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gen, abendlichen Diskussion im Nachtleben Berlins mit einem sehr guten

Bekannten meines Doktorvaters, Dr. Nikhil Jain.

Herr Tran-Gia hat es aber auch geschafft an unserem Lehrstuhl ein Ar-

beitsumfeld zu schaffen, das von kollegialer Stimmung und kooperativer
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moralische Unterstützung zu bekommen.

Die Arbeit am Lehrstuhl ist meist zeitaufwändig und geprägt von
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1 Introduction

The wireless telegraph is not difficult to understand. The

ordinary telegraph is like a very long cat. You pull the tail

in New York, and it meows in Los Angeles. The wireless is

the same, only without the cat. Albert Einstein (1879-1955)

Wireless communication is nothing new. The first data transmissions

based on electromagnetic waves have been successfully performed at the

end of the 19th century. However, it took almost another century until

the technology was ripe for mass market.

The first mobile communication systems based on the transmission of

digital data were introduced in the late 1980s. Within just a couple of

years they have caused a revolution in the way people communicate. The

number of cellular phones started to outnumber the fixed telephone lines

in many countries and is still rising. New technologies in 3G systems,

such as UMTS, allow higher data rates and support various kinds of

multimedia services.

Nevertheless, the end of the road in wireless communication is far from

being reached. In the near future, the Internet and cellular phone systems

are expected to be integrated to a new form of wireless system. Band-

width requirements for a rich set of wireless services, e.g. video telephony,

video streaming, online gaming, will be easily met. The transmission of

voice data will just be another IP based service.

On the other hand, building such a system is by far not an easy task.

The problems in the development of the UMTS system showed the high
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1 Introduction

complexity of wireless systems with support for bandwidth-hungry, IP-

based services. But the technological challenges are just one difficulty.

Telecommunication systems are planned on a world-wide basis, such that

standard bodies, governments, institutions, hardware vendors, and ser-

vice providers have to find agreements and compromises on a number of

different topics.

Figure 1.1: Wireless LAN deployment in a large office building

In this work, we provide the reader with a discussion of many of the

topics involved in the planning of a Wireless LAN system that is capable

of being integrated into the 4th generation mobile networks (4G) that

6



is being discussed nowadays. Therefore, it has to be able to cope with

interactive voice and video traffic while still offering high data rates for

best effort traffic.

Let us assume a scenario as shown in Figure 1.1. A huge office com-

plex is completely covered with Wireless LAN access points. Different

antenna systems are applied in order to reduce the number of access

points that are needed on the one hand, while optimizing the coverage

on the other. No additional infrastructure is implemented. Our goal is

to evaluate whether the Wireless LAN technology is capable of dealing

with the various demands of such a scenario.

First, each single access point has to be capable of supporting best-

effort and Quality of Service (QoS) demanding applications simultane-

ously. The IT infrastructure in our scenario consists solely of Wireless

LAN, such that it has to allow users surfing the Web, while others are

involved in voice calls or video conferences. Then, there is the problem

of overlapping cells. Users attached to one access point produce interfer-

ence for others. However, the QoS support has to be maintained, which is

not an easy task. Finally, there are nomadic users, which roam from one

Wireless LAN cell to another even during a voice call. There are mech-

anisms in the standard that allow for mobility, but their capabilities for

QoS support are yet to be studied.

This shows the large number of unresolved issues when it comes to

Wireless LAN in the context of 4G networks. In this work we want to

tackle some of the problems. The remainder of this work is structured

as follows.

Chapter 2 gives a short introduction to the history of wireless com-

munication. The evolution from analog systems to new digital commu-

nication networks of the 3rd generation (3G) is summarized. This is

followed by an overview of the different Wireless LAN standards and

standard supplements. The specification of the IEEE 802.11 standards

family is still an ongoing process. However, some interesting new ap-

7



1 Introduction

proaches reached a rather stable state and their capabilities are evaluated

in later chapters.

As explained above, a whole set of different applications has to be

supported simultaneously. There is the traditional best-effort service for

users surfing the Web or performing an FTP download. At the same time,

other users run QoS demanding applications, such as voice or video trans-

missions. The different types of traffic that the system has to deal with

are discussed in detail in Chapter 3. The Wireless LAN technology has

to assure a certain level of satisfaction for all the users. However, qual-

ity assessment differs for each single traffic type. Chapter 3 explains the

different approaches for quality assessment and summarizes the methods

that are used in the remainder.

The Physical layer of the Wireless LAN technology is the topic of

Chapter 4. Several modulation techniques that are defined for the two

separate frequency bands of 2.4 GHz and 5 GHz are explained in detail.

They have a major impact on the data rates that can be achieved. How-

ever, other properties of the wireless channel are of similar importance.

All of these issues are discussed as well. The chapter is concluded by an

overview of the simulation settings that are used later in order to study

the performance of Wireless LAN.

The main contribution of this work to the discussion of Wireless LAN

as a 4G technology is presented in Chapter 5. Different Medium Ac-

cess Control (MAC) protocols that are defined for Wireless LAN are

discussed and analyzed regarding their capability to support QoS de-

manding applications in large-scale environments. This includes cases

where different applications are to be performed simultaneously in over-

lapping or co-located cells, as they definitely appear in the future. Later

in this chapter, the impact of nomadic users on the performance ca-

pabilities is studied. This chapter finishes with the conclusion that the

future Wireless LAN MAC protocol is capable of providing the necessary

functionality, if it is properly configured.

8



However, the Wireless LAN protocol only deals with the ISO/OSI

layer two. Nomadic users, on the other hand, might roam farther away

from their home network, such that a handover on ISO/OSI layer three

becomes necessary. The most important representative of the protocols

supporting such IP handovers is Mobile IP. It is discussed in Chapter

6. But Mobile IP has been defined without QoS in mind. Therefore, it

is not capable of supporting real-time applications. A large number of

extensions to the basic approach have been published. Due to space lim-

itation, it is not possible to present all of them, but the most important

proposals are discussed as well.

Chapter 7 summarizes the work. It uses the results that were found in

the different chapters and draws the final conclusion that Wireless LAN is

an interesting technology and that it has the potential of being integrated

into future mobile networks. Some issues are still considered open, but

in terms of performance and service differentiation, the Wireless LAN

Physical and MAC layers are ready for the future.

9
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2 Short History of Wireless

Communication

It would appear that we have reached the limits of what

is possible to achieve with computer technology, although

one should be careful with such statements, as they tend to

sound pretty silly in 5 years. John Von Neumann (1903 -

1957)

Computers started their revolution in the late 1930s when Konrad

Zuse developed the Z1, the first computer the world has ever seen. It was

little known outside of Germany, such that it had little impact on future

computer development. However, transmission of data on the medium

air was already known for more than 30 years by that time. Guglielmo

Marconi presented his wireless telegraph in February 1896 to British tele-

graph authorities. But it was not until the computer technology reached

a certain level of sophistication decades later, that the wireless technol-

ogy could hit the mass market. In this chapter we give a short overview of

the history of wireless communication. Note that this overview is by no

means complete, but only mentions a few milestones. The last section in

this chapter then gives an overview of the Wireless LAN standardization.
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2 Short History of Wireless Communication

2.1 Analog Systems

The mobile phone systems of the first generation (1G) were all based on

analog technologies ([Rap96], [Gib97]). In the beginning these systems

could not be called cellular systems. Even though they consisted of sev-

eral cell sites, seamless handovers could not be supported. The german

“A-Netz” relied on manual switching. It was operated until 1977 and

supported up to ten thousand users.

In the early seventies, the “B-Netz” was introduced. It was also based

on frequency modulation and analog transmission, but it enhanced the

“A-Netz” in terms of the switching technology. Now, no manual inter-

action was necessary any more as the system performed the switching

automatically. However, a calling subscriber had to now the area code of

the called customer’s current location in order to initiate the connection.

This type of network was operated until 1994.

The first real cellular networks were introduced in the early eighties.

In 1981, the Siemens C450 standard was introduced in the german “C-

Netz” . It was the first network that supported automatic handovers

between the base stations. Although the transmission of speech was still

performed analogously, the signaling information was already transmit-

ted digitally. The C450 was restricted to Germany and Portugal.

In the United States, the Advanced Mobile Phone Service (AMPS)

was introduced by AT&T in 1983. It was standardized in EIA/TIA-553.

On the wireless interface it performs Frequency Division Multiple Access

(FDMA) and frequency modulation in the band of 800 to 900 MHz

with 30 kHz wide sub-bands (channels). Later the AMPS system was

enhanced by the Narrowband Advanced Mobile Phone Service (NAMPS)

as defined in IS-91. These two systems were mainly used in the United

States.

Similar first generation analog cellular systems were also introduced

in other parts of the world. This includes the Total Access Communica-

12



2.2 Digital Systems

tion System (TACS) in the United Kingdom, Italy, Spain, Austria and

Ireland, the Nordic Mobile Telephone (NMT) in the Scandinavian coun-

tries, the Radiocom 2000 in France, as well as the Nippon Telephone and

Telegraph (NTT) or the JTACS/NTACS in Japan.

2.2 Digital Systems

After the analog systems as described above were operated for a couple

of years, it became apparent that their capacity is simply too low to pro-

vide an adequate service to the increasing number of users. Especially

in Europe a number of different incompatible analog cellular systems

existed which made the interoperability an impossible task. Therefore,

a common mobile communication standard throughout Europe was de-

signed.

The European Telecommunications Standards Institute (ETSI) re-

leased phase 1 of the Global System for Mobile Communications (GSM)

standard in 1990. It still forms the basis of the currently implemented

systems. A variety of different services like telephony, emergency calls,

conference calls, fax transmission, short messages, and data transmission

at various rates up to 9600 bps could be offered. The standard clearly

defines the different functional entities of the network, which leaves space

for future enhancements ([Sch03]).

The GSM air interface implements Frequency Division Duplex (FDD)

and Time Division Multiple Access (TDMA) scheme with up to eight

simultaneous users sharing a single channel. Gaussian Minimum Shift

Keying (GMSK) is used as the modulation scheme. In order to better

overcome the problem of the adverse propagation conditions, slow fre-

quency hopping is implemented. It assures, that long-term disruptions

of a single frequency do not lead to dropped calls, but only to short-time

packet losses which are hardly noticed by the users.

13



2 Short History of Wireless Communication

Initially, GSM utilized two 25 MHz frequency bands with a radio chan-

nel spacing of 200 kHz in the 900 MHz frequency band. Later, the 1800

MHz frequency band was added to the standard as the Digital Cellular

System - 1800 (DCS1800). Even though the GSM standard was defined

for Europe, it became a candidate for the U.S. Personal Communica-

tion Services (PCS) in the 1900 MHz band. Therefore, GSM managed

to become the most important cellular phone system world-wide.

A similar development could be seen in the United States. The ca-

pacity of the AMPS systems was rapidly reaching its limits, such that a

second generation (2G) digital system had to be defined for North Amer-

ica. This led to the development of the Interim Standard 54 (IS-54). It

defines dual mode (AMPS/IS-54) mobile stations and base stations, thus,

connecting the analog and digital worlds. The IS-54 standard specifies

the utilization of TDMA and FDD technology with three simultaneous

users per channel. Differential Quadrature Phase Shift Keying (DQPSK)

modulation is used.

A number of additional standards were adopted to supplement the

IS-54 definitions. The IS-41 standard deals with automatic roaming, in-

tersystem handover, and other administrative tasks. IS-52 specifies the

numbering plan, IS-53 defines supplementary services, and IS-93 defines

interfaces to other systems. Nevertheless, the IS-54 standard still utilizes

analog control channels in spite of the GSM systems. However, digital

control channels exhibit a number of opportunities. They increase the ca-

pabilities for residential and in-building coverage or dramatically increase

battery standby time. Therefore, the Electronic Industries Association

/ Telecommunications Industry Association (EIA/TIA) released the IS-

136 interim standard for both the cellular (850 MHz) and the PCS (1900

MHz) frequency bands, to keep up with GSM capabilities. This system

is also referred to as Digital Advanced Mobile Phone Service (D-AMPS).

The next step in the evolution of cellular systems began with the in-

troduction of the Code Division Multiple Access (CDMA) technology

14



2.2 Digital Systems

by Qualcomm in 1989. At first, the industry was very skeptical regard-

ing this new type of wireless access mechanism. However, in 1993 the

Telecommunications Industry Association (TIA) adopted the cellular

standard IS-95 based on CDMA. Compared to other technologies CDMA

differs by its use of spread spectrum techniques for transmitting voice or

data over the air. Rather than dividing RF spectrum into separate user

channels by frequency slices or time slots, spread spectrum technology

separates users by assigning them digital codes within the same broad

spectrum. Advantages of CDMA technology include high user capacity

and immunity from interference by other signals. Like TDMA IS-136,

CDMA operates in the 1900 MHz band as well as the 800 MHz band.

This basic CDMA approach is still referred to as 2G technology.

The first real beyond 2G technology was the General Packet Radio

Service (GPRS). It defines an extension to the GSM system to support

packet switching. GSM and GPRS could be supported by the same air

interface; only the backbone network had to be extended in order to

support circuit and packet switching simultaneously. Therefore, it was

now possible to charge the data services on a volume basis rather than

on a time basis. The GPRS enhanced networks are referred to as 2.5G

technology.

Based on the IS-95 standard, also known as cdmaOne, the cdma2000

release 0 standard was published by “The Third Generation Partnership

Project 2” (3GPP2) in August 1999. It defines the first real 3G network,

based on CDMA technology and offers packet services with high data

rates. The first commercial cdma2000 network was launched in Korea as

early as October 2000. Since then, many other operators started their

networks in a number of different countries all around the world. New

variants of the cdma2000 standard have been developed in the meantime.

The most important are cdma2000 1X, 1X EV-DV, 1X EV-DO, and

cdma2000 3X. They all enhance the basic cdma2000 network in order to

provide higher data rates while utilizing less spectrum.

15



2 Short History of Wireless Communication

The 3GPP2 project was mainly initiated by the International Telecom-

munication Union (ITU) as the counterpart to “The Third Generation

Partnership Project” (3GPP) that was started by the European Telecom-

munications Standards Institute (ETSI) in 1998. The main goal of the

3GPP was to produce globally applicable Technical Specifications and

Technical Reports for a 3rd Generation Mobile System based on evolved

GSM core networks and the radio access technologies that they support.

As early as in 1999, the first standard was finished. It is called the Uni-

versal Mobile Telecommunication System (UMTS) release 1999. It uses

Wideband CDMA (WCDMA) as the air interface.

