
Improving the Performance and Robustness of
Kademlia-based Overlay Networks

Andreas Binzenḧofer1 and Holger Schnabel1

University of Würzburg
Institute of Computer Science

Germany
{binzenhoefer, schnabel}@informatik.uni-wuerzburg.de

Abstract Structured peer-to-peer (p2p) networks are highly distributed systems
with a potential to support business applications. There are numerous different
suggestions on how to implement such systems. However, before legalp2p sys-
tems can become mainstream they need to offer improved efficiency, robustness,
and stability. While Chord is the most researched and best understood mecha-
nism, the Kademlia algorithm is widely-used in deployed applications. There are
still many open questions concerning the performance of the latter. In thispa-
per we identify the main problems of Kademlia by large scale simulations and
present modifications which help to avoid those problems. This way, we are able
to significantly improve the performance and robustness of Kademlia-based ap-
plications, especially in times of churn and in unstable states. In particular, we
show how to increase the stability of the overlay, make searches more efficient,
and adapt the maintenance traffic to the current churn rate in a self-organizing
way.

1 Introduction

There is both theoretical and practical evidence that p2p networks have a potential to
support business applications. They are scalable to a largenumber of customers, ro-
bust against denial of service attacks, and do not suffer from a single point of failure.
Skype [12], a p2p based VoIP application, e.g., serves millions of people every day.
The main task of the underlying p2p network is to support efficient lookups for content
stored in the overlay. The latest generation of p2p networks, the so called Distributed
Hash Tables (DHTs), was especially designed to handle this task in a fast and scalable
way. There are numerous different DHTs proposed in literature: CAN, Pastry, Chord,
and Kademlia, to name just a few. All those algorithms do havein common that each
participating peer gets a unique identifier using a hash function, while a distance metric
is defined on these identifiers. In order to maintain the stability of the overlay each peer
usually has a very good knowledge about its neighbors and some additional pointers to
more distant peers used as shortcuts to guarantee fast lookups. In the research commu-
nity Chord became the most studied algorithm in the last few years, which is possibly
due to its easy to analyze ring structure. The scalability [10] [2], the behavior under
churn [5] and the overlay stability of Chord [3] are well understood.

N
O

T
IC

E
:

T
h
is

is
th

e
a
u

th
o
r’

s
v
er

si
o
n

o
f

a
w

o
rk

a
cc

ep
te

d
fo

r
p

u
b

li
ca

ti
o
n

b
y

S
p

ri
n

g
er

.
C

h
a
n

g
es

re
su

lt
in

g
fr

o
m

th
e

p
u

b
li
sh

in
g

p
ro

ce
ss

,
in

cl
u

d
-

in
g

ed
it

in
g
,

co
rr

ec
ti

o
n

s,
st

ru
ct

u
ra

l
fo

rm
a
tt

in
g

a
n

d
o
th

er
q
u

a
li
ty

co
n
tr

o
l

m
ec

h
a
n

is
m

s,
m

a
y

n
o
t

b
e

re
fl

ec
te

d
in

th
is

d
o
cu

m
en

t.
C

h
a
n

g
es

m
a
y

h
a
v
e

b
ee

n
m

a
d

e
to

th
is

w
o
rk

si
n

ce
it

w
a
s

su
b

m
it

te
d

fo
r

p
u

b
li
ca

ti
o
n

in
K

IV
S

2
0
0
7
,

2
0
0
7
.

T
h

e
fi

n
a
l

p
u

b
li
ca

ti
o
n

is
a
v
a
il
a
b

le
a
t

S
p

ri
n

g
er

v
ia

h
tt

p
:/

/
d

x
.d

o
i.
o
rg

/
1
0
.1

0
0
7
\/

9
7
8
-3

-5
4
0
-6

9
9
6
2
-0

2
.

The majority of deployed overlay networks, however, make use of the Kademlia
protocol [7]. It replaces the server in the latest eMule modifications and is used as a
distributed tracker in the original BitTorrent as well as inthe Azureus client [1]. The
latter continuously attracts more than 800.000 simultaneous users world wide. Despite
all this there are only few scientific papers evaluating the performance of the Kademlia
algorithm. In [6] the performance of different DHT algorithms including Kademlia is
evaluated and compared. Modifications to support heterogeneous peers are introduced
in [4]. Finally in [11] an analysis of the lookup performanceof Kad, the Kademlia-
based DHT used in eMule, is given. The authors examine the impact of routing table
accuracy on efficiency and consistency of the lookup operation and propose adequate
improvements.

