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Abstract

Peer-to-Peer (P2P) networks offer a great potential that
goes well beyond simple file-sharing. We present a novel
approach for using P2P-overlay networks to ensure a sus-
tainable operation of a distributed system. In particular,we
show how to detect and localize the causes of physical link
failures using the maintenance traffic of a P2P overlay net-
work. The network monitoring architecture can be set up
autonomously thereby reducing both the installation costs
and the traffic overhead.

1. Introduction

Current computer networks consist of hundreds, thou-
sands or even millions of nodes and links. It is a very diffi-
cult or even impossible task to guarantee a sustainable op-
eration of such systems surveying the health of all physi-
cal links with only one single central network monitoring
entity. The concept ofdistributed network monitoringin-
volving several smaller distributed entities can be seen asa
first step toward autonomic networks [7], which are able to
diagnose and eliminate a number of failures autonomously.
However, most existing distributed network monitoring pro-
posals represent no great progress toward an autonomic net-
work as all information is still gathered in a central place
and has to be manually evaluated by an operator. In this
context, the concept of P2P overlay network monitoring
promises an improved level of autonomy. If peers in a net-
work interact in order to combine their individual knowl-
edge about small local areas of the system to a complete
image of the whole network, the central monitoring entity
can be greatly supported or may even no longer be needed.

A first proposition of a less centralistic network monitor-
ing solution usesprobesor test transactions to verify that
all components of the system work properly [2]. A simi-
lar concept is presented in [3] where a minimum number
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of paths used to route packets between two nodes of a net-
work is used to calculate the loss rate of every single routing
path. In [5] it is shown that if a fraction of all nodes in the
networks is used asbeacons, i.e. as nodes that are able to
survey all of their outgoing paths, this is sufficient for de-
tecting all link failures. However, all those solutions suffer
from the problem that they require additional configuration
overhead and more administration work than does a single
network monitoring station. Furthermore, they need to pro-
duce additional traffic to survey the network.

In our work, we propose to utilize the self-configuring
properties of a P2P network to avoid unnecessary configu-
ration overhead, while exploiting its maintenance overhead
to detect and localize possible link failures. In general, any
structured P2P overlay requires some maintenance traffic in
order to stabilize the structure of the overlay. If, e.g., a dis-
tributed hash table (DHT) algorithm is deployed, all peers
regularly contact aboutO(log2(n)) other peers in the over-
lay to guarantee the functionality of the system. In this pa-
per we will analyze the potential of highly meshed overlay
networks to support a provider or an operator in maintaining
a sustainable operation of their system. Such overlay net-
works were, e.g., presented in [4], where every node main-
tained a complete routing table to enable lookups inO(1).

The remainder of this work is organized as follows: In
Section 2 we define the problems of detecting and localizing
link failures using P2P overlays. Section 3 describes the
concept of overlay network monitoring and explains how to
detect link failures efficiently. We demonstrate how existing
overlays can be extended, in order to pinpoint the root cause
of a detected failure in Section 4, before we present results
in Section 5 and conclude our work in Section 6.

2. Fundamentals

2.1. Theoretical Foundations

We represent an IP network by a connected graphG =
(V,E), whereV is the set of nodes or vertices,E is the
set of links or edges andE ⊆ V × V . A path in G
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is defined by the set of its physical links. We assume,
that through an OSPF-like routing policy theshortest path
pu,v between two nodesu, v of G is uniquely determined.
P denotes theset of all shortest pathsin the network,
P := {pu,v : u, v ∈ V }. We assume also, that all links in
the network are assigned equal or similar bandwidths and
that every link is thus contained in at least one routing path.