The first commercial UMTS networks were introduced by NTT Do-

CoMo in Japan in 2001. NTT refers to the technology as FOMA (Free-

dom Of Mobile multimedia Access). The chances for the introduction

of new mobile services depending on high data rates seemed very pros-

perous. Therefore, many companies invested millions of dollars in order

to buy the licenses needed for the frequency bands in all different coun-

tries. However, the dot com crash hit the market. Mobile business did

not seem as prosperous any longer and companies greatly delayed the

introduction of their UMTS services.

In parallel to the development of the cellular systems, a great deal

of new developments were introduced in the area of wireless access net-

works. Three major approaches can be distinguished. In 1998, companies

such as Ericsson, IBM, and Intel, formed a Special Interest Group in or-

der to develop a wireless local area network technology that is cheap,

while it offers different types of services, such as voice or best-effort traf-

fic. Its code name was Bluetooth.

The second wireless technology for local area networks was Wireless

LAN, initiated by the Institute of Electrical and Electronics Engineers

(IEEE). It is commonly known as Wireless LAN. The basic standard

IEEE 802.11 was defined in 1999.

The third initiative to create a substitution for the wired Ethernet,
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2.2 Digital Systems

was the Broadband Radio Access Networks (BRAN) project. The plan-

ning of the standard started in 1991 and the HIgh PErformance Radio

LAN version 1 (HIPERLAN/1) standard was approved in 1996. A fur-

ther extension was accomplished in February 2000 with HIPERLAN/2.

Compared to the other two proposals, Bluetooth and Wireless LAN, the

HIPERLAN/2 technology supports high data rates and service differen-

tiation for different types of Quality of Service.

However, the first products to get to market were based on Bluetooth

and Wireless LAN technology. They offered little in terms of data rate

and QoS support, but HIPERLAN/2 devices were simply not available.

Today, there are a small number of HIPERLAN/2 devices available, but

Wireless LAN is ubiquitous, while HIPERLAN/2 only exists in special

environments. Therefore, the HIPERLAN/2 standard probably will not

play an important role in the future.

Compared to the Bluetooth technology, Wireless LAN with its large

number of extensions, as described in the next section, offers higher data

rates and better QoS support. Bluetooth usually offers 1 Mbps and is

restricted to an area of about 10 meters. Therefore, it is mainly used as

a so-called Personal Area Network (PAN), where it connects the wireless

keyboard and mouse to the computer, takes care of the communication

between the laptop and the printer, or lets the user synchronize the

address book of his PC and PDA.

Wireless LAN, on the other hand, is frequently seen as a nice, cost-

effective and handy way to extend the Local Area Network. The high

data rate and the low price already stimulate the discussion about a po-

tential competition between 3G networks, such as UMTS, and Wireless

LAN. Other opinions are, that a combination of the different technologies

offers a by far greater opportunity. These networks of the 4th generation

(4G), will allow very high data rates, low prices, anywhere-anytime con-

nections, and support for QoS (see [AHP+01], [rGPP02b], [rGPP02a],

[rGPP03], [rGPP02c], [Inf02], [Inf01a], [Inf01b], [Inf03]).
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The introduction of the Worldwide Interoperability for Microwave Ac-

cess (WiMAX), a wireless Wideband Metropolitan Area Network based

on the IEEE 802.16a standard [IEE03b], is supposed to cover large areas

with data rates of 100 Mbps up to 1 Gbps, which even intensifies the

idea of 4G networks. WiMAX will be used for two different purposes.

First, it can be used to connect multiple Wireless LAN hot spots to a

single high-speed wired Internet connection. This by far increases the

flexibility in setting up Wireless LAN hot spots, since there is no need

for individual Internet connections for each single hot spot. The second

purpose for WiMAX is to directly connect the clients to the WiMAX

network, wherever coverage available. Combined WiMAX and Wireless

LAN (WiFi) client devices will soon be seen on the market.

In addition, handover mechanisms are introduced that allow verti-

cal mobility, meaning seamless handovers between the different wireless

technologies, such as UMTS and Wireless LAN ([SK98], [ZJD03]). These

will allow a user to always connect to the wireless technology that pro-

vides the currently best service, in terms of bandwidth, QoS, or simply

cost.

However, the currently available Wireless LAN devices do not support

QoS in a way necessary for 4G networks. The next section explains the

Wireless LAN standard family and the QoS extensions that were pub-

lished. Later chapters then focus on the capabilities of these extensions

in 4G environments. Our studies show that Wireless LAN can be config-

ured in a way to support QoS in such scenarios once the QoS extensions

are implemented.

2.3 Wireless LAN 802.11 Standard Family

This section summarizes the IEEE 802.11 standard family. While the

initial standard defined the basic access mechanism, it soon turned out
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that this will not be sufficient for future deployments. A number of dif-

ferent task groups have been formed to enhance the protocols. Each of

these extensions is shortly described in the following.

IEEE 802.11

The basic standard IEEE 802.11 Wireless LAN Medium Access Con-

trol (MAC) and Physical Layer (PHY) Specifications was published in

1999. It defines the basic Medium Access Control (MAC) mechanism,

which mainly consists of the Carrier-Sense Multiple Access with Collision

Avoidance (CSMA/CA) protocol, and different Physical layers (PHY),

such as Direct-Sequence Spread Spectrum (DSSS) and Frequency Hop-

ping Spread Spectrum (FHSS). The frequency band is restricted to 2.4

GHz. The data rates 1 Mbps and 2 Mbps are supported, with only two

modulation types, the Differential Binary Phase Shift Keying (DBPSK)

and the Differential Quadrature Phase Shift Keying (DQPSK). In addi-

tion an Infrared (IR) Physical layer was specified.

IEEE 802.11a

The supplement High-speed Physical Layer in the 5 GHz Band was pub-

lished in 1999 as well. It defines the Physical layer to be used in the 5

GHz frequency band. The basic modulation is Orthogonal Frequency Di-

vision Multiplex (OFDM), which splits the frequency band into smaller

subcarriers that are simultaneously used to transmit data packets us-

ing lower data rates. Therefore, using a combination of subcarriers for

the transmission of data, higher data rates can be achieved, while the

subcarriers are less susceptible to inter-symbol interference. The modu-

lation types Binary Phase Shift Keying (BPSK), Quadrature Phase Shift

Keying (QPSK), 16-Quadrature Amplitude Modulation (16-QAM), and

64-Quadrature Amplitude Modulation (64-QAM) are used on the sub-

channels and the Coding Rates 1/2 and 3/4 are implemented. Therefore,
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the data rates 6, 9, 12, 18, 24, 36, 48, and 54 Mbps become possible.

Today, OFDM is the most promising candidate for future wireless com-

munication systems.

IEEE 802.11b

The supplement Higher-Speed Physical Layer Extension in the 2.4 GHz

Band defines two additional modulation schemes for the 2.4 GHz fre-

quency band. Complementary Code Keying (CCK) and Packet Binary

Convolutional Coding (PBCC) allow to increase the data rate to either

5.5 Mbps or 11 Mbps. This extension of the basic PHY layer is down-

ward compatible, such that the devices using 1 Mbps and the new 11b

devices with up to 11 Mbps can be operated simultaneously within a

single Wireless LAN cell. The CCK modulation is mandatory while the

PBCC modulation is only optional.

IEEE 802.11c

The bridging functionality necessary to implement the data exchange

between the wireless and the wired medium is specified in the Media

access control (MAC) bridges supplement of the standard. This extension

focuses on improving the MAC layer for better bridging.

IEEE 802.11d

The task group d dealt with the problem of Specification for operation

in additional regulatory domains. The main goal is to enhance the MAC

protocol, such that it can be configured to better conform to the different

regional regulations that can be found world-wide. It was published in

2001.
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IEEE 802.11e

A major enhancement of the MAC protocol is specified in the Medium

Access Control (MAC) Quality of Service (QoS) Enhancements amend-

ment. The task group e defined extensions that allow the MAC protocol

to distinguish between traffic types and to apply them to different prior-

ity levels. The parameters for the priority classes are not specified as fixed

values, but can be adapted to the need of the Wireless LAN operator.

The IEEE 802.11e extension is the main focus of this work. Its capa-

bilities to support different QoS levels in large-scale environments is eval-

uated in Chapter 5. The purpose of the QoS enhancement is to prepare

the MAC protocol for the requirements of future 4G mobile networks.

IEEE 802.11f

In 2003 the IEEE Trial-Use Recommended Practice for Multi-Vendor

Access Point Interoperability via an Inter Access Point Protocol Across

Distribution Systems Supporting IEEE 802.11 Operation amendment to

the Wireless LAN standard was published. Its main purpose is to define

the Inter Access Point Protocol (IAPP), which specifies the communi-

cation between the access points in larger Wireless LAN environments.

One of the tasks of IAPP is to support seamless handovers on the Data

Link Layer.

IEEE 802.11g

Task group g published the Further Higher Data Rate Extension in the

2.4 GHz Band in 2003. It specifies the utilization of the Orthogonal Fre-

quency Division Multiplexing modulation within the 2.4 GHz frequency

band. The maximum physical data rate can be raised to a maximum

of 54 Mbps as for the 5 GHz frequency band defined in IEEE 802.11a.

Two different modes of operation were defined. One mode is downward
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compatible to the basic IEEE 802.11 standard, since header information

is transmitted using 1 Mbps, while only the data portion is sent with a

higher data rate. The second mode of operation is restricted to a pure

802.11g Wireless LAN network. In this mode, the header information is

transmitted using the higher data rates, which by far reduces the over-

head of the protocol.

IEEE 802.11h

Spectrum and Transmit Power Management Extensions in the 5 GHz

band in Europe are defined in the IEEE 802.11h extension to the Wireless

LAN standard. Its main purpose is to extend the PHY layer as defined

in IEEE 802.11a in order to comply with the regulations for the 5 GHz

frequency band in some European countries.

IEEE 802.11i

Security problems have been a matter of great concern since the first

introduction of Wireless LAN. The basic security mechanisms have been

found to be very weak. Therefore, the task group i was formed to define

security mechanisms of higher sophistication. The 802.11i supplement

MAC Enhancements for Security was released in 2004 and consists of

a number of extensions to the basic Wired Equivalent Privacy (WEP)

mechanism. As was expected, the mechanisms of the IEEE 802.1x stan-

dard were integrated into the new standard. It allows the RADIUS based

access control and dynamic per session and per user encryption keys.

However, since such an infrastructure is not an option for home environ-

ments, simpler and weaker mechanisms were added as well.
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IEEE 802.11j

The definition of the 4.9 GHz - 5 GHz Operation in Japan amendment

to the standard was assigned to taks group j. As the 802.11h extension

aims at the usage of the 5 GHz band in European countries, the 802.11j

extension deals with the specific situation that the wireless technology

is confronted with in Japan. The goal is a harmonization of the local

regulations and the Wireless LAN 5 GHz PHY layer.

IEEE 802.11k

The supplement Radio Resource Measurement of Wireless LANs deals

with the problem of how to retrieve the data necessary for the manage-

ment and maintenance of a wireless network. The main focus lies on the

type of data as well as the way in which it can be exposed to the outside

environment.

IEEE 802.11REVma

The purpose of task group m is to define a Revision 200x of the 802.11

standard. It will be used to incorporate all the standard extensions that

are approved up to a specific date. The goal is to create a single document

that summarizes the amendments that are finished so far.

IEEE 802.11n

Enhancements for Higher Throughput are the topic of task group n.

The goal is to define extensions to both 802.11 PHY layers and the

802.11 Medium Access Control layer to allow data rates of at least 100

Mbps. The PHY layer will be based on MIMO/OFDM (Multiple-Input-

Multiple-Output / Orthogonal Frequency Division Multiplex) technol-

ogy. It is assumed that data rates of up to 540 Mbps will be achievable.

23



2 Short History of Wireless Communication

IEEE 802.11p

Task Group p deals with the topic of Wireless Access in Vehicular En-

vironments, which aims at inter-vehicle as well as roadside-vehicle com-

munication. The amendment is supposed to at least support speeds of

up to 200 km/h and communication ranges up to 1000 meters in the 5

GHz frequency band.

IEEE 802.11r

The amendment Fast BSS-Transition enhances the MAC layer in terms

of handover delay within a single Extended Service Set (ESS), i.e. a layer

two handover. IP handovers are not considered. However, security is to

be kept at a high level. Decreasing the security in order to accelerate the

handover is not wanted.

IEEE 802.11s

The definition of a Wireless Distribution System (WDS) and Extended

Service Set Meshes is the topic of the IEEE 802.11 ESS Mesh Networking

supplement. Its goal is to define self-configuring multi-hop topologies in

order to improve the ad-hoc capabilities of the IEEE 802.11 wireless

network.

IEEE 802.11.2

Amendment P802.11.2 - Recommended Practice for the Evaluation of

802.11 Wireless Performance deals with the definition of performance

metrics, measurement methodologies, and test conditions. The goal is to

create tools that allow measuring and predicting the performance of a

Wireless LAN.
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IEEE 802.11u

The IEEE 802.11 Wireless Interworking with External Networks amend-

ment will extend the PHY and MAC layer in order to enhance the in-

terworking of Wireless LAN with other networks.

IEEE 802.11v

Task group v deals with the standard supplement called IEEE 802.11

Wireless Network Management . The goal is to extend the capabilities of

the PHY and MAC layer in order to support a better radio measurement,

which in turn allows to better interface to the upper layers for managing

802.11 devices in wireless networks.

Summary

This section listed all extensions that have been or will be defined for

the basic Wireless LAN standard. As of the time of writing, just a small

number of these amendments have been finished: IEEE 802.11a, IEEE

802.11b, IEEE 802.11c, IEEE 802.11d, IEEE 802.11f, IEEE 802.11g,

IEEE 802.11h, IEEE 802.11i, and IEEE 802.11j. Devices implementing

these extension are available on the market. All the other working groups

are still active.

The most important extension for our studies is, however, the IEEE

802.11e amendment. It supplements the original MAC protocol with sup-

port for Quality of Service. The working group expects to finish its work

in the second quarter of 2005.
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Multimedia? As far as I’m concerned, it’s reading with the

radio on! Rory Bremner (1961)

We want to study the capabilities of Wireless LAN in the context of

4G networks. The main goal is to understand what kind of traffic or

traffic mix can be supported in large-scale environments. However, there

are different traffic types that have to be considered separately. In this

chapter the different traffic types, that have to be taken into account,

are discussed.

