achieved throughput, fairness, and

the number of flow reallocations. The study shows that even in the case of an

information update interval that is as large as two minutes, a median through-

put that corresponds to 97% of the optimal value is achieved. Hence, significant

performance improvements can be achieved with the proposed information ex-

changemechanism between SDN controllers andNMSswhile maintaining a low

communication overhead.

118

5 Conclusion

Network operators face many challenges due to the heterogeneity and dynam-

icity of network traffic that is caused by a steadily growing number of devices,

applications, and services that involve different stakeholders as well as strict

performance requirements. In this context, the traditional approach that in-

volves manual reconfiguration of individual devices and high capital expendi-

tures for specialized hardware middleboxes does not provide a feasible amount

of flexibility and scalability to operate the network in a resource efficient way

while meeting performance goals. In order to cope with these drawbacks, net-

work softwarization paradigms such as Software Defined Networking (SDN)

and Network Functions Virtualization (NFV) promise programmable networks

that heavily rely on software-based implementations of network functions. On

the one hand, automating large parts of the configuration process reduces mis-

configurations that are caused by human errors and allow the configuration

process to happen at a significantly finer temporal granularity. On the other

hand, software instances that run on standard servers can be dimensioned and

migrated in such a fashion that they fulfill the performance requirements in a

given situation while minimizing the amount of overprovisioned resources.

However, in order to fully reap the benefits that are offered by these net-

work softwarization paradigms, novel challenges in the domain of manage-

ment and orchestration need to be tackled. In this monograph, we propose

optimization-based approaches at different levels and stages of the deployment

process. Firstly, these include mechanisms for SDN controller placement that

optimize the location of SDN controllers in order to address multiple objectives

that affect the performance of SDN-based networks. Secondly, decision making

119

5 Conclusion

techniques enable automating the process of choosing a feasible solution when

facing a set of Pareto optima that are returned by the multi-objective place-

ment algorithms. Finally, approaches for integrating external information from

sources like Network Management Systems (NMSs) into the SDN control loop

help meeting and maintaining QoS requirements during the operational phase.

In the first part of this monograph, we design, implement, and evaluate two

multi-objective heuristics for the SDN controller placement problem. By em-

ploying these heuristics, we can significantly speed up the optimization of SDN

controller locations while maintaining a high level of accuracy even when fac-

ing large-scale problem instances. In addition to run times that are orders of

magnitude faster than those of an exhaustive evaluation, the multi-objective

approach enables an analysis of trade-offs between competing objectives such

as various latency measures and the load distribution among controller in-

stances. Furthermore, specialized heuristics like the proposed Pareto Capaci-

tated k-Medoids (PCKM) algorithm constitute another trade-off with respect

to the set of objectives that can be optimized and the resulting accuracy and

run time behavior. We demonstrate the feasibility and applicability of our pro-

posed mechanisms by evaluating them in the context of more than 50 real world

topologies.

In contrast to schemes that minimize or maximize a single objective func-

tion and therefore return one distinct optimum, multi-objective optimization

algorithms return Pareto frontiers of solutions that represent trade-offs between

competing objectives. Hence, in order to maintain optimal performance levels

even in a dynamically changing environment, techniques for quickly and au-

tomatically choosing one particular placement from the Pareto frontier are re-

quired. To this end, we propose mechanisms for automated decision making in

the second part of the monograph. By assessing the relative importance of in-

dividual objectives according to four weighting methods and aggregating the

performance of a given solution into one numerical score with four ranking

methods, each of the 16 resulting combinations produces a ranking of Pareto

optima. Our evaluations on realistic instances of the SDN controller placement

120

problem show a high level of agreement among the produced rankings. In partic-

ular, top-ranked placements which constitute the most relevant outcome during

the decision making process are identified consistently.

