
Pushing the Performance of Biased Neighbor Selection
through Biased Unchoking

Simon Oechsner, Frank Lehrieder, Tobias Hoßfeld, Florian Metzger, Dirk Staehle
Chair of Distributed Systems, Department of Computer Science, University of Würzburg

oechsner@informatik.uni-wuerzburg.de

Konstantin Pussep
Multimedia Communications Lab, Technische Universität Darmstadt, Germany

Konstantin.Pussep@kom.tu-darmstadt.de

Abstract

Locality promotion in P2P content distribution net-
works is currently a major research topic. One of the
goals of all discussed approaches is to reduce the inter-
domain traffic that causes high costs for ISPs. However,
the focus of the work in this field is generally on the type
of locality information that is provided to the overlay
and on the entities that exchange this information. An
aspect that is mostly neglected is how this information is
used by the peers. In this paper, we consider the predom-
inant approach of Biased Neighbor Selection and com-
pare it with Biased Unchoking, which is an alternative
locality aware peer selection strategy that we propose in
this paper. We show that both mechanisms complement
each other for the BitTorrent file sharing application and
achieve the best performance when combined.

1. Introduction

Peer-to-peer (P2P) networks like, e.g., BitTorrent
[2, 12] are widely used in today’s Internet for content
distribution. Compared to the client-server architec-
ture, they offer significant advantages for the content
provider. Since all peers interested in the content con-
tribute resources, i.e., storage and upload capacity, to
the distribution process of the content, scalability issues
do not arise. Instead, the upload capacity of a P2P based
content distribution network (CDN) increases with the
number of users (peers) interested in a specific content.

This work has been performed in the framework of the EU ICT
Project SmoothIT (FP7-2007-ICT-216259). The authors alone are re-
sponsible for the content of the paper.

However, most P2P CDNs are oblivious of the under-
lying network topology and peers choose the sources
of their downloads just according to overlay metrics or
even randomly. This poses a major challenge for Inter-
net Service Providers (ISPs) as it makes traffic engineer-
ing difficult if not impossible. The fact that such P2P
based CDNs produce a large portion of today’s Internet
traffic [19] makes this even more problematic for ISPs as
they are mostly charged on basis of the amount of traf-
fic they send to or receive from neighboring autonomous
systems (ASes).

Several different attempts have been made to address
this problem. Some ISPs shut down connections they
identified as BitTorrent connections leaving their AS or
throttle the bandwidth of these connections [10]. In con-
trast to these unilateral means of the ISP to reduce inter-
AS traffic, a lot of current P2P research focuses on a
cooperation between the ISPs and the content providers
[10, 9, 7, 20]. This goes as far as aiming for a triple-
win situation, where ISPs, overlay providers and users
all profit from a joint effort at traffic management, such
as described in the SmoothIT project [13].

In these approaches, the ISPs provide information
about the network topology to the overlay application,
e.g., which peers reside in the same AS and which
not. The peers use this information and communicate
preferentially with peers in the same AS. This is also
the main scenario discussed by the recently established
IETF working group on application layer traffic opti-
mization (ALTO) [1]. In [11], the authors present an
approach that uses CDN servers like, e.g., Akamai as
landmarks and does therefore not rely on an ISP pro-
vided service for the localization of other peers.

As in the given example, the most common form of
topology information is locality awareness. Peers are
considered local if they are close in the network topol-

1

©c
2
0
0
9

IE
E

E
.

P
er

so
n

a
l

u
se

o
f

th
is

m
a
te

ri
a
l

is
p

er
m

it
te

d
.

P
er

m
is

si
o
n

fr
o
m

IE
E

E
m

u
st

b
e

o
b

ta
in

ed
fo

r
a
ll

o
th

er
u

se
s,

in
a
n
y

cu
rr

en
t

o
r

fu
tu

re
m

ed
ia

,
in

cl
u

d
in

g
re

p
ri

n
ti

n
g
/
re

p
u

b
li
sh

in
g

th
is

m
a
te

ri
a
l

fo
r

a
d

v
er

ti
si

n
g

o
r

p
ro

m
o
ti

o
n

a
l

p
u

rp
o
se

s,
cr

ea
ti

n
g

n
ew

co
ll
ec

ti
v
e

w
o
rk

s,
fo

r
re

sa
le

o
r

re
d

is
tr

ib
u

ti
o
n

to
se

rv
er

s
o
r

li
st

s,
o
r

re
u

se
o
f

a
n
y

co
p
y
ri

g
h
te

d
co

m
p

o
n

en
t

o
f

th
is

w
o
rk

in
o
th

er

w
o
rk

s.
T

h
e

d
efi

n
it

iv
e

v
er

si
o
n

o
f

th
is

p
a
p

er
h

a
s

b
ee

n
p

u
b

li
sh

ed
in

9
th

In
te

rn
a
ti

o
n

a
l

C
o
n

fe
re

n
ce

o
n

P
ee

r-
to

-P
ee

r
C

o
m

p
u

ti
n

g
2
0
0
9

1
0
.1

1
0
9
\/

p
2
p

.2
0
0
9
.5

2
8
4
5
2
7
.

ogy, typically expressed by a low latency or a low num-
ber of AS hops. Other forms of topology information
may relate to high-bandwidth connections or belonging
to the same VPN. In this paper, we focus on locality
awareness in terms of AS hops, with local peers being
defined as peers in the same AS and remote peers being
peers in other ASes if not stated otherwise.

Locality-aware peer behavior consists of two steps.
First, the peers need the information which other peers
are local and which are remote. Second, the peers have
to integrate that information when communicating with
other peers.