Section 3.1 introduces the main traffic types that can be distinguished

in today’s networks. These traffic types exhibit different Quality of Ser-

vice demands on the network. While an FTP download might be best

if the average data rate received is optimized, this is not an important

factor for voice traffic. Voice applications produce rather low data rates

while the end-to-end delay has to be kept within a certain level in order

to keep the voice transmission at an acceptable quality.

Section 3.2 introduces the different QoS demands of the traffic types

in general. However, simple measures, such as end-to-end delay or packet

loss, are not sufficient for the evaluation of voice or video quality. Section

3.2, therefore, introduces more advanced mechanisms to assess the user

experienced quality of real-time traffic as well.

Finally, Section 3.3 summarizes the traffic types and the quality as-

sessment methods that are considered in later chapters.
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3.1 Traffic Types

Basically, IP data traffic can be distinguished in terms of reliability.

If the Transmission Control Protocol (TCP) is used, the connection is

reliable. TCP takes care of the retransmission of lost data packets and

it assures that the packets are received in the correct sequence. This

type of transmission is used in applications like the World Wide Web

(WWW) or FTP, which rely on the correct reception of all data packets.

In addition, TCP implements a flow control mechanism which tries to

utilize the whole available bandwidth. It increases the rate of the data

transmission as much as possible, such that, in the case of lost packets,

the data transmission rate is decreased and overload situations can be

avoided.

On the other hand, the User Datagram Protocol (UDP) is unreliable.

It does not perform retransmission of lost packets and it does not ac-

count for packets received in the wrong sequence. However, if real-time

applications are performed, it is mandatory to receive the data packets

within a certain time limit, while a small amount of lost packets is quite

acceptable. Retransmissions would only lead to an increased delay of the

data transmission. Therefore, the UDP protocol is the better alternative

for real-time applications, e.g. voice or video transmissions.

In the remainder of this section, the four different traffic types WWW,

FTP, voice, and video are described in further detail.

3.1.1 File Transfer Protocol (FTP)

The File Transfer Protocol (FTP), defined as an IETF standard in

[PR85], specifies a way to transfer complete files between two computers.

A set of data formats and commands is standardized in order to allow

a user to copy a file from one computer to another. It is implemented

on top of TCP [Pos81]. Therefore, during file transmission, the FTP

protocol tries to utilize the whole available data rate.
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In the remainder of this work, FTP file transfer is frequently used as

a worst-case scenario for a Web user. As discussed in the next section,

a Web user frequently transfers files from the Web server to the local

computer, while these downloads are intermingled by idle periods. An

FTP user that continuously starts a download after the last file transfer

completes, represents the case where the idle periods of a Web user

activity is ignored, but constant activity is assumed. This allows us to

perform comparably short simulation runs, but to still receive significant

results that can be used to assess the quality of any kind of non real-time

data transmission.

3.1.2 Hypertext Transfer Protocol (HTTP)

The Hypertext Transfer Protocol (HTTP) is the underlying protocol of

the World Wide Web (WWW) application. Version 1.1 is defined in RFC

2068. It defines the way in which the data is transferred between a Web

server and a Web user. Figure 3.1 shows an overview of the protocol

layers involved in Web users’ activities. On the top, different client ac-

tivity phases are shown. Within each activity phase, a number of Web

sessions is performed. A Web session is a number of Web pages that a

user downloads within its activity phase ([TGSL01]).

The requested Web pages can be represented by an On/Off process,

where each On phase corresponds to the download of a single Web page,

while the Off phases define the time between the download of consecutive

pages, meaning for example the reading time. A single Web page consists

of a number of objects, the main and the inline objects, which are trans-

mitted consecutively within a maximum number of four simultaneous

TCP connections. Each such TCP connection then consists of a number

of TCP packets depending on the size of the transmitted objects. Lower

layers such as Wireless LAN might further fragment the TCP packets.

A complete description of this Web source traffic model can be found
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Figure 3.1: Web source traffic model

in [TGSL01]. This includes a summary of the statistical properties of

the Web traffic, such as the distribution of the session duration or the

number and size of the inline objects.

However, since the statistical properties of Web sessions are highly

variable, very long simulation runs have to be performed in order to re-

trieve statistically relevant results. Most of the time, it is not a practical

solution to simulate the exact behavior of even just a small number of

Web users. The bandwidth requirements of a single Web user is rather

small, i.e. in the order of tenths of Kbps. Nevertheless, if the whole
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bandwidth of a Wireless LAN system is to be consumed by the sim-

ulated Web users, a huge number of simultaneously active Web users

have to be taken into account, and the simulation time exceeds practi-

cally feasible amounts. Therefore, in the remainder of this work, FTP

users are simulated to retrieve performance results for best-effort traffic

as was already explained in the last section.

3.1.3 Voice data transmission

The most widespread way to transmit speech in legacy circuit switched

networks is to take an eight bit speech samples every 125 microsec-

onds, leading to an overall bandwidth requirement of 64 Kbps. In circuit

switched networks, however, a channel between the two transmitting sta-

tions is set up at the beginning of a call and bandwidth is exclusively

reserved for its whole duration. Therefore, the 64 Kbps channel in both

directions is reserved all the time and can not be used by other applica-

tions.

Packet switched networks, however, do not reserve bandwidth for for

the whole duration of a single connection. They allow other applica-

tions to share the same medium. Therefore, it is desired to reduce the

bandwidth requirement of a voice application as much as possible. And

indeed, voice data allows a great amount of optimization in terms of

bandwidth requirement. The most obvious one is the silence detection

and suppression. During a voice call, usually only one party speaks at

at time. Therefore, half of the time there is silence and no data needs to

be transmitted in one direction.

On the other hand, modern coding theory allows to even further de-

crease the required bandwidth of a simple voice call. A number of differ-

ent codecs, pairs of coder and decoder, were introduced. They allow to

remove redundancy that is immanent in human speech. Table 3.1 sum-

marizes a number of them. They mainly differ in terms of required data
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Codec Data Rate Frame Size Data Size

[Kbps] [ms] [Bytes]

G.711 PCM [IT93a] 64 0.125 1

G.726 ADPCM [IT96a] 32 0.125 0.5

G.729 CS-ACELP [IT96b] 8 10 10

G.723.1 MP-MLQ [IT96c] 6.4 30 24

G.723.1 ACELP [IT96c] 5.3 30 20

Table 3.1: Compression algorithms and bandwidth requirement

rate, frame size, and data size. The frame size specifies the interarrival

time between consecutive packets, i.e. for G.711 [IT93a] every 125 mi-

croseconds a single voice packet is sent, while for the G.723.1 ACELP

codec [IT96c] the interarrival time between two packets is 30 millisec-

onds. The frame size of most codecs can, however, be varied by the ap-

plication. The G.711 codec, for example, is often configured with a frame

size of 4 ms in order to reduce protocol overhead. Later chapters show,

that the frame size has the most important effect on the performance of

voice transmissions in Wireless LAN networks.

As described in the introduction of this section, the User Datagram

Protocol (UDP) as defined in [Pos80] is used to transport the data pack-

ets from the source to the destination. The UDP protocol is unreliable in

terms of packet loss, i.e. lost packets are not recovered by the protocol.

Higher layer protocols have to get along with the lost information or

they have to perform the retransmission procedure by themselves.

In case of voice data, the higher layer protocol is A Transport Protocol

for Real-Time Applications (RTP), also known as the Real-time Trans-

port Protocol [SCFJ03]. It takes care of the resequencing of the data

packets in cases where they are not received in the correct order. This

might be caused by a link failure and a resulting change of the routing

in the backbone network. RTP does not implement retransmissions in
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case of lost packets. The reason is that the most important factor for

an acceptable quality of a voice transmission is delay. Retransmissions,

however, lead to an increase of the delay. Packet loss, at least of a small

amount, is not an issue. Later in this chapter, the different quality as-

sessment procedures are covered in more detail.

3.1.4 Video data transmission

Video telephony, online video conferencing, and video streaming are the

most promising applications for future wired and wireless networks. How-

ever, the unencoded transmission of videos is not an option due to the

immense bandwidth requirements. As for voice data, a number of dif-

ferent video codecs have been developed in to lower the bandwidth re-

quirements. The International Telecommunication Union (ITU) and its

ITU Telecommunication Standardization Section (ITU-T) defined video

source coding algorithms that help to reduce the required data rate due

to the reduction of video immanent redundancy ([IT93b], [IT95], [IT02]).

The most important standard for our studies is the H.263, which de-

fines Video Coding for Low Bitrate Communication. It specifies a hybrid

of inter-picture prediction to utilize temporal redundancy and Discrete

Cosine Transform (DCT) of the residual prediction error to reduce spa-

tial redundancy. After the DCT coding, the prediction error is quantized

and the resulting symbols are variable-length-encoded and transmitted.

Therefore, H.263 [IT95] encoded video stream consists of three types of

frames. The I-Frames (intra) are solely intra-coded frames and represent

a whole picture. The P-Frames (predicted) follow the I-Frames or P-

Frames and contain only the data that has changed from the preceding

I-Frame or P-Frame. Finally, the B-Frames (bi-directional) rely on the

frames preceding and following them. They contain only the data that

has changed from the preceding I- or P-Frame or from the data in the

next I- or P-Frame.
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Figure 3.2: Playback and compression order of a GoP

The different frame types are transmitted in recurring sequences of

frames, also known as Group of Pictures (GoP). Figure 3.2 shows an

example of the transmission of an H.263 encoded video stream. As B-

Frames need the preceding and the following frame to build a whole

picture, their position in the compressed video stream differs from their

playback position. B-Frames are usually not used in real-time video

streams such as video conferences. This is due to the fact that the decom-

pressor would require access to two frames in advance. Hence, a buffer

is needed and its temporal length would add to the transmission delay.

Moreover, B-frames are harder to calculate than P-Frames leading to a

higher CPU workload in good cases and to a longer time to compress

the video stream in bad cases. For additional information on video com-

pression see [NH95], [Ric99].

Table 3.2 summarizes the parameters that are used for the videos

simulated in this work. Both standard resolutions Common Interframe
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Codec Format Resolution Frame Rate

[Pixels] [Frames per second]

H.263 CIF 352 x 288 25

H.263 QCIF 176 x 144 25

Table 3.2: H.263 codec parameters

Format (CIF) and Quarter CIF (QCIF) are considered. The frame rate

can be set in the range of one to a maximum of 30 frames per second. In

our case, 25 frames per second are assumed, which allows fluent videos.

The different video formats are chosen depending on the platform that

is used. For TV like screens the CIF resolution is chosen, while smaller

screens, as for example in Personal Digital Assistants (PDA) or Cellu-

lar Phones, utilize the QCIF format. Online video conferences put the

highest demand on the network due to the real-time nature of the data

stream. Therefore, no B-Frames are used in our studies.

As for the voice traffic, UDP is used on top of the IP layer. Again,

no retransmissions are performed and the RTP layer has to take care

of the resequencing of the received packets. Lost packets decrease the

quality of the video stream. If the delay of a packet is too large, such

that the time of its scheduled playback time has passed at the arrival of

the packet, the received video data is dropped. Later in this section, the

QoS parameters for measuring the quality of the video transmission are

discussed.

3.2 Quality of Service Assessments

The last section introduced the various traffic types that have to be anal-

ysed differently, when evaluating the QoS capabilities of a Wireless LAN

network. It was pointed out that four types of traffic have to be ana-
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lyzed individually. This section describes the measures and procedures

to assess the user experienced Quality of Service.

3.2.1 File Transfer

Users that perform a file transfer using the File Transfer Protocol (FTP)

are solely interested in the download time. This is directly influenced

by the average data rate that the user experiences, which in our case

is defined as the ratio between the amount of transmitted data and the

time from connection setup until completion of the download. Packet loss

and transmission delays lower the achieved data rate. The underlying

TCP protocol and its rate control mechanism adapt the sending rate

appropriately, such that an explicit assessment of the packet loss and

delay is not necessary in this case.

It is worth mentioning that the size of the transferred file has an im-

pact on the achievable data rate, since the TCP protocol and its rate

control mechanism start with a low transmission rate and then probes

the available bandwidth by increasing the transmission rate according to

the Slow Start mechanism. In addition, the delay due to the connection

setup phase lowers the achievable data rate as well. Therefore, very small

files can never experience a high data rate, since the rate control mecha-

nism is not able to utilize the whole available bandwidth in such a case.

Therefore, files with varying sizes of one Kilobytes up to a maximum of

ten Megabytes are considered in later chapters. The average data rate

received by the FTP user is the most important factor and is used to

derive the results.

3.2.2 Web Traffic

The Quality of Service received by a user surfing the Web is much harder

to measure. The average bandwidth requirement of a single Web user
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is around 10 Kbps based on the model as described in Section 3.1.2.

Therefore, a single Web user can never utilize the full bandwidth that

is provided by the network. Hence, the average data rate received by a

single user is not of great value when Web traffic performance is to be

analyzed.

The main interest of a Web user is the average page download time,

that is the average time required for the download of a single Web

page. The higher the load on the network, the longer the delays and

the higher the packet loss become. This directly influences the delay of

the downloaded Web page. The underlying TCP protocol assures the

correct reception of all the data packets. However, the retransmissions

of lost packets add to the overall delay. Therefore, the measure of choice

for the assessment of the Web traffic performance is the average page

download time experienced by a user.

As explained above, the Web source traffic model leads to high vari-

ations in terms of page size and other parameters, which makes very

long simulation necessary. When this kind of simulation becomes unfea-

sible, we simulate FTP users in order to evaluate the QoS received by

best-effort users in the remainder of this work.

3.2.3 Voice Traffic

The classical way to assess the quality of a transmitted voice stream

is to measure different statistics, e.g. delay, jitter, or packet loss. These

parameters are directly taken from the TCP or IP packet stream. No real

voice stream has to be transmitted, but it is only necessary to simulate

a characteristic voice stream, i.e. a packet of a certain size has to be sent

repeatedly after constant amounts of time.

The Study Group 12 of the ITU-T [Cov01], therefore, specified key

performance parameters and target values that adapt to the different

voice applications. In this work, three different voice applications are
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Application Key performance parameters

and target values

One-way Delay Information

delay variation loss (**)

Conversational < 150 msec < 1 msec < 3 %

voice preferred (*) packet loss

< 400 msec (*) ratio (PLR)

Voice < 1 sec for playback < 1 msec < 3 % PLR

messaging < 2 sec for record

High quality < 10 sec < 1 msec < 1 % PLR

streaming audio

(*) Assumes adequate echo control

(**) Exact values depend on specific codec

Table 3.3: ITU-T audio parameter recommendations

distinguished. Conversational voice is the only symmetric application,

where data flows in both directions simultaneously. Voice messaging as

well as high quality streaming audio is primarily one-way. Conversational

voice data ranges in data rate from about 4 Kbps to 64 Kbps. Voice

messaging has similar requirements with about 4 Kbps to 32 Kbps. High

quality streaming audio is clearly the most demanding application in

terms of data rate ranging from 16 to 128 Kbps.

