
©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copy righted component of this

work in other works.

ZOOM: Lightweight SDN-based Elephant Detection

Steffen Gebert, Stefan Geissler, Thomas Zinner, Anh Nguyen-Ngoc, Stanislav Lange, Phuoc Tran-Gia
University of Wuerzburg, Germany

Email: {steffen.gebert|stefan.geissler|zinner|anh.nguyen|stanislav.lange|trangia}@informatik.uni-wuerzburg.de

Abstract—Software Defined Networking (SDN) offers a holis-
tic view of the network through a centralized control plane.
Consequently, routing decisions can be made based on global
knowledge about the network topology as well as its current state.
As long living flows are suitable candidates for rerouting, their
detection is crucial for efficient flow based traffic management.
This work proposes the ZOOM algorithm for elephant detection
in SDN networks. To this end, ZOOM follows a very lightweight
approach that only uses packet counters implemented by Open-
Flow switches and thus does not require any additional hardware.
By exploiting this feature of OpenFlow switches, ZOOM allows
lightweight and cost-effective elephant detection.

I. INTRODUCTION

The switching fabric and hardware of modern networks
have to handle the continuosly growing demand for high
bandwidth applications that leads to a rapid growth of total
network traffic. To counter this trend, datacenters implement
highly sophisticated network topologies and employ traffic
engineering as it is a crucial aspect when it comes to effi-
ciently using available resources. Furthermore, the adoption of
SDN by telecommunication providers enables the deployment
of traffic management functionality in backbone networks.
Through intelligent allocation of flows to specific network
paths within the network, resource utilization can be increased
significantly. As reported in [1], a 1,500 server cluster is
subject to up to 100,000 flow arrivals per second. This makes
allocating a path to each of the flows an impossible task.
Hence, modern network monitoring tools often perform ele-
phant detection – the detection of flows that carry a large
portion of the total network traffic. By selecting this subset
of flows and allocating them to specific network paths, the
available bandwidth can be used more efficiently. Most previ-
ously proposed mechanisms for identifying elephant flows are
either not scalable or introduce a huge measurement overhead
that puts additional strain on the network components, while
others require modifications on host or application level [2].
In constrast, the approach presented in this paper leverages
means of flow monitoring that come with the introduction of
Software Defined Networking (SDN) and OpenFlow.

The proposed detection mechanism is based on network-
side monitoring and thus does not require any support by the
end hosts or involved applications. Instead, it leverages already
existing counters of OpenFlow switches that are automatically
updated whenever a packet matching an existing flow rule
passes the switch. Through iterative refinement of flow rules,
the proposed algorithm allows narrowing down the aggregation
level from coarse grained rules to very fine grained rules
and counters. Hence, the proposed ZOOM algorithm offers
a very lightweight monitoring solution focused on elephant
detection that requires no additional hardware. While it is
unlikely to achieve 100% accuracy when following such a

lightweight approach to traffic monitoring from the network
side, it can serve as a preselection stage for subsequent in-
depth analyses. The algorithm is evaluated with respect to
its accuracy using a publicly available traffic trace. In order
to analyze the algorithm’s capability of identifying high-
bandwidth flows (elephant flows), the produced results are
evaluated using global knowledge about the used traffic trace.

The remainder of this work is structured as follows. An
overview of related work and SDN monitoring solutions is
provided in Section II. The ZOOM algorithm is introduced
and evaluated in Sections III and IV. Limitations and possible
extensions of the proposed mechanism are discussed in Sec-
tion V, before Section VI summarizes this work.

II. RELATED WORK

This section covers relevant research work on the topic of
elephant detection and SDN-based monitoring.

A. Elephants and Mice

The relation between large and small (in terms of bytes),
as well as short- and long-lived flows is discussed in [3].
The elephants, small in number, carry the biggest part of the
entire traffic while the mice, large in number, only contribute
a small part of the total traffic volume. This has been observed
in different data center measurement studies [4, 1]. Different
approaches for elephant detection are summarized in the
following.