Finally, we investigate the performance gains that can be achieved by in-

tegrating external information from sources like Network Management Sys-

tems (NMSs) in SDN controller decisions. Such external information can include

data regarding the bandwidth, e.g., per-flow bandwidth requirements as well as

per-link bandwidth utilization, but corresponding mechanisms can also be ex-

tended to take into account metrics regarding latency or application state. In

addition to designing and implementing such an NMS-aware controller, we an-

alyze and compare its performance under numerous network conditions. These

include the average number of active flows in the network, the interarrival time

of flows, as well as their average duration. On the one hand, our evaluations

demonstrate that significant improvements in terms of throughput and fair load

distribution can be achievedwhen leveraging this NMS-awareness. On the other

hand, we show that employing such mechanisms entails a trade-off in terms of

the CPU load at the controller which needs to process additional data. However,

this overhead can be reduced by choosing an appropriate level of granularity

for the information exchange as well as sufficiently large intervals between con-

secutive updates. We show that even when these intervals are in the order of

magnitude of minutes, significant performance improvements can be achieved.

In summary, the mechanisms proposed in the thesis improve different perfor-

mance aspects of softwarized networks for various stakeholders, ranging from

network operators to end users. By utilizing placement optimization techniques

during the planning phase of an SDN-based network, operators can properly

dimension their network and efficiently allocate available resources in order

to maintain desired performance levels. Furthermore, automated decision mak-

ing algorithms can be used in conjunction with fast and specialized placement

heuristics in order to dynamically react to changes in the system and maximize

control plane performance. Finally, an integrated architecture that allows shar-

ing information between centralized entities such as the SDN controller and

121

5 Conclusion

an NMS enables coping with network dynamics at a flow-level granularity and

helps delivering a high quality of service to end users. All proposed mechanisms

have been evaluated in an extensive set of realistic scenarios that cover a wide

range of relevant parameters and use cases in order to highlight their feasibility

and applicability.

There are several directions for future work. In the area of SDN controller

placement, heuristics that are specifically tailored to environments with dynam-

ically changing conditions could further improve the run time performance as

well as lower the induced migration costs for changing placements. This could

be achieved by initializing the search process of the placement algorithm with

the placement at a given time instance and adding the number of configuration

changes that need to be performed in order to reach a target placement as a new

objective function. Similarly, the process of assessing the importance of objec-

tives that is performed during automated decision making could be adapted in a

way that the importance scores are updated in an incremental fashion rather

than recalculating them for each new set of placements. Finally, in the con-

text of NMS-aware SDN control, investigations into mechanisms for minimizing

the number of reallocations or maximizing the performance while completely

avoiding reallocations can improve the performance in scenarios that are sensi-

tive to effects like packet reordering. Furthermore, the integration of additional

external information like latency, QoE, or resilience can further improve various

performance aspects.

122

123

Bibliography and References

Bibliography of the Author

Journal Papers

[1] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, and M.

Hoffmann, “Heuristic Approaches to the Controller Placement Problem

in Large Scale SDNNetworks,” IEEE Transactions on Network and Service

Management - Special Issue on Efficient Management of SDN and NFV-

based Systems, 2015.

[2] M. Seufert, S. Lange, and T. Hoßfeld, “More than Topology: Joint Topol-

ogy and Attribute Sampling and Generation of Social Network Graphs,”

Computer Communications, 2016.

[3] T. Zinner, S. Geissler, S. Lange, S. Gebert, M. Seufert, and P. Tran-Gia, “A

Discrete-Time Model for Optimizing the Processing Time of Virtualized

Network Functions,” Computer Networks, 2017.

Conference Papers

[4] D. Klein, T. Zinner, S. Lange, V. Singeorzan, andM. Schmid, “Video Qual-

ity Monitoring based on Precomputed Frame Distortions,” in IFIP/IEEE

International Workshop on Quality of Experience Centric Management

(QCMan), 2013.

125

Bibliography and References

[5] D. Klein, T. Zinner, K. Borchert, S. Lange, V. Singeorzan, and M. Schmid,

“Evaluation of Video Quality Monitoring based on Pre-computed Frame

Distortions,” in EUNICE Workshop on Advances in Communication Net-

working, 2013.

