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Abstract—In recent years several community testbeds as well
as participatory sensing platforms have successfully established
themselves to provide open data to everyone interested. Each of
them with a specific goal in mind, ranging from collecting radio
coverage data up to environmental and radiation data. Such data
can be used by the community in their decision making, whether
to subscribe to a specific mobile phone service that provides good
coverage in an area or in finding a sunny and warm region for
the summer holidays.

However, the existing platforms are usually limiting themselves
to directly measurable network QoS. If such a crowdsourced
data set provides more in-depth derived measures, this would
enable an even better decision making. A community-driven
crowdsensing platform that derives spatial application-layer user
experience from resource-friendly bandwidth estimates would be
such a case, video streaming services come to mind as a prime
example. In this paper we present a concept for such a system
based on an initial prototype that eases the collection of data
necessary to determine mobile-specific QoE at large scale. In
addition we reason why the simple quality metric proposed here
can hold its own.

PREFACE

This position paper was originally written in 2017, but never
published. We think, the idea to engage the community in
crowdsensing with easy-to-understand and practical informa-
tion without burdening them has even increased in merit today,
and we strife to continue this work in the future.

Therefore, we wanted to preserve this work in the form
it was originally prepared in 2017, with updated affilia-
tions, restored links, and this preface. Past reviewers of this
manuscript mostly criticized the small scale of this study
and the lack of details and evaluation with regards to the
bandwidth estimation, the QoE model, and the geographical
visualization. Reviewers positively noted the idea to dissemi-
nate easily interpretable information from science to citizens
in a decentralized approach.

I. INTRODUCTION

Be honest: Did you ever try using your flavor-of-the-month
messaging or social app and just couldn’t get it to work?
Despite all information available to you claiming otherwise.
Or did you want to watch a stream but only received a video
in abysmal quality despite having an excellent connection?

An example: One of the authors routinely commutes to work
by tram. While waiting at the underground tram station he
tends to read his Twitter stream. In about 50% of cases the

author’s device does not receive any data despite a full signal
strength and data indicator. Only after putting a significant
distance between himself and the station the data transmission
resumes.

If this is the case then you are in the same boat as the
authors. And many other people. And lo and behold! This
situation can be improved upon, continue reading to find out
how.

We — as in we, the research community — have reached
a point where we have a rather good understanding of video
streaming Quality of Experience (QoE). Many a user study
has been conducted to ascertain the subjective aspects of
video quality, both in lab environments as well as through
crowdsourcing. From the results of these, application layer
Quality of Service (QoS) and QoE models have been derived
that affix some quality rating to certain objectively measurable
QoS metrics. This begs the question: What does one actually
do with this information? How can it be used to one’s benefit?
One such benefit will be the contribution of this paper in
the form of a mapping service displaying service-specific
quality information derived from community-driven network
measurements.

In the past video streaming QoE research was often incen-
tivised by both video streaming service providers and home
Internet access providers. The former obviously desired to
understand how their service is received and thus improved
their system based upon this information. The latter entities
aspire to understand the traffic composition flowing through
their network and the resulting direct implications on their cus-
tomers, not in terms of easy-measurable-but-hard-to-interpret
network QoS metrics but rather as direct customer satisfaction,
e.g. QoE measures.

However, there is another, third, party that has seen not
much direct benefit from these endeavors: the actual con-
sumers of video streams. Currently, if a user watches a video
she can typically only assess her own subjective video quality
herself. The results from user studies and QoE models are
mostly not readily available to be applied to home users
directly. And this situation becomes even more interesting
when looking at mobile users, where one often desires to know
if one’s mobile device works at a specific location. But these
current mobile network conditions are very location-dependent
and might fluctuate based on a great many factors. This
includes spatio-temporal properties, but also radio propagation



effects as well as mobility issues and the other usual kinks of
a shared medium (as the multiplexed resource allocation in
today’s mobile radio technologies provides).

Now take a look at the recent developments around mobile
crowdsourcing, participatory crowdsensing and community-
run testbeds and data-collection programs. You can partake
in projects like radio coverage collection1, current weather in-
formation2, air quality data3, community-run Internet access4,
or even environmental radiation monitoring5 with little to no
effort, using either one’s own mobile phone or, alternatively,
affordable sensor boards. Such projects flourish both through
the immediate benefits one can gain through the available data
and the participatory motif.