The primary strategy recently investigated for this
in the literature is Biased Neighbor Selection (BNS),
which was introduced in [9] and adapted or enhanced in
[7, 20, 11]. To complement this, we introduce the con-
cept of Biased Unchoking (BU) in this paper and com-
pare it to BNS.

In this study, we take the locality information as
given, i.e., all peers know whether another peer is in the
same AS or not, and focus on the evaluation of different
possibilities to use that information. To this end, we ana-
lyze a BitTorrent based file-sharing network and modify
the neighbor selection as well as the unchoking mech-
anism to incorporate the locality information. We will
present an implementation of BU and compare its per-
formance to the one of BNS in various scenarios.

The paper is structured as follows: Section 2 gives an
overview on the existing approaches to BNS and other
mechanisms to promote locality in CDN overlays. Bit-
Torrent and the mechanisms for BNS and BU in these
overlays are described in Section 3, while Section 4 con-
tains the simulation results of the performance evalua-
tion. Finally, we conclude the paper in Section 5.

2. Related Work

In the following, we give a short overview of different
proposals for locality promotion in P2P CDNs. Some
of them do not require adaptations of the P2P protocol,
others do so. Since this paper focuses on the design op-
tions for the adaptations of a P2P application, we present
these approaches in more detail.

2.1. Locality Promotion Strategies With-
out P2P Adaptations

Regarding the management of P2P traffic, the main
goal of ISPs is to reduce the costly interdomain traffic.
To this end, they can pursue different strategies. One
approach is that the ISP closes connections to peers in
other ASes. However, this led to dissatisfied users in
the case of Comcast [6]. A similar idea is bandwidth

throttling of P2P inter-AS connections. Both approaches
have in common that P2P connections must be identified
and the user experience will degrade.

Another option for ISPs to reduce the interdomain
traffic is to introduce caches [15, 18]. These caches store
popular content and redistribute it to local peers. How-
ever, the caches need to be tailored to the P2P applica-
tion protocol in order to communicate with the peers.
Furthermore, there may be legal issues when copyright
protected content is cached by an ISP.

2.2. P2P Adaptations

Bindal et al. introduced the concept of BNS, where
the neighbor set of a peer is changed so that it contains
a significant fraction of peers that are close in terms of
network proximity [9]. The most extreme case featured
only one remote neighbor per peer, with the rest being
local peers. It was found that inter-AS traffic can be re-
duced significantly, while the download times of peers
are not influenced much in topologies where the access
bandwidth of the peers is the bottleneck. In this ap-
proach, it was envisioned that either the tracker responds
to queries with the target number of local peers, or that
connections are artificially established or reset by traffic
shaping devices of providers.

Aggarwal et al. present an approach where the lo-
cality information is queried from an Oracle service [7].
A peer essentially asks this service which peer from a
list of potential neighbors it should connect to. Under-
lay information is available at the oracle server so that it
can respond with an optimized choice. Afterwards, the
querying peer then conducts BNS again by establish-
ing an overlay connection just with the recommended
peer. The mechanism was evaluated for a Gnutella net-
work, showing that the properties of the overlay graph,
such as connectivity or diameter, are not negatively in-
fluenced. However, most of the evaluations consider the
search aspect of the Gnutella network, for which the
overlay graph is actually used. Still, one result shows
that the share of intra-AS file exchange connections was
increased to up to 40% in the observed scenarios.

The plugin Ono for the BitTorrent client
Azureus/Vuze, presented in [11] by Choffnes and
Bustamante, offers an alternative to a provider-assisted
locality service by re-using available information from
CDN name resolutions. The proximity of peers is
judged by the CDN servers that the peers are resolved
to. Since this resolution is influenced by the CDN
provider using underlay information to assign favorable
servers to a client, the resulting recommendation is also
valid for overlay connections. Again, the peers then
use these recommendations to conduct BNS, by making

2

sure that Ono-suggested connections are kept in the
neighbor set of a peer.

Measurements from clients using the Ono plugin
show that the biased connections established follow
shorter paths w.r.t. AS hops. Also, in case a provider of-
fers higher bandwidth to intra-network connections than
to connections leaving the network, the download rates
of peers using Ono improve significantly. In networks
where the bottleneck is the access network, however, no
great improvements, but also no large negative impact
on the download performance was seen.

The approach followed by Xie et al. [20] in the
P4P project is somewhat similar to the Oracle service
in that an information server is used to offer under-
lay information to the overlay. Here, these entities are
called iTracker, which may communicate with peers
themselves or application trackers such as the BitTor-
rent tracker. In the evaluated scenarios, the communica-
tion took place between iTracker and application track-
ers. The evaluations range from simulations to measure-
ments in PlanetLab and real CDN networks and show
a significant reduction in inter-AS and bottleneck traf-
fic with according iTracker optimization settings, while
download times are slightly reduced in general.

3. BitTorrent and Locality-Aware Peer Se-
lection Algorithms

In this section, we first describe the key mechanisms
of BitTorrent because BitTorrent will serve as the ex-
ample overlay application to illustrate BNS and BU.
Furthermore, the simulation study in Sect. 4 is based
on BitTorrent. Then, we describe the information ex-
change between the overlay and the underlay network.
Finally, we present BNS and BU in detail. Both of them
are forms of locality-aware peer selection algorithms.
We explain their functionality and describe the required
adaptations of BitTorrent to support them.

3.1. Key Mechanisms of BitTorrent

BitTorrent is a P2P content distribution protocol that
offers multi-source download functionality. One over-
lay, also called swarm in BitTorrent terminology, is
formed per file that is shared. A file is separated into
smaller pieces called chunks to facilitate the fast gener-
ation of new sources. Each chunk is again divided into
smaller subpieces, so-called blocks. A detailed descrip-
tion of BitTorrent can be found in [16] and [3]. In the
following, we focus on the key mechanisms for traffic
optimization, which are the management of the neigh-
bor set and the choke algorithm.