[6] C. Metter, S. Gebert, S. Lange, T. Zinner, P. Tran-Gia, and M. Jarschel,

“Investigating the Impact of Network Topology on the Processing Times

of SDNControllers,” in IFIP/IEEE InternationalWorkshop onManagement

of the Future Internet, 2015.

[7] A. Nguyen-Ngoc, S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, and M.

Jarschel, “Investigating Isolation between Virtual Networks in Case of

Congestion for a Pronto 3290 Switch,” inWorkshop on Software-Defined

Networking and Network Function Virtualization for Flexible Network

Management (SDNFlex), 2015.

[8] S. Lange, S. Gebert, J. Spoerhase, P. Rygielski, T. Zinner, S. Kounev, and P.

Tran-Gia, “Specialized Heuristics for the Controller Placement Problem

in Large Scale SDNNetworks,” in International Teletraffic Congress (ITC),

2015.

[9] S. Lange, A. Nguyen-Ngoc, S. Gebert, T. Zinner, M. Jarschel, A. Koepsel,

M. Sune, D. Raumer, S. Gallenmüller, G. Carle, and P. Tran-Gia, “Perfor-

mance Benchmarking of a Software-Based LTE SGW,” in International

Workshop on Management of SDN and NFV Systems (ManSDN/NFV),

2015.

[10] S. Gebert, A. Müssig, S. Lange, T. Zinner, N. Gray, and P. Tran-Gia, “Pro-

cessing Time Comparison of a Hardware-Based Firewall and its Virtu-

alized Counterpart,” in EAI International Conference on Mobile Networks

and Management (MONAMI), 2016.

[11] M. Seufert, S. Lange, and M. Meixner, “Automated Decision Making

Methods for the Multi-objective Optimization Task of Cloud Service

Placement,” in InternationalWorkshop on Programmability for Cloud Net-

works and Applications (PROCON), 2016.

126

Bibliography and References

[12] S. Gebert, S. Geissler, T. Zinner, A. Nguyen-Ngoc, S. Lange, and P. Tran-

Gia, “ZOOM: Lightweight SDN-based Elephant Detection,” in Interna-

tionalWorkshop on Programmability for Cloud Networks and Applications

(PROCON), 2016.

[13] S. Gebert, T. Zinner, S. Lange, C. Schwartz, and P. Tran-Gia, “Perfor-

mance Modeling of Softwarized Network Functions Using Discrete-

Time Analysis,” in International Teletraffic Congress (ITC), 2016.

[14] A. Nguyen-Ngoc, S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, and M.

Jarschel, “Performance Evaluation Mechanisms for FlowMod Message

Processing in OpenFlow Switches,” in IEEE International Conference on

Communications and Electronics, 2016.

[15] M. Seufert, S. Lange, and M. Meixner, “Automated Decision Making

based on Pareto Frontiers in the Context of Service Placement in Net-

works,” in International Teletraffic Congress (ITC), 2017.

[16] S. Lange, A. Grigorjew, T. Zinner, P. Tran-Gia, andM. Jarschel, “AMulti-

Objective Heuristic for the Optimization of Virtual Network Function

Chain Placement,” in International Teletraffic Congress (ITC), 2017.

[17] A. Nguyen-Ngoc, S. Lange, T. Zinner, M. Seufert, P. Tran-Gia, N. Aerts,

and D. Hock, “Performance Evaluation of Selective Flow Monitoring in

the ONOS Controller,” in International Workshop on Management of SDN

and NFV Systems (ManSDN/NFV), 2017.

[18] S. Lange, L. Reinhart, T. Zinner, D. Hock, N. Gray, and P. Tran-Gia, “Inte-

grating NetworkManagement Information into the SDNControl Plane,”

in IEEE/IFIP Network Operations and Management Symposium (NOMS),

2018.