In order to understand the performance of Kademlia in greater detail, we imple-
mented a detailed discrete event simulator in ANSI-C based on the algorithm given in
the original paper [7]. In particular, we studied the searchduration, the overlay stability
and the required maintenance traffic. In this paper we present the insights gained dur-
ing our simulations. We will describe the weak points we discovered and pinpoint their
root causes. For each problem we will present an optimization, which eliminates the
disadvantages and makes Kademlia a protocol more feasible for business applications.

The remainder of the paper is structured as follows: In Section 2, we recapitulate the
main aspects of the original Kademlia algorithm. A brief description of our simulator
and the corresponding user model is given in Section 3. The discovered problems, their
causes, and the solutions are summarized in Section 4. Section 5 finally concludes the
paper.

2 Standard Kademlia

Kademlia is a DHT-based p2p mechanism which is used to efficiently locate informa-
tion in an overlay network. A hash table is a data structure that associates keys with
values. A distributed hash table (DHT) assigns the responsibility of parts of the value
range of the hash function, i.e. of the address spaceS, to different peers. In order to
retrieve the data, DHTs apply sophisticated routing schemes, such as self-balancing bi-
nary search trees. Each peer stores contact information about other peers in order to
route query messages.

Address
Space S Routing table of peer pRouting table of peer p

bucket 1

bucket 2

bucket 3

bucket 4

bucket 5

1(,) 2 ;2N i N id p q − − + ∈

bucket i consists of
peers q with distance

1(,) 2 ;2N Nd p q − ∈ 0 1(,) 2 ;2Nd p q − ∈

Figure 1. Routing table of peerp

In Kademlia, the branches of the binary search tree are represented as buckets, cf.
Figure 1. The collection of buckets form the routing table. Bucketi of peerp’s routing
table is a list of peers which have a certain distance to peerp. Kademlia uses 160-bit
identifiers for the address space and applies the XOR metric,i.e.,

S = {0; 1}N with N = 160 (1)

d : S × S → [0; 2N], (2)

(p, q) 7→ p ⊕ q.

This means that bucketi in the routing table of peerp covers all peersq with distance
d(p, q) ∈ [2N−i; 2N−i+1[, cf. Figure 1. In order to keep the size of the routing table
small enough, a bucket has at mostk entries and is also referred to as k-bucket. This
results in a maximal number of routing table entries ofk·N . A more detailed description
of the Kademlia algorithm can be found in [7].

3 Simulator Details

In order to evaluate the different performance aspects of Kademlia, we developed a
discrete event simulator according to the algorithms in [7]. As stated above, for each
0 ≤ i < 160 a peer keeps a bucket ofk peers of distance between2N−i and2N−i+1

from itself according to the XOR metric. Thereby the routingtable is adapted dynami-
cally. That is, each peer starts with one single bucket covering the entire address space
and recursively splits the bucket containing the peer’s ownID as soon as this bucket
holds more thank entries. This results in an up-to-date routing table reflecting the cur-
rent state of the overlay network as shown in Figure 1. When many peers leave the
system, Kademlia merges the corresponding buckets accordingly.

Furthermore, a peer is able to insert documents into the overlay network. To guar-
antee their availability, each of these documents is storedat thek closest peers to the
document’s ID. If the document was not received from anotherpeer forTrep minutes,
the corresponding peer republishes the document, i.e. it sends the document to the re-
mainingk − 1 peers of the replication group. When searching for a documenta peer
recursively sends parallel queries to theα closest peers it knows. The next recursion be-
gins as soon as the peer receivedβ answers. This guarantees that a searching peer will
only run into a timeout ifα−β +1 peers do not answer within one specific search step.
If not stated otherwise, we use the default parametersTrep = 60 minutes,α = 3, β = 2,
andk = 20.

To model end user behavior, we randomly chose join and leave events for each peer.
To be comparable to other studies in literature a peer stays online and offline for an
exponentially distributed time interval with a mean ofEon andEoff respectively. When
online, the peer issues a search everyEsearch minutes, where the time between two
searches is also exponentially distributed. Using different distributions mainly changes
the quantitative but not the qualitative statements made during the remainder of this
paper. To increase the credibility of our results [8], we include the 95 percent confidence
intervals where appropriate.