3.1.1. Neighbor Set Management. Peers join a swarm by
contacting a tracker, which is an index server holding
information about all peers participating in the swarm.
The address of the tracker itself is usually obtained from
a website together with some information about the file,
in the form of a .torrent file. When a peer contacts the
tracker, it is supplied with an initial set of addresses of
other peers in the swarm. In a standard tracker imple-
mentation, the peers returned to a requesting peer are
random, with no filtering in terms of locality. Then, the
joining peer tries to establish a neighborship relation to
the peers it got from the tracker and collects all peers
which accepted the request in his neighbor set.

After a neighborship relation is established between
two peers A and B, they exchange information about
which chunks of the file they have already downloaded
and which not. If peer B has some chunks which peer A
still needs to download, then peer A signals its interest
to peer B and we say that peer A is interested in peer B.

3.1.2. Choke Algorithm. The choke algorithm decides to
which neighbor a peer is willing to upload data. These
neighbors are called unchoked whereas the neighbors
which do not receive data are called choked. Every 10
seconds, the peer unchokes a default number of 3 of its
interested neighbors. Which neighbors are unchoked
depends on whether the peer has already downloaded
the complete file (seeder mode) or not (leecher mode).
In leecher mode, the peer unchokes those 3 neighbors
from which it receives the highest download rates. This
strategy is called tit-for-tat and provides an incentive for
peers to contribute upload bandwidth to the swarm.

In seeder mode, the peer keeps those 3 peers un-
choked which were most recently unchoked. In both
seeder and leecher mode, every 30 seconds one of the in-
terested and choked neighbors is selected randomly and
unchoked for the following 30 seconds. This is called
optimistic unchoking and allows the peers to get to know
new mutually beneficial connections. In combination
with the optimistic unchoking, the choke algorithm in
seeder state ensures that every 30 seconds, the peer with
the longest unchoke time is choked and a new interested
peer is unchoked. Consequently, the upload slots of a
seeder are distributed in a fair way among its interested
neighbors.

3.2. Information Exchange Between
Overlay and Underlay

Both BNS and BU rely on some kind of information
about the underlying network topology. This informa-
tion can be retrieved from a special server such as the
SmoothIT Information Service [13] or the iTracker [20].
This service assigns a locality valueL(x, y) to every pair

3

of peer addresses x and y. For the calculation of L(x, y),
different strategies are proposed, e.g., in [20]. For ex-
ample, the number of IP- or AS-hops between x and y
can be used. More complex strategies are also possible,
including traffic engineering preferences of the ISPs or
dynamic load information from the network.

As an alternative to a central service, the locality val-
ues could also be calculated at the peers themselves us-
ing their own measurements. This is proposed and eval-
uated in [11], where CDN servers are used as landmarks.
However, it is not possible to include traffic engineer-
ing preferences of the ISPs in the locality values L(x, y)
with this approach.

For the performance evaluation in Section 4, the lo-
cality value L(x, y) represents the number of AS-hops
on the path from address x to address y. Furthermore,
we assume that this value is known at the peers and at
the tracker. In practice, L(x, y) can be obtained from an
information service as described above.

3.3. Biased Neighbor Selection

BNS is a mechanism applicable to most overlays and
different forms of it are proposed in [9, 7, 11, 20]. It
tries to influence the composition of the neighbor set of
a peer at address x taking into account the locality val-
ues L(x, y) of potential neighbors with address y. Ba-
sically, there are two alternatives to implement this in a
BitTorrent overlay, the tracker-based BNS and the peer-
based BNS. In this paper, we focus on the first alterna-
tive, which we describe in the following.

When a peer at address x requests addresses y of
other peers in the same swarm, the tracker uses the in-
formation contained in L(x, y) when it creates the re-
sponse. To that end, it queries an information service as
described above when a peer query from x is received.
In our performance evaluation (cf. Sect. 4), we use the
AS-hop metric for L(x, y). This means that when a
peer at address x requests addresses of other peers in
the swarm, the tracker tries to include a certain fraction
l ∈ [0; 1] of peers with L(x, y) = 0 in the response,
i.e., peers that are in the same AS. If the swarm does not
contain sufficient peers in the AS of x, the tracker fills
the response with other peers to avoid a degeneration of
the connectivity of the overlay.

3.4. Biased Unchoking

With BU, a peer preferentially exchanges data with
neighbors with a “good” locality value L(x, y). This
mechanism is generally applicable in content distribu-
tion overlays where peers have to compete for the upload
bandwidth of a source. This is the case for BitTorrent or

eDonkey, where the number of upload slots is normally
limited. However, we focus on the description of con-
crete implementations of BU in BitTorrent. Here, the
choke algorithm selects the neighbors to which a peer
allocates its upload capacity. Consequently, BU influ-
ences the choke algorithm. In contrast, BNS influences
the neighbor set management.

BU is motivated by the fact that – apart from the com-
position of the neighbor set – the choke algorithm has a
major impact on which peers exchange data and how
much. Especially, when only a few peers in one AS are
online, all that BNS can achieve is that these peers are
in the neighbor set of each other. Still, the number of
these neighbors may be small compared to the number
of all neighbors and that constrains the performance of
BNS. Therefore, we propose BU which is intended to
boost the data exchange between peers in the same AS
in those situations.