[19] A. Grigorjew, S. Lange, T. Zinner, and P. Tran-Gia, “Performance Bench-

marking of Network Function Chain Placement Algorithms,” in Interna-

tional Conference on Measurement, Modelling and Evaluation of Comput-

ing Systems, 2018.

127

Bibliography and References

[20] A. Nguyen-Ngoc, S. Raffeck, S. Lange, S. Geissler, T. Zinner, and P. Tran-

Gia, “Benchmarking the ONOS Controller with OFCProbe,” in Interna-

tional Conference on Communications and Electronics (ICCE), 2018.

[21] K. Borchert, S. Lange, T. Zinner, and M. Hirth, “Identification of Delay

Thresholds Representing the Perceived Quality of Enterprise Applica-

tions,” in International Workshop on Quality of Experience Management,

2018.

[22] A. Nguyen-Ngoc, S. Lange, S. Geissler, T. Zinner, and P. Tran-Gia, “Es-

timating the Flow Rule Installation Time of SDN Switches when Facing

Control Plane Delay,” in International Measurement, Modelling and Eval-

uation of Computing Systems, 2018.

[23] M. Hirth, S. Lange,M. Seufert, and P. Tran-Gia, “Performance Evaluation

of Mobile Crowdsensing for Event Detection,” in International Workshop

on Crowd Assisted Sensing, Pervasive Systems and Communications, 2018.

[24] N. Gray, S. Lange, T. Zinner, B. Pfaff, and D. Hock, “Evaluation of a Dis-

tributed Control Plane for Managing Heterogeneous SDN-enabled and

Legacy Networks,” in International Conference on Communications and

Electronics (ICCE), 2018.

Technical Reports

[25] S. Gebert, T. Zinner, S. Lange, C. Schwartz, and P. Tran-Gia, “Discrete-

Time Analysis: Deriving the Distribution of the Number of Events in an

Arbitrarily Distributed Interval,” University of Wuerzburg, Tech. Rep.,

2016, Available online: h�ps://www3.informatik.uni-wuerzburg.de/TR/

tr498.pdf.

128

Bibliography and References

General References

[26] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer, “Inter-

faces, Attributes, and Use Cases: A Compass for SDN,” IEEE Communi-

cations Magazine, 2014.

[27] ETSI GS NFV 002 - Architectural Framework, Group Specification, Euro-

pean Telecommunications Standards Institute, 2014. [Online]. Available:

h�ps : / / docbox . etsi . org / ISG /NFV /Open /Publications _pdf / Specs -

Reports/NFV%20002v1.2.1%20-%20GS%20-%20NFV%20Architectural%

20Framework.pdf.

[28] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “OpenStack: Toward an Open-

Source Solution for Cloud Computing,” International Journal of Com-

puter Applications, 2012.

[29] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The

Internet Topology Zoo,” IEEE Journal on Selected Areas in Communica-

tions (JSAC), 2011.

[30] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.

Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in

Campus Networks,” ACM SIGCOMM Computer Communication Review

(CCR), 2008.

[31] A. Tootoonchian and Y. Ganjali, “HyperFlow: a Distributed Control

Plane for OpenFlow,” in Internet Network Management Conference on Re-

search on Enterprise Networking, 2010.

[32] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,

B. O’Connor, P. Radoslavov, W. Snow, et al., “ONOS: towards an open,

distributed SDN OS,” in ACM SIGCOMMWorkshop on Hot Topics in Soft-

ware Defined Networking (HotSDN), 2014.

129

Bibliography and References

[33] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani, R. Ahmed,

and R. Boutaba, “Dynamic Controller Provisioning in Software Defined

Networks,” in International Conference on Network and Services Manage-

ment (CNSM), 2013.

[34] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics

of data centers in the wild,” in ACM SIGCOMM Conference on Internet

Measurement, 2010.

[35] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The na-

ture of data center traffic: Measurements & analysis,” inACM SIGCOMM

Conference on Internet Measurement, 2009.