In the following, we consider the situation, where only
one link failure occurs at a specific time and we hence dis-
tinguishL = |E| different failures. To detect and localize
those link failures, we use a probe base approach inspired
by the work of Brodie et al. [2]. For a network with a well
ordered set of linksE = {e1, . . . , eL}, we define theset
of failuresasF = {f1, . . . , fL}. If the physical linkei is
down, failurefi occurs. In this context, aprobeis a method
of obtaining information about objects in the system. It is
affected by failurefi if its execution fails as soon asfi oc-
curs. Note that we can easily make this scheme suitable
for the case of simultaneous failures, if we add additional
failuresf to F , whose occurrences indicate the concurrent
failure of several linksES ⊆ E.

In our work, we consider each packet routed via the
unique path from a nodeu to another nodev as a probe:
Let p′ be the route a packet with sourceu and destination
v actually takes. The probep = pu,v ∈ P fails as soon
asp′ differs from p. Thus, to “evaluate probep” we need
to compare the actual way a packet routed onp has taken
to the predefined one in the routing table. Thedependency
matrix for P , DP ∈ {0, 1}N2×L, describes which physical
links are used by which path or which failure affects which
probe. Forpj ∈ P and1 ≤ k ≤ L, we set

DP (i, j) =

{
1 if ej ∈ pi
0 otherwise .

(1)

UsingP as the set of probes, the relationship between the
outcome of every probe and all possible failures is thus
given byDP , aspi ∈ P is affected byfj if and only if
DP (i, j) = 1. If more than one failure can occur at a time,
this can be modelled using a dependency matrix, where ad-
ditional columns represent the occurrence of several simul-
taneous link failures. Those additional columns are com-
puted by OR-ing the columns representing the individual
link failures.

We focus on scenarios like campus or company LANs
where the topology of the monitored network is known.
Given the topology and the deployed routing algorithm, we
have full knowledge of the routing table and can thus de-
rive the set of shortest pathsP which we use as the set of
available probes.

2.2. M INIMUM SUCCESSFULOVERLAY

We define the number of links that can be monitored us-
ing a given probe set as follows:P ′ ⊆ P coversF , if for

everyf ∈ F at least one probe inP ′ is affected, i.e. if

E =
⋃

p∈P ′

p ⇔
|P ′|∑

k=1

DP ′(k, i) ≥ 1 for 1 ≤ i ≤ L. (2)

The problems of determining the minimal probe set which
is able to detect and localize all possible failures were intro-
duced as the FAULT DETECTION and the FAULT LOCAL-
IZATION decision problem in [2]. Both problems are NP-
complete, but the authors presented heuristics for settingup
appropriate minimal probe sets. Applied to the case of mon-
itoring IP networks, those heuristics produce a very small
set of probes, but require a quite large number of beacons.
Moreover, every evaluation of a probe requires a packet to
be sent through the network.

To minimize the additional load imposed on the sys-
tem, we propose to exploit the signaling overhead of a fully
meshed P2P overlay for monitoring purposes. In a network
G = (V,E) with the shortest paths given byP , we denote
anyO ⊆ P as anoverlay. The sources and destinations
of paths inO are calledthe baseV ′ of O, which spansthe
overlay:V ′ = {v ∈ V : ∃u∈V pu,v ∈ O ∨ pv,u ∈ O}.

For u, v ∈ V ′, v is called a neighbor of u in O if
pu,v ∈ O, a neighborhood-relation that is not necessarily
bidirectional. We define thecoverageof an overlayO as

cO =
|⋃p∈O p|

|E| . (3)

An overlayO ⊆ P is denoted assuccessfulif it coversF ,
i.e. if cO = 1. In case each node of the overlay is a neigh-
bor of all other overlay nodes, we speak of afully connected
or fully meshed overlay, Of

V ′ = {pu,v ∈ P : u, v ∈ V ′}.
These definitions lead to the following decision problem:

Problem M INIMUM SUCCESSFULOVERLAY

INSTANCE: A networkG = (V,E) with the set of shortest
pathsP and a positive integern ≤ |V |.
QUESTION: Does there exist aV ′ ⊆ V with |V ′| ≤ n so
thatOf

V ′ is successful?

