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Abstract. The software defined networking (SDN) paradigm has nu-
merous benefits for network operators, including cost aspects, flexibility,
and programmability. In the centralized SDN architecture, the controller
can order the installation of flow rules in the switches it manages via
FlowMod messages. Since the processing time of these messages has a
direct impact on the reaction time of the network, it is a key performance
indicator for switches and quantifying it in a reliable manner is required
for ensuring state consistency between the control and the data plane.
Furthermore, real world deployments not only consist of different data
plane hardware, but may feature varying control plane delays.

Hence, in this work, we investigate the impact of such a delay on the
FlowMod processing time of OpenFlow switches. Firstly, we identify a
significant heterogeneity between data plane hardware in terms of pro-
cessing times as well as the underlying TCP-level behavior. Secondly, we
show that despite this heterogeneity, combining switch specific informa-
tion with delay measurements at the controller can be used to reliably
infer FlowMod processing times.

We confirm our results with measurements in a dedicated testbed that
is comprised of three different hardware switches, three different SDN
controllers, and several high precision measurement devices.
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1 Introduction

Background. Several aspects of today’s networks are affected when the paradigm
of software defined networking (SDN) is employed. In addition to the separation
of control and data plane, the SDN architecture is characterized by a logically
centralized control plane. The latter is achieved by migrating control plane func-
tionality from the network devices to a dedicated controller, i.e., software that
runs on commercial off-the-shelf (COTS) hardware. The two planes communi-
cate via protocols like OpenFlow [1], which implement the open southbound
API [2].

Goal. Prior to migrating their network to an SDN-based deployment, oper-
ators need to assert that the resulting network meets the performance require-
ments for the particular use case. On the one hand, such requirements include



data plane aspects like packet forwarding speed. On the other hand, control
plane performance characteristics such as the processing time of FlowMod mes-
sages in OpenFlow switches play an important role. In our previous work [3],
we investigate different approaches for assessing these processing times during
the network run time. These include measurements within the SDN controller
module, packet dumps on the controller host, as well as measurements from
dedicated wiretaps that are placed in the network. However, even a dedicated
control plane channel might be subject to latency in a real world deployment.
Consequently, the goal of this work consists of analyzing the impact of control
plane delay on the FlowMod processing times and the estimation accuracy of
proposed methods.

Key insights. Firstly, our experiments show that given knowledge regarding
the current control plane delay and switch hardware, it is possible to accurately
infer the time until FlowMods are active in the data plane of the switch. Sec-
ondly, we observe that the limited buffer size of many hardware switches leads
to TCP flow control behavior that significantly reduces the throughput of Flow-
Mod messages and thus, the time until flow rules are installed. Finally, we show
that the controller implementation can also have a significant impact on the per-
formance w.r.t. the flow setup time due to different sending and packetization
behavior.

Testbed. We obtain our results in a dedicated testbed with three different
hardware switches and three different SDN controller implementations. In these
measurements, we use wiretaps as well as the Spirent C1 testing platform and
traffic generator to ensure a reliable ground truth with high precision.

The remainder of this work is structured as follows. We discuss related work
in Section 2. In Section 3, the possible communication schemes for exchanging
OpenFlow FlowMod messages are presented alongside the testbed setup and the
resulting measurement options. Measurement results are covered in Section 4
and Section 5 concludes the paper.

2 Related Work

This section covers two main areas of related work. On the one hand, approaches
for evaluating the performance of different aspects and components of an SDN
architecture are presented. On the other hand, an overview of mechanisms for
identifying and addressing the heterogeneity of SDN switches is provided.

Techniques for testing SDN-based networks in a holistic fashion are discussed
in [4]. Before addressing the long term goal of integrated tests, it is necessary to
understand the behavior of the individual network elements, i.e., controllers and
switches. In an effort to provide means to test switch behavior with respect to
compliance with the OpenFlow protocol specification, the authors of [5] present
the OFTest suite. In contrast to this work, they focus on functional testing rather
than performance tests.

The study conducted in [6] features a dedicated hardware traffic generator
in order to test the data plane performance of Linux-based OpenFlow switch-



ing. In a similar setup, the authors of [7] investigate the characteristics of virtual
switches and underlying virtualization techniques. In both works, the main inter-
est lies in the data plane performance of the different switch implementations.
This work, on the other hand, investigates the control plane performance of
OpenFlow-enabled switches under varying network conditions.