[36] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained

traffic engineering for data centers,” in Conference on Emerging Network-

ing Experiments and Technologies (CoNEXT), 2011.

[37] B. Heller, R. Sherwood, and N. McKeown, “The Controller Placement

Problem,” inACM SIGCOMMWorkshop on Hot Topics in Software Defined

Networking (HotSDN), 2012.

[38] Z. Drezner, Facility Location: A Survey of Applications and Methods.

Springer, 1995.

[39] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and P. Tran-

Gia, “Pareto-Optimal Resilient Controller Placement in SDN-based Core

Networks,” in International Teletraffic Congress (ITC), 2013.

[40] J. Branke, K. Deb, K. Miettinen, and R. Slowinski, Multiobjective opti-

mization: Interactive and evolutionary approaches. Springer, 2008.

[41] P. Czyzżak and A. Jaszkiewicz, “Pareto simulated annealing - a meta-

heuristic technique for multiple-objective combinatorial optimization,”

Journal of Multi-Criteria Decision Analysis, 1998.

[42] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction

to cluster analysis. John Wiley & Sons, 2009.

130

Bibliography and References

[43] D. Hock, S. Gebert, M. Hartmann, T. Zinner, and P. Tran-Gia, “POCO-

Framework for Pareto-Optimal Resilient Controller Placement in SDN-

based Core Networks,” in IEEE/IFIP Network Operations andManagement

Symposium (NOMS), 2014.

[44] S. Schmid and J. Suomela, “Exploiting locality in distributed SDN con-

trol,” inACM SIGCOMMWorkshop on Hot Topics in Software Defined Net-

working (HotSDN), 2013.

[45] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient

and scalable offloading of control applications,” in ACM SIGCOMM

Workshop on Hot Topics in Software Defined Networking (HotSDN), 2012.

[46] Y. Zhang, N. Beheshti, and M. Tatipamula, “On Resilience of Split-

Architecture Networks,” in IEEE Globecom, 2011.

[47] Y. nan Hu, W. dong Wang, X. yang Gong, X. rong Que, and S. duan

Cheng, “On the Placement of Controllers in Software-Defined Net-

works,” The Journal of China Universities of Posts and Telecommunica-

tions (JCUPT), 2012.

[48] Y. Hu,W.Wendong, X. Gong, X. Que, and C. Shiduan, “Reliability-aware

Controller Placement for Software-Defined Networks,” in IFIP/IEEE In-

ternational Symposium on Integrated Network Management (IM), 2013.

[49] F. J. Ros and P. M. Ruiz, “Five Nines of Southbound Reliability in

Software-DefinedNetworks,” inACM SIGCOMMWorkshop on Hot Topics

in Software Defined Networking (HotSDN), 2014.

[50] IBM ILOG CPLEX Optimizer, 2010. [Online]. Available: h�p : / /www -

01.ibm.com/so�ware/integration/optimization/cplex-optimizer/.

[51] S. H. Owen and M. S. Daskin, “Strategic Facility Location: A Review,”

European Journal of Operational Research, 1998.

[52] A. Archer and S. Krishnan, “Importance Sampling via Load-Balanced

Facility Location,” in Conference on Integer Programming and Combina-

torial Optimization (IPCO), 2008.

131

Bibliography and References

[53] F. J. F. Silva and D. S. de la Figuera, “A Capacitated Facility Loca-

tion Problem with Constrained Backlogging Probabilities,” International

Journal of Production Research (IJPR), 2007.

[54] S. Khuller, R. Pless, and Y. Sussmann, “Fault Tolerant K-center Problems,”

Theoretical Computer Science, 1997.

[55] S. Chaudhuri, N. Garg, and R. Ravi, “The p-Neighbor k-Center Problem,”

Information Processing Letters (IPL), 1998.

[56] U. Bhattacharya, J. R. Rao, and R. N. Tiwari, “Fuzzy Multi-Criteria Facil-

ity Location Problem,” Fuzzy Sets and Systems, 1992.