Application-side labeling: One approach enabling
application-specific flow monitoring is to label network flows
within the application [5, 6]. Thus, every flow present in
the network is labeled, e.g., with the type of application or
the total amount of data to transfer. This approach, however,
requires the modification of all involved applications as well
as a dedicated trust relationship between the hosts and the
network.

End-Host-Based detection: Instead of in the application,
monitoring can also be performed in the operating system on
the end-hosts. Mahout [2] detects elephant flows by monitoring
socket buffers of end-hosts and is realized via a shim layer
that marks packets which belong to an elephant flow before
emitting them into the network. However, again the network
has to trust information coming from the end-hosts.

Network-side flow statistics: Another approach, and proba-
bly the most common one, is to monitor within the network to
keep statistics for every flow present at a given time. Statistics
are exported from the network entities to the monitoring
stations. Systems using this approach beside sFlow are [7]
and [8]. Providing such per-flow statistics for every flow
in the network requires a severe amount of resources on

the network elements, which might not be possible for all
environments, especially data center or WAN networks. While
packet sampling allows to apply this mechanism to even larger
network environments, elephant detection becomes yet harder
with higher sampling factors [9].

B. SDN Monitoring

Programmability and packet matching in hardware switches
offers multiple ways of using OpenFlow for monitoring. The
most important approaches are described in the following.

NEC FlowSense [10] uses OpenFlow messages (flow-
removed and packet-in) to measure the duration of flows.
Furthermore, the amount of traffic measured via flow counters
and inbound ports is logged in order to provide detailed infor-
mation on link utilization. OpenTM [11] leverages OpenFlow
features for passive monitoring and is based on periodically
querying flow statistics from selected switches. Furthermore,
the authors investigate the trade-off between the load of the
switches and the accuracy in terms of flow rate estimation.
In contrast to the proposed ZOOM algorithm, FlowSense and
OpenTM do not actively define flow rules besides the ones
set up by the controller for forwarding traffic. While OpenS-
ketch [12] offers a large feature set for flexible flow monitoring
in SDN hardware, it relies on specialized, programmable
hardware. In contrast, the proposed ZOOM approach exploits
existing features of OpenFlow hardware.

Currently available commercial SDN-based monitoring
systems require large investments, e.g., Big Tap Monitoring
Fabric [13] by Big Switch Networks, which is based on an out-
of-band monitoring infrastructure comprising additional SDN
switches. All production traffic is mirrored into fabric that
then splits up the flows to different monitoring servers. VSS
Monitoring’s Network Packet Brokers (NPB) follow a similar
approach. A central controller manages a certain number
of NPBs, which analyze and forward the monitoring traffic
through a dedicated network, the vMesh [14].

III. ZOOM: NETWORK MONITORING USING SDN

This section describes the ZOOM algorithm, a lightweight
approach leveraging packet counters in OpenFlow switches
for elephant detection. After the algorithm is introduced, its
accuracy is evaluated using a prototypical implementation.

A. Elephant Flows

Elephant flows are often defined by a certain, fix data
volume they transfer, e.g. 100 MB. This work follows a slightly
different approach as we use the definition provided in [15].
Lan et al. define elephants as flows that carry more data than
the mean of all flows plus three times the standard deviation.
We will base our definition on this metric while introducing a
new variable called sele which enables us to define different
elephant thresholds by using different values for sele in the
following equation.

S = mean(flowsize) + sele × std(flowsize) (1)

Thereby, mean(flowsize) refers to the average size of all flows
present in the system and std(flowsize) describes the standard
deviation of the encountered flow sizes. This definition leads to

Fig. 1. Flow chart of the ZOOM algorithm.

a threshold for elephant flows that is based on the traffic in the
network and can thus be used independently of the monitored
network.