However, most of these community-driven efforts concern
basic, directly measurable data. Only very rarely [2], [3]
have application-layer QoS and QoE models and mappings
been applied to such data for an immediate benefit of the
participants. Exploring the opportunities of this crossover is
the goal of this work. Specifically, for this paper we want to
tackle the question of YouTube’s streaming quality on-the-go
on the basis of location-specific bandwidth estimates collected
from participating mobile devices.

In order to do so, after highlighting all the related and
similar projects as well as the necessary research foundations
in Section II, we describe a mobile crowdsensing prototype —
aimed at low resource usage to have a negligible performance
impact in order to be scalable — that collects the network
QoS data required for input to an appropriate QoE mapping
in Section III. In the following Section IV the collected data
is fed into a simple, but effective QoE mapping and the
results evaluated. We further discuss potential approaches how
these quality ratings can be appropriately visualized, especially
with geospatial and other context data in mind. The work is
concluded in Section V.

II. RELATED WORK AND BACKGROUND

In order for such an approach to succeed quite a few
different lines of work need to be reconciled here. Namely:

• Crowdsourcing and participatory sensing methods,
• the intricacies of community networks and testbeds,
• subjective video streaming user studies,
• Resource-friendly network QoS measurements
• the relationship of network QoS to video QoE and

mappings thereof.
Each of these individual sectors and work essential for this

QoE-crowdsensing approach are briefly covered in this section.

A. Crowdsourcing, Crowdsensing and Experiences with Exist-
ing Community Campaigns

Targeting a participatory crowdsourcing approach for large-
scale QoE-mappings is a challenging endeavor, therefore

1E.g. https://opensignal.com/, https://radiocells.org/, and [1].
2E.g. https://web.archive.org/web/20170703191919/http://weathersignal.

com/about/.
3E.g. http://airqualityegg.com/.
4E.g. the German Freifunk project.
5E.g. https://safecast.org/.

building on past experiences and best practices is crucial. For
example, crowdsourced network measurements raise the issue
of trust in the collected data, as it could have been, willingly
or unwillingly, falsified [4], [5]. This needs to be dealt with
the proper verification and statistical methods.

The concept of participatory sensing (e.g. [6], [7]) has
now been around for a few years and quite a number of
projects exist now that aim to gather and make available
sensed data to the community, e.g. air quality data in [8]
or vehicular traffic [9]. Campaigns that aim to put a data-
collecting application unto one’s mobile phone have to deal
with significant privacy concerns, as they usually not only
have access to the devices current location but also to all
communication, sensor readings and files stored on the device.
One of the ways to resolve this is to give the user fine-grained
control over the data to be used in the campaign, and also
ensure its secure and anonymized transmission [1], [10], [11].

B. Resource-Friendliness and Mobile QoS-Measurements

In order to encourage a wide-spread proliferation of the
campaign — an absolute must when dealing with location-
specific cellular measurement data — the data-collecting mo-
bile phone application should adhere to stringent resource-
restrictions. This would enable an installation on a wider
selection of devices as well as allows it to run in the back-
ground without interfering with other daily activities of the
participants. This especially concerns both the battery life as
well as the used radio resources (which in turn generates high
energy usage as well) and traffic data caps. To tackle the latter,
direct throughput measurements need to be avoided. Instead,
various bandwidth estimation methods come to mind that
attempt to compute the actual currently possible throughput
through specific transmission side effects — like the inter-
arrival time of two consecutively sent TCP segments in the
Packet Pair method [12]–[14]. This works quite well in stable
wired networks, but can have issues in radio networks (cf.
also [15] and Section III-A). Concerning energy consumption,
[16], [17] gives some pointers as to the root causes of these
in relation to smartphone applications.