Although this problem is not exactly equal to FAULT DE-
TECTION it is in the same range of complexity. In Sec-
tion 3.3, we therefore present heuristics to find small bases
for successful overlays.

The probe set represented by a positive instance of the
M INIMUM SUCCESSFULOVERLAY problem bears many
redundancies, since it is possible thatpu,v = pv,u or
pu,v ⊆ pu,w. The problem of choosing a minimum number
of probes out of a givenOf

V ′ whose evaluation still allows
the surveillance of the physical links is again NP-complete.
In Section 3.4 we will introduce algorithms which greatly
reduce the number of probes to evaluate and establish an
improved successful overlayOi

V ′ ⊂ Of
V ′ .



2.3. M INIMUM EXTENDED PINPOINT OVERLAY

Using the probe set given by a successful overlay, we
are able todetectthat a failure has occurred, but in gen-
eral we can notpinpoint the cause of the failure. To tackle
this problem, we exploit the interdependency of the differ-
ent probes and, following [2] we define: Given a set of fail-
uresF = {f1, . . . , fL}, a probe setP = {p1, . . . , pK}
and the dependency matrixDP , thesignal vectoror signal,
si ∈ F(2)K of fault fi is given by theith column ofDP ,
whereF(2) = ({0, 1},+, ·) denotes the Galois field. We
call a failurefi ∈ F identifiableor locatableby P , if si is
unique, i.e. if si is linear independent from all other signal
vectors of faults inF . Two failuresfi, fj ∈ F are called
indistinguishable, notedfi ∼ fj , if their fault signals are
equal. Two signals are linear independent if they differ in
at least one entry, two failures are thusdistinguishableif at
least one probe of the probe set is affected by one of the
failures but not by the other one.

Considering the required management overhead, we use
the stabilization overhead in an improved overlay network
for both detectingand localizing failures. In a network,
where the shortest paths are given byP , the exactness,
eO, of an overlayO ⊆ P in respect to the set of failures
F = {f1, f2, . . . , fL} is given by

eO =
|{1 ≤ i ≤ L : fi is identifyable}|

L
. (4)

O is called apinpoint overlayif it is successful and distin-
guishes all failures, i.e. ifcO = eO = 1.

To set up an efficient solution for network monitoring,
we extend existing successful overlay to a minimal failure
localizing overlay by adding a minimal number of peers and
paths to the overlay until we are able to pinpoint the cause of
all failures. Therefore, we define theextended overlayŒṼ

V ′

of an improved overlayOi
V ′ as the overlay which results

from adding the nodesv ∈ Ṽ ⊆ V \ V ′ to V ′ and paths
p ∈ {Of

Ṽ
∩ P \ Oi

V ′} to Oi
V ′ . The corresponding decision

problem reads as follows:

Problem M INIMUM EXTENDED PINPOINT OVERLAY

INSTANCE: A networkG = (V,E) with the set of shortest
pathsP , an overlayOi

V ′ with baseV ′ ⊆ V which is not a
pinpoint overlay and a positive integern ≤ |V | − |V ′|.
QUESTION: Does there exist ãV ⊆ V \ V ′ with |Ṽ | ≤ n

so that the extended overlay ŒṼV ′ is a pinpoint overlay?

Intuitively, M INIMUM EXTENDED PINPOINT OVERLAY

resembles FAULT LOCALIZATION introduced in the last
subsection. We expect it to be in the same class of com-
plexity and thus develop heuristics to find small extended
pinpoint overlays in Section 4.2.