B. The ZOOM Algorithm

The proposed algorithm is based on polling of flow statis-
tics from OpenFlow switches. Such statistics are automatically
maintained by the switches for each currently installed flow
rule. Therefore, the main idea is to define flow entries that do
not modify the forwarding behavior of switches, but still enable
flow monitoring via packet counters. An iterative refinement
of the IP address ranges matched by the flow rules then allows
to narrow down the elephant flows. The match fields of these
flow entries are set so that – in the simplest case – a binary
search over the whole IP space is performed for source and
destination IP addresses. Thus, the IP range of possible source
and destination addresses is divided into sections, each covered
by one of the created flow rules, which then trigger statistics
collection within the switch. By splitting up IP ranges into
more than two parts, the algorithm can proceed faster, however,
at the cost of creating more flow entries.

In contrast to NetFlow/sFlow-style monitoring, counters are
not created for every single flow. Instead, the amount of data
that needs to be processed by the algorithm is independent
of the number of flows present in the system. In addition, if
prefixes of the IP source or destination addresses are known,
the run time can be shortened even further. In particular, the
runtime grows linearly with the number of wildcard bits in
the IP range that is to be searched. The following equation
describes the runtime of the ZOOM algorithm.

tZOOM(nbit, nflows, ntop, twait) =
nbit

log2(
nflows

ntop
)
× twait (2)

Thereby, nbit ∈ [0, 32] is the number of remaining wildcard
bits in the IP range.

The ZOOM algorithm is listed in Algorithm 1, visualized
in Figure 1, and described in the following.

1) Initialization: The algorithm’s behavior can be adjusted
with three input parameters. The first parameter nflows defines
the number of flow entries that are created per cycle. This
defines the number of sections into which the remaining IP
range is divided. While nflows = 2 corresponds to a binary
search, higher values allow faster advancing at the cost of more
flow rules. How many of the nflows sections covering the most
traffic are treated as candidates to contain elephants and are
thus further analyzed is defined by the ntop parameter. This
also determines the total number of elephant flows contained
in the output produced by the algorithm. Finally, twait defines
the waiting time in seconds between the creation of flow rules
and polling of corresponding statistics. Hence, it represents the
interval during which passing traffic is monitored.

2) Initial Flow Generation: As the algorithm searches
for source and destination addresses of end-to-end flows, it is
required to search the whole IP address range for both sources
and destinations concurrently. Hence, the number of flow rules
that are generated is n2

flows. In this first step, nflows flow
entries covering all addresses from 0.0.0.0 to 255.255.255.255
are generated for source and destination respectively. If not
the whole IP range needs to be covered, the initial flow rules
change depending on the already known bits of the IP address
range. For nflows = 2, the resulting flow entries are given
in Table I. It can be seen that all fields except source and
destination IP are wildcards. Instead of matching pairs of
definite IP addresses, the set of possible pairs of source and
destination addresses is partitioned into a number of n2

flows
flow entries.

3) Traffic Observation: During twait, while the algorithm
pauses, the packet counters of the switch are automatically
updated for packets matching one of the specified flow rules.

4) Polling of Statistics: After twait, flow statistics are
requested from the switch.

5) Selection of ntop Biggest Flows: Packet counters of
previously retrieved flow statistics are evaluated and the ntop

biggest flows regarding average bandwidth are selected for
further processing.

6) Termination Condition: The subsequent action is to
check whether the termination condition is satisfied. This is
the case if the section covered by each of the selected ntop

biggest flows contains only connections between a definite
source/destination IP address pair, i.e., if all 32 bits of the
source and destination IP match fields are specified. If this
termination condition is met, the identified ntop biggest flows
are returned as result of the algorithm. As long as the IP
address match still contains wildcard bits, execution continues.

7) Flow Generation (“Zoom In”): Again, a number of
nflows flow entries is defined. Using these, the source and
destination IP ranges covered by the previously found ntop

biggest flows are split up into nflows

ntop
entries each. After

removing all previously defined flow rules the newly generated
entries are pushed to the switch and the algorithm is repeated
starting from Step 3.

Figure 2 illustrates the refinement process using nflows = 4
and ntop = 2. Depicting the first 4 cycles of the algorithm, it
can be seen that the ntop = 2 sections covering the biggest

Fig. 2. Example of refinement (“Zoom In” step) for nflows = 4, ntop = 2.

traffic (shown in black/gray) get iteratively refined by getting
split into nflows

ntop
= 2 segments each.