BU works as follows. With BitTorrent, all n inter-
ested and choked neighbors Y of a peer are selected
to be optimistically unchoked with same probability
pou(Y) = 1/n (cf. Sect. 3.1.2). With BU, this probabil-
ity pou(Y, L(x, y)) that an interested and choked neigh-
bor with address y is selected to be optimistically un-
choked by the peer at address x depends on the locality
value L(x, y). In this way, we can achieve that neigh-
bors with “good” locality values are optimistically un-
choked more often than other ones.

In our approach, we define a threshold T and di-
vide the set of candidates in a set of preferred ones with
L(x, y) ≤ T and the rest with L(x, y) > T . Then, with
probability q the peer to be optimistically unchoked is
chosen from the set of preferred peers and with proba-
bility 1− q from the rest. If one of the two sets is empty,
the peer is chosen from the other set.

Like for BNS, we use the AS-hop metric for L(x, y)
and set the threshold T = 0. That means that only peers
located in the same AS are in the set of preferred peers.
If this set is not empty, the peer to be optimistically un-
choked is deterministically taken from this set, i.e., we
set q = 1.

4. Performance Evaluation

The performance evaluation on the different locality-
aware peer selection mechanisms was conducted by
means of simulation. We first present the simulation
model and a small measurement study which serves
to motivate the chosen parameters for the simulation.
Then, we describe the used simulator. Finally, we eval-
uate and compare the performance of BNS and BU in
different scenarios.

4

4.1. Simulation Model

We simulate one BitTorrent swarm which exchanges
a file of size 154.6 MB generated from an example TV
show of about 21 minutes in medium quality. The file
is divided into chunks of 512 KB and every chunk into
blocks of 16 KB.

At simulation start, the swarm contains only the ini-
tial seed (content provider) which has the complete
file. New peers join the swarm with an exponentially
distributed inter-arrival time A with a mean value of
E[A] = 10 s. They stay online until they down-
loaded the entire file plus an additional, exponentially
distributed seeding time. If not mentioned differently,
the mean seeding time is 10 minutes. There are no of-
fline times during the lifetime of a peer. This resulted
in a mean number of concurrently online peers between
120 and 200 depending on the simulated scenario. We
simulate the swarm for 6.5 hours. As a result, one sim-
ulation run consists of about 2300 downloads. After an
analysis of the data, we observed that the initial warm-
up phase took about 1.5 hours in all of the simulation
runs, which we discard for the evaluation.

The multi-AS underlay network we simulate is com-
posed of one transit-AS and a number of stub-ASes con-
nected via inter-AS links in a star topology, i.e., the stub-
ASes are all connected to the transit-AS but not directly
interconnected with each other. We use this simple setup
since our evaluated mechanisms only differentiate be-
tween peers in the same AS and remote peers. A more
complex topology would not have any effect on the ob-
served results.

If not mentioned differently, the number of stub-ASes
is 20. The peer arrival process is equally distributed over
all stub-ASes, i.e., when a new peer arrives, it randomly
joins one of the stub-ASes. The transit-AS does not con-
tain any peer. The peers are connected to their stub-AS
with an access speed of 16 Mbit/s downstream and 1
Mbit/s upstream, which are typical values for the DSL
access technology. The tracker and the initial seed are
placed in one of the stub-ASes. The seed has a sym-
metric upload and download bandwidth of 10 Mbit/s,
respectively. The access links of the peers and the inter-
AS links can act as network bottlenecks, i.e, limit the
bandwidth of their connections. If not stated otherwise,
we model the inter-AS links as well dimensioned.

4.2. Reasoning for the Swarm Model

In order to justify our overlay setup, we present here
a study of typical BitTorrent swarms, in particular the
number of peers in a swarm and how many peers in
a swarm belong to the same AS. The measurements

were repeated with different sets of BitTorrent swarms
in order to get a random snapshot of existing swarms in
the Internet. During April 2009, we measured 126,050
swarms offering movie files with the .torrent files being
gathered from the tracker provider mininova.

Fig. 1 shows results from this study. We investigate
which fraction of a swarm typically belongs to one AS.
We see a scatter plot over all swarms in the trace, with
their average ratio of peers per AS plotted against the
swarm sizes.

100 105
10−4

10−3

10−2

10−1

100

total number of peers in swarm
av

er
ag

e
ra

tio
 o

f p
ee

rs
 p

er
 A

S

movies (mininova)

typical swarm size

Figure 1. Scatterplot of the fraction of
peers which belong to the same AS.

The study shows that for typical swarms, the number
of peers in one AS is between 1% and 10%. Further-
more, more than 95 % of the normal swarms are smaller
than 200 peers. The peer population tends to be split
up in the network.1 Therefore, we concentrate in this
study on the common medium sized swarms and assume
only small fractions of the swarm being in the same AS.
Hence, we simulate a swarm being made up of small
subgroups of close peers instead of fewer but larger lo-
cal clusters. This is reflected in our model by having
20 stub-ASes and an average of 5% of all peers in one
stub-AS by default.

4.3. Simulator

For our simulation studies, we used the P2P simu-
lation and prototyping framework ProtoPeer [4] which
is written in Java. We chose ProtoPeer mainly for two
reasons: firstly, it already contains a network model for
bandwidth-dependent overlay applications like BitTor-
rent. Secondly, it facilitates the development of overlay

1A more detailed paper on this study is currently under submission.

5

applications as only the specific peer behavior needs to
be implemented within the framework.