3. Detecting Link Failures

3.1. Random Overlays

In this subsection, we examine the coverage ofgeneral-
ized overlaysOq

V ′ , where a random set of peersV ′ ⊆ V
of sizen is taken andq random neighbors out ofV ′ are se-
lected for each peerv ∈ V ′. To obtain credible results, we
repeat the experiment 2000 times for1 ≤ q < n ≤ N and
compute the coveragecOq

V ′ for each resulting overlay.
During our studies, we analyzed different sample net-

works with N ∈ {6, 7, . . . , 25} nodes. Fig. 1 illustrates
the results for the AT&T backbone network, which con-
sists of 25 nodes. The upper surface in the figure visualizes
the mean values of the coverage for all investigated over-
lay sizes and the corresponding number of neighbors. The
lower surface shows the coefficient of variation of the cov-
erage. The 95%-confidence intervals for all combinations
of n andq range between 0.01% and 0.3% and are thus not
shown.
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Figure 1. Analysis of random overlays

Generally it can be said, that we obtained different mean
values of the coverage for the same relative size of the base
n
N in different networks. Obviously, the coverage depends
on the particular structure of the network and we can hence
not make a qualitative statement concerning the interdepen-
dence ofcOq

V ′ and n
N . However, the curves for the different

networks roughly showed the same shape: The number of
detectable failures is increasing with the size of the base as
well as with the number of neighbors in the overlay.

The coefficient of variation in Fig. 1 increases with de-
creasing values ofn andq, i.e. with smaller and less meshed
overlays. That is, small and little meshed successful over-
lays do exist, but their percentage is too small to be found
randomly. We develop therefore more sophisticated meth-
ods in the remainder of this section.

3.2. Brute Force Search

An examination of all existing overlays is another pos-
sibility to find efficient successful overlays, but does not



scale to larger networks. Therefore we use a Linear Pro-
gramm (LP) to realize an efficient as possible brute force
search for successful overlays. In particular, we considera
networkG = (V,E) with the set of shortest pathsP and
assume the set of vertices and the set of edges to be ordered
in a well defined way. That is,V = {v1, v2, . . . , vN} and
E = {e1, e2, . . . , eL}. The LP to find a set of peersV ′

of sizen which spans a successful fully connected overlay
Of

V ′ can be described using the following three integer vari-
ables:

ê ∈ {0, 1}L representing the physical links

ê(i) =

{
1 if ei ∈

⋃
p∈Of

V ′
p

0 otherwise ,

v̂ ∈ {0, 1}N representing the nodes

v̂(i) =

{
1 if vi ∈ V ′

0 otherwise ,

n̂ ∈ {0, 1}N×N describing the overlay structure

n̂(i, j) =

{
1 if vi is a neighbor ofvj
0 otherwise .

Our target is to maximize the number of covered links. The
objective functionf is therefore given by

f(ê, v̂, n̂) =

L∑

i=1

ê(i). (5)

The corresponding constraints must hold for1 ≤ i, j ≤ N :

At mostn nodes may be chosen to be peers

N∑

i=1

v̂(i) ≤ n. (6)

Neighbors have to be peers in the overlay

n̂(i, j) ≤ v̂(i) and n̂(i, j) ≤ v̂(j). (7)

Overlay links cover physical links

ê(i) ≤
∑

x,y:ei∈px,y

n̂(x, y). (8)

The computation time and the overhead involved in find-
ing a solution are too large to make the LP suitable for
real-life networks, but CPLEX, enabled us to get results for
all our sample networks with 6 to 25 nodes. Those results
showed that efficient overlays offering full coverage do exist
and can be obtained with a peer set of sizen ≪ N . More-
over, efficient heuristics can derived using the specific fea-
tures of the obtained overlays, as will be described shortly.

3.3. Heuristics for Successful Overlays

For all sample networksG, we define theimportanceIv
of a nodev in G as the percentage of the successful over-
lays found by a brute force search in whichv occurred. If
Iv = 1, v is a member of all successful bases found for
this network. Any reasonable heuristic must therefore in-
corporatev in the base of an overlay. During our analysis
we identified the following node characteristics to be corre-
lated withI:

- Tv, the number oftransit flowstraversingv:

Tv = |{pu,w ∈ P : u,w ∈ V \{v}∧∃x∈V vx ∈ pu,w}|

- TL
v , the number oflong transit flowstraversingv:

TL
v = |{pu,w ∈ P : u,w ∈ V \{v}∧∃x∈V \{u,w} vx ∈ pu,w}|

- Mv, themarginalityof v: Mv =
∑

u∈V \{v} lpv,u

- dv thedegreeof v: dv = |{u ∈ V : uv ∈ E}| ,

whereuv denotes the edge between the nodeu andv and
lp gives the length, i.e. the number of physical links of path
p. Note that these characteristics allow to differentiate both
the type and the topological position of a node.