[57] M. Ehrgott, Multicriteria Optimization. Springer, 2005.

[58] I. Harris, C. Mumford, and M. Naim, “The Multi-Objective Uncapaci-

tated Facility Location Problem for Green Logistics,” in IEEE Congress

on Evolutionary Computation (CEC), 2009.

[59] A. Lancinskas and J. Zilinskas, “Solution of Multi-Objective Competi-

tive Facility Location Problems Using Parallel NSGA-II on Large Scale

Computing Systems,” in Applied Parallel and Scientific Computing, 2013.

[60] T. Xifeng, Z. Ji, and X. Peng, “A Multi-Objective Optimization Model for

Sustainable Logistics Facility Location,” Transportation Research Part D:

Transport and Environment, 2013.

[61] S. H. A. Rahmati, V. Hajipour, and S. T. A. Niaki, “A Soft-Computing

Pareto-based Meta-Heuristic Algorithm for a Multi-Objective Multi-

Server Facility Location Problem,” Applied Soft Computing, 2013.

[62] A. Abraham and L. Jain, Evolutionary multiobjective optimization.

Springer, 2005.

[63] L. Davis et al., Handbook of genetic algorithms. Van Nostrand Reinhold,

1991.

[64] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen, et al., Evolutionary

algorithms for solving multi-objective problems. Springer, 2007.

132

Bibliography and References

[65] A. Auger and B. Doerr, Theory of randomized search heuristics: Founda-

tions and recent developments. World Scientific, 2011.

[66] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, “A Flexible

OpenFlow-Controller Benchmark,” in European Workshop on Software

Defined Networks (EWSDN), 2012.

[67] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simmu-

lated Annealing,” Science, 1983.

[68] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on In-

formation Theory, 1982.

[69] POCO: A Framework for the Computation of Pareto-based Optimal

Controller-Placements, University of Würzburg. [Online]. Available:

h�p://www3.informatik.uni-wuerzburg.de/poco.

[70] H. Moens and F. De Turck, “VNF-P: A Model for Efficient Placement of

Virtualized Network Functions,” in International Conference on Network

and Service Management (CNSM), 2014.

[71] B. Jennings and R. Stadler, “Resource Management in Clouds: Survey

and Research Challenges,” Journal of Network and Systems Management,

2015.

[72] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On Orchestrat-

ing Virtual Network Functions,” in International Conference on Network

and Service Management (CNSM), 2015.

[73] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary,

“Piecing Together the NFV Provisioning Puzzle: Efficient Placement and

Chaining of Virtual Network Functions,” in IFIP/IEEE International Sym-

posium on Integrated Network Management (IM), 2015.

[74] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and Placing Chains

of Virtual Network Functions,” in International Conference on Cloud Net-

working (CloudNet), 2014.

133

Bibliography and References

[75] I. Hwang and M. Pedram, “Hierarchical virtual machine consolidation

in a cloud computing system,” in IEEE International Conference on Cloud

Computing (CLOUD), 2013.

[76] K. Le, R. Bianchini, J. Zhang, Y. Jaluria, J. Meng, and T. D. Nguyen, “Re-

ducing electricity cost through virtual machine placement in high per-

formance computing clouds,” in International Conference for High Per-

formance Computing, Networking, Storage and Analysis, 2011.

[77] X. Li, Z. Qian, S. Lu, and J. Wu, “Energy efficient virtual machine place-

ment algorithm with balanced and improved resource utilization in a

data center,” Mathematical and Computer Modelling, 2013.

[78] A. Dalvandi, M. Gurusamy, and K. C. Chua, “Time-aware vm-placement

and routing with bandwidth guarantees in green cloud data centers,” in

IEEE International Conference on Cloud Computing Technology and Sci-

ence (CloudCom), 2013.

[79] J. Xu and J. A. Fortes, “Multi-objective virtual machine placement in

virtualized data center environments,” in IEEE/ACM International Con-

ference on Green Computing and Communications (GreenCom), 2010.