C. Implementation

In order to evaluate the accuracy of the proposed algorithm,
a proof-of-concept has been implemented1 as a module for the
OpenDaylight controller (ODL).

The current implementation is limited to statistics collec-
tion. In order to still allow correct forwarding of production
traffic, the action of the flow entries defined by ZOOM should,
e.g., set the goto-table action to a table containing the actual
forwarding rules. This, however, is not relevant for evaluating
the ZOOM algorithm’s accuracy. Contrary to the proposed
algorithm, our prototype implementation is limited with respect
to legal values regarding the parameters introduced earlier. This
leads to the following constraints:

nflows ∈ {1, 2, 4, 16} (3)
ntop ∈ {1, 2, 4, 8} (4)

nflows

ntop
∈ {1, 2, 4} (5)

Furthermore, ODL does not allow creating flow entries that
match the 0.0.0.0 IP address. Therefore, the proof-of-concept
implementation of the ZOOM algorithm has to create more
than nflows entries in the initial step (Step 1 in Figure 1).
Instead of 0.0.0.0/1 and 128.0.0.0/1, a reasonably low number
of matches2 are defined. Afterwards, the algorithm continues
as originally described in Section III.

IV. EVALUATION

The results that are presented and discussed in the follow-
ing are obtained by running the aforementioned OpenDaylight
implementation. The accuracy is evaluated by replaying a
publicly available traffic trace from the Waikato Internet Traffic
Storage (WITS). Characteristics of the trace that is used to
evaluate the ZOOM algorithm are listed in Table II. In addition
to the general trace information, the table shows statistics of
elephant flows resulting from different elephant thresholds.
The values of sele ∈ {1, 10, 30} are selected as they show
that the total number of elephants and sele behave roughly
inversely proportional. The maximum value for sele = 30 is
chosen since, due to the low elephant density, the accuracy
decreases significantly for this threshold. Furthermore, the av-
erage number of active elephants at each point in time as well
as the average duration of elephant flows is provided. Finally,
the table shows the traffic contribution and the percentage of
elephants compared to the total number of flows.

1Source code: https://github.com/lsinfo3/zoom-odl
21.0.0.0/8, 2.0.0.0/7, 4.0.0.0/6, 8.0.0.0/5, 16.0.0.0/4, .., 240.0.0.0/4

TABLE I. EXAMPLE OF GENERATED FLOW ENTRIES MATCHING THE WHOLE IP RANGE (nflows =2).

Input Port Ethernet Type Source MAC Dest MAC Source IP Dest IP ToS Source Port Dest Port Protocol
* 0x800 * * 0.0.0.0/1 0.0.0.0/1 * * * *
* 0x800 * * 0.0.0.0/1 128.0.0.0/1 * * * *
* 0x800 * * 128.0.0.0/1 0.0.0.0/1 * * * *
* 0x800 * * 128.0.0.0/1 128.0.0.0/1 * * * *

Algorithm 1: The ZOOM Algorithm.
Input: nflows ∈ {2, 4, 16}, ntop ∈ {1, 2, 4, 8}

1 Assert nflows

ntop
∈ {2, 4, 16};

2 Spart = {nflows partitions of source IP range};
3 Dpart = {nflows partitions of destination IP range};
4 Generate flow entries Einit = Spart ×Dpart;
5 Push Einit into switches;
6 Sleep for twait seconds;
7 Set foundFlowRuleToRefine = true;
8 while foundFlowRuleToRefine do
9 Collect flow statistics;

10 Set foundFlowRuleToRefine = false;
11 for i = 1 to ntop do
12 Select i-th biggest flow;
13 S = Extract source IP range;
14 D = Extract destination IP range;
15 if |S| > 1 or |D| > 1 then
16 Set foundFlowRuleToRefine = true;
17 Spart = {nflows

ntop
partitions of S};

18 Dpart = {nflows

ntop
partitions of D};

19 Generate Ei = Spart ×Dpart flow entries;
20 end
21 end
22 Remove previously installed flow rules;
23 Push E1, . . . , Entop

to switches;
24 Sleep for twait seconds;
25 end
26 Write results;
27 return;

The evaluation is performed by using tcpreplay to replay
the trace into an Open vSwitch connected to ODL running
the ZOOM module. In order to calculate the accuracy of
the algorithms, the experiment results are compared to the
data available due to global knowledge about the traffic trace.
This is obtained by processing3 the packet trace to obtain
information on which flows (and elephants) are active at which
time of the trace. These are then matched against the data
obtained by the algorithm to calculate the accuracy of the
results.