C. Subjective Studies on Video Streaming Quality and Quality
Models

After the network QoS data has been collected it needs to
be transformed to the desired target QoE metric. The goal in
this work was to project YouTube streaming quality. So, for
an adequate mapping of measured transmission characteristics
to be defined, first the service’s properties have to be fully
understood and described. Thankfully, many prior publications
on YouTube’s adaptive streaming mechanisms readily exist,
e.g. [18], [19]. Indeed, many interactive YouTube subjective
quality user studies have been conducted in the past [2], [3],
and guidelines to conduct further crowdsourced subjective
video quality studies also exist [20]. And they all paint a
good picture of YouTube’s streaming experience. However,
they are hard to scale up to much more participants, due
to the time and resource investments required by the users,



amongst other reasons. Of special interest to this work are
studies that link the user experience to bandwidth as is for
example done in [21]. This study finds, that 4Mbit/s produce
a near-optimal experience in their scenario. Yet other studies
(e.g. [22]) suggest that it is not the value of throughput itself
that is decisive, but instead the throughput variations that have
a large impact on the user experience. However, other work
also suggests that the correlation of throughput could actually
be almost neglible [23]. Indeed, many other operational factors
and also especially anomalies can have a large impact on the
QoE (as e.g. shown in the case of YouTube in [24]).

To achieve independence of this interactive user component,
models that appropriately map network QoS to an application
layer representation of quality are necessary. While there are
models for non-adaptive streaming that map the number and
length of stalling events to a Mean Opinion Score (MOS)
value [25], research on good adaptive streaming quality models
has not yet progressed very far. However, works exist that
discuss QoE modeling for video streaming in general [26]. A
further survey [27] describes the intricacies of HTTP Adaptive
Streaming (HAS) that are necessary to understand in order
to appropriately conduct QoE modeling. For the purposes of
the work in this manuscript we aim for a simple available-
throughput-to-achievable-video-quality mapping. On this mat-
ter it is also interesting to find acceptable levels of QoE, or
specifically of MOS, to a user group in order to link this level
to metrics that a user of a participatory crowdsensing platform
can easily understand.

For a mobile QoE-crowdsensing campaign it is not only
beneficial to conduct regular, location-based network QoS
measurements, but also to couple this with further context data,
i.e. device information and sensor readings. The importance of
such context factors in QoE monitoring has been discussed in,
e.g., [28]. In this specific case context information can be used
to accurately handle the “tunnel scenario” [29], [30] to provide
even better quality predictions to the community in the future.

III. THE CROWDSENSING MOBILE APP PROTOTYPE

A community crowdsensing service faces several challenges
in its task of gathering and processing the data before making
it available in a concise and easy-to-understand visualized
way. The goal for the gathering portion is to measure in an
automated, non-interactive fashion in order to be non-intrusive
to the participants as well as reach a larger audience. This
allows for a larger geographical coverage of the project service
quality values while simultaneously being more conservative
with the available resources. The implementation of these
aspects is discussed in this section.

A. The Issue of Bandwidth Measurements

The most important directly measurable network QoS met-
ric for a TCP-based video streaming service is arguably the
achievable goodput of this flow. Typically, this would be
calculated by downloading a file from a remote location and
dividing its size by the time it took to transmit it. This is inher-
ently an average value over a certain time period, which makes

it tricky to pinpoint it to specific spatial coordinates when this
is employed during a mobile crowdsensing campaign.

Furthermore, it is especially crucial to not waste the par-
ticipants monthly data caps solely on the estimation of video
streaming quality. In some countries the monthly contractual
data caps are set extremely low. For example, in Germany
postpaid contracts with a data cap of 1GB currently cost
a monthly fee of around 25e. On the other hand, only
measuring the user’s actually watched video streams would
provide an insufficient amount of samples for providing ac-
curate data for mobile networks. This means that in order to
widen the possible audience, direct throughput measurements
of streaming services are out of the question. Our measurement
prototype attempts to solve these issues by implementing
several bandwidth estimation methods, which trade a loss of
accuracy for much less data and time usage. The rest of this
section aims to evaluate if the precision of these methods is
sufficient for the QoE crowdsensing endeavor.

1) Bandwidth Estimation Methods: Basics and Variants:
These bandwidth estimators can be roughly divided into
two different categories. Approaches from the first category,
namely Cross-Traffic Estimation, actively send a small amount
of probe packets with fixed inter-packet times. On the bot-
tleneck link the timing of these are altered through network
throughput limitations as well as traffic from other sources,
from which the bandwidth can then be calculated. One well-
known representative of this category is Packet Pair [31],
[32]. The second set of approaches, termed Self-Induced
Congestion, relies also on active probes, but here they are
meant to briefly congest the network themselves in order to
observe the resulting path characteristics. Packet Train [33] is
one such variant implemented here.