[80] T. Yapicioglu and S. Oktug, “A traffic-aware virtual machine placement

method for cloud data centers,” in IEEE/ACM International Conference on

Utility and Cloud Computing, 2013.

[81] M. G. Kendall, Rank Correlation Methods. Griffin, 1948.

[82] A. Gordon, “A Measure of the Agreement between Rankings,”

Biometrika, 1979.

[83] L. L. Thurstone, “A Law of Comparative Judgment,” Psychological Re-

view, 1927.

[84] R. D. Luce, Individual Choice Behavior. Courier Corporation, 1959.

[85] C. L. Mallows, “Non-Null Ranking Models. I,” Biometrika, 1957.

134

Bibliography and References

[86] P. D. Feigin and A. Cohen, “On a Model for Concordance between

Judges,” Journal of the Royal Statistical Society. Series B (Methodological),

1978.

[87] A. Cohen, “Analysis of Large Sets of Ranking Data,” Communications in

Statistics-Theory and Methods, 1982.

[88] A. Cohen and C. L. Mallows, “Assessing Goodness of Fit of Ranking

Models to Data,” The Statistician, 1983.

[89] P. Diaconis, “Group Representations in Probability and Statistics,” Lec-

ture Notes-Monograph Series, 1988.

[90] D. E. Critchlow, M. A. Fligner, and J. S. Verducci, “Probability Models on

Rankings,” Journal of mathematical psychology, 1991.

[91] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell

System Technical Journal, 1948.

[92] J. Huang, “Combining EntropyWeight and TOPSISMethod for Informa-

tion System Selection,” in IEEE Conference on Cybernetics and Intelligent

Systems, 2008.

[93] C.-L. Hwang and K. Yoon,Multiple Attribute Decision Making - Methods

and Applications: A State-of-the-art Survey. Springer, 1981.

[94] S. H. Zanakis, A. Solomon, N. Wishart, and S. Dublish, “Multi-Attribute

Decision Making: A Simulation Comparison of Select Methods,” Euro-

pean Journal of Operational Research, 1998.

[95] S. Opricovic and G.-H. Tzeng, “Compromise Solution by MCDM Meth-

ods: A Comparative Analysis of VIKOR and TOPSIS,” European Journal

of Operational Research, 2004.

[96] A. Clemm, Network Management Fundamentals. 2006.

[97] M. Subramanian, Network Management: Principles and Practice. 2010.

135

Bibliography and References

[98] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards

a model-driven sdn controller architecture,” in IEEE International Sym-

posium on a World of Wireless, Mobile and Multimedia Networks (WoW-

MoM), 2014.

[99] D. K. Hong, Y. Ma, S. Banerjee, and Z. M. Mao, “Incremental deployment

of SDN in hybrid enterprise and ISP networks,” in Proceedings of the

Symposium on SDN Research, 2016.

[100] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed multi-domain

SDN controllers,” in IEEE Network Operations and Management Sympo-

sium (NOMS), 2014.

[101] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS: An

OpenFlow controller design for multimedia delivery with end-to-end

Quality of Service over Software-Defined Networks,” in Asia-Pacific Sig-

nal & Information Processing Association Annual Summit and Conference

(APSIPA ASC), 2012.

[102] H. E. Egilmez, S. Civanlar, and A. M. Tekalp, “An optimization frame-

work for QoS-enabled adaptive video streaming over OpenFlow net-

works,” IEEE Transactions on Multimedia, 2013.

[103] S. Tomovic, N. Prasad, and I. Radusinovic, “SDN control framework for

QoS provisioning,” in 22nd Telecommunications Forum Telfor, 2014.

[104] P. Qin, B. Dai, B. Huang, and G. Xu, “Bandwidth-aware scheduling with

sdn in hadoop: A new trend for big data,” IEEE Systems Journal, 2015.