In terms of QoS, the most demanding voice application is definitely

conversational voice. The one-way delay limits of 150 msec preferred and

400 msec maximum are considerably short. Even a packet loss ratio of

less than three percent is hard to achieve in wireless environments.

However, using such objective measures has one major drawback. As

the second footnote of Table 3.3 already indicates, some of the rec-

ommended parameters depend on the speech codec that is used. Some

codecs do not exhibit a perceivable quality degradation even in the case
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when the packet loss reaches the three percent packet loss ratio. On

the other hand, three percent packet loss can lead to incomprehensible

speech. Hence, the simple evaluation of delay, jitter (delay variation), or

packet loss is not a good choice.

Therefore, a different approach is chosen in this work. The goal is to

measure the quality of the voice stream at the receiver side objectively.

In order to do so, the ITU-T developed the PESQ algorithm in its

P.862 recommendation Perceptual evaluation of speech quality (PESQ),

an objective method for end-to-end speech quality assessment of narrow-

band telephone networks and speech codecs [IT01].

The overall procedure of PESQ is shown in Figure 3.3. It measures the

end-to-end speech quality of a one-way transmission. In order to do so,

a reference voice stream is passed through the system and the degraded

signal as experienced at the receiver side is created. The PESQ algorithm

takes the reference and the degraded signal as input and measures the

level of degradation.

Figure 3.3: PESQ procedure overview

The resulting PESQ score is then used to derive a Mean Opinion Score

(MOS) as defined in [IT98], [IT96d], and [IT96e]. As shown in Figure
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3.4 the MOS values range from 1.0, meaning not recommended, to a

maximum of 4.5, which represents very satisfied users. The method of

using the PESQ algorithm and the MOS value mapping allows to derive

an objective measure for the transmitted voice quality independent of

the considered voice codec.

Figure 3.4: Mean Opinion Score (MOS)

The PESQ algorithm was designed in a way that it matches the sub-

jective opinion of human test persons as much as possible. It takes into

account features such as filtering, variable delay, coding distortions, and

channel errors. Therefore, it is a lot more complicated to implement and

to measure than parameters such as delay or jitter. However, PESQ and

MOS are the better mechanisms to derive the user experience quality of

a voice stream.

It should be mentioned that some proposals for an improvement of

the transmission of voice streams exist in the literature. In [HRW03]
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the authors, for example, show that the packets of a single voice stream

can be distinguished in terms of their importance for the quality of the

received signal. The goal here is to assure that packets with a higher im-

portance receive a better quality than those of low importance. However,

since such methods are highly complicated and can not be seen in any

practical environments so far, thea are not accounted for in our studies.

3.2.4 Video Traffic

In the last section, the different approaches to measure voice quality at

the receiver side were discussed. It was shown that there are simple mea-

sures, such as delay, jitter, and packet loss, that can easily be retrieved

from simulation runs. However, these simple approaches are not always

adequate to measure the quality of the voice stream as experienced at the

receiver’s side. More advanced mechanisms can be deployed. It is much

more complex to retrieve the results, but the measured QoS directly

states the level of user satisfaction.

The same holds for video traffic. The Study Group 12 of the ITU-T

[Cov01] recommended some hard limits for the parameters delay and

packet loss. This is the classical approach. Table 3.4 summarizes the key

performance parameters for video transmissions. While the videophone

application is two-way, there also exist recommendations for the one-way

video streaming applications. Clearly, the interactive videophone has the

higher demand. Data rates for both applications range from 16 Kbps to

about 384 Kbps, but the videophone has the same short delay targets

as the interactive voice call. The goal of our studies is to support the

videophone application.

Again, as for voice traffic, the video codec plays an important role on

the quality of the received video stream as well. The simple parameters,

delay and packet loss, do not allow to assess the quality as experienced

by the user. Therefore, more advanced techniques have been proposed
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Application Key performance parameters

and target values

One-way Information

delay loss

Video phone < 150 msec preferred < 1 %

< 400 msec limit

One-way < 10 sec < 1 % PLR

Table 3.4: ITU-T video parameter recommendations

for video traffic by the ITU-T. The proposed measure is the Peak Signal

to Noise Ratio (PSNR), a subjective interpretation of the quality of

a transmitted video stream. PSNR is a derivative of the well known

Signal-to-Noise Ratio (SNR) and is the most widespread technique for

the quality assessment of video.

The PSNR is calculated image by image. It compares the maximum

possible signal energy to the noise energy, which results in a higher corre-

lation with the subjective quality perception than the conventional SNR.

The definition of the PSNR of source image s and destination d is given

by the following equations (see [NH95], [RJ91]). More information about

the PSNR calculation can be found in [Ric99], [FSR04].

PSNR(s, d) = 10 log10

V 2
peak

√

MSE(s, d)
[dB]

= 20 log10

Vpeak
√

MSE(s, d)
[dB]

Vpeak = 2k − 1, k bit color depth

MSE(s, d) = mean square error of s and d

The PSNR values do not directly correspond to MOS values [Cis04].

However, the heuristic mapping as shown in Table 3.5 is used in our
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Quality PSNR [dB] MOS

Excellent ≥ 37 5

Good [31;37) 4

Fair [25; 31) 3

Poor [20; 25) 2

Bad < 20 1

Table 3.5: Heuristic PSNR to MOS mapping

studies [IT96d]. This allows to give a computational approximation of

the subjective human impression of the video stream, similar to the voice

stream evaluation.

3.3 Traffic Categories in the Remainder

The last section described the different traffic categories that have to

be studied when evaluating the capabilities of a Wireless LAN network

in the context of a 4G system. In this section, a short summary of the

traffic types as they are used for the simulation studies in later chapters

is given.

The main traffic type for the evaluation of best-effort performance is

FTP. An FTP user is simulated in a way that it consecutively down-

loads files of varying sizes from an FTP server. The measure of choice is

the average bandwidth received. Even though Web traffic is experienced

much more often in today’s networks, it is less appropriate to measure

the received QoS for best-effort users as explained above. Therefore, Web

traffic is only considered in some of the simulation scenarios.

IP telephony is simulated using a 16 bit, 8 kHz mono wave audio

sample with the length of 90 seconds. This corresponds to the mean

duration of a telephone call in mobile communication networks. The
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wave audio sample is encoded using the G.723.1 codec with a coding

rate of 5.3 Kbps and 6.3 Kbps and VAD (Voice Activity Detection)

disabled. The 90 second G.723.1 audio stream consists of exactly 3000

voice frames. The size of a single voice frame on the IP layer is 20 Bytes

for the G.723.1 (5.3 Kbps) and 24 Bytes for G.723.1 (6.3 Kbps). The

frame size is set to 30 ms. G.723.1 is a low quality voice codec, but it

shows an acceptable performance in Wireless LAN reference scenarios as

shown in later chapters.
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MOS values, G.723.1 (6.3 Kbps)
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Nearly all users dissastisfied

Not recommended
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Figure 3.5: MOS for G.723.1 with 6.3 Kbps

Figure 3.5 shows the effect of packet loss on the MOS rating of a

G.723.1 coded audio stream when 6.3 Kbps are used. It is easy to see that

even a small percentage of packet loss leads to a dramatic degradation of

the received voice quality. The main reason is that the G.723.1 codec has

a large coding factor, i.e. a high level of compression. The codec does not

44



3.3 Traffic Categories in the Remainder

Compression Algorithm Bit rate [Kbps] MOS Score

G.711 PCM 64 4.1

G.729 CS-ACELP 8 3.92

G.723.1 MP-MPQ 6.3 3.9

G.723.1 ACELP 5.3 3.65

Table 3.6: Maximum achievable MOS values for different voice codecs

only remove the redundancy, but it leads to a degradation of the speech

quality. This can be seen for the case where no packet loss occurs. Here,

the maximum MOS reaches about 3.7, which is quite acceptable, but

already leads to some dissatisfied users. Depending on the compression

algorithm, the maximum achievable MOS differs as shown in Table 3.6.

However, as we see later, using the codec with the highest achievable

MOS value does not lead to a better performance of the system in terms

of QoS support. Using the G.723.1 codec [Kab03] is shown to be the best

solution in case of Wireless LAN networks in Chapter 5.

In the case of voice traffic, the traffic pattern is rather simple to simu-

late. Depending on the codec, the packet and frame sizes differ, but are

constant for the whole duration of the call. Therefore, the simulation just

has to model a voice source as a packet generator, that sends a packet

to the receiver every frame size milliseconds with a constant packet size.

The situation changes once video applications are considered.

The data rate that is required for the transmission of a video stream,

is not at all constant over the whole time period. The data rate of a video

changes rather rapidly depending on the video stream itself. Therefore,

for video simulations a real video has to be chosen and its properties

have to be analyzed. In our case, eight different video sequences where

taken. Four two-minute sequences are taken randomly from the movie

Red Rock West (1994) and another four two-minute sequences from the

movie Kill Bill: Vol. 1 (2003). These test sequences were analyzed in
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terms of their statistical properties. The results for the best-case and

worst-case sequences are summarized in Table 3.7. Best-case and worst-

case refer to the statistical properties of the video. The less variable in

terms of frame size the video is and the lower the average data rate

it requires, the better it is suited to be transferred on a packet based

network. On the other hand, the more the frame sizes of the video stream

vary, the higher is the demand on the system.

Average Standard

Video Format Size Number of Frame Size Deviation

[KBytes] Packets [B] [B]

A CIF 3792.8 4179 1237.5 942

B CIF 1165.7 3018 469.5 361

C QCIF 1488.8 3062 361 263

D QCIF 494.4 3001 138 103

Table 3.7: Properties of the best-case and worst-case video sequences

The video statistics were calculated using the frame size information of

the different video streams. The sample mean is derived from the frame

sizes xk by

m =
1

N

N
∑

k=1

xk.

Using the sample mean m, the unbiased sample variance s2
N−1 and the

standard deviation sN−1 can be calculated by

s2
N−1 =

1

N − 1

N
∑

i=1

(xi − m)2, and

sN−1 =

√

s2
N−1.

These statistics allow to receive the nessessary information about the

variability of a given video stream.
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Therefore, Video A represents the worst-case video sequence in the

case of CIF format. The averaged frame size with 1237.5 Bytes is roughly

three times higher than for the best-case video sequence B. The difference

between these two CIF formatted videos in terms of variability is just as

high.

Similar results can be found by studying the statistical properties of

the QCIF formatted video sequences. The worst-case is marked as video

C. Again the required data rate is about three times higher than for the

best-case video D. The variability of video C also reaches levels almost

three times as high as for video D.
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Figure 3.6: PSNR values depending on the packet loss probability

Figure 3.6 shows the effect of the packet loss on the Peak Signal to

Noise Ratio (PSNR). This plot was produced using video A, the worst-

case CIF formatted video sequence. The dotted lines in the figure indicate
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the different MOS levels. It can be seen that the video quality is excellent

as long as the packet loss does not exceed a level of two percent. The

quality that the user experiences is still good, even for value around three

percent. Then, the quality reaches fair and drops only gradually with an

increased packet loss.

It is important to mention that the quality of a received video can not

be measured only depending on the packet loss rate. Consider a video

where an I-Frame is lost. The I-Frame, as explained before, carries the

information about the whole picture, and thus forms the basis for a whole

GoP. Therefore, the whole GoP is disturbed and the effect of the lost

I-Frame is clearly perceivable.

This fact can be seen in Figure 3.7. Here, two different screenshots

are shown from video A. On the left-hand side, the original image is

displayed. On the right-hand side, a disrupted image is shown. In this

case, the I-Frame was lost, such that the codec filled the missing image

with a simple background color. Then, the P-Frames arrive one at a

time, but they do not contain information about the whole image, but

they just describe the changes in the image. In our case, the area around

the moving person in the picture has been transmitted, and thus can be

displayed by the codec. The rest of the image can not be shown correctly.

This example shows that the packet loss as the only measure for the

quality of the received video is not sufficient. The type of packet that

has been lost, needs to be taken into account as well. This, however, is

difficult to measure in terms of packet loss. The PSNR or MOS value

on the other hand measures the received quality perceived by the user

and, therefore, implicitly takes the importance of the lost frames into

consideration.

Finally, Figure 3.8 shows two series of frames from video A. The

leftmost frame always shows the image taken from the original movie

sequence. Therefore, its MOS value is 5. The other two frames show

different levels of distortion. The frame in the middle is taken from a
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Figure 3.7: Distortion caused by lost I-Frame

degenerated video with 2.4 percent packet loss and a MOS value of 4.

The distortions can be perceived already, but the overall movie still has

an acceptable quality.

The leftmost frames in Figure 3.8 were taken from a sequence with

a packet loss of 3.3 percent and a MOS value of 2. The quality in this

case is poor. Large areas of lost video information are experienced and

the quality of the received movie sequence is not acceptable for a human

user.

These examples proof that the PSNR calculation and the heuristic

MOS mapping provide realistic results of the user experienced quality of

a transferred video stream.

49



3 Wireless Challenges

Figure 3.8: PSNR values depending on the packet loss probability
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4 PHY - WLAN Physical

Layer

A technique succeeds in mathematical physics, not by a

clever trick, or a happy accident, but because it expresses

some aspect of a physical truth. Sir Oliver Graham Sutton

The Physical layer is the layer one of the ISO/OSI protocol stack.

Its main purpose is to define the low-level specification of the bit-wise

data transmission on a given medium. In the case of Wireless LAN these

specifications include e.g. the frequency of the channel, the signal strenth,

or the modulation. In the following, an overview of the Wireless LAN

Physical layers as defined in the standard and its extensions is given.

Three different Physical layers (PHY) are defined in the IEEE 802.11

standard [IEE99a]:

• Frequency-Hopping spread spectrum (FHSS) PHY specification for

the 2.4 GHz Industrial, Scientific, and Medical (ISM) band,

• Direct sequence spread spectrum (DSSS) PHY specification for the

2.4 GHz band designated for ISM applications, and

• Infrared (IR) PHY specification.

However, only the DSSS Physical layer found its way to the mar-

ket, while the other two specifications are of minor practical relevance.
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Originally, DSSS used the 2.4 GHz frequency band as the transmission

medium and differential phase shift keying (DPSK) as the modulation

technique. Two different flavors of DPSK are specified, Differential Bi-

nary Phase Shift Keying (DBPSK) for data transmission at 1 Mbps

and Differential Quadrature Phase Shift Keying (DQPSK) at 2 Mbps.