4 Improvements

All structured p2p networks have been designed to scale to a large number of peers in
the overlay. Therefore the real scalability issue of such systems is not in terms of system
size but in terms of churn [9]. That is, the frequency at whichpeers join and leave the
system has significantly more influence on its robustness andstability than the mere
size of the system itself. In this section we uncover the problems caused by churn and
show how to avoid them. In each simulation we use a total of 40000 peers, which we
found to be sufficiently large to capture all important effects regarding the overlay size,
and setEon = Eoff , resulting in an average overlay size of 20000 peers. The focus of
our analysis of the simulation results is on qualitative behavior and not on quantitative
statements.

4.1 Search Efficiency

The success and duration of a search for a document heavily depend on the correctness
of a peer’s pointers to other peers, i.e. on the correctness of the peer’s routing table. In
Kademlia the most crucial pointers are those to itsk closest neighbors in the overlay.
We measure the correctness of these pointers using two different variables:

– Ph: States how many of its currentk closest neighbors a peer actually holds in its
k-buckets.

– Pr: Represents the number of correct peers out of thek closest neighbors, which a
peer actually returns when asked for.

Ideally a peer would not only know but also return all of itsk neighbors.

0 50 100 150 200
12

14

16

18

20

N
um

be
r

of
 e

nt
rie

s

Average online time [min]

P
h

P
r

Downlist modification

Standard
implementation

Figure 2. Ph and Pr in dependence of the
churn rate

0 50 100 150 200
300

400

500

600

700

800

900

Average online time [min]

A
ve

ra
ge

 s
ea

rc
h

tim
e

[m
s]

Downlist
modification

Standard
implementation

Figure 3. Influence of the downlist
modification on the search efficiency

However, our simulations show that the standard implementation of Kademlia has
problems withPr. We setk = 20 and simulated the above described network for differ-
ent churn rates. Figure 2 illustratesPh andPr in dependence of the churn rate. The mean

online/offline time of a peer was variied between 10 and 180 minutes. Even though on
average a peer knows almost all its neighbors (Ph close to 20), it returns significantly
less valid entries when queried (Pr as low as 13). The shorter a peer stays online on
average, the less valid peers are returned during a search. The problem can be tracked
down to the fact that there are still many pointers to offline peers in the corresponding
k-bucket of the peer. The reason is that there is no effectivemechanism to get rid of out-
dated k-bucket entries. Offline entries are only eliminated(or moved to the cache) if a
peer runs into a timeout while trying to contact an offline peer. A peer which identifies
an offline node, however, keeps that information to itself. Thus, it is not unlikely that a
node returns offline contacts as it has very limited possibilities to detect offline nodes.
As a result more timeouts occur and searches take longer thannecessary. Another prob-
lem is that searches are also getting more inaccurate, whichhas negative effects not
only on the success of a search but also on the redundancy of the stored documents.
The reason is that due to the incorrect search results documents will be republished to
less thank peers or to the wrong peers.

Solution - Downlists The primary reason for the above mentioned problem is that so
far only searching peers are able to detect offline nodes. Themain idea of our solution to
this problem is that a searching peer, which discovers offline entries while performing
a search, should share this information with appropriate other peers. To do so, a peer
maintains a downlist consisting of all peers which it discovered to be offline during its
last search. At the end of the search the corresponding entries of this downlist are sent
to all peers which gave those entries to the searching peer during its search. These peers
then also remove the received offline entries from their own k-buckets. This mechanism
helps to get rid of offline entries by propagating locally gained information to where it
is needed. With each search offline nodes will be eliminated.

The improved stability of the overlay is obviously bought bythe additional band-
width needed to send the downlists. From a logical point of view, however, it does re-
quire more overhead to keep the overlay stable under higher churn rates. In this sense,
the additional overhead traffic caused by sending downlistsis self-organizing as it au-
tomatically adapts to the current churn rate. The more churnthere is in the system, the
more downlists are sent.

It should also be mentioned, that without appropriate security arrangements a so-
phisticated attacker could misuse the downlist algorithm to exclude a target node by
claiming in its downlist that this specific node had gone offline. However, this prob-
lem can be minimized by only removing those nodes which were actually given to the
searching node during a search or additionally by verifyingthe offline status using a
ping message. One could also apply trust or reputation basedmechanism to exclude
malicious nodes.