It should be noted that some methods require the presence
of an actively sending server under the control of the measure-
ment client with the possible benefit of a better measurement
accuracy, making it unfeasible to measure public services like
YouTube with them. Packet Pair is one of them. However,
it is also usually possible to circumvent this requirement
by exploiting known properties of TCP. For example, some
approaches [34], [35] force the transmission of Transmission
Control Protocol (TCP) RST packets through specifically
crafted TCP SYN packets and then time the interaction.

B. Prototype and Estimator Evaluation

To evaluate the feasibility of these methods as well as to
establish a foundation for the participatory crowdsensing as-
pects a prototype was set up. This was realized as a Java-based
Android application. Both the prototype, with the bandwidth
estimation and data collection and upload methods6, and the
server-side components required for some of the bandwidth
estimation methods7, are available online.

Evaluating the addressed estimation methods is not as
straight-forward as one might expect in a mobile environment

6https://github.com/mas-ude/bw-estimation-App
7https://github.com/Nobodi/Bandwith-Estimation
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Figure 1: Boxplots of the various tested throughput estimation
methods in the evaluation scenario. Entries denoted with JNI
use system-level packet and timing facilities in an attempt to
improve accuracy.

Table I: Data usage of the estimation methods.

Used Volume (kB) Duration (s)

Download 10 240 9.42
RTT 256 0.36
Packet Pair 6 0.37
GPing 2.5 0.14
Packet Train 437 0.89

due to the many factors that can influence the results to a small
or large degree. To compensate for these factors this evaluation
was conducted in a more controlled setting. All evaluations
ran on a single mobile phone, an LG G3, and were fixed to
a single location to avoid varying radio conditions. Similarly,
all corresponding runs were closely grouped together to ensure
reasonable temporal coupling. These runs were conducted in
five-minute intervals for roughly one day. Various methods
described in the literature (as mentioned above) were tested
in comparison to the results from simple download tests
with a large file. The method dubbed ‘RTT’ is a variant
of download, but is using very small files, transferred from
a controlled server environment, to calculate its throughput
estimate, making it potentially less accurate.

Figure 1 depicts the results attained from this scenario. The
inter-quartile ranges of the accumulated samples reveal, with
every method except RTT, rather large deviations from the
download results. The root cause is unclear in this limited
evaluation, but this kind of estimation error does not come
entirely unexpected due to the aforementioned temporal insta-
bility of mobile networks, even in a static location. All of the
applied methods generally expect certain network properties to
hold that are unfortunately only loosely applicable to mobile
networks, with their strong form of a signaling plane. On ap-
proach to remedy this situation is to apply an adjustment factor
to the individual methods if the offset to the download results
proves to be stable enough in a wider range of scenarios.

Table II: Recommended YouTube video bitrates for 30 fps
video, mean stalling frequency, and ratio of bandwidth samples
above 1.25× V in the measurement data.

Res. Video Bitrate Stalling Frequency Ratio of B
V (Mbit/s) F above 1.25×V

2160p 45 0.35 0
1440p 16 0.23 0
1080p 8 0.09 0.34
720p 5 0.04 0.67
480p 2.5 0.01 0.90
360p 1 0.00 0.98

However, one other benefit is clear when looking at the
data and time used during the measurements in Table I. The
intended goal of being more resource-friendly in order to target
a wider audience can be easily fulfilled with these methods,
especially with the single-pair approaches Packet Pair and
GPing, allowing for more frequent probing and thus more
coverage on a crowdsensed community QoE map.

IV. QUALITY MODEL, MAPPINGS AND MAP

Speaking of community maps, this bring us to the final
tasks of interpreting the collected data as YouTube quality
and presenting it in an easy-to-grasp way to the community.
As discussed in Section II there do exists metrics that derive a
higher layer abstraction from directly measurable values, such
as the bitrate. E.g. [36] fitted the stalling frequency F from
throughput samples as

F (X) = −1.09e−1.18V
B + 0.36

for transmission bandwidths B and video bitrates V . But a
stalling frequency is nothing that can be easily understood in
terms of YouTube quality by the community, and therefore a
simpler metric is desired. For this let’s consider the reception
rate ρ = B

V [25]. This means that as long as the transmission
rate is above the video rate the video streaming should work
well, bar any variations. This is even more so if you include
a safety margin as evaluated in, e.g., [37]. A 25% surplus of
the transmission rate should therefore take care of this and
ensure the video to be playable at the selected quality level at
all times. This then yields a definition of the playable video
quality vplayable for our system as

vplayable = max ({v|v ∈ V ∧ 1.25 · v < B}) .