The protocol extension IEEE 802.11b [IEE99b] added two more modu-

lation techniques to the original standard; Complimentary Code Keying

(CCK) developed by Intersil and Packet Binary Convolution Coding

(PBCC) first introduced by Texas Instruments. They were the first to

allow higher data rates of up to 22 Mbps.

At the same time, the IEEE 802.11a standard [IEE99c] was defined.

It uses the 5 GHz frequency band and Orthogonal Frequency Division

Multiplex (OFDM) modulation. This allows for a further increase in the

maximum data rate. IEEE 802.11a was the first Wireless LAN standard

that could support data rates of up to 54 Mbps. Later the IEEE 802.11g

standard specified the use of OFDM or CCK/OFDM for the 2.4 GHz

band as well. Therefore, the maximum data rate in the 2.4 GHz band

could also be improved to 54 Mbps.

In the following, the various modulation techniques are explained in

more detail and the advantages and disadvantages of different approaches

are discussed. However, modulation is not the only important factor

when investigating the performance of a wireless system. There is a whole

set of factors that influence the quality of the wireless link, and thus have

an impact on the packet error rate and on the performance. Therefore,

an overview of the most important factors is given in Section 4.2. Fi-

nally, Section 4.3 summarizes the settings that have been used for the

performance analyses in later chapters.
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4.1 Radio Transmission Techniques

The different PHY layers defined in the Wireless LAN standards serve

the same tasks. They provide a frame exchange functionality to take

care of the communication with the upper Medium Access Control

(MAC) layer and indicate the MAC layer of the current medium sta-

tus (busy/idle). Each PHY layer uses its own modulation techniques,

channel settings, or frequency bands. However, all of them work with

the same MAC layer, which is described in the next chapter.

In the following the different PHY layers are explained in greater de-

tail. Geographical differences in the way the PHY layers have to work

due to regulations are also covered.

4.1.1 FH-CDMA

The IEEE 802.11 Frequency Hopping Spread Spectrum (FHSS) Physi-

cal Layer can deliver 1 Mbps and 2 Mbps data rates. It uses frequency

hopping spread spectrum in the 2.4 GHz frequency band. Depending on

the geographical region, the frequency band is divided into a number of

different channels. In North America and most of Europe the frequencies

from 2.402 to 2.480 GHz are used, while the operation in Japan is re-

stricted to the frequency band from 2.473 to 2.495 GHz. Each channel is

1 MHz wide, such that there are 79 separate channels in North America

and most of Europe and only 27 channels in Japan.

The hopping sequence is determined by the access point, and the

clients automatically synchronize to the correct hopping sequence. The

number of hopping sequences also depends on the geographical region.

In North America and most of Europe the standard specifies 78 different

sequences and 12 sequences for Japan. They are chosen in order to avoid

interference between co-located access points. Finally, the hop rate and

the hop distance can be configured. The standard defines a minimum hop

rate depending on the region, e.g. 2.5 hops per second in North America,
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and a minimum hop distance in the frequency domain of either 6 MHz

for North America and most of Europe or 5 MHz for Japan.

Gaussian Frequency Shift Keying (GFSK)

Frequency Hopping Spread Spectrum delivers 1 Mbps and 2 Mbps data

rates. In both cases Gaussian Frequency Shift Keying (GFSK) is utilized.

GFSK is simply Frequency Shift Keying, but the input is first passed

through a Gaussian Filter. Therefore, the binary data is not represented

in the form of square pulse signals, but Gaussian pulses instead.

FSK thens represent the binary data in the form of different frequen-

cies. For the 1 Mbps data rate two-level GFSK is used. Here, a binary 1

is delivered as a signal with higher frequency than the center operating

frequency of the channel. A binary 0 instead is represented by a signal

with a lower frequency than the center operating frequency. The stan-

dard defines a nominal frequency deviation of 160 KHz. The two-level

GFSK is shown in Figure 4.1. The binary 1 is represented by a higher

frequency than the binary 0.

Figure 4.1: Two-level Gaussian Frequency Shift Keying

The 2 Mbps data rate is consequently implemented by using four-

level GFSK, i.e. four different frequencies transmit two binary values

simultaneously. This is shown in Figure 4.2.

The transmit power of the Wireless LAN devices in FHSS mode is

restricted to a maximum output power of 100 milliwatts. This is the
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Figure 4.2: Four-level Gaussian Frequency Shift Keying

same for North America and Europe.

However, the Wireless LAN devices using FHSS mode do not have

a great market share. This is mostly due to the higher data rates that

DSSS devices offer.

4.1.2 DS-CDMA

The Direct sequence spread spectrum (DSSS) PHY specification for the

2.4 GHz band designated for ISM applications was the second initial

802.11 Physical layer implemented in Wireless LAN solutions. It uses a

special type of Code Division Multiple Access (CDMA) to allow mul-

tiple users to share the single medium. However, there is a big differ-

ence between CDMA and DSSS. While CDMA uses multiple orthogonal

spreading sequences in order to enable multiple users to operate at the

same frequency simultaneously, DSSS only supports one single spreading

sequence, which is used by all clients.

Therefore, DSSS does not allow simultaneous transmissions in the

same frequency. The spreading is only used in order to increase the ro-

bustness of the transmission against other sources of interference, e.g.

Bluetooth radio transmission. The Medium Access Control (MAC) pro-

tocol controls the access sharing of the clients. Simultaneous transmission

is only allowed in different channels. The number of channels depends

on the geographical region. In North America only 11 channels are de-
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Channel Frequency North Europe Japan

number (GHz) America

1 2.412
√ √

2 2.417
√ √

3 2.422
√ √

4 2.427
√ √

5 2.432
√ √

6 2.437
√ √

7 2.442
√ √

8 2.447
√ √

9 2.452
√ √

10 2.457
√ √

11 2.462
√ √

12 2.467
√

13 2.472
√

14 2.484
√

Table 4.1: DSSS channels by geographical region
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fined, while in most of Europe 13 different channels have been specified.

These channel definitions and their respective operating frequencies are

summarized in Table 4.1.

The DSSS spreading mechanism is illustrated in Figure 4.3. In the

case of 1 Mbps and 2 Mbps operation, each data bit of the incoming

data sequence is combined with the 11-chip Barker spreading code by

applying a binary adder (modulo 2). The resulting spreaded sequence

has a higher bandwidth than the original data sequence. The factor of

increase is 11 in this case and is referred to as processing gain. The

processing gain improves the robustness of the transmitted signal.

Data sequence

1 0

1 0 1 1 0 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 0 0

11-chip Barker code

Spreaded sequence
1 bit

11 chips 11 chips

11 chips 11 chips

Figure 4.3: Direct Sequence Spread Spectrum modulation

The resulting spreaded sequence is used as the input for DBPSK or

DQPSK modulator. These two modulation techniques are explained in

the following subsection. Each DSSS channel occupies 22 MHz of band-

width and has a spectral shape of a filtered sin(x)/x function as shown

in Figure 4.4.

Therefore, all channels that are spaces less than 22 MHz apart from

each other overlap and cause inter-channel interference if used in close

vicinity. Most of the channels, however, are only 5 MHz apart and do

overlap. As a consequence, the DSSS channel definition for North Amer-

ica and most of Europe does only allow 3 non-overlapping channels, as

shown in Figure 4.5. This restriction might cause problems in the case
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0 dBr

-30 dBr -30 dBr

fcf -11MHzc f +11MHzc
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-50 dBr

Figure 4.4: DSSS transmit channel shape

where large Wireless LAN systems are deployed. Three non-overlapping

channels are not enough to cover a large area while preventing over-

lapping cells. Therefore, inter-channel interference occurs and lead to

a performance degradation. Later chapters cover this topic in greater

detail.

2.412 GHz
(Channel 1)

2.437 GHz
(Channel 6)

2.462 GHz
(Channel 11)

25 MHz 25 MHz

Figure 4.5: Non-overlapping channels

Phase shift keying (DBPSK, DQPSK)

The initial IEEE 802.11 standard defines two DSSS modulation tech-

niques, Differential Binary Phase Shift Keying (DBPSK) and Differential
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Quadrature Phase Shift Keying (DQPSK). Both mechanisms are special

types of Phase Shift Keying, where the phase of the carrier frequency

is varied in order to represent different binary symbols, and differential

precoding and differential demodulation is applied.

In DBPSK two different signals are used to transmit the binary values

1 and 0. A maximum of 11 Mcps is possible. Each single data bit is

represented by 11 chips. Thus, a data rate of 1 Mbps is supported. The

concept of DBPSK is displayed in Figure 4.6.

Figure 4.6: Differential Binary Phase Shift Keying

In the case of DQPSK, the input of the modulator is a combination of

2 bits (00, 01, 10, 11). The concept is shown in Figure 4.7. Four different

transmitted phases are used. Each of these two-bit symbols is sent at 1

Mbps, such that an overall binary data rate of 2 Mbps is reached. The

four-level modulation technique doubles the data rate while maintaining

the same baud rate as the 1 Mbps signal.

The transmit power level for DSSS is restricted to 1 watt in North

America and 100 milliwatts in Europe. For power values greater than

100 milliwatts, a power control mechanism should be implemented, that

allows to specify a lower transmit power. A minimum transmit power of

1 milliwatts has been specified as well.
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Figure 4.7: Differential Quadrature Phase Shift Keying

It is important to notice, that the entire header information of a phys-

ical layer packet (24 Bytes) shall always be transmitted using DBPSK

(1 Mbps). This ensures the downward compatibility of devices that only

support the DBPSK modulation. However, this also increases the over-

head of the PHY layer, and thus decrease the maximum system perfor-

mance. In the case where 2 Mbps are used, the increased overhead only

slightly influences the system performance, but the higher the data rate,

the larger the overhead gets. This is especially important in the case of

higher data rates, such as 11 Mbps DSSS modulation. In later chapters,

this matter is discussed in detail.
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Complementary Code Keying (CCK)

The Higher Speed Physical Layer Extension in the 2.4 GHz Band, also

known as the IEEE 802.11b standard, defines two more modulation tech-

niques for the 2.4 GHz band in order to provide data rates of up to 11

Mbps. The 8-chip Complementary Code Keying (CCK) is specified as

the default modulation type for the 5.5 Mbps and 11 Mbps data rates.

However, in addition Packet Binary Convolutional Coding was included

as an optional modulation technique and is explained later.

In contrast to the DBPSK and DQPSK modulation techniques de-

scribed above, Complementary Code Keying (CCK) uses different com-

plex spreading codes for modulation of the data bits. Each spreading

code has a length of 8 chips. The chip rate is still 11 Mcps. The follow-

ing formula is used to derive the CCK code words in order to spread

both 5.5 Mbps and 11 Mbps.

C = {c0, c1, · · · , c7}
= ej(ϕ1+ϕ2+ϕ3+ϕ4), ej(ϕ1+ϕ3+ϕ4), ej(ϕ1+ϕ2+ϕ4),−ej(ϕ1+ϕ4),

ej(ϕ1+ϕ2+ϕ3), ej(ϕ1+ϕ3),−ej(ϕ1+ϕ2), ej(ϕ1)
}

C is the code word and consists of the eight complex chips

c0, c1, · · · , c7. The code words are computed depending on a number

of data bits. The term ϕ1 is chosen from Table 4.2 depending on the

first two data bits (d0, d1). It defines the phase change compared to the

preceding phase ϕ1 based on DQPSK. Therefore, the symbols of a data

packet are numbered starting with ”0” to determine odd and even sym-

bols. The fourth and seventh chip (c3 and c6) are rotated 180 degrees to

optimize the sequence correlation properties.

The terms ϕ2, ϕ3, ϕ4 are chosen depending on the current data rate.

In the case of 5.5 Mbps, 4 data bits are transmitted per symbol. The

data bits d2 and d3 are used as follows.
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(d0, d1) phase change phase change

(even symbols) (odd symbols)

00 0 π

01 π
2

3π
2

10 π 0

11 3π
2

π
2

Table 4.2: DQPSK encoding table

ϕ2 = d2 · π +
π

2
, ϕ3 = 0, and ϕ4 = d3 · π.

Thus, the data bits d2 and d3 encode the basic symbol as specified in

Table 4.3. It shows the value of the two data bits, and the appropriate

complex chip values c0, · · · , c7 which define the complex code words, the

spreading code. The two input bits (d0, d1) only define the phase change

that are used when transmitting the spreading code.

d2, d3 c0 c1 c2 c3 c4 c5 c6 c7

00 1j 1 1j -1 1j 1 -1j 1

01 -1j -1 -1j 1 1j 1 -1j 1

10 -1j 1 -1j -1 -1j 1 1j 1

11 1j -1 1j 1 -1j 1 1j 1

Table 4.3: 5.5 Mbps CCK encoding table

In the 11 Mbps mode, 8 bits are transmitted per symbol. The chip

rate is still 11 Mcps. Again, the first two data bits (d0 and d1) are used

to encode ϕ1 as in the 5.5 Mbps case (see Table 4.2). The second pair of

data bits (d2 and d3) is then used to encode ϕ2, the third pair (d4 and
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d5) encodes ϕ3, and the fourth data bit pair (d6 and d7) encodes ϕ4 as

shown in Table 4.4.

data bits phase

(di, di+1)

00 0

01 π
2

10 π

11 3π
2

Table 4.4: 11 Mbps CCK phase depending on data bits di and di+1

Complementary Code Keying was developed by Intersil Inc. It is the

most common modulation technique in today’s Wireless LAN equip-

ment. Texas Instruments developed a different modulation technique. It

is called Packet Based Convolutional Coding (PBCC) and was included

as an optional modulation scheme to the standard IEEE 802.11b. PBCC

is described in the following.

Packet Binary Convolutional Coding (PBCC)

The Packet Binary Convolutional Coding (PBCC) scheme is an optional

modulation technique for Wireless LAN in the 2.4 GHz band. It is defined

in the IEEE 802.11b standard and allows data rates of 5.5 Mbps and

11 Mbps. Initially, PBCC was developed by Texas Instruments. It uses

binary convolutional coding with a 64-state binary convolutional code

(BCC) and a cover sequence.

The encoder is displayed in Figure 4.8. The input data is first encoded

using a binary convolutional code (BCC) with rate 1/2. The output of

the BCC encoder is mapped to a signal constellation using either 5.5

Mbps (BPSK) or 11 Mbps (QPSK) rate. In the 5.5 Mbps mode, the

output pair of the BCC is taken serially to produce two BPSK symbols.
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In the 11 Mbps mode, the output pair of the BCC produces one QPSK

symbol. This gives a throughput of 1
2

bit per symbol in the BPSK mode

and 1 bit per symbol in the QPSK mode.