Effect on Search EfficiencyTo compare the downlist modification to the standard im-
plementation we again simulated a scenario with 20000 peerson average and calculated
the 95 percent confidence intervals. Figure 2 proves, that the downlist modification has
the desired effect onPr, the number of correctly returned neighbors. Using downlists

both Ph andPr stay close to the desired value of 20, almost independent of the cur-
rent churn rate. That is, even in times of high churn the stability of the overlay can be
guaranteed.

This improved correctness of the overlay stability also hasa positive influence on
the search efficiency. In Figure 3 we plot the average duration of a search against the
average online/offline time of a peer. In this context an overlay hop was modeled using
an exponentially distributed random variable with a mean of80 ms. Both curves show
the same general behavior. The longer a peer stays online on average, the shorter is the
duration of a search. However, especially in times of high churn, the downlist modifi-
cation (lower curve) significantly outperforms the standard implementation. The main
reason is that on average a peer runs into more timeouts usingthe standard implemen-
tation, as it queries more offline peers during a search. The effects on the maintenance
overhead will be discussed in Section 4.3.

4.2 Overlay stability

When peers join and leave the overlay network, the neighbor pointers of a peer have
to be updated accordingly. As mentioned above, the downlistmodification greatly im-
proves the correctness of thek closest neighbors of a peer. To understand this effect
in more detail, we have a closer look at a single simulation run. We consider a mean
online/offline time of 60 minutes and an average of 20000 peers for both the standard
implementation and the downlist modification.

10 20
0

5k

10k

15k

number of entries

nu
m

be
r

of
 p

ee
rs

Standard
Implementation

P
h

P
r

10 20
0

5k

10k

15k

number of entries

nu
m

be
r

of
 p

ee
rs

Downlists

P
h

P
r

Figure 4. Ph andPr for the standard
implementation and the downlist modification

0 50 100 150 200
19.6

19.7

19.8

19.9

20

N
um

be
r

of
 e

nt
rie

s

Average online time [min]

Downlist and Force−k
modification

Downlist
modification only

P
h

P
r

Figure 5. Effect of Force-k under churn

Figure 4 illustrates the distribution ofPh andPr in both scenarios. As can be seen
in the left part of the figure, almost all peers know more than 17 of their 20 closest
neighbors using the standard implementation. However, thenumber of correctly re-
turned peersPr is significantly smaller for most peers. This problem is greatly reduced
by the downlist modification as can be seen in the right part ofthe figure. In this case,
the number of known and the number of returned peers are almost equal to each other.
Yet, there are still some peers, which do not know all of their20 closest neighbors. This

is in part due to the churn in the overlay network. However, simulations without churn
produce results, which are comparable to those shown in the right part of Figure 4. The
cause of this problem can be summarized as follows: LetBp be the k-bucket of peer p,
which includes the ID of peer p itself andBp̄ the brother ofBp in the binary tree whose
leaves represent the k-buckets as shown in Figure 6. Then according to the Kademlia
algorithm bucketBp is the only bucket which will be split. However, if onlye < k

of the actualk closest contacts fall into this bucket, thenv = k − e of these contacts
theoretically belong into its brotherBp̄.

contains peer p
BpBpBp

cannot be split

Figure 6. Bp and its brotherBp̄ in the Kademlia routing table

Now, if this bucket is full it cannot be split. Thus, if some ofthev contacts are not
already in the bucket, it is very unlikely that the peer will insert them into its buckets.
The reason is, that a new contact will be dropped in case the least recently seen entry
of Bp̄ responds to a ping message. Since in a scenario without churnall peers always
answer to ping messages, new contacts will never be insertedinto Bp̄, even though they
might be among thek closest neighbors of the peer. In the original paper it is suggested
to split additional buckets in which the peer’s own ID does not reside in order to avoid
this problem. However, this has two major drawbacks. At first, it is a very complex
process, which is vulnerable to implementation errors. Secondly, it involves a great deal
of additional overhead caused by bucket refreshes and so on and so forth. In the next
section, we therefore develop a simple solution, which doesnot require any additional
overhead.

Solution - Force-k As stated above, it is possible, that a peer does not know all of
its k closest neighbors, even in times of no churn. To solve this problem, we need
to find a way to force a peer to always accept peers belonging into Bp̄ in case they
are amongst itsk closest neighbors. Suppose a node receives a new contact, which is
among itsk closest neighbors and which fits into the already full bucketBp̄. So far,
the new contact would have been dropped in case the least recently seen entry ofBp̄

responded to a ping message. Compared to this, the Force-k modification ensures that
such a contact will automatically be inserted into the bucket. In order to decide which
of the old contacts will be replaced, one could keep sending ping messages and remove
the first peer, which does not respond. However, this again involves additional overhead
in terms of bandwidth. A faster and passive way is to put all entries ofBp̄, which are not

among thek closest peers into a listl and drop the peer which is the least useful. This
could be the peer which is most likely to be offline or the peer which has the greatest
distance according to the XOR metric.