[105] H. Krishna, N. L. vanAdrichem, and F. A. Kuipers, “Providing bandwidth

guarantees with OpenFlow,” in Symposium on Communications and Ve-

hicular Technologies (SCVT), 2016.

[106] P. Sharma, S. Banerjee, S. Tandel, R. Aguiar, R. Amorim, and D. Pinheiro,

“Enhancing network management frameworks with SDN-like control,”

in IFIP/IEEE International Symposium on Integrated NetworkManagement

(IM), 2013.

136

Bibliography and References

[107] Y. Zhang, X. Gong, Y. Hu,W.Wang, and X. Que, “SDNMP: Enabling SDN

management using traditional NMS,” in IEEE International Conference on

Communication Workshop (ICCW), 2015.

[108] D. Kim, J.-M. Gil, G.Wang, and S.-H. Kim, “Integrated SDN and non-SDN

network management approaches for future internet environment,” in

Multimedia and Ubiquitous Engineering, 2013.

[109] H. Kim, A. Voellmy, S. Burnett, N. Feamster, and R. Clark, “Lithium:

Event-driven network control,” Tech. Rep., 2012.

[110] D. Valocchi, D. Tuncer, M. Charalambides, M. Femminella, G. Reali, and

G. Pavlou, “SigMA: Signaling Framework for Decentralized Network

Management Applications,” IEEE Transactions on Network and Service

Management, 2017.

[111] R. Martin, M. Menth, and M. Hemmkeppler, “Accuracy and dynamics of

hash-based load balancing algorithms for multipath Internet routing,” in

International Conference on Broadband Communications, Networks and

Systems (BROADNETS), 2006.

[112] T. Hoßfeld, L. Skorin-Kapov, P. E. Heegaard, and M. Varela, “Definition

of QoE fairness in shared systems,” IEEE Communications Letters, 2017.

137

ISSN 1432-8801

	Introduction
	Scientific Contribution
	Outline of the Thesis

	Multi-Objective Heuristics for the SDN Controller Placement Problem
	Background and Related Work
	SDN Control Plane
	Controller Placement in SDN-based Networks
	Facility Location Problem
	Multi-Objective Optimization Algorithms

	Problem Statement
	Controller Placement Problem
	Notation

	Pareto Simulated Annealing
	Design of the Multi-Objective Optimization Algorithm
	Performance Evaluation Methodology
	Investigation of Main Performance Factors and Resource Consumption

	Pareto Capacitated k-Medoids
	Iterative Pareto Frontier Generation
	Evaluation Environment, Topologies, and Parameters
	Performance Comparison and Key Influence Factors
	Integration into the POCO Framework
	Features

	Lessons Learned

	Automated Decision Making based on Pareto Frontiers
	Background and Related Work
	Characteristics of the Network Topologies Under Study
	Internet2 OS3E
	Internet Topology Zoo

	Weighting Methods
	Uniform Weighting
	Entropy-Based Weighting
	Weighting Based on the Coefficient of Variation
	Weighting Based on the Standard Deviation
	Comparison

	Ranking Methods
	Case Study of the Internet2 OS3E Topology
	Broad Evaluation on the Topology Zoo

	Lessons Learned

	Integration of Network Management Information into the SDN Control Plane
	Background and Related Work
	ONOS SDN Controller Platform
	SDN for QoS Control
	Management Architectures with SDN Components

	Measurement Evnironment and Components
	SDN Controllers
	Default ONOS
	Hash-based path assignment
	NMS-aware, intent-based ONOS

	Testbed Setup and Interaction between Components
	Experiment Design
	Parameters and Performance Indicators

	Performance Evaluation of the NMS-Aware SDN Controller
	Detailed Case Study of the Controller Behavior in a Bandwidth-Limited Environment
	Investigation of Throughput, Fairness, and Overhead in Networks with Dynamic Traffic Fluctuations
	Implications of the Flow Interarrival Time and the Information Exchange Rate

	Lessons Learned

	Conclusion
	Bibliography and References