OFLOPS [8] is a software framework for testing OpenFlow switch perfor-
mance in the data plane as well as in the control plane. Its extension, OFLOPS-
Turbo [9] is capable of 10 GbE traffic generation and utilizes the open-source
NetFPGA-based OSNT [10] traffic generator and capture system. In contrast,
we focus on the processing time of FlowMod messages in order to assess the
effects of control plane delays on the resulting performance.

Analytical approaches like [11] and [12] investigate the influence of different
network parameters on the performance of an OpenFlow architecture. Since such
models are often based on measurements, the accuracy of these measurements
also positively affects the quality of the resulting models. Therefore, one key
aspect of our analyses is the accuracy of the available measurement mechanisms.
A methodology for assessing the accuracy of measurements in the SDN context is
presented in [13]. In addition to measurements performed by an SDN controller
module, wiretaps installed at both ends of a communication channel serve as
a means of providing the ground truth. This technique is also applied in the
experiments that are conducted during the course of this work.

Several previous works highlight the heterogeneity of SDN switch hardware in
terms of functionality, performance, and OpenFlow protocol compliance [14,15].
Unexpected or unreliable behavior such as additional delays and inconsistency
between control and data plane pose several risks with respect to security as well
as correct forwarding behavior. Hence, this heterogeneity needs to be taken into
account for proper planning and design of real world deployments.

Some aspects of the heterogeneity, e.g., OpenFlow protocol compliance, are
addressed by approaches such as TableVisor [16] and FlowConvertor [17] that
introduce abstraction layers to translate given OpenFlow messages to device
specific directives that take into account the behavior of individual switch hard-
ware. While their focus is on maintaining functional homogeneity, we address
the performance aspect. Finally, methods for data plane verification and con-
sistency checks between data and control plane are proposed in [18]. However,
rather than focusing on the identification of faulty switches, we are interested in
performance prediction.

3 Methodology

In this section, two mechanisms for sending FlowMod messages from an SDN
controller to OpenFlow switches are presented. Furthermore, we provide an
overview of the experimental setup alongside measurement parameters and the
configuration of the hardware that is used.



3.1 Mechanisms for Sending FlowMod messages

There are two types of methods that are used for installing OpenFlow rules in a
switch: asynchronous and synchronous or addFlow and addFlowAsync, respec-
tively. In the first case, every FlowMod is followed by a BarrierRequest, and the
next FlowMod is sent to the switch if and only if the corresponding BarierReply
has already been received and thus, the controller is informed that the previous
FlowMod is successfully installed. On the other hand, the addFlowAsync mech-
anism generates a set of FlowMod messages and sends only one BarrierRequest
afterwards. The difference between the two mechanisms is illustrated in Figure 1,
together with the measurement parameters that are considered in this work.

Controller Switch Controller Switch

ty
-y
S trp
tp
1st packet 1st packet
) matches matches

Flow n . Flow n

Fig. 1. Asynchronous and synchronous methods for adding flows to an OpenFlow
switch.

On the left side of Figure 1, t, represents the time that the controller needs
to generate n FlowMod messages in case of addFlowAsync and t;, is the duration
between BarrierRequest and BarrierReply. The time between the first FlowMod
and the last BarrierReply indicates how long it takes the switch to finish setting
up n rules and is denoted as ¢y in both cases. Finally, t;p denotes the time
difference between the first FlowMod message and the first data plane packet
that is forwarded by the switch according to the last FlowMod it received. This
verifies that the corresponding flow entry is actually installed in the data plane
of the switch.

3.2 Testbed Setup

In order to investigate the impact of transmission delay on the estimation of
FlowMod message processing times, experiments are performed in a testbed



that is set up according to Figure 2. In addition to a computer! which runs the
SDN controller that is connected to an OpenFlow switch, two dedicated hosts?
act as traffic source and traffic sink.

Furthermore, a computer with two 1 Gbps network interface cards (NICs)
runs Ubuntu 16.04 and emulates the transmission delay in both directions, i.e.,
from the switch to the controller and vice versa. The red lines indicate links
with delay, which is set via the tc command3. A Net Optics tap device* is
inserted between the controller and Netem PC with the purpose of mirroring all
traffic that passes through the corresponding link to the monitoring machine, an
HP Proliant DL32 server. This server is equipped with an Endace DAG (Data
Acquisition and Generation) 7.5G2 card, which has 2 Gigabit Ethernet ports, to
capture every incoming packet.
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Fig. 2. Logical testbed setup.