For the underlay network, we use the flow-based net-
work model provided by ProtoPeer. This network model
mimics the property of TCP that the capacity of a link
is shared among all data connections using this link.
To simulate this bandwidth allocation, the bandwidth of
the connections are assigned according to the max-min-
fair-share principle [8]. The time a connection needs
to transmit its data depends on the available bandwidth.
When all data of a connection is transmitted, the con-
nection is removed from the network. The use of such a
flow-based network model for P2P simulations is pro-
posed in [14] and [17]. These studies describe con-
crete implementations of the bandwidth allocation al-
gorithms and evaluate their runtime speed. A compari-
son of the resulting transmission times to a packet-based
NS-2 simulation is also given in [14].

While the network model was provided by ProtoPeer,
the framework does not contain an implementation of
the BitTorrent protocol. Therefore, we created a self-
written implementation of BitTorrent according to the
descriptions in [16] and [3]. It includes all key mecha-
nisms, in particular the piece selection mechanisms, the
management of the neighbor set, and the choke algo-
rithm. Furthermore, the complete message exchange
among the peers themselves, between peers and the
tracker as well as between the peers and the information
service for locality data is simulated in detail.

Since the bandwidth allocation process is a costly op-
eration in terms of computation time, we only allocate
bandwidth to connections which simulate the transmis-
sion of a block of the shared file from one peer to an-
other. These are called piece messages in BitTorrent and
have a size of 16 KB. All other messages in the BitTor-
rent protocol are orders of magnitude smaller than piece
messages and therefore are assumed to have a negligi-
ble impact on the bandwidth dynamics of the network.
To model the TCP handshake, we add a small, constant
connection startup delay of 10 ms to the transmission of
all messages.

4.4. Comparison of Biased Unchoking
and Biased Neighbor Selection

BNS has been studied intensively [10, 9, 7, 20]. We
include it in our performance evaluation to facilitate a
comparison of BU and BNS. In all experiments, we
compare 4 different peer behaviors: (1) regular Bit-
Torrent (regBT), (2) BitTorrent with Biased Unchok-
ing (BU), (3) BitTorrent with Biased Neighbor Selec-
tion (BNS), and (4) BitTorrent with both BNS and BU
(BNS&BU). In all cases, the locality value L(x, y) is the

number of AS-hops on the path from x to y. We call a
neighbor with address y of a peer with address x ’local’
if L(x, y) = 0. With BU, a peer selects a local inter-
ested neighbor to be optimistically unchoked whenever
possible (cf. Sect. 3.4). For BNS, we use the tracker-
based version and set the fraction of local peers that the
tracker tries to include in his response to l = 0.9 (cf.
Sect. 3.3). This does not mean that 90% of the peers
in every tracker response are in the same AS as the re-
questing peer because the number of those peers in the
swarm is low in all our scenarios. In those cases, the
tracker first includes the local peers in its response and
then fills it with remote peers so that the number of peers
in the tracker response is not affected.

In order to assess the performance from an ISP’s per-
spective, we consider the amount of intra- and inter-AS
traffic. This traffic was measured in intervals of one
minute during the whole simulation and then averaged
over one simulation run. If the source and the destina-
tion of a data transfer is in the same AS, the traffic is
considered as intra-AS traffic. Otherwise, it contributes
to the inter-AS traffic. To judge the overlay performance
from the user’s point of view, we consider the download
times of the peer. This is the time when a peer issues
its first block request until it has completely received the
file. Here, we average the download times of all peers in
one simulation run.

We run 10 simulations with different seeds and show
average values over all runs for all observed variables.
We calculated the confidence intervals for a confidence
level of 95% but omit them in the figures for the sake of
clarity. The size of all confidence intervals was below
7% of the corresponding mean value.

To compare BNS and BU, we consider different load
scenarios and vary the fraction of peers which reside
in the same AS. Furthermore, we investigate scenarios
where the inter-AS links can be the network bottlenecks
and where only some of the peers in the swarm are
locality-aware.

4.4.1. Experiment “Load”. In this experiment, we com-
pare the performance of BNS and BU under different
load conditions. Load here means the fraction of leech-
ers in the swarm. To generate different load scenarios,
we vary the mean seeding time of the peers from 5 to 30
minutes.

We start by taking a look at the inter-AS traffic. Fig-
ure 2 shows the mean value of this bandwidth for the
different mechanisms and load scenarios. The scenario
with 5 minutes mean seeding time is the one with the
highest load. To judge the share of total traffic that is
inter-AS traffic, the intra-AS traffic of every mechanism
is also shown on top of the inter-AS traffic bars (labeled

6

5 10 20 30
0

5

10

15

Mean Seeding Time (min)

B
an

dw
id

th
 (M

B
/s

)

Intra−AS
regBT
BU
BNS
BNS&BU

Figure 2. Mean inter-AS bandwidth be-
tween stub-ASes.

’Intra-AS’). Thus, the complete bar is the sum of both
and therefore the total average bandwidth utilized.

The bandwidth of the total traffic for all mechanisms
and scenarios is slightly below 16 MB/s which is equal
to the generated traffic demand when on average every
10 seconds a peer joins the swarm and downloads the
whole file of 154.6 MB. Furthermore, the inter-AS band-
width of regBT is almost unaffected by varying mean
seeding times. With regBT, only about 5% of the total
traffic stays within the originating stub-AS. This corre-
sponds exactly to the fraction of local neighbors of a
peer (cf. Table 1). With BNS, a peer knows more lo-
cal peers than with regBT and this reduces the inter-AS
traffic. In all scenarios, with BNS the inter-AS traffic
accounts for 75-80% of the total traffic.