In order to conduct the measurements, the algorithm is
started at different time offsets (5, 10, 20, 30, 40, 50 seconds)
for every combination of parameters while replaying the traffic
trace. In the following, the influence of different parameter
settings on the accuracy of the ZOOM algorithm is evaluated.

The evaluation is performed by analyzing the accuracy
of the results produced by the ZOOM algorithm. Accuracy
thereby describes the percentage of retrieved results that are
relevant and represents the precision in a standard precision

3Source code: https://github.com/lsinfo3/zoom-evaluation

TABLE II. ISPDSL-II TRAFFIC TRACE.

Trace Metadata
Trace URL http://wand.net.nz/wits/ ...

ispdsl/2/20100106-030946-0.dsl.php
Trace duration 1214 seconds
Traffic type DSL Subscribers
Total number of flows 1,124,575
Concurrently active flows 3,641 / 18,916 / 20,919
(min/avg/max)
Elephant Statistics sele = 1 sele = 10 sele = 30
Total number of elephants 2,760 362 91
Average active elephants 1,062 186 56
Average duration (seconds) 443.9 595.0 715.4
Traffic contribution 77.6% 47.1% 28%
Count contribution 0.2% 0.03% 0.008%

TABLE III. INFLUENCE OF WAITING TIME twait ON THE ACCURACY.

twait Mean Accuracy Confidence Inteval
1 0.3969 0.0224
2 0.4710 0.0201
5 0.5236 0.0167

and recall scenario. Hence, the accuracy represents the fraction
of the detected flows that are considered true positives.

A. Time of Traffic Observation (twait)

The study investigates the impact of the length of the
monitoring interval twait, during which the flow entries are
active in the switch and passing traffic is monitored. Therefore,
we examine the influence of twait on the mean accuracy over
all available parameter combinations. Table III shows the mean
accuracy as well as the 95% confidence interval of the ZOOM
algorithm for twait ∈ {1, 2, 5}. It can be seen, that the accuracy
increases with growing twait for the evaluated trace. This can
be explained by the influence twait has on the behavior of
the algorithm. While low twait values decrease the overall
runtime of the algorithm and thus allow for faster detection
of elephants, the short observation time makes the algorithm
vulnerable to short, bursty transmissions that are not elephants
by definition. Higher values of twait on the other hand, increase
the traffic monitoring interval and the algorithm becomes more
robust against short-lived flows. As the flows that are to be
detected are the ones that transmit large amounts of data, these
flows also have a higher duration.

Hence, the parameter choice of twait controls the trade-off
between short runtime and fluctuation resistance.

B. Elephant Threshold (sele)

This section examines the influence of the elephant thresh-
old sele on the accuracy of the ZOOM algorithm. As defined
in Section III-A, the threshold sele describes the total amount
of data a flow has to transmit during its lifetime in order to be
considered as elephant. Figure 3 shows the data obtained by
calculating the accuracy for sele ∈ {1, 10, 30}.

The figure shows that for a high elephant threshold the
twait parameter has significant influence on the accuracy. For

1,1 1,2 1,5 4,1 4,2 4,5 8,1 8,2 8,5
n

top
,t

wait

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y
s

ele
 = 30 s

ele
 = 10 s

ele
 = 1

Fig. 3. Influence of sele and twait on the accuracy.

lower sele on the other hand, the influence is less decisive.
This is due to the composition of elephants for different
thresholds. As a high sele leads to a small set of large,
long-living elephants that feature a high mean duration, the
high twait value leads to increased accuracy as short-lived
flows are filtered by the long observation period. On the
other hand, decreasing sele leads to a larger amount of flows
that are considered elephants. This reduces the mean duration
of elephants which results in twait not having a significant
influence. Due to the now larger set of elephants, the overall
accuracy is increased.