Three different controllers are utilized in this work. Firstly, the latest version
of the Python-based Ryu controller® is used in conjunction with an additional
module that allows the generation of FlowMod messages according to the two
aforementioned methods. Secondly, a module with similar function is built for
the Java-based OpenDaylight controller®. Finally, the Spirent C1 testing plat-

! Tntel(R) Core(TM) i7-2600 CPU @ 3.40GHz/16GB RAM

2 Intel(R) Core(TM)2 Duo CPU E8500/4G RAM

3 sudo tc qdisc add dev [interface] root netem delay [delayValue]

4 http://www.ixiacom.com/products/ixia-gig-zero-delay-tap/

® http:https://osrg.github.io/ryu/, v4.18

5 https://www.opendaylight.org/software/downloads/hydrogen-base-10, Hydro-
gen release



form” with the OpenFlow Testing Package allows emulating an SDN controller.
Furthermore, the Spirent C1 is capable of emulating the traffic source and sink,
simplifying the testbed setup.

In this work, a total of three OpenFlow switches are used. Their specifications
are displayed in Table 1.

Table 1. Switches used in this work.

Switch CPU |Memory Software
Pronto 3290 1;;421?501\%5141:1; 512MB (opef ivcsowsitiﬁiim.o)
Quanta T1048 1;3421?,01\%5}?; 1024MB (Openljliscv(aistflfvz&())
NEC PF5240 | oy S0 | 1024 MB O oA

3.3 Experiment Procedure

At the beginning of each measurement, the OpenFlow table in the switch is
guaranteed to be empty. This is achieved by sending corresponding FlowMod
messages to the switch before starting an experiment. Then, the controller sets
up basic rules for exchanging ARP packets between the traffic source and sink.
Later, these rules allow the traffic to be forwarded correctly to the destination
without additional interaction with the controller. After that, another rule for
dropping all packets that do not match any entry in the OpenFlow table of the
switch is installed. Doing this prevents interference with the controller’s perfor-
mance due to an enormous number of PACKET _IN messages being forwarded
to it. Meanwhile, the traffic source sends UDP traffic to the specific UDP port of
the traffic sink using the Iperf® software. However, the packets can not reach the
traffic sink due to the lack of a matching entry in the switch and are dropped.
Afterwards, the controller generates either a batch of FlowMods followed by a
BarrierRequest message or a series of alternating FlowMod and BarrierRequest
messages. In both cases, the last FlowMod matches the aforementioned UDP
traffic.

The results are collected by means of several approaches. Firstly, capture files
are obtained by running a packet analyzer in the controller during the experi-
ment, such as tepdump or the Spirent C1’s capture tool. The second approach
relies on reports that are generated by the controller modules. Finally, the com-
bination of wiretap devices and the DAG card offers the capability to capture
and analyze packet timestamps at nanosecond precision.

" http://www.spirent.com/Test-solutions_datasheets/Broadband/PAB/Spirent_
TestCenter/STC_Cl-Appliance_Datasheet, Spirent TestCenter Application
v4.69.986

® https://iperf.fr/



4 Results and Discussion

In this section, we present the results of the experiments that are described in
Section 3. First, we demonstrate the heterogeneity of the switch hardware. This
is achieved by comparing the FlowMod processing times of different switches
when installing different numbers of flows and applying different amounts of
control plane delay. Afterwards, we show that using prior information on the
hardware specific characteristics and controller-based delay measurements, it is
possible to achieve a high degree of correlation between the flow setup time, ¢,
and the time until flow rules are active in the data plane, ¢{;p. This outcome
highlights that reliable estimations of t;p are possible at run time. Finally, we
present results regarding the impact of the controller implementation on the
FlowMod processing time.

4.1 Impact of Switch Hardware

The two graphs of Figure 3 highlight the individual behavior of the three switches
that are used in this work with respect to their sensitivity to parameters such
as the amount of control plane delay and the number of flows that are installed.
Their x-axes represent the control plane delay that is set in each direction be-
tween switch and controller, i.e., a value of 10 ms corresponds to a round trip time
of 20ms. The y-axes denote the flow setup times ¢; and t¢p that are recorded
by means of the wiretap devices and are represented by dashed and solid lines,
respectively. Finally, differently colored curves correspond to different switches.
For each parameter combination, five experiment runs are performed in order
to construct 95 % confidence intervals that are indicated with error bars. The
results in the figures are based on measurements with the OpenDaylight con-
troller. Experiments with the other two controllers yield qualitatively similar
results and are discussed in Section 4.2.