Scrambled

Data Input
BCC Rate 1/2

Encoder
QPSK Cover

Map

Cover

Code

(y0, y1) QPSK Signal

Cover Sequence

Figure 4.8: PBCC modulator scheme

The generator matrix of the binary convolutional code is given as

G =
[

D6 + D4 + D3 + D + 1, D6 + D5 + D4 + D3 + D2 + 1
]

.

The block diagram of the resulting encoder is given in Figure 4.9. It

consists of six memory elements and produces two output bits (y0, y1)

for each input bit according to the generator matrix G. PBCC is packet

based, which means that the encoder is set to state zero (i.e. all memory

elements are initialized with the value zero at the beginning of each

packet). At the end of a packet transmission, the encoder has to be

placed in a known state as well in order to prevent that the last packet

bits are less reliable. Therefore, at least six deterministic bits must be

input immediately following the last data bit input to the convolutional

encoder.

Finally, a pseudo-random cover sequence is generated. It is used to

map the code to the appropriate symbol. The cover sequence is generated

from a seed sequence. The 16-bit seed sequence is 0011001110001011. It

is used to generate the 256-bit pseudo random coder sequence by taking
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Figure 4.9: Block diagram of the PBCC convolutional encoder

the first sixteen bits of the sequence as the seed sequence, the second

sixteen bits as the seed sequence cyclically left rotated by three, the

third sixteen bits as the seed sequence cyclically left rotated by six, etc.

As of the writing of this work, PBCC is not supported by many devices

on the market.

4.1.3 Orthogonal Frequency Division Multiplexing

(OFDM)

Orthogonal Frequency Division Multiplexing (OFDM) is used in two dif-

ferent Wireless LAN standards: the IEEE 802.11g Amendment 4: Fur-

ther Higher Data Rate Extension in the 2.4 GHz Band [IEE03c] and the

IEEE 802.11a High-speed Physical Layer in the 5 GHz Band [IEE99c]. In

the 802.11g standard, OFDM is one of the possible extensions of IEEE

802.11b to achieve data rates of up to 54 Mbps in the 2.4 GHz band. It

also defines further modulation techniques, which are explained at the

end of this section. The IEEE 802.11a standard, on the other hand, de-

fines OFDM as the main technology for Wireless LANs in the 5 GHz

band. In the following the basic OFDM technology is explained as it is

used in the IEEE 802.11a standard. Later, the OFDM extensions for the

2.4 GHz band as specified in the IEEE 802.11g standard are discussed.
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OFDM Basics

Orthogonal Frequency Division Multiplexing is a multiplexing technique

that splits up the available channel into a number of orthogonal sub-

carriers with lower data rates. The subcarriers are used for simultane-

ous transmission. Due to the increased symbol duration for the lower

rate parallel subcarriers, the system can introduce a guard time for each

OFDM symbol. Therefore, the intersymbol interference caused by mul-

tipath fading is almost completely eliminated. The subcarriers are mod-

ulated using one of the modulation techniques BPSK, QPSK, 16-QAM,

or 64-QAM.

Frequency Channel Center Maximum Output

band number Frequency (GHz) Power (mW)

U-NNI 36 5.180 40

lower 40 5.200

band 44 5.220

48 5.240

U-NNI 52 5.260 200

middle 56 5.280

band 60 5.300

64 5.320

U-NNI 149 5.745 800

upper 153 5.765

band 157 5.785

161 5.805

Table 4.5: IEEE 802.11a channels in the United States

The IEEE 802.11a standard defines 12 different channels for use in

the 5 GHz band. The original standard is dated 1999. It only specifies

the channel settings for the United States as shown in Table 4.5. In the

meantime, other regulatory domains were added. In Europe, the lower
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eight channels can be used. In the 5 GHz band, the channels numbering

was chosen in a way that the whole area ranging from 5 GHz to 6 GHz is

split into channels that are 5 MHz apart. Therefore, the lowest channel

number for Wireless LAN in the 5 GHz band is 36.

All channels chosen for use in the 802.11a standard are 20 MHz apart.

Therefore, they do not overlap as in the 2.4 GHz band. All eight channels

are non-overlapping. For each of these channels, OFDM is used. It defines

52 subcarriers each 0.3126 MHz apart. 48 of these subcarriers are used

for data transmission and 4 are pilot channels. If di are the complex

QAM symbols, Ns is the number of subcarriers, T the symbol duration,

and fc the carrier frequency, then one OFDM symbol starting at t = ts

can be written as

s(t) = Re







Ns

2
−1

∑

i=−
Ns

2

d
i+

Ns

2

exp(j2π(fc −
i + 0.5

T
)(t − ts))







,

ts ≤ t ≤ ts + T

s(t) = 0, t < ts ∧ t > ts + T.

It can be shown mathematically that the calculation of the OFDM

symbols is equivalent to the Inverse Fast Fourier Transform (IFFT),

while the demodulation can be performed by the reverse operation, the

Fast Fourier Transform. These two operations are almost identical, such

that the same hardware can be used for both transmitter and receiver.

Figure 4.10 shows the block diagram of an OFDM modem. The upper

path is the transmitter chain, and the lower path corresponds to the

receiver chain.

The subcarriers of a single OFDM signal can be shown to be orthogo-

nal, i.e. all the subcarriers have an integer number of cycles in the time

interval T . Therefore, intercarrier interference is avoided. Coding rates of

1/2 or 3/4 can be used and four different modulation techniques can be
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Figure 4.10: Block diagram of the OFDM transceiver

applied. BPSK and QPSK have been described above. Alternatively, 16-

QAM and 64-QAM can be used to reach higher data rates. Figure 4.11

shows the rectangular constellations of Quadrature Phase Shift Keying

(QPSK), 16-Quadrature Amplitude Modulation (QAM), and 64-QAM.

The various modulation techniques allow to transmit different numbers

of bits within one single modulated symbol. However, the 16-QAM and

64-QAM modulation techniques are less robust. In order to achieve the

same bit error rate a better reception is necessary.

The different coding rates together with the four available modulation

techniques allow to support a large set of data rates in IEEE 802.11a

Wireless LANs. The standard specifies 6, 9, 12, 18, 24, 36, 48, and 54

Mbps. Mandatory data rates are 6, 12, and 24 Mbps. Table 4.6 shows

the different scenarios.

The theoretical maximum data rate of 54 Mbps is sufficient for many

practical environments and applications. Nevertheless, the main problem
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Figure 4.11: QPSK, 16-QAM, and 64-QAM constellation

of the IEEE 802.11a standard is the 5 GHz band. Such high frequencies

are vulnerable to signal decay due to fading. This is especially important

in indoor environments. Therefore, a high density of access points is

necessary to reach an appropriate indoor coverage. The 2.4 GHz band

is less susceptible to fading. The IEEE 802.11g standard extends the

Wireless LAN standards for the 2.4 GHz band and also allows data rates

of up to 54 Mbps. Thus, from the perspective of coverage and robustness,

it is more appropriate for the use in indoor environments.

Hybrid Spread Spectrum coding method

The IEEE 802.11g Amendment 4: Further Higher Data Rate Extension

in the 2.4 GHz Band standard defines additional mandatory and optional

modulation techniques for Wireless LAN in the 2.4 GHz band. The main

goals of the standardization were the use of OFDM in the 2.4 GHz band

and the downward compatibility.
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Coding Modulation Bits per Data

rate OFDM symbol rate (Mbps)

1/2 BPSK 24 6

3/4 BPSK 36 9

1/2 QPSK 48 12

3/4 QPSK 72 18

1/2 16-QAM 96 18

3/4 16-QAM 144 24

1/2 64-QAM 192 36

3/4 64-QAM 216 54

Table 4.6: IEEE 802.11a OFDM modulation techniques

Pure OFDM operation as explained for the IEEE 802.11a standard

is a mandatory modulation technique. It supports the same data rates,

i.e. 6, 9, 12, 18, 24, 36, 48, and 54 Mbps. The preamble, header and

data are transmitted using OFDM at the same data rate. However, it

can not support the downward compatibility. Devices that only support

IEEE 802.11b can not decode the packet header. On the other hand, the

protocol overhead caused by the DBPSK modulated transmission of the

preamble and header information is eliminated.

In order to achieve downward compatibility, the hybrid spread spec-

trum coding method DSSS-OFDM was added to the standard. The

preamble and header information is transmitted using DBPSK with a

data rate of 1 Mbps. Only the data portion is transmitted using OFDM

with the higher data rates. Equipment that follows the IEEE 802.11b

standard cannot decode the data portion of the transmission, but the

preamble and header can be received and decoded. Therefore, devices

using BPSK, QPSK, CCK, and DSSS-OFDM are interoperable in terms

of the Carrier Sense Multiple Access protocol as explained in the next

chapter.
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As an option, the Packet Based Convolutional Coding (PBCC) sup-

porting 22 and 33 Mbps was included in the IEEE 802.11g standard.

This is just an extension of the optional PBCC modulation in the IEEE

802.11b standard.

The IEEE 802.11b and 802.11g standards support a rich set of differ-

ent data rates, while the 2.4 GHz frequency band is less susceptible to

fading than the 5 GHz band. Therefore, these two are the most important

standards for the analysis of Wireless LAN in large indoor environments.

Thus, the following chapters focus on the 2.4 GHz band.

4.2 Wireless Channel Models

The wireless medium is influenced by a number of different parameters.

They all have a great effect on the quality of the performed transmissions

in terms of bit error rate or packet error rate. Therefore, these factors

have to be considered when analyzing the performance of a wireless sys-

tem. In the following, the most important properties of a wireless channel

are explained. For more information see [OP99], [PP01], and [Gas02].

The first important parameter to consider is the transmit power of

the wireless device. It is measured in milliwatts. However, sometimes it

is also referred to in terms of dBm, i.e. decibels referenced to 1 milliwatt.

Different maximum transmit power values are specified in the standards,

as explained in previous sections. The IEEE 802.11b standard, for exam-

ple, defines a maximum of 100 milliwatts which is interchangeable with

dBm as

10 · log10

(

100mW

1mW

)

= 20dBm

10
20dBm

10 =
100mW

1mW

In the following, if X defines a variable in decibels, then X̂ = 10
X

10

denotes the linear value.
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However, the transmit power is measured as the effective radiated

power (ERP) of the device. It is directly influenced by the antenna that

is applied. Antennas change the focus of the radiated power. The power

is concentrated in a certain area as specified by the radiation pattern of

the antenna, which is given in horizontal and vertical direction. Figure

4.12 shows the radiation patterns for a 2 dBi standard dipole (rubber

duck) antenna. The unit dBi describes the antenna gain in decibels ref-

erenced to an isotropic radiator. The torus on the left side indicates the

3-dimensional radiation pattern of the antenna. In technical references

usually only the horizontal and vertical antenna patterns are shown.

Figure 4.12: Antenna pattern: horizontal and vertical radiation diagrams

These horizontal and vertical antenna patterns show the additional

gain that is reached in certain areas surrounding the antenna. The gain,

however, has to be taken into account when calculating the maximum

effective radiated power of a wireless device. Therefore, when high gain

antennas are used, the actual transmit power of the device has to be

lowered to keep the ERP below the allowed level.

On the way from the transmitter to the receiver, the transmitted sig-

nals are influenced by the effects of fading. Large-scale Fading represents

the average signal power attenuation or the path loss due to motion over

larger areas. Small-scale Fading refers to the dramatic changes in sig-
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nal amplitude and phase due to small changes in the spatial separation

between a receiver and transmitter.

Large-scale Fading or Path Loss defines the mean signal attenuation

depending on the distance between sender and receiver, and is expressed

in decibels. However, it greatly depends on the considered environment.

Famous path loss models for free space propagation were developed by

Okumura [Oku68] and Hata [Hat80]. However, these models account

for factors such as antenna height, temperature, or carrier frequency.

Therefore, many researchers use a simplified formula, that only accounts

for the distance d from the transmitter. The path loss Lp(d) is expressed

in terms of the path loss Lp(d0) to the reference point at distance d0 plus

the additional free space loss depending on the actual distance d plus a

random variable Xσ, the standard deviation of the path loss.

Lp(d)(dB) = Ls(d0)(dB) + 10n log10

(

d

d0

)

+ Xσ(dB)

Here, n denotes the path loss exponent, Xσ defines a zero-mean, Gaus-

sian random variable (in decibels) with standard deviation σ.

Small-scale Fading is itself influenced by different factors. However,

measurements have shown that there are two main categories of small-

scale fading. In the first category, the received signal is made up of multi-

ple reflective rays plus a significant line-of-sight component. This type of

fading is referred to as Rician fading , since the small-scale fading follows

a Rician probability density function (pdf). The second category, where

the line-of-sight link approaches an amplitude of zero, the small-scale

fading follows a Rayleigh pdf. Therefore, it is called Rayleigh fading .

Knowing the transmit power and the fading for all the received signals

at a receiver, the received signal power can be calculated. Let Ti be the

transmit power of source i, Li,j
p the path loss from sender i to receiver

j, Li,j

f the attenuation due to fast fading from sender i to receiver j. N

denotes the thermal noise. The total interference from all other stations

I at the receiving station i is calculated as
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Îi =

(

T̂k
∑

k 6=i
L̂k,j

p · L̂k,j

f + N̂

)−1

Then, the signal-to-noise ratio (SNR) for the signal transmitted from

node i to node j in decibels can be expressed as

SNRi,j = Ti − Li,j
p − Li,j

f − Ii.

In the case of directional antennas, the antenna gain has to be taken

into account, as well. For reasons of simplicity, the antenna gain was not

included in the formula. The SNR can now be easily converted into the

energy per transmitted bit by applying the processing gain Pg as in

(

Eb

N0

)i,j

= SNRi,j + P i,j
g .

The bit energy Eb

N0
can then be used to calculate the bit error proba-

bility depending on the underlying modulation technique. In the case of

Differential Binary and Quadrature Phase Shift Keying it is

BERDBPSK = Q

(

√

ˆSNR · P̂ DBPSK
g

)

= Q

(
√

ˆ(Eb

N0

)

)

, and

BERDQPSK = Q

(

√

ˆSNR · P̂ DQPSK
g

)

= Q

(
√

ˆ(Eb

N0

)

)

,

where the processing gain for DBPSK P DBPSK
g is 11 and for DQPSK

P DQPSK
g it is 5.5 (see [LSDS01], [CSL02]). Q(x) is defined as the area

under the tail of the Gaussian probability density function with zero
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mean and unit variance

Q(x) =
1

2
erfc

(

x√
2

)

=
1√
2π

∫ ∞

x

e−
t
2

2 dt.