To analyze which features are common for nodes with
anIv close to 1, we calculated thecorrelationρI,X for each
nodal characteristicX introduced above. Since none of the
correlations was equal to 0, all characteristics depend onI
to some extent. In detail,T , TL andd are positively andM
is negatively correlated toI, while the correlation between
T , TL andI is stronger than the correlation betweenM , d
andI. However, the results strongly depend on the network
structure. The introduced parameters can therefore be used
as indicators, but are not able to guarantee that a specific
node is indeed necessary to span a successful overlay.

We utilize these correlations to derive four different
heuristics, which are able to find a base for a fully meshed
successful overlay. Each heuristics starts withV ′ = V ,
while for the heuristicshT , hTL andhd, V ′ is brought in a
descending order according toTv, TL

v anddv respectively.
For the heuristicshM , the nodes ofV ′ are brought in an as-
cending order according toMv. We also examine a heuris-
tics hR, that simply randomizes the order of the nodes.
Once the set is arranged, the heuristics runs through the set
of nodes and removes each considered node from the over-
lay, if the resulting overlay is still successful. We compared
the results of all heuristics to the theoretical minimum base
size determined by the LP for the small sample topologies.
All heuristics performed nearly identical and matched the
theoretical minimum in almost all cases.

Fig. 2 compares the sizes of the bases of successful over-
lays found by the different heuristics. It shows the results
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Figure 2. Comparison of successful overlays

for 10 different random topologies with20, 40, . . . , 200
nodes (cf. Section 5 for details on the topologies). Due to
the influence of topological characteristics, the percentage
of the nodes in the network that need to be peers in the base,
i.e. are either the source or the destination of a path used as
probe, is varying quite strongly. In fact, we will show in
Section 5 that the network topology has an even higher in-
fluence on the efficiency than the type of heuristics.

The running time of the heuristics is dominated by the
time needed to initializeV ′. hR, hd andhM can be there-
fore performed inO(N). The heuristicshT andhTL

ar-
range the nodes according to their occurrence in routing
paths and need therefore a time inO(N2). A M ATLAB im-
plementation of all heuristics required a reasonable amount
of time for a random topology with 200 nodes on a Pentium
1.7 Ghz CPU: The computations took less than 8 seconds
for heuristics with time complexity ofO(N) and around 18
seconds for heuristics with a time complexity ofO(N2).

3.4. Heuristics for Reducing the Overhead

As outlined earlier, the use all paths that are in a fully
meshed overlay for failure detection, leads to a highly re-
dundant probe set. In this subsection we develop four
heuristics to minimize the number of paths needed to de-
tect all possible failures. The heuristics can be summarized
as follows:

- au (add most useful):
In each step themost usefulpi ∈ Of

V ′ \ Oi
V ′ is deter-

mined and added to an initially emptyOi
V ′ , until this

overlay is successful. The usefulness of a probeu+
pi

is
defined as the number of links contained in the pathpi
that are not yet covered byOi

V ′ .

- ar (add random):
The initial empty setOi

V ′ is extended by randomly
choosing ap ∈ Of

V ′ \ Oi
V ′ . The probep is only

added to the overlay if it improves the coverage, i.e.

if u+
p > 0. This step is repeated until a successful

overlay is found.