Figure 3a displays results from experiments in which a total of 100 Flow-
Mod messages are sent to the switch via the addFlowAsync mechanism, i.e.,
100 FlowMods are followed by one pair of BarrierRequest and BarrierReply
messages. Three observations can be made. First, the three switches operate at
different time scales. With processing times that are lower than 500 ms for all
delay values, the Pronto switch consistently outperforms the other two switches
in this scenario. Second, the sensitivity of the switches towards the control plane
delay varies significantly, as indicated by the different slopes of the individual
curves. Consequently, the NEC switch achieves lower values of ¢;p than Quanta
in scenarios with a low delay, whereas the Quanta switch is least affected by the
increasing delay and gives better results for delays that are larger than 40 ms.
Third, while the NEC and Pronto switch send their barrier reply after having
installed all flow rules into the data plane, ie., ts > typ, the Quanta switch
sends out the confirmation before the rules are active. Hence, a window of in-
consistency of up to half a second can occur if the controller is unaware of this
behavior.
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(b) 1800 flows.

Fig. 3. Influence of the control plane delay on the FlowMod processing time when
using different switches and different numbers of flows. Scenario details: OpenDaylight
controller and addFlowAsync mechanism.

Increasing the number of installed flows to 1800 exposes additional differences
between the switches. The corresponding results are shown in Figure 3b. For all
switches, the increased number of FlowMod messages that need to be processed
results in larger setup times. Furthermore, the high delay sensitivity of the NEC
switch is even more pronounced in this scenario, with setup times ranging from
5 to over 20seconds. In the case of the Quanta switch, a significant increase of
the installation time is observed for delay values larger than 60 ms. Combined
with the premature barrier reply message, this can be a major threat to state



consistency. Only the Pronto switch is able to maintain nearly constant t5 and
t¢p values for all delay settings.

While the wiretap-based measurements that are presented in the previous
figures demonstrate the differences between the hardware switches, there is a
high pairwise similarity between t5 and t7p values. We use this relationship to
derive a mechanism that can be used to infer ¢¢p from information regarding
the particular switch model that is in use and measurements at the controller.
These measurements include tcpdump on the controller machine to obtain %
and a simple round trip time measurement like ping to determine the control
plane delay.

For each of the three switches, the graphs in Figure 4 show the measurement
of the flow setup time ¢, at the controller on the x-axis and the actual time until
the first data plane packet t¢p at the wiretap on the y-axis. Differently colored
dots denote different control plane delays.

In Figure 4a, results that are obtained when installing 100 flow rules are
displayed. Although the times that are recorded for the three switches have
significantly different ranges, a high linear correlation between ts and t;p can
be observed. Hence, using switch-specific information regarding its sensitivity
towards control plane delay in conjunction with round trip time and t5 measure-
ments is sufficient for an accurate estimation of the flow installation time in the
data plane.

Similar results are obtained in case of the installation of 1800 flow rules, as
presented in Figure 4b. While the NEC switch has the highest setup and process-
ing times, it also has the most consistent behavior and an almost perfect linear
correlation. Except for few outliers, the Pronto switch also shows a high degree of
correlation, even with the increased number of flows. Finally, the Quanta switch
produces outliers for high control plane delays. Nevertheless, this behavior is
observed consistently - qualitatively as well as quantitatively - in multiple rep-
etitions of our experiments, as indicated by clusters of dots in the scatter plot.
Therefore, this switch-specific characteristic can also be taken into account by
the controller when making predictions regarding the data plane state.

Summarizing, our findings show that using simple controller-based measure-
ments in combination with switch properties that can be determined prior to
deployment can be used for performing accurate prediction of the FlowMod
installation time in the data plane of OpenFlow switches.