With BU, the amount of inter-AS traffic is smaller
for short seeding times. While the inter-AS traffic is re-
duced to about 11 MB/s in the scenario with 5 minutes
mean seeding time, BU has almost no effect with 20 or
30 minutes mean seeding time. This is similar for the
combination BNS&BU. For long mean seeding times,
BNS&BU cannot save interdomain traffic. In contrast,
it is especially effective in scenarios with short seeding
times. There, only about 30% of the traffic are inter-AS
traffic. The reason is that BNS takes care that a peer
knows the other peers in the same AS while BU assures
that these peers are unchoked whenever possible.

The fact BU and BNS&BU are more effective in sce-
narios with high load can be explained as follows. BU
and also BNS&BU can only work when at least one lo-
cal, interested, and choked neighbor exists in the neigh-
bor set of a peer. Table 1 shows that this is only rarely
the case in the scenarios with 20 or 30 minutes mean
seeding time. Consequently, BU is effective when the
load in the swarm is high, i.e., when peers have several
interested neighbors. Then, it can select a local neigh-
bor to be optimistically unchoked. This is in particular
the case in so-called flash-crowd scenarios where many
peers join the swarm in a short period of time. We tested
this hypothesis but omit the figures due to the page limit.

This can also be observed in Figure 3, where the CDF

Seeding Interested Neighbors
time (min) 5 10 20 30

regBT 29.06 19.64 4.51 2.21
BU 29.20 19.22 4.56 2.27

BNS 29.16 19.53 4.83 2.21
BNS&BU 29.19 19.35 4.76 2.24
Seeding Local Neighbors

time (min) 5 10 20 30
regBT 2.13 2.15 2.14 2.14

BU 2.22 2.22 2.16 2.14
BNS 6.38 6.30 7.18 9.95

BNS&BU 6.61 6.46 7.10 9.89
Seeding Local Interested Neighbors

time (min) 5 10 20 30
regBT 1.43 0.97 0.23 0.11

BU 1.39 0.93 0.23 0.11
BNS 4.31 2.88 0.84 0.52

BNS&BU 4.17 2.78 0.80 0.53

Table 1. Mean number of different types of
neighbors of a peer. The mean number of
total neighbors was about 43 in all cases.

of the average number of unchoke slots for local peers
is plotted for two load scenarios, corresponding to 5 and
20 minutes mean seeding time. We can see that in the
highly loaded system, BU and especially BNS&BU is
able to give more unchoking slots to local peers than for
a low load, although the number of peers in the local
AS is the same. There seems to be a contradiction be-
cause BU only decides about one unchoking slot. How-
ever, optimistically unchoked peers may, by virtue of the
tit-for-tat mechanism, be unchoked regularly after hav-
ing been ’discovered’ via optimistic unchoking. In this
manner, BU causes that all upload slots of a peer are
preferentially allocated to local neighbors. Thereby, it
does not devalue the tit-for-tat decision. It only suggests
nearby neighbors for the optimistic unchoking. If they
do not provide sufficient upload capacity to get one of
the regular unchoke slots, they will be choked again.

Finally, we observe no large impact of the evaluated
mechanisms on the mean download times of the file.
These are 14.6, 9.9, 2.6, and 1.7 minutes in the scenarios
with 5, 10, 20, and 30 minutes mean seeding time, re-
spectively. They do not differ significantly (below 10s)
among the investigated mechanisms. Therefore, we ar-
gue that a user will not see a big difference in the perfor-
mance of the application, while the gains for an ISP are
potentially large.

4.4.2. Experiment “Swarm Distribution”. Next, we eval-
uate the impact of the distribution of peers on ASes,
since a smaller number of potential local neighbors

7

0

0.5

1

C
D

F

0 1 2 3 4
0

0.5

1

Mean Local Unchoked Peers

C
D

F regBT
BU
BNS
BNS&BU

Figure 3. CDF of number of local un-
choked peers for 5 (above) and 20 min.
(below) mean seeding time.

10 5 2.5
0

5

10

15

Swarm Fraction per AS (%)

B
an

dw
id

th
 (M

B
/s

)

Intra−AS
regBT
BU
BNS
BNS&BU

Figure 4. Mean inter-AS bandwidth for dif-
ferent swarm distributions.

means less opportunity to promote locality. To this end,
we vary the number of stub-ASes in the simulated topol-
ogy. Since a new peer appears in each stub-AS with
equal probability, each stub-AS receives a smaller frac-
tion of the swarm if there are more ASes. We simulate
topologies with 10, 20 and 40 stub-ASes, resulting in
10%, 5%, and 2.5% of the swarm per AS on average.

Again, we take a look at the inter-AS bandwidth sav-
ings achieved by the different mechanisms, cf. Figure 4.
In general, the gains made by all locality-promoting
mechanisms are larger if the fraction of the swarm in one
AS is large. BNS profits directly from more local peers
since the share of local neighbors per peer is also higher.
Also, BU has a higher probability to find a local inter-
ested neighbor when there are more peers in the same
AS. The combination of both mechanisms utilizes both
of these advantages, leading to an improvement from
30% saved inter-AS bandwidth with just BNS to close
to 80% saved with the combination in the scenario with
a share of 10% of the swarm per AS, both in relation to
regular regBT.

The inter-AS traffic reduction is decreased when the

Access inter−AS
0

5

10

15

Bottleneck Type

B
an

dw
id

th
 (M

B
/s

)

Intra−AS
regBT
BU
BNS
BNS&BU

Figure 5. Mean inter-AS bandwidth with
and without inter-AS bottlenecks.

local share of the swarm gets smaller. For the scenario
with an average of 2.5% of the peers in one AS, BNS and
BU alone save only in the range of 6% of the inter-AS
traffic, while BNS and BU together still reduce the traf-
fic of regular BitTorrent by 30%. The reason is that the
combination of both mechanisms tries to utilize every
last local neighbor. With BNS alone, the probability that
a local neighbor is unchoked is small. With BU alone,
the probability that a local peer is in the neighbor set is
small. Consequently, they cannot reduce inter-AS traffic
alone in scenarios where only a very small fraction of
the peers resides in the same AS. However, when they
are used in combination, the savings are up to 5 times
higher than for both mechanisms alone. This shows that
BU can push the performance of BNS in particular when
only few local peers are in the swarm.