- du (drop most useless):
We initializeOi

V ′ = Of
V ′ . Then at each step themost

uselessprobep ∈ Oi
V ′ is dropped from the probe set,

as long as the overlay remains successful. The more
redundancy there is in a probe and the shorter it is,
the more it is considered to be useless. We calculate
the uselessness of a probe byu−(pi) = λpi

· e−lpi ,
where λpi

represents theweighted lengthof pi for
Oi

V ′ . Thereby for each link of a probepi the number
of other probes inOi

V ′ which do also cover this link
is calculated. All these numbers are then added up to
obtainλpi

.

- dr (drop random):
We initialize Oi

V ′ = Of
V ′ and choose a random

p ∈ Oi
V ′ . If Oi

V ′ \ {p} is still successful, the probe
is dropped from the overlay. This step is repeated until
all probes have been considered or if each column of
Oi

V ′ has weight 1.
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Figure 3. Probes needed for failure detection

In Fig. 3 we show the number of probes that are de-
termined as necessary for failure detection by the differ-
ent heuristics for some of the successful overlays analyzed
in Fig. 2. All values are mean values of the five different
fully meshed successful overlays in relation to the number
of probes in the fully meshed overlay. Obviously less than
5 % of all paths from the fully meshed overlays are required
as probes, thus, the computational effort can be cut down
significantly.

The average time consumed by the heuristics to set up
the improved overlays ranges betweenO(N2) andO(N4).
However, we are able to reduce the time needed for op-
timization dramatically, if we start with an efficient fully
meshed successful overlay. An evaluation of the combina-
tion of the heuristics on larger topologies generated accord-
ing to different models can be found in Section 5.



4. Localizing Link Failures

Our experiments showed, that successful overlays al-
ready allow to localize the causes of a number of failures.
In this section, we therefore examine how existing success-
ful overlays can be extended to overlays that allow the lo-
calization of link failures as well. This two-level approach
of network monitoring is also motivated by intuition: In a
highly utilized network, it is important to detect any failure
as fast as possible. Once a failure has been detected, addi-
tional effort can be used to pinpoint the cause of the failure.

We also noticed that, even if the signal of a failure is not
unique, the set of possible causes is quite small: On average,
only two or three physical link failures affect the same set
of probes. This is especially interesting for the case of large
networks where thousands of links are to be monitored. To
manage medium sized networks, we show how to pinpoint
the root cause of a failure exactly in the following.

4.1. The Localization Quality of a Probe Set

In Eq. (4) we introduced the exactness,eO, of a given
overlayO as a measure for the number of failures, which
can be distinguished byO. In the following, we will present
a more exact characterization to estimate the quality of a
probe set, again based on the ideas of Brodie et al. [2].

For any f ∈ F and in respect to∼, the equiva-
lence class[f ] := {g ∈ F : g ∼ f} represents the set of
failures which are not distinguishable from the specific
failure f . The corresponding partition ofF is called
the localization decompositionSP of P and is given by
SP := F/∼ = {[f ] : f ∈ F}. Note that for a pinpoint over-
lay O, SO consists of singleton sets. To rate the quality of
a probe setP , thelocalization qualityQP with respect to a
set of failuresF is defined as the expected minimum num-
ber of additional probes required to localize all faults. Ifall
failures are independent and occur with equal probability,
QP is given by

QP =
∑

S∈SP

|S|
|F | log2 |S|. (9)

Smaller values ofQP denote better probe sets, as for each
S ∈ SP , log2 |S| gives the minimum number of additional
probes needed to distinguish all failures inS.

4.2. Extending Successful Overlays

We consider a networkG = (V,E) and a successful
overlayOi

V ′ , which is already able to pinpoint some, but
not all failures. We investigate two approaches to find a
failure localizing extension of this successful overlay: The
first possibility is to determine a minimal set of probes
P ′ ⊆ P \Oi

V ′ , the second possibility is to determine a min-
imal set of peers̃V ⊆ V \ V ′, which allows to extend the
successful overlay to a pinpoint overlay.