In our implementation, we decided to consider a mixture of both factors. Each of
the entriese of list l is assigned a specific score

se = te + de (3)

and the one with the highest score will be dropped. Thereby,te is intended to be a
measure for the likelihood of peere to be offline andde for the distance of peere to
peerp. The exact values ofte andde are obtained by taking the index of the position of
the corresponding peer in the list, as if it was sorted ascending by the time least recently
seen or by the peer’s distance respectively. That is, ife is the least recently seen peer
(te = 1) and has the third closest distance to peerp (de = 3) it is assigned a score of
se = 4.

Effect on Stability We investigated the impact of the Force-k modification on the
stability of the overlay network in various simulations. Inscenarios without churn, all
peers finally know and return all of theirk closest neighbors. The corresponding figures
show lines parallel to the x-axis at a value ofk = 20. It is therefore more interesting to
regard the overlay stability during churn phases.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

Average online time [min]

S
en

t p
ac

ke
ts

 p
er

 p
ee

r
pe

r
se

co
nd

Total
traffic

Republish
traffic

Join traffic

Downlist traffic

Figure 7. The maintenance traffic of a
peer split into its components

58 59 60 61 62
0

0.5

1

1.5

2

Time stamp of next republish event

P
D

F

x = 0.5 x = 1 x = 2

Figure 8. PDF of Irep for different
values ofx

In Figure 5, we plot the average online time of a peer against the number of known
and returned neighbors using the same simulation scenario as before. The two lower
curves correspond to our previous results using the downlist modification. The two
upper curves represent the Force-k modification in combination with the downlist mod-
ification. It can be seen that the Force-k algorithm also improves the stability of the
overlay in times of churn. While the appearance of the curves is similar, there are more
neighbors known (solid lines) and returned (dashed lines) as compared to using only
the downlist modification. Even if a peer stays online for only 10 minutes on average,

it will know about 19.9 out of 20 neighbors and return more than 19.8 correct entries.
By improving the correctness of the neighbors, the Force-k modification also increases
the search success rate and the redundancy of stored documents.

4.3 Redundancy Overhead

The bandwidth required to maintain a stable overlay and to ensure the persistence of
stored documents directly reflects the costs for a peer to participate in the network. We
simulated a network with 20000 peers on average and recordedthe average number of
packets per second sent by a peer while it was online. Figure 7illustrates the average
traffic per peer in dependence of the average online time of a peer. In addition to the
total traffic, the figure also shows its three main components, the join, the republish,
and the downlist traffic.

SinceEsearch, the average time between two searches of a peer, was set to 15min-
utes, the search traffic per peer per second can be neglected in this scenario and is thus
not shown in the figure. The same is true for the traffic caused by bucket refreshes, since
a specific bucket is only refreshed if it has not been used for an entire hour. The Force-k

algorithm is performed locally and does thus also not produce any additional overhead.
It can be seen in the figure that the downlist traffic automatically adapts itself to the

current churn rate. The more frequently the peers join and leave the system, the more
downlist traffic is produced by a peer on average. In general,the small amount of band-
width needed to distribute the downlists is also easily compensated by the improved
stability of the overlay. The major part of the traffic is caused when joining the net-
work and republishing documents. It is obvious that the average amount of join traffic
increases if a peer stays online for a shorter period of time.The join traffic cannot and
should not be avoided as it is necessary for a peer to make itself known when it joins the
network. Moreover, the join traffic already shows a self-organizing behavior. The more
churn there is in the system, the more joins there are in totaland the more overhead is
produced to compensate the problems caused by the churn.