Since we again have no bottleneck in the network, the
location of neighbors does not have an effect on the uti-
lized download bandwidth per peer. As a consequence,
the download times are not affected by the number of
stub-ASes nor by the different mechanisms. For all con-
figurations, the mean download times are slightly below
10 minutes.

4.4.3. Experiment “Inter-AS Bottlenecks”. In this sec-
tion, we investigate the impact of “inter-AS bottle-
necks”, i.e., bandwidth limitations of the links between
the stub-AS and the transit-AS. The experiment is moti-
vated by the fact that some providers throttle the band-
width of P2P connections leaving their network [11].

The authors of [11] show that under these conditions
locality awareness leads to a better application perfor-
mance since the bottleneck link is avoided and local con-
nections with higher throughput are preferred. To judge
whether BU also works well under these circumstances,
we limit the capacity of each inter-AS link in our topol-
ogy to 3072 kbit/s, i.e., three times the upload capacity
of one peer. We compare the results to the scenario with
no limitations on the inter-AS links, labeled ’Access bot-
tleneck’.

The interdomain bottlenecks result in generally lower
inter-AS bandwidths for all mechanisms (cf. Figure 5).

8

No more than 7.68 MB/s can be uploaded from all
20 ASes simultaneously, because every one of the 20
links from a stub-AS to the transit-AS has a capacity
of only 3072 kbit/s. In contrast to regBT, the locality-
aware mechanisms keep the interdomain traffic below
that limit because inter-AS connections whose band-
width is limited on an inter-AS link are likely to be re-
placed by the intra-AS connections with higher band-
width. This is caused by the tit-for-tat policy of Bit-
Torrent which allocates upload slots to those peers from
which it gets the best download speed.

However, with inter-AS bottlenecks, the download
times are no longer independent from the mechanism
(cf. Figure 6), because different sources offer a differ-
ent bandwidth for download. Thus, the download times
for regBT are much longer than in the scenario where
connections are limited only by the access links. Since
here local peers with good connectivity may be discov-
ered only via the regular unchoking process, many low-
bandwidth connections via inter-AS links are utilized.
The effective capacity of the system is reduced, leading
to download times that are three times longer than with-
out inter-AS bottlenecks.

The locality-aware mechanisms on the other hand
foster the utilization of the better connectivity between
local neighbors since these are preferred anyways. In
our scenario, the combination of BU and BNS leads
to only a slight increase in the mean download times
compared to the scenario without inter-AS bottlenecks.
This can be explained by the fact that the mean inter-
AS bandwidth in the scenario without inter-AS bottle-
necks was already below the capacity limit introduced
by the inter-AS bottlenecks. Therefore, the performance
of BNS&BU is only affected to a minor degree. The im-
pact of the inter-AS bottlenecks is larger for BNS and
BU alone. Still, the mean download times are consid-
erably smaller than with regBT. From this experiment
we conclude that in case of inter-AS bottlenecks, BU
improves the mean download times compared to regBT
and the combination of BNS&BU leads to shorter down-
load times than BNS alone.

Access inter−AS
0

10

20

30

Bottleneck Type

D
ow

nl
oa

d
Ti

m
es

 (m
in

)

regBT
BU
BNS
BNS&BU

Figure 6. Mean download times with and
without inter-AS bottlenecks.

25 50 75 100
0

5

10

15

% of peers promoting locality

B
an

dw
id

th
 (M

B
/s

)

Intra−AS
regBT
BU
BNS
BNS&BU

Figure 7. Mean inter-AS traffic for different
shares of locality promoting peers in the
swarm.

4.4.4. Experiment: “Fraction of Locality-Aware Peers”.
With the final experiment, we test what happens if only
a fraction of the peers in the swarm promotes local-
ity while the rest uses the standard BT implementation.
We vary the share of peers that utilize a locality-aware
mechanism from 0% (corresponding to the regBT case)
to 100% (corresponding to the previous results). Here,
we again simulate the 3 Mbit/s bottleneck in the inter-
AS links.

The inter-AS traffic of the regBT implementation is
again capped at the bandwidth limit introduced by the
inter-AS bottleneck links (cf. Fig. 7). The locality-
aware mechanisms save some of this inter-AS traffic
even if only 25% of the peers actively promote local-
ity. The savings increase with the share of peers utiliz-
ing locality-awareness. We also see that the addition of
BU again enhances the BNS mechanism, since the com-
bination of both leads to the largest savings.

As in the experiment before, the introduction of the
inter-AS bottleneck has an impact on the download
times of the peers, cf. Table 2. Here, we show the re-
sults separately for the two groups of peers, the ones
that do support and the ones that do not. The locality-
aware mechanisms all lead to shorter download times
than the regular implementation for both groups. Even if
only a fraction of the peers supports locality, it still helps
the swarm by generating new sources faster and provid-
ing more upload bandwidth to the local neighbors of the
locality-promoting peers. However, BU alone performs
worst of the biased algorithms. Not only do the peers
supporting BU experience the longest download times,
they also do not improve their performance significantly
over the peers that do not support locality.