Used as the set of V is here simply YouTube’s recom-
mended video encoding bitrates8 as listed in Table II.

Each spatial region now has to have a series of bandwidth
samples attached to it, taken at different points of time.
Figure 2 demonstrates such a time series for one location as
both the stalling frequency and the reception rate with the
discussed threshold of 1.25. This also clearly demonstrates

8Based on information from https://support.google.com/youtube/answer/
1722171?hl=en. Do note that these are recommendations for the video upload
before they are transcoded by YouTube. But this gives a rough estimate for
the download bitrate as well.
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(a) Stalling frequency (accord-
ing to [36]) time series.
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to [25]) time series.
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Figure 2: Time series and CDF depictions of the two derived
video streaming quality metrics, matching the throughput to
the desired video video bitrate. Horizontal — respectively
vertical — lines denote the selected cutoff threshold for an
acceptable streaming quality.

large temporal fluctuations for the playable video quality,
which should also be exposed in the community quality map,
e.g. through some additional, advanced information overlays
for each location. Yet, the default geographical map should
be kept free of such temporal data to avoid overwhelming the
users.

In order to provide a clutter-free representation the mapping
service needs to decide for just one specific video quality
rating at each location. This requires some form of temporal
averaging to be conducted. Here, the system will color the map
in the highest video quality of which 90% of the bandwidth
samples over the measured period were above 1.25× V .

Both the more complex stalling frequency — using a similar
threshold of 2% here — and the reception ratio representation
result in the same quality decisions here. Moreover, the two
metrics have a Pearson correlation coefficient of −0.92. This
means that even this simple metric is sufficiently able to visu-
alize the service’s quality, and no more complex metric needs
to be employed here. With this, the results also become easily

1440p1080p720p480p360p 2160p

Figure 3: Mockup map of achievable YouTube video resolution
for specific regions for a mobile provider. Regions should
be grouped and interpolated from individual participants’
measurements.

comparable to other approaches (e.g. YouSlow[2]) that rely on
directly measuring the rebuffering rate (which is akin to the
stalling frequency F ). A mockup of the resulting geographical
map and video quality overlay is shown in Figure 3. Common
caveats of geographical grouping and interpolation of samples
also apply to this type of video quality map and still need to
be solved.

Now consider this map for a hypothetical use case of
someone having to move to a new place. It is common today
to check the new apartment’s location for good internet access,
both wired as well as mobile. Using our approach that person
would then not just be able to tell if there is connectivity in
that area — as in most other participatory sensing approaches
— but also if a specific service works in an acceptable quality
there, especially at the time of day when one is at home.

While YouTube does serve as the example here, it is
important to note that, with the available throughput data,
similar mappings and visualizations can easily be achieved for
any other kind of service. This is just a matter of switching
the mapping function to another, appropriate one for that
service. This would allow the community crowdsensed map
to be easily extensible and able to be personalized to show
the quality of one’s favorite services. All while still avoiding
to collect resource-intense service-specific data and therefore
able to easily scaled up to a large community.

V. CONCLUSION

The approach taken here attempts to combine the strengths
of participatory crowdsensing with the knowledge garnered
by the QoE community in recent years in order to provide the
public with a type of information — the attainable YouTube
video quality at a specific location in a mobile network— that
has much more immediate utility than providing simple mea-
sured network QoS samples. Such a large-scale crowdsensing
endeavor can only be achieved through some compromises



as they have been taken here. Actively conducting subjective
video QoE user studies at each location is equally unfeasible
as is being wasteful with the participants’ devices’ resources,
especially with stringent bandwidth data caps in place.

All in all, we think that our approach of conducting large
scale low-volume bandwidth estimation measurements and
transforming them through adequate QoE mapping might be
much more engaging for a wider audience and thus indicative
of the future to come.
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