Due to the computational complexity of Q(x), we use the following ap-

proximation

Q(x) =
1

2π
e−

x
2

2 ·
(

8 + 9x2 + x4

15x + 10x3 + x5

)

.

In the case of CCK modulation, the IEEE uses a two-fold calculation

for their analytical Wireless LAN model. First, the Symbol Error Rate

(SER) is calculated. In the case for 5.5 Mbps CCK, the symbol error

rate is given as

SER5.5 = 15 · Q(
√

8 · ˆSNR) + Q(
√

16 · ˆSNR).

As each symbol encodes 4 bits, the average BER is

BERCCK5.5 =

(

24−1

24 − 1

)

SER5.5.

And in the case of 11 Mbps CCK modulation, the symbol error rate is

given as

SER11 = 24 · Q(
√

4 · ˆSNR) + 16 · Q(
√

6 · ˆSNR)

+174 · Q(
√

8 · ˆSNR) + 16 · Q(
√

10 · ˆSNR)

+24 · Q(
√

12 · ˆSNR) + ·Q(
√

16 · ˆSNR).

Each symbol encodes 8 bits. Thus, the average BER is

BERCCK11 =

(

28−1

28 − 1

)

SER11.

These formulas allow to calculate the BERs experienced by Wireless

LAN clients in different environments. The settings that were chosen in

this work are summarized in the following section.
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4.3 Simulation settings

Our research focus lies on the performance capabilities of current and fu-

ture Wireless LAN MAC protocols. The considered physical layer (PHY)

is not the crucial factor. Therefore, only IEEE 802.11b Wireless LAN

networks were considered. As explained above, these networks support

four modulation techniques: DBPSK, DQPSK, CCK, and PBCC. The

mandatory modulation techniques DBPSK, DQPSK, and CCK are taken

into account in our simulations, while the optional PBCC modulation

technique is ignored.

We choose the wireless channel parameters in accordance with the

IEEE recommendations for the analytical and simulation models for the

BER of IEEE 802.11b transmissions. In the following these settings are

summarized.

The transmit power is set to 100 mW or 20 dBm. This is the maximum

allowed transmit power for IEEE 802.11b devices in Europe. Omnidirec-

tional antenna patterns are assumed. Therefore, the antenna exhibits no

additional gain in terms of transmit or received power.

The path loss model is a slight modification of the free space propa-

gation model.

Lp(d) = 40.2 + 20 · log(d), d < 8m, and

Lp(d) = 58.5 + 33 · log
(

d

8

)

, d ≥ 8m

However, the model is not valid for distances smaller than about 0.5m

due to near-field and other implementation effects. Small scale fading is

not considered in our simulations.

The formulas for the calculation of the bit error rates (BER) were

taken as explained in the previous section.
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Control

If you can’t get rid of the skeleton in your closet, you’d best

teach it to dance. George Bernard Shaw (1856-1950)

The initial Wireless LAN standard IEEE 802.11 [IEE99a] defines a

cost-effective technology to allow an easy installation of a network in

places where, for example, a wired network is not an option. In this 1999

version, data rates were restricted to 1 and 2 Mbps. In the meantime,

many extensions to the Wireless LAN standard have been defined, as

already discussed in Chapter 2.

This chapter starts with an in-depth explanation of the different ac-

cess mechanisms. This includes the basic Carrier-Sense Multiple Access

with Collision Avoidance (CSMA/CA) protocol as well as the Quality

of Service (QoS) enabling Medium Access Control (MAC) protocols of

polling and prioritization. The second part of this chapter discusses the

performance issues that arise in various scenarios when these different

MAC protocols are utilized. The goal is to evaluate their capabilities

and whether they meet future 4G requirements. Finally, various WLAN

handover mechanisms on layer two of the ISO/OSI reference model are

summarized and evaluated as well.
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5.1 Architecture of IEEE 802.11 Wireless

LANs

A Wireless LAN network can be configured in two different modes of

operation. The ad-hoc mode allows all involved clients to directly com-

municate with each other as long as they are in reception range. They

form an Independent Basic Service Set (IBSS). In the infrastructure

mode, on the other hand, a special station, the access point, is respon-

sible for the routing of all traffic. Stations cannot communicate directly,

but they always have to communicate with the access point, which for-

wards the data packets to the receiving station. A single access point and

all the stations that communicate through this access point form a Ba-

sic Service Set (BSS). Several BSSs can be connected via a Distribution

System (DS). The main function of the access point is to distribute the

data packets between the various stations within its BSS and to forward

the data to the Distribution System (DS). The combination of several

BSSs that are connected through a DS is referred to as an Extended

Service Set (ESS). The different topologies are displayed in Figure 5.1.

Figure 5.1: Ad-hoc versus Infrastructure Mode
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We want to study the capabilities of Wireless LAN as an extension

of legacy mobile networks in the context of upcoming 4G systems. The

ad-hoc mode is assumed not to play an important role in such a scenario.

Therefore, we solely focus on the infrastructure mode in the remainder

of this work.

The Wireless LAN standard IEEE 802.11 and all of its extensions de-

fine the two lowest layers of the ISO/OSI layer model, the Physical layer

(PHY) and the Logical Link Control layer (LLC). The PHY layer was

already described in Chapter 4. In this chapter, the WLAN specifications

on the LLC layer are studied.

5.2 Medium Access Control Protocol

The main part of the LLC are the different Medium Access Control

(MAC) mechanisms which define access control to the shared wireless

medium. The original IEEE 802.11 standard defined two different access

mechanisms, which can coexist in a Wireless LAN network. The dis-

tributed access protocol CSMA/CA and a centralized polling approach.

These mechanisms and their extensions as defined for example in the

IEEE 802.11e standard ([IEE03d], [IEE03e]) are discussed in the follow-

ing.

5.2.1 Definitions

Wireless LAN is the wireless counterpart of Ethernet. Both technologies

focus on local area networks. Therefore, these two have a lot in common.

However, the wireless medium causes additional problems, which have

to be taken care of by the Wireless LAN MAC protocol (see [PP01],

[OP99], [Gei01], [Gas02]).

The best known problem is that of Hidden Nodes. Two WLAN sta-

tions are defined to be in a Hidden Node relation, if they are not in the
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reception range of each other, but there is a destination station that both

have in common. A typical case of two Hidden Nodes is shown in Figure

5.2. Two stations are associated with the same access point. However,

they are located at opposite directions, and thus are not in the reception

range of each other as indicated by the two circles surrounding the indi-

vidual client stations. Both of these stations, however, want to transmit

data packets to the access point.

Figure 5.2: Hidden Nodes

The carrier sensing mechanism in the two client stations is not suffi-

cient in such a case. Concurrent access to the medium leads to a high

probability of collisions at the access point. Thus, the Hidden Node prob-

lem leads to a performance degradation.

Another problem specific to the wireless medium is that of Exposed

Nodes as shown in Figure 5.3. Two client stations (C2, C3) are in a

Exposed Node relation if they are in the reception range of each other,

but their individual destination stations are only in the reception range

of the transmitting station. In this case, the transmissions of the two

source stations do collide at the transmitting stations, but not at the

receiving stations.
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Figure 5.3: Exposed Nodes

In such a case, both ”inner” stations can simultaneously transmit

successfully. The overall bandwidth can be increased. However, these

cases are hard to detect.

5.2.2 Overview of the MAC protocols

The Wireless LAN Medium Access Control mechanisms are summarized

in Figure 5.4. The basic access technology is defined as the Distributed

Coordination Function (DCF). It defines a distributed and contention-

based access scheme and works as the basis for all MAC layer extensions.

Section 5.2.3 explains the DCF protocol and discusses its properties.

Two QoS-enabling MAC extensions were defined on top of DCF. The

Point Coordination Function (PCF) defines a polling mechanism which

allows individual stations to get contention-free access to the wireless

medium. However, Section 5.2.4 shows that this approach is not appro-

priate to support QoS levels necessary for Wireless LANs in 4G networks.
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Figure 5.4: Wireless LAN MAC layer architecture

This has long been identified by the IEEE standardization bodies.

Therefore, to enhance the QoS capabilities of WLAN in such environ-

ments, the IEEE defined the Hybrid Coordination Function (HCF). Sim-

ilar to the PCF, the HCF is implemented on top of the DCF functional-

ity. In contrast to the PCF, the HCF allows a highly sophisticated QoS

support. It allows the simultaneous usage of applications with different

QoS requirements, while still keeping the performance at an acceptable

level. The HCF protocol is explained in Section 5.2.5.

5.2.3 Distributed Coordination Function

As explained in the former section, the Distributed Coordination Func-

tion defines the basic access scheme for Wireless LAN stations. It mainly

consists of the Ethernet-like Carrier-Sense Multiple Access with Collision

Avoidance (CSMA/CA) mechanism. All stations equally compete for ac-

cess to the medium. The basic approach is shown in Figure 5.5. It depicts

two clients that want to transmit a data packet to the access point.

82



5.2 Medium Access Control Protocol

Figure 5.5: Carrier-Sense Multiple Access with Collision Avoidance

(CSMA/CA)

Contention Window and Backoff

Before accessing the medium, the stations have to perform sense the

carrier for a given amount of time, referred to as the Distributed (Co-

ordination Function) Interframe Space (DIFS). If the medium is found

idle, the clients are allowed to start their individual backoff algorithm.

As for Ethernet, the clients choose a random number of time slots the

medium has to be idle before the actual transmission can be started. In

the case of Wireless LAN, the number of backoff slots is chosen uniformly

distributed from the interval [0, CW ], where CW (Contention Window)

defines the maximum Contention Window size. The minimum CW value

is defined by the CWmin parameter, which is defined to be 31 for DSSS

operation.

The main difference to Ethernet is that such a backoff has to be per-

formed prior to any transmission. The Ethernet protocol states that a

backoff has to be performed only after a collision.

After the backoff of a client has elapsed, the data transmission is

started. All other involved clients within reception range find the chan-

83



5 LLC - WLAN Logical Link Control

nel busy. Therefore, they stop their backoff procedure and wait for the

channel to become idle again for a period of DIFS before the backoff is

continued.

Collision Avoidance and Error Recovery

The Ethernet protocol allows a client to recognize a collision on the

medium. Each transmitting station simply compares the signal on the

medium to the signal that it sends out. If the two are different, a col-

lision is detected. However, Wireless LAN does not allow such an easy

approach. On the one hand, cheap hardware was one of the most impor-

tant design goals. Therefore, the chip sets only implement half-duplex

operating modes. Either a station transmits or receives. Therefore, the

Ethernet-like collision detection mechanism cannot be used with such

client adapters. On the other hand, certain situations might arise in

Wireless LAN environments, where a collision only occurs on the receiv-

ing side, for example in the case of Hidden Nodes. Therefore, different

ways to detect and resolve collisions had to be found.

In the case of Wireless LAN, a simple acknowledgment scheme is used.

It specifies that the receiving station has to acknowledge successful trans-

missions. Therefore, the access point in Figure 5.5 answers the reception

of the data packet by replying with an ACK packet. If the client re-

ceives the ACK packet, it assumes a correct transmission. In any other

case (either the data packet was not received due to a collision or the

ACK packet was disturbed on the wireless medium), the data packet

has to be retransmitted. A binary exponential backoff algorithm is em-

ployed to resolve lost packet conditions. The CW value is recalculated

by CW ′ = (CW + 1) · 2 − 1 before the random number of backoff slots

is chosen. This operation is repeated in case of another collision. The

CW value is upper bound by the CWmax value, defined as 1023 in the

standard, which is reached for the 6th retransmission of a single packet.
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Interframe Spaces

To send the ACK packet, a client also has to perform carrier sensing.

However, in case of ACK packets or any other management frame, the

Short Interframe Space (SIFS) is used instead of the DIFS. The reason is

that the shorter SIFS interval assures that a station that wants to trans-

mit an ACK packet gets access to the medium and not any other station

that wants to transmit a data packet after a carrier sensing interval of

DIFS. Two more interframe spaces are defined for Wireless LANs. Their

relation is shown in Figure 5.6 and their purposes are explained below.

Figure 5.6: Interframe Spacing relationship

Short Interframe Space: The SIFS is used for the highest-priority trans-

missions, such as RTS/CTS frames and positive acknowledgment.

Point (Coordination Function) Interframe Space: The PIFS is used by

the PCF during contention-free operation.

Distributed (Coordination Function) Interframe Space: The DIFS is

the minimum medium idle time for contention-based services.

Extended Interframe Space: The EIFS is used only when there is an

error in frame transmission.

Additional interframe spaces are defined for the Hybrid Coordination

Function (HCF) operating modes and are introduced later in this chap-

ter.
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Carrier Sense mechanisms

Two different types of carrier sense mechanisms exist. The first one,

as already mentioned above, is the physical carrier sense mechanism

provided by the Physical layer. It scans the mediums for a signal. The

second one is a virtual carrier sense mechanism. It utilizes the duration

field that most Wireless LAN packets carry. These duration fields are

used to indicate the duration of a transmission including the time for

any other necessary packets, e.g. the ACK frame. A station reads the

value of each received data packet and sets its Network Allocation Vector

(NAV) to the specified amount of time. As long as the NAV counter of

a station has not been count down to zero, the station is not allowed to

start a data transmission even if the physical carrier sensing indicates

an idle channel.

RTS/CTS mechanism

In a Hidden Node scenario, however, the carrier sensing mechanisms

do not work properly. Consider a situation where two stations that are

hidden from each other transmit to the same destination node, e.g. an

access point. Such a case is shown in Figure 5.7. After the two stations

perform their physical carrier sensing as well as the backoff operation,

they start transmitting their data packets. Since they are hidden from

each other, the physical carrier sensing does not recognize an ongoing

transmission of a Hidden Node.

Therefore, the two stations both transmit simultaneously, which leads

to an immediate collision of the packets at the access point, which in turn

drops the corrupted data packets. Both stations wait for the ACK packet

until a timeout elapses and start the retransmission operation. Depend-

ing on the size of the data packets, the collision probability can reach

high levels leading to a drastic reduction of the available bandwidth.

To account for this problem, the Request-To-Send/Clear-To-Send
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Figure 5.7: pure CSMA/CA operation in Hidden Node cases

mechanism was included in the Wireless LAN standard. It defines two

short control frames, the Request-To-Send (RTS) and the Clear-To-Send

(CTS) frame, which are exchanged by the sending and receiving station

prior to the data transmission. Figure 5.8 shows that all clients within

the reception range of either the sending or the receiving station receive

at least one of the two frames and set their virtual carrier sensing timer

NAV to the appropriate value. Here, the NAV is set to the time of the

complete transmission including the RTS, CTS, data, and ACK frame.