C. Number of Requested Elephant Flows (ntop) and Available
Flow Rules (nflows)

In the following, the relation between the ratio of nflows

and ntop and the accuracy of the ZOOM algorithm is eval-
uated. Figure 4 shows the accuracy for different parameter
combinations and elephant thresholds. Thereby, the parameter
ntop is indicated by the line style while the color describes
the value of twait. The x-axis describes the total number
of elephants resulting from different elephant thresholds as
described in Section III-A (sele ∈ [1, 30]). The data indicates
that most parameter combinations achieve similar accuracies
for similar elephant thresholds. Only the parameter combi-
nations of ntop = 1 and twait ∈ {2, 5} show significantly
different behaviour. This is most likely due to the higher
granularity resulting from nflows = 16 and ntop = 1. This
fine grained segmentation reduces the risk of falsely selecting
a flow aggregate of many small flows instead of a single
elephant flow. As our proof-of-concept implementation does
not support backtracking, a once deselected segment is never
investigated again in further steps of the algorithm. We call
this the Aggregation Problem. This may lead to false positives
as the algorithm eventually selects an aggregate of many small
flows with a large cumulative size over a single large flow.

Furthermore, the results show that if the elephant threshold
is set too high, the accuracy of the algorithm decreases
significantly. This can also be explained by the aggregation
problem. As the number of elephants decreases with a growing
threshold, the average size of non-elephant flows and thereby
the extent of the aggregation problem increases even further.

V. DISCUSSION / FUTURE WORK

The presented ZOOM approach allows several options for
future extensions. Some of them are discussed in the following.

0 500 1000 1500 2000 2500 3000

Number of elephant flows

0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

1
2
5

t
wait

1
4
8

n
top

Fig. 4. Accuracy for nflows = 16, different ntop, twait and elephant
thresholds.

Evaluation using hardware switches: The evaluations pre-
sented in this work have been conducted using an Open
vSwitch software switch. Evaluations using different hardware
OpenFlow switches4 failed for different reasons, including a
lack of control plane performance, as well as flow statistics
being returned only partially or not at all. Such issues have
already been reported in [16]. Assuming compatible hardware
switches, identical accuracy can be expected.

Use of hard timeouts: Instead of triggering flow statistics
collection after twait, it is assumed that the accuracy can be
further improved by setting hard timeouts of the flow entries
to twait and thus let the switch report back statistics counter
exactly after twait. This would avoid different life times of the
flow entries between the rules pushed first and last and thus a
falsification of traffic counters. As mentioned, the processing
speed of flow-mod messages in current OpenFlow hardware is
far from ideal [16].

Transport Layer ports and protocol: Currently, only IP
addresses are returned by the ZOOM algorithm. As searching
for port numbers and protocols does not offer the bit-wise
matching of IP addresses, a detection of flows could, e.g., be
established by scanning well-known ports and protocols first.

Multiple flow tables: More advanced use cases of matching
header fields could make use of multiple flow tables in
OpenFlow switches.

Specialized ZOOM version: The generic ZOOM algorithm
can be adjusted to detect elephant users [17] (users generating
significant amounts of traffic) instead of elephant flows.

VI. CONCLUSION

This work introduces a lightweight algorithm for elephant
detection which leverages built-in features of OpenFlow en-
abled switches. In particular, the algorithm combines the dy-
namic creation of flow entries and the counters maintained by
switches to perform cost-effective elephant detection without
introducing network overhead. Thus, the proposed mechanism
does not require modification of software or any additional
hardware. Furthermore, the amount of data that needs to be
analyzed is independent of the amount of traffic present in the
network.

The ZOOM algorithm is capable of detecting elephant
flows and their source and destination IP addresses. To this end,

4NEC PF5240, Pronto 3290, HP 2920-24G

the algorithm defines coarse-grained flow entries in OpenFlow
switches, monitors them, and iteratively refines them until
they match specific IP addresses. Evaluations of our proof-of-
concept implementation show that an accuracy of more than
80% can be achieved.