At first, the run of the curve representing the republish traffic seems to be counter-
intuitive. The less churn there is in the system, the more republish traffic is sent by a
peer on average. However, the reason becomes obvious, if onetakes into account that
the longer a peer stays online on average, the more likely it gets that there are republish
events. In fact, the probability that a peer stays online forlonger than 60 minutes given
the corresponding average online timeEon, resembles the run of the republish curve.
The reason why the total amount of republish traffic exceeds the remaining traffic so
significantly is as follows: Each document is stored at thek closest nodes to its ID, the
so called replication group. To compensate for nodes leaving the network, each peer
sends the document to all other peers of the replication group if it has not received the
document from any other peer forTrep = 60 minutes. The idea behind this republish
mechanism is that one peer republishes the document and all other peers reset their re-
publish timers accordingly. Since the republishing peer sends the document to all peers
of the replication group simultaneously, the peers reset their timers at approximately
the same time. The next time the first peer starts to republishthe document, it has to
search for the corresponding replication group before it can redistribute the document.
However, during this search the republish timers of the other peers are likely to run

out and they will start to republish the document as well. Forthis reason, a document
might get republished by up tok peers instead of just one single peer, resulting in un-
necessary overhead traffic. This problem of synchronization is already mentioned in the
original paper. In the following section, we present a solution, which greatly reduces the
republish overhead and which is also resistant against churn.

Solution - Betarepublish The synchronization problem of the republish process arises
if all peers of a replication group have approximately the same time stamp for the next
republish event. At first this seems to be unlikely. However,each time a peer republishes
a document all other peers of the replication group receive this document at approxi-
mately the same time and are thus synchronized again. The main idea to avoid this
problem is to assure that all peers use different time stamps. To achieve this, each peer
chooses its time stamp randomly in the interval[Trep − x, Trep + x] instead of exactly
after Trep = 60 minutes. LetIrep be the random variable describing the time stamp
of the next republish event. Then we wantIrep to be distributed in such a way, that
only few peers start republishing at the beginning of the interval and the probability
to republish increases towards the end of the interval. Thiscan, e.g., be achieved by
setting:

Irep = (Trep − x) + 2 · x · Ibeta (4)

whereIbeta is a random variable with density

ibeta(t) =

{

t√
(1−t)·B(2,0.5)

if 0 < t < 1

0 otherwise
(5)

andB (α, β) is the beta function, defined by

B (α, β) =

∫ 1

0

tα−1 (1 − t)
β−1

dt (6)

Therebyx should be small compared toTrep but still significantly larger than
the duration of a search. Figure 8 shows the probability density function of Irep for
different values ofx. All peers will set their time stamps somewhere in the interval
[60 − x, 60 + x]. The probability for a peer to set its time stamp is still verylow at the
beginning of the interval. It then ascends significantly towards the end of the interval.
In the case ofTrep = 60 minutes,x = 2 minutes is a reasonable choice, since it offers a
long period of time with a low probability of republish events. This way, the republish
traffic will be significantly reduced as it becomes very likely that only one or a few
peers actually start a republish process. Again, note that apeer does only republish a
document if it has not received it from another peer forTrep = 60 minutes.

Effect on Overhead In this section we will have a look at the influence of the Betare-
publish modification on the average amount of republish traffic sent by a peer.

Figure 9 shows the average number of republish packets per peer per second in
dependence of the average online time. We compare the results for simulations using

0 50 100 150 200
0

0.5

1

1.5

2

Average online time [min]

S
en

t p
ac

ke
ts

 p
er

 p
ee

r
pe

r
se

co
nd

Standard
implementation

Downlist and Force−k
modification

Betarepublish modification

Figure 9. Maintenance traffic caused by
republish processes

0 50 100 150 200
1

1.5

2

2.5

3

Average online time [min]

S
en

t p
ac

ke
ts

 p
er

 p
ee

r
pe

r
se

co
nd

Downlist and Force−k
modification

Standard
implementation

Betarepublish modification

Figure 10.Total maintenance traffic in
dependence of the churn rate

the standard implementation, our two previous modifications, and all modifications in-
cluding Betarepublish. First of all the average republish traffic of a peer is increased by
using the downlist modification. The reason is that using thestandard implementation
there are more offline nodes in thek-buckets during times of churn. Thus documents are
republished to less peers, which reduces the republish traffic but also the redundancy in
the system. The additional traffic introduced by the downlist modification is therefore
used to improve the availability of documents.