Some more details:

- cpi (choose most informative probe):
We initializeP ′ = Oi

V ′ and add themost informa-
tivep ∈ P \P ′ toP ′ until the corresponding extended
overlay is a pinpoint overlay. TheñV ⊆ V \ V ′ is de-

rived as the base of ŒṼV ′ . A probep is considered the
more informative, the more it improves the localization
quality ofP ′. Consequently, we define theentropyof
a probe asjp = QP ′ −QP ′∪{p}. According to Eq. (9)
lower values ofQP correspond to better probe sets. In
each step, we therefore add the probep ∈ P with the
highestjp.

- cpr (choose random probe):
We start withP ′ = Of

V ′ , choose a random probe out of
P \ P ′ and add it toP ′ if it improves the localization
quality. That is, we add it toP ′ if its entropy is not
zero. This step is repeated untilP ′ allows to detect and
localize all failures and̃V is constructed as the union
of all endpoints of added probes.

- cbi (choose most informative beacon):
We initialize Ṽ = ∅ and iteratively add themost in-

formativebeaconv ∈ V \ {V ′ ∩ Ṽ } to Ṽ until ŒṼ
V ′

is a pinpoint overlay. The quality ofv is rated in de-
pendence of the entropy of all paths with sourcev:
jv = QP ′ − QP ′∪TP (v) with the shortest paths span-
ning tree rooted atv, TP (v). Again, larger values of
jv indicate more informative nodes. Thus, at each step
we add the nodev with the highestjv. After adding a
nodev to Ṽ , we only add those probesp ∈ TP (v) to
the overlay which improve the localization quality, i.e.
those withjp > 0.

- cbr (choose random beacon):
We start with Ṽ = ∅ and add random nodes
v ∈ V \ V ′ to Ṽ as long as ŒṼV ′ is not a pinpoint over-
lay. In analogy tocbi , we includep ∈ TP (v) with

jp > 0 in ŒṼ
V ′ as soon asv is added tõV .

The time complexities of the different heuristics lie be-
tweenO(N2) andO(N4). Similar to the optimization of
fully meshed overlays, we achieve smaller running times
due to the preparatory work of setting up successful over-
lays. In the next section, we will evaluate our heuristics
more thoroughly.

5. Evaluation and Results

Our experiments showed that the network topology has a
strong influence on the quantity of nodes and probes needed
to detect and localize link failures. We therefore investi-
gate the performance of the heuristics on different topology



types and used the topology generator BRITE [6] to cre-
ate several random graphs with20, 40, . . . , 200 nodes. We
created the topologies according to two different models:
One group of graphs was built as flat router-level Waxman
topologies [9], the other one following the ideas of Barabási
and Albert [1]. The first type of graphs is produced by ran-
domly placing nodes in a given area, then connecting any
two nodes with a probability that is inversely proportional
to the Euclidean distance between them. The second model
aims at creating Internet like topologies. It suggest to sim-
ulate the evolution of the Internet by adding nodes to an
initially empty topology until the desired number of nodes
is reached. The probability that a newly added node is con-
nected to an already present nodev, is directly proportional
to the degree ofv. This is based on the observation, that
nodes joining a network tend to connect to nodes which al-
ready have a good connectivity, a behavior that leads to a
power-law degree distribution.

The most striking difference between those topologies
lies thus in the degree distributions. For Barabási-Albert
topologies, it is significantly more heavy tailed than for
Waxman topologies: Considering topologies with 200
nodes, we observed maximal degrees of 45 and 18 respec-
tively for nearly the same average nodal degree of around
4. Therefore, the routing paths in the Barabási-Albert
topologies are on average shorter than those of the Waxman
topologies. This has of course an influence on the number
of probes needed for network monitoring: if the average
path length is shorter, more paths will be needed to detect
all possible failures.
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Figure 4. Failure detection - peers

But even for two topologies emerging from the same
model the distributions are different. This can be seen in
Figure 4 where we show the number of peers needed to
span a successful overlay found by the different heuristics,
distinguished by the markers introduced in Fig. 2. We show
results for 100 different topologies, i.e. 5 different topolo-
gies for every type and every considered network size. We

indicate the convex hulls of all results for one topology type
too, to illustrate that the topology structure has a very strong
influence on the outcome of the heuristics. As no specific
heuristics is better suited for one type of topology than for
another one, we use therefore ten different random topolo-
gies generated as Barabási-Albert graphs in the remainder
of this section.