Our analysis shows that the ZOOM approach for elephant
detection is a promising concept. In order to improve the
algorithm itself as well as to overcome the limitations of our
current implementation, further investigations are required. In-
depth analyses of the behavior of elephant flows and further
mechanisms provided by SDN and OpenFlow enabled switches
may improve the accuracy and performance of the ZOOM
algorithm in the future.

ACKNOWLEDGMENTS

This work has been performed in the framework of the
SARDINE project and is partly funded by the BMBF (Project
ID 16KIS0261) and DFG (CRC 1053, MAKI). The authors
alone are responsible for the content of the paper.

REFERENCES

[1] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceed-
ings of the 9th ACM SIGCOMM conference on Internet measurement
conference. ACM, 2009, pp. 202–208.

[2] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-Overhead
Datacenter Traffic Management Using End-Host-based Elephant De-
tection,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp.
1629–1637.

[3] N. Brownlee and K. Claffy, “Understanding Internet traffic streams:
dragonflies and tortoises,” Communications Magazine, IEEE, vol. 40,
no. 10, pp. 110–117, Oct 2002.

[4] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic Characteristics
of Data Centers in the Wild,” in Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement, ser. IMC ’10. New
York, NY, USA: ACM, 2010, pp. 267–280.

[5] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “SDN-
Based Application-Aware Networking on the Example of YouTube
Video Streaming,” in Software Defined Networks (EWSDN), 2013
Second European Workshop on, Oct 2013, pp. 87–92.

[6] E. Nordström, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Ko,
J. Rexford, and M. J. Freedman, “Serval: An End-Host Stack for
Service-Centric Networking,” in 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12). San Jose, CA:
USENIX, 2012, pp. 85–98.

[7] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks,” in
NSDI, vol. 10, 2010, pp. 19–19.

[8] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: A Hybrid
Electrical/Optical Switch Architecture for Modular Data Centers,” ACM
SIGCOMM Computer Communication Review, vol. 41, no. 4, pp. 339–
350, 2011.

[9] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto, “Identifying
Elephant Flows Through Periodically Sampled Packets,” in Proceedings
of the 4th ACM SIGCOMM conference on Internet measurement. ACM,
2004, pp. 115–120.

[10] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V.
Madhyastha, “FlowSense: Monitoring Network Utilization with Zero
Measurement Cost,” in Passive and Active Measurement. Springer,
2013, pp. 31–41.

[11] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic
Matrix Estimator for OpenFlow Networks,” in Proceedings of the 11th
International Conference on Passive and Active Measurement, ser.
PAM’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 201–210.

[12] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch,” in Presented as part of the 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13).
Lombard, IL: USENIX, 2013, pp. 29–42. [Online]. Available: https:
//www.usenix.org/conference/nsdi13/technical-sessions/presentation/yu

[13] B. S. Networks, “Big Tap Monitoring Fabric Ver 4.5 Datasheet.”
[Online]. Available: http://bigswitch.com/sites/default/files/big tap
monitoring fabric v4.5.pdf

[14] “The VSS Unied Visibility Plane,” 2015. [Online].
Available: http://www.vssmonitoring.com/unified-visibility-plane/pdf/
Unified-Visibility-Plane-Whitepaper.pdf

[15] K.-c. Lan and J. Heidemann, “A measurement study of correlations of
internet flow characteristics,” Computer Networks, vol. 50, no. 1, pp.
46–62, 2006.

[16] M. Kuzniar, P. Peresini, and D. Kostic, “What You Need to Know About
SDN Flow Tables,” in Passive and Active Measurements Conference
(PAM), no. EPFL-CONF-204742, 2015.

[17] P. Liu, F. Liu, and Z. Lei, “Model of network traffic based on
network applications and network users,” in Computer Science and
Computational Technology, 2008. ISCSCT’08. International Symposium
on, vol. 2. IEEE, 2008, pp. 171–174.