The Betarepublish modification is applied in an effort to minimize the traffic which
is necessary to achieve this availability. The figure shows that Betarepublish indeed re-
duces the amount of required republish traffic significantly. The Betarepublish traffic
lies well beneath the standard implementation and also rises slower with an increasing
average online time. Note that the Betarepublish modification does only avoid redun-
dant traffic. It is still able to guarantee the same redundancy, stability, and functionality.
Figure 10 shows how the reduced republish traffic influences the total traffic for the
three regarded versions of Kademlia (Standard, downlists and Force-k, all modifica-
tions). At first, it can be seen that the use of downlists increases the total traffic as
compared to the standard implementation. Again, this is desired overhead as it greatly
helps to increase the robustness, the stability, and the redundancy of the overlay in an
autonomous way.

By adding the Betarepublish modification, the total traffic is significantly reduced
and no longer dominated by the republish traffic. While the average maintenance traffic
sent by a peer in the standard implementation actually increases when there is less
movement in the overlay network, it finally shows a self-organizing behavior when
using all modifications. The less churn there is in the system, the less maintenance traffic
is generated to keep the overlay network up to date. That is, the amount of bandwidth
invested to keep the overlay running automatically adapts itself to the current conditions
in the overlay.

5 Conclusion
In this paper we investigated the performance of the Kademlia protocol using a de-
tailed discrete event simulator. We were able to detect and pinpoint some weak points
regarding the stability and the efficiency of the overlay network. In this context, three
modifications have been proposed to enhance the performance, the redundancy, and the
robustness of Kademlia-based networks. With the help of downlists, the correctness of
the neighbor pointers and the duration of a search is greatlyimproved. The Force-k
modification ensures that a peer has a very good knowledge of its direct neighborhood,
which greatly increases the stability as well as the overallperformance. We also intro-
duced a new republish algorithm, which significantly reduces the total traffic needed to
keep the overlay running. The improved version of Kademlia shows a self-organizing
behavior as the amount of generated maintenance traffic autonomously adapts to the
current churn rate in the system.

The proposed modifications can be used to support large scalep2p applications,
which are able to sustain dynamic user behavior. Even thoughthe algorithms have been
introduced using Kademlia, they are by no means restricted to this protocol. Especially
the downlist and the Betarepublish mechanisms can easily beapplied to other DHTs
like Pastry, CAN, or Chord.
Acknowledgements
The authors would like to thank Robert Henjes, Tobias Hoßfeld, and Phuoc Tran-Gia
for the insightful discussions as well as the reviewers for their valuable suggestions.

References
1. Azureus. URL: http://azureus.sourceforge.net/.
2. A. Binzenḧofer and P. Tran-Gia. Delay Analysis of a Chord-based Peer-to-Peer File-Sharing

System. InATNAC 2004, Sydney, Australia, December 2004.
3. Andreas Binzenḧofer, Dirk Staehle, and Robert Henjes. On the Stability of Chord-based P2P

Systems. InGLOBECOM 2005, page 5, St. Louis, MO, USA, November 2005.
4. Youki Kadobayashi. Achieving Heterogeneity and Fairness in Kademlia. In Proceedings of

IEEE/IPSJ International Workshop on Peer-to-Peer Internetworking co-located with Sympo-
sium on Applications and the Internet (SAINT2004), pages 546–551, January 2004.

5. Supriya Krishnamurthy, Sameh El-Ansary, Erik Aurell, and Seif Haridi. A Statistical Theory
of Chord under Churn. In4th International Workshop on Peer-To-Peer Systems, Ithaca, New
York, USA, February 2005.

6. Jinyang Li, Jeremy Stribling, Thomer M. Gil, Robert Morris, and M. Frans Kaashoek. Com-
paring the performance of distributed hash tables under churn. InProceedings of the 3rd
International Workshop on Peer-to-Peer Systems (IPTPS04), San Diego, CA, February 2004.

7. Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information system
based on the xor metric. InIPTPS 2002, Cambridge, MA, USA, March 2002.

8. K. Pawlikowski, H.-D.J. Jeong, and J.-S. Ruth Lee. On credibility ofsimulation studies of
telecommunication networks. InIEEE Communications Magazine, January 2002.

9. Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling Churn in a
DHT. In 2004 USENIX Annual Technical Conference, Boston, MA, June 2004.

10. Ion Stoica, Robert Morris, David Karger, M. Frans. Kaashoek,and Hari Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In ACM SIG-
COMM 2001, San Diego, CA, August 2001.

11. Daniel Stutzbach and Reza Rejaie. Improving lookup performanceover a widely-deployed
dht. In IEEE INFOCOM 2006, Barcelona, Spain, April 2006.

12. Skype Technologies. Skype. URL: http://www.skype.com.