4.2 Impact of Controller Choice

While the previously shown results focus on the peculiarities of different data
plane hardware, this section is devoted to the influence of the controller imple-
mentation on the performance. To this end, experiments with the NEC switch are
conducted with three different controllers. These include the Java-based Open-
Daylight controller, the Python-based Ryu controller, as well as the controller
implementation that is provided by the OpenFlow Testing Package of the Spirent
C1. In case of the OpenDaylight and Ryu controller, the same host machine is



NEC PRONTO QUANTA
1.25 s 0837 b
[}
) 0.3
1.00+ ° * 1
s 0.60 [} Delay [ms]
L 00
—_ - . 1
L. 0,751 4+ 0.2 \ 20
o 0.57 1 . * 40
S * 60
.’. ¢ ] * 80
0.50 1 . ¢ 100
014 0.54
0.251
05 1.0 01 02 03 04 01 02 03 04
ts [s]
(a) 100 flows.
NEC PRONTO QUANTA
' -
20
' 3.0 9
Delay [ms]
15+ (130
@ . o 20
& 281 O 67 'y 40
ha .00 . ° 60
10+ ’ Y * 80
ot . ¢ 100
2.6 d
51 o L )
‘ ‘ 0+ ; ;
5 10 15 20 26 2.8 3.0 025 050 0.75
ts [s]

(b) 1800 flows.

Fig. 4. Flow setup time t¢s recorded at the controller and time to first data plane
packet t;p recorded via the wiretap for the three different switches. Scenario details:
OpenDaylight controller and addFlowAsync mechanism.

used to ensure that the results are not affected by a heterogeneity of the under-
lying hardware. The graphics in Figure 5 show t5 and t;p values for different
numbers of flows on the y-axis and the control plane delay on the x-axis. Differ-
ently colored lines correspond to the three controllers.

When 100 flows are installed, the majority of confidence intervals in Fig-
ure Ha overlap. This indicates that for control plane delays that are larger than
10 ms, no statistically significant difference between the three controllers can be
identified. In the case of control plane delays that are lower than 20ms, using
the OpenDaylight controller leads to setup times of roughly 0.23 seconds as op-
posed to setup times of roughly 0.34 seconds that are observed for Ryu and the
Spirent-based controller.

These phenomena are even more pronounced in the case of 1800 flows. Fig-
ure 5b shows that using the OpenDaylight controller leads to consistently faster
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Fig. 5. Impact of the controller choice on flow setup times for different numbers of
installed flows. Configuration details: NEC switch and addFlowAsync mechanism.

flow setup times than Ryu and Spirent. Differences between 1 and 2 seconds are
observed for setup times that range between 4.7 and 21.6 seconds.

The aforementioned results indicate that the controller is not merely a gener-
ator of FlowMod messages but can also affect the performance. In-depth analyses
of the corresponding packet dumps show that the sending behavior of the Open-
Daylight controller and the corresponding packetization of OpenFlow messages
differs from the other two controllers. Hence, controller developers should be
aware of such mechanisms in order to adapt to switch capabilities and opportu-
nities to improve the overall performance.



5 Conclusion

In this work, we investigate the influence of control plane delay on the perfor-
mance of OpenFlow switches in terms of their FlowMod processing time. Our
testbed setup features hardware from NEC, Quanta, and Pronto as well as three
different SDN controller implementations. These include the Java-based Open-
Daylight controller, the Python-based Ryu controller, and the controller imple-
mentation that is available in the OpenFlow Testing Package of the Spirent C1
platform. Additionally, we use wiretap devices in order to obtain highly precise
measurements.

The contribution of this work is threefold. Firstly, we confirm the heterogene-
ity of OpenFlow switching hardware. This includes not only varying processing
times but also different degrees of sensitivity towards the control plane delay
between controller and switch. Secondly, we demonstrate that switch-specific
characteristics that can be extracted prior to deployment can be used in conjunc-
tion with simple measurements at the controller in order to accurately predict
the data plane state and performance of switches. Such a prediction mechanism
can significantly reduce the window of inconsistency between an SDN controller
and the switches it manages. Finally, we show that implementation details of
the SDN controller can also have an impact on the overall FlowMod processing
performance due to sender-side behavior. This leads to optimization potential
that can be taken into account by both, controller developers who want to im-
prove the general performance of their controller as well as network operators
who want to maximize compatibility and reliability of the components in their
particular network.

Several directions for future work are available. On the one hand, the impact
of dynamically fluctuating control plane delays can be analyzed. Depending on
the amount and frequency of the fluctuation, the measurement frequency at the
controller needs to be adapted. On the other hand, more in-depth analyses of
the packet dumps might reveal different classes of switch-side behavior that can
be used to infer more generic and robust models.
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