In contrast, the peers implementing BNS and the
combination of BNS and BU decrease their download
times of the file by more than 50% in any scenario. They
also perform better than the group ignoring locality, al-
though this advantage diminishes when a larger part of
the swarm is locality-aware. This again is due to the fact
that regular peers also profit from the better performance

9

Locality Promoting Peers
Share (%) 25 50 75 100

regBT - - - -
BU 22.95 20.24 18.54 16.65

BNS 13.04 13.59 13.52 13.40
BNS&BU 10.90 11.39 11.14 11.09

non-Locality Promoting Peers
Share (%) 25 50 75 100

regBT - - - 29.50
BU 24.85 21.41 18.94 29.50

BNS 22.25 18.43 16.41 29.50
BNS&BU 20.33 15.89 14.00 29.50

Table 2. Mean download times (in minutes)
of locality promoting peers (top) and non-
locality promoting peers (bottom).

of the locality-aware peers.

5. Conclusion

In this paper, we compared the standard BitTorrent
implementation and a variant including Biased Neighbor
Selection with our new approach of Biased Unchoking.
We found that Biased Unchoking works best in scenar-
ios with high load on the swarm. The combination of Bi-
ased Neighbor Selection with Biased Unchoking leads
to the best performance in this comparison, since Biased
Neighbor Selection provides the local neighbors that can
then be preferred by Biased Unchoking. Thus, both
mechanisms complement each other well and should be
used together.

In scenarios with a bandwidth bottleneck in the inter-
AS links, a combination of Biased Unchoking with Bi-
ased Neighbor Selection also leads to shorter download
times, in accordance with earlier results showing that
traffic locality profits more from interdomain link lim-
its. Even if only a fraction of the peers in a swarm used
the two mechanisms, the whole swarm as well as the
underlay providers profit.

As future work, we will consider more complex
topologies and locality metrics, as well as other appli-
cations, such as video-on-demand streaming as imple-
mented in Tribler [5]. Also, scenarios with heteroge-
neous access speeds of the peers will be evaluated.

References

[1] Application-layer traffic optimization (alto).
http://www.ietf.org/html.charters/alto-charter.html.

[2] Bittorrent. http://www.bittorrent.com/.
[3] Bittorrent specification.

http://wiki.theory.org/BitTorrentSpecification.

[4] Protopeer. http://protopeer.epfl.ch/index.html.
[5] Tribler. http://www.tribler.org/.
[6] Comcast throttles bittorrent traffic, seeding impossi-

ble. http://torrentfreak.com/comcast-throttles-bittorrent-
traffic-seeding-impossible/, 2007.

[7] V. Aggarwal, A. Feldmann, and C. Scheideler. Can
ISPs and P2P systems co-operate for improved perfor-
mance? ACM SIGCOMM Computer Communications
Review (CCR), 37(3):29–40, July 2007.

[8] D. Bertsekas and R. Gallagher. Data Networks. Prentice
Hall, 1987.

[9] R. Bindal, P. Cao, W. Chan, J. Medval, G. Suwala,
T. Bates, and A. Zhang. Improving traffic locality in bit-
torrent via biased neighbor selection. In Proceedings of
the 26th IEEE International Conference on Distributed
Computing Systems, page 66. IEEE, IEEE Computer So-
ciety Washington, DC, USA, 2006.

[10] S. L. Blond, A. Legout, and W. Dabbous. Pushing Bit-
Torrent Locality to the Limit. Technical report, Dec
2008.

[11] D. R. Choffnes and F. E. Bustamante. Taming the tor-
rent: a practical approach to reducing cross-ISP traffic
in Peer-to-Peer systems. SIGCOMM Comput. Commun.
Rev., 38(4):363–374, 2008.

[12] B. Cohen. Bittorrent protocol specification, February
2005.

[13] J. P. Fernandez-Palacios Gimenez, M. A. Callejo Ro-
driguez, H. Hasan, T. Hoßfeld, D. Staehle, Z. Despo-
tovic, W. Kellerer, K. Pussep, I. Papafili, G. D. Sta-
moulis, and B. Stiller. A New Approach for Managing
Traffic of Overlay Applications of the SmoothIT Project.
In 2nd International Conference on Autonomous Infras-
tructure, Management and Security (AIMS ’08), Bre-
men, Germany, July 2008.

[14] T. J. Giuli and M. Baker. Narses: A scalable flow-based
network simulator. CoRR, cs.PF/0211024, 2002.

[15] T. Karagiannis, P. Rodriguez, and K. Papagiannaki.
Should internet service providers fear peer-assisted con-
tent distribution? In IMC ’05: Proceedings of the 5th
ACM SIGCOMM conference on Internet Measurement,
pages 63–76, Berkeley, CA, USA, 2005. USENIX As-
sociation.

[16] A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest
first and choke algorithms are enough, 2006.

[17] F. L. Piccolo, G. Bianchi, and S. Cassella. Efficient sim-
ulation of bandwidth allocation dynamics in p2p net-
works. In Proceedings of the Global Telecommunica-
tions Conference, 2006. GLOBECOM ’06, San Fran-
cisco, CA, USA, 2006.

[18] O. Saleh and M. Hefeeda. Modeling and caching of
peer-to-peer traffic. In ICNP ’06: Proceedings of the
Proceedings of the 2006 IEEE International Conference
on Network Protocols, pages 249–258, Washington, DC,
USA, 2006. IEEE Computer Society.

[19] R. Steinmetz and K. Wehrle. P2P Systems and Appli-
cations. Springer Lecture Notes in Computer Science,
2005.

[20] H. Xie, R. Y. Yang, A. Krishnamurthy, Y. G. Liu,
and A. Silberschatz. P4P: Provider portal for applica-
tions. SIGCOMM Comput. Commun. Rev., 38(4):351–
362, 2008.

10