In Fig. 5 we illustrate how many probes are needed to
detect one link failure if the redundancies in the successful
fully meshed overlays are reduced by the heuristics intro-
duced in Section 3.4. We show mean values of the five dif-
ferent fully meshed successful overlays determined by the
heuristics presented in Section 3.3 and indicate the 95%-
confidence intervals. If we used all probes that are in the
fully meshed overlays for failure detection, this would re-
sult in an average relation of 19 probes per possible failure
for the topology with 200 nodes. The reduction of the over-
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Figure 5. Failure detection - probes

head allows to cut down this relation dramatically and the
use of one probe enables on average the detection of 3 fail-
ures in the best case. Furthermore, we can also reduce the
administration costs, as a significant number of peers in the
base is no longer required to evaluate the outcome of probes.

In Fig. 6 we compare some pinpoint overlays obtained
by the extension of successful overlays with the heuristics
discussed in Section 4.2. At first we examine the number of
required probes by looking at the pinpoint overlays emerged
from the successful overlays with the smallest number of
probes, that is indicated by the curve labelled “Oi

V ′”. The
number of probes needed for failure detection and localiza-
tion using the most efficient heuristics proposed in [2] is
labelled “purecpi ”, the other curves represent the number
of probes in the pinpoint overlays resulting from the exten-
sion of the successful overlay. We see that on the one hand,
an extension usingcpi results in a way smaller number of
probes than the use of the other heuristics. On the other
hand, our two-level approach needs more probes for failure
localization than the pure probe based approach. However,



we have to consider that using this method,all probes in
the resulting probe set have to be checked regularly. Our
method allows to cut the periodic evaluation of probes down
to the set of probes represented by the paths in the improved
overlay and to evaluate the additional probes only in the
case of a failure.
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Figure 6. Failure localization - probes

We compare the number of beacons needed for the
different pinpoint overlays developed from the successful
overlays with the smallest number of beacons in Fig. 7. We
omit the results for the pinpoint overlays created bycpr as
the number of required beacons is unreasonably high, but
the trade-off between the required number of probes and
beacons needed for the localization of link failures is never-
theless evident: the overlays resulting from the use ofcpi
represent an efficientprobe set, but require a high num-
ber of beacons. Thus, if we want to reduce the adminis-
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Figure 7. Failure localization - beacons

tration overhead and are willing to accept a higher number
of probes, the use ofcbr or cbi leads to efficient solutions, as
in general less than half the nodes in the network have to be
set up as beacons and an even smaller number of nodes has
to perform frequent checks to enable failure detection.

6. Conclusion and Outlook

In this paper we investigated the potential P2P overlay
networks may contribute to the sustainable operation and
maintenance of IP networks. We analyzed to what extent
fully meshed P2P overlays can be used for efficient link fail-
ure detection and localization. Using a Linear Program for
smaller networks it was shown that an autonomous surveil-
lance can already be obtained with relatively few overlay
peers. We derived different heuristics which scale to larger
networks and achieved results close to the theoretical opti-
mum. We believe that our results can be regarded as a fur-
ther step toward the next level of autonomy on our journey
to autonomic networks.

The P2P architecture has become ubiquitous in current
computer networks, we will therefore examine in how far
the stabilization overhead caused by specific DHT-based
P2P networks like Chord [8] can be exploited to detect and
localize not only single, but also simultaneous link failures.
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