Figure 5.8: RTS/CTS operation and virtual carrier sensing (NAV)

The RTS and CTS control frames are very short compared to data

packets, such that the collision probability in case of Hidden Nodes can
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be clearly reduced. Therefore, the performance of the system can be in-

creased. On the downside, the additional exchange of the control frames

adds to the overhead of the protocol, which leads to a performance degra-

dation, especially in cases without Hidden Nodes where the RTS/CTS

exchange actually is not necessary. This obvious trade-off is examined

in Section 5.3.1. To keep the overhead at a low level, especially in cases

with short data frames, the stations use an RTS/CTS threshold, which

defines the minimum length of a data packet when RTS/CTS should be

performed. In any other case, the RTS/CTS operation is omitted.

Fragmentation

The data portion of a Wireless LAN data packet has a maximum length

of 2312 Bytes. However, higher layer data packets might exhibit a larger

size. Such large data packets have to be broken into smaller pieces to

fit the Wireless LAN packet structure. Fragmentation may also help to

improve the reliability of the data transmission especially if the packet

error probability is large, e.g. in cases with high values of interference.

Figure 5.9: Fragmentation

Fragmentation takes place if the higher layer packet exceeds the frag-

mentation threshold. All fragments are assigned with a sequence number

to help with reassembly. Since the fragmentation threshold is usually

set to a larger value than the RTS/CTS threshold, the fragmentation

procedure is usually initiated by RTS and CTS packets as shown in

Figure 5.9. After RTS/CTS transmission, the station sends the various
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fragments subsequently, while utilizing the SIFS interframe space to re-

ceive the highest priority and to prevent non-synchronized stations from

starting any transmission. Acknowledgments (ACKs) are sent by the re-

ceiving station for each individual fragment that was received. In case

that a fragment is not correctly received, the receiving station drops the

packet, while a timeout at the sending side indicates the lost fragment.

The retransmission of the fragments is performed selectively, i.e. only

the lost fragments are resent.

5.2.4 Point Coordination Function

The last section introduced the Distributed Coordination Function, an

Ethernet-like access protocol, where all the stations content for the

medium. Stations or applications can not be assigned different priori-

ties on the basis of CSMA/CA. To allow the support for near real-time

services within 802.11 environments, the PCF extension of DCF was

included in the standard.

The Point Coordination Function (PCF) is based on DCF and imple-

ments a simple polling mechanism. It was designed to work in conjunc-

tion with the normal DCF mode. A special station, usually the access

point, serves as the polling master or Point Coordinator (PC). It is the

central organizational unit and is responsible for the organization of al-

ternating contention-free and DCF-based service intervals. To do so, the

PC regularly transmits Beacon frames, which indicate the start of a

Contention-Free Period (CFP). In addition, the Beacon frame sets the

NAV of all stations in reception range to the complete duration of the

CFP. Therefore, DCF-based stations defer their transmission after the

CFP.

DCF-based stations that could not receive the Beacon frame, and

are, thus, not synchronized with the CFP, are kept from accessing the

medium by the utilization of SIFS and PIFS interframe spaces. The PCF
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Figure 5.10: Example of the Point Coordination Function (PCF) polling

mechanism

clients always gets priority over the longer DIFS interframe space used

by the DCF clients.

An example of the PCF polling mechanism is given in Figure 5.10. The

Point Coordinator initiates the CFP by transmitting a Beacon frame. All

the stations set their initial NAV counters to CFPMaxDuration, which

is set to 200 Kµsec by default. Kµsec defines Kilo microseconds. (One

Kµsec equals 1,024 microseconds.)

Now, the CFP is in progress and the PC transmits a Data, CF-Poll,

Data+CF-Poll, or CF-End frame after SIFS. A station receiving such a

directed frame responds after SIFS. If a station receives a Poll frame,

it may transmit a data frame to the PC. If the station has nothing to

transmit, it acknowledges the poll frame by sending a null response frame

in order to distinguish a no-traffic situation from a collision or otherwise

lost packet. All of these frames can also be used to acknowledge the

correct reception of the last packet, even if its sender is not the receiver
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of the frame, i.e. a CF-Poll+CF-ACK frame can be used to poll one

station and to send an ACK to another station.

CF-End or CF-End+ACK frames mark the end of a CFP. This can

be due to the elapsed CFP. However, the PC can also end a CFP if

there is no more traffic to send. Therefore, no time is wasted, and the

remaining time, until the next Beacon frame is scheduled, can be used

for contention-based access. This notification is used by the clients to

release their NAV counters. The contention-free service has to end no

later than the maximum duration from the expected beginning point,

which is referred to as the Target Beacon Transmission Time (TBTT).

The polling list

Within the CFP, the Point Coordinator polls the stations. Therefore, the

PC keeps a polling list to keep track of these CF-Pollable stations. Only

the PC is allowed to initiate a transmission, while all other stations have

to remain idle. They have to wait until they receive a CF-Poll frame

from the PC.

There is no defined policy on how to process the polling list. A straight-

forward approach surely is round-robin, but the standard does not define

any restrictions. It only states, that at least one station has to be polled

within a single CFP if there are stations on the polling list. And the

polling list shall be processed in ascending order of a numeric ID of the

stations.

If a data frame transmitted from a station is not acknowledged, the

station does not retransmit the frame unless it is polled again. In contrast

to DCF, no retransmission counter is used under PCF.

The polling list itself is only updated during the association or re-

association of a station. As discussed in Section 5.4.3, a station has to

associate/reassociate with an access point before data frames can be

exchanged. Information necessary for the communication is exchanged.
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In these Association/Reassociation requests, the station can set its CF-

Pollable subfield, which indicates to the access point the CF-Pollability

of the station.

Arising problems with PCF

The Point Coordination Function was standardized to allow stations to

use near real-time traffic ([CGKT02], [KW04], [SK96]). One main design

goal was simplicity for easy and cheap implementation. However, this

also leads to a number of problems of the PCF.

First of all, stations do not have any means to distinguish between

PCF and DCF data traffic. They only maintain a single queue for all

data traffic that has to be sent. Whenever a station is polled or sends

a data packet in the contention-based period, it simply takes the first

packet out of the queue. Therefore, PCF does not allow to support the

simultaneous use of applications with different QoS requirements, such

as Web and voice traffic. It can merely be used to distinguish between

stations that have a ”prioritized” access and those that do not. This could

be used, for example, to support different Web clients and Voice clients.

However, it certainly does not fit the needs of today’s highly integrated

voice and data terminals, i.e. Personal Digital Assistants (PDA).

Secondly, there is the deferred Beacon problem of PCF [VC03]. It

states that the transmission of a Beacon frame can be delayed if the

medium is not idle at the TBTT. If the medium is busy at TBTT,

the PC waits for the medium to become idle for PIFS before Beacon

transmission. It can easily be seen that this point in time is upper bound

but not predictable. In such a case, the PC foreshortens the CFP by the

time the Beacon frame was delayed.

Thirdly, the duration of a single poll procedure is not predictable,

since a station is allowed to transmit a frame with arbitrary length,

upper bound by the maximum allowed packet length of Wireless LAN. It

92



5.2 Medium Access Control Protocol

cannot be foreseen when the next station is polled. Therefore, the service

period that a single CF-pollable station receives, can not be predicted

in advance, such that no fixed QoS guarantees can be kept.

Finally, problems arise in overlapping or co-located cells. Such over-

laps in terms of coverage and channel frequency usually destroy the

contention-free service completely. The Contention Free Periods of the

involved access points experience an overlap in time, since no synchro-

nization mechanism is implemented. In most cases the Contention Free

Periods are set to 90 percent of the Contention-Free Repetition Inter-

val, which even makes a potential synchronization impossible. However,

the timely overlapping periods of polling, definitely cause regular colli-

sions which are not taken care of by the MAC protocol. Therefore, PCF

operation does not suffice the requirements for a Wireless LAN being

integrated into a 4G environment and is, thus, not further analyzed in

the remainder.

5.2.5 Hybrid Coordination Function (HCF)

QoS requiring applications of 4G especially include video, audio,

real/time Voice over IP (VoIP), and other multimedia applications.

These applications have different requirements regarding bandwidth,

throughput, end-to-end delay, jitter, packet loss, or Mean Opinion Score

(MOS). No service differentiation is provided by the IEEE 802.11 mecha-

nisms as defined in [IEE99a] or [IEE99b]. The DCF and PCF mechanisms

of IEEE 802.11 do not provide QoS to Wireless LAN stations. There is

no service differentiation in DCF and PCF of traffic received from the

Application layer. All frames received from the Application layer are en-

queued in the same higher-layer data queue. This causes all data streams

received from the Application layer to have the same (best-effort) prior-

ity access on the MAC layer.

The IEEE 802.11e working group is, therefore, working on a new
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WLAN standard extension, which enhances the original MAC proto-

col to provide QoS and service differentiation on the MAC layer. Simple

studies of the IEEE 802.11e standard can be found in [VCBS01] and

[BVC01]. This section describes the MAC enhancements for QoS which

comply to the IEEE 802.11e draft standard ([IEE03d], [IEE03e]). The

final version of the standard has not been released yet, but it has reached

a rather stable state, such that the results derived in later sections also

apply to the final version.

Overview

The Wireless LAN QoS medium access is managed by the Hybrid Coordi-

nation Function (HCF). The HCF combines functionality from the DCF

and PCF with some enhanced QoS-specific mechanisms for QoS frame

transfers in a single MAC protocol. The HCF offers a contention-based

and a contention-free access method to provide QoS stations (QSTA)

with prioritized and parameterized QoS access to the wireless medium,

while still supporting best-effort traffic to non-QoS STAs.

HCF supports a consistent set of frame formats and frame exchange

sequences that QSTAs use during both the Contention Period (CP) and

the Contention-Free Period (CFP). The contention-based service is de-

fined as Enhanced Distributed Channel Access (EDCA) in contrast to

the contention-free based service which is provided by the HCF Con-

trolled Channel Access (HCCA). HCCA is the counterpart of the PCF

mechanism in HCF and is also based on a polling mechanism. The goal

of QSTAs is to obtain Transmission Opportunities (TXOP), which are

the basic units of allocation of the right to transmit onto the wireless

medium, using both EDCA and HCCA. A TXOP is defined by the start

time and by a time interval which determines the maximum duration

of the TXOP. If a TXOP is obtained using EDCA, it is called EDCA

TXOP. If a TXOP is obtained using HCCA, it is called a polled TXOP.
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htb
Priority User 802.1D Access Designation

Priority Designation Category (Informative)

Lowest 1 Background (BK) 0 Best Effort

2 - 0 Best Effort

0 Best Effort (BE) 0 Best Effort

3 Excellent 1 Video Probe

Effort (EE)

4 Controlled 2 Video

Load (CL)

5 Video (VI) 2 Video

6 Voice (VO) 3 Voice

Highest 7 Network 3 Voice

Control (NC)

Table 5.1: User Priority to Access Category mapping

Enhanced Distributed Channel Access (EDCA)

The Enhanced Distributed Channel Access mechanism is the contention-

based medium access mechanism for HCF. It is based on differentiating

User Priorities (UP), as summarized in Table 5.1. These UPs define how

the data traffic is to be delivered. According to the IEEE 802.1D standard

[IEE98], they range from zero (0), the lowest priority designated to the

transport of best-effort traffic, up to seven (7), the highest priority used

for network control traffic. The IEEE 802.1D standard also assigns QoS

parameters to the different UPs, e.g. the Video UP (5) is supposed to

garantee delays of less than 100 ms. However, the EDCA mechanism

can only differentiate between the four different categories, the Access

Categories (AC). Therefore, the User Priorities as defined in the IEEE

802.1D standard are mapped to the four Access Categories shown in

Table 5.1.
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In order to achieve a service differentiation according to the ACs on

the Wireless LAN MAC layer, three different parameters of the MAC

protocol are utilized: (i) the amount of time a station performs carrier

sensing before the backoff is initiated, the Interframe Space, (ii) the

length of the Contention Window to be used for a backoff, and (iii) the

duration a station may transmit after it acquires a TXOP.

All data traffic is mapped to ACs and inserted into one of the four

transmit queues as illustrated in Figure 5.11. Each of the transmit queues

is processed by an individual Channel Access Function (CAF), i.e. a vir-

tual DCF stations with its own MAC layer parameters. The four virtual

stations compete with each other for medium access. The Access Cato-

gories are sorted from AC0 to AC3, with AC3 having the highest priority

for medium access.

Figure 5.11: Hybrid Coordination Function Access Category mappings
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The MAC layer parameters that are used by each of the virtual sta-

tions are summarized as EDCA Parameter Set in the standard and con-

sist of Arbitration Interframe Space (AIFS), AIFS Number (AIFSN),

CWmin, CWmax, and TXOPLimit. The specific values for these param-

eters are discussed later.

EDCA Transmission Opportunities (TXOP)

Each AC within one QSTA works like a virtual station. It contends for

the channel access to the wireless medium and performs the backoff if

necessary. Each transmit queue of an AC maintains its own Channel

Access Function (CAF) and each CAF has its own Medium Occupancy

Timer, which is used to qualify the validity of a TXOP for this transmit

queue. An EDCA TXOP occurs, when EDCA rules permit access to the

medium. The Medium Occupancy Timer is set to the TXOPLimit of

the corresponding AC. Continuation of use of the wireless medium is

granted, when the CAF retains medium access following the completion

of a frame exchange sequence. The Medium Occupancy timer continues

to count down to zero until the TXOPLimit has elapsed and is not

reloaded for the new frame exchange sequence. This implies that the

particular CAF can transmit several frames, if it has the TXOP and if

the TXOPLimit has not been reached.

An internal collision occurs if two or more CAFs of a single STA

obtain the TXOP at the same time. This is resolved internally in the

QSTA. The CAF with the higher priority gets the TXOP, while the

lower-prioritized CAF behaves as if there was an external collision on

the wireless medium.

Obtaining an EDCA TXOP

To distinguish between ACs and backoff functions, different interframe

spaces are introduced for each CAF. Instead of waiting DIFS before a
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transmission, the Arbitration Interframe Space (AIFS) is used. The dura-

tion of AIFS depends on the AC and is a duration derived from the value

AIFSN[AC] by the relation AIFS[AC] = AIFSN [AC] · SlotT ime +

SIFS and is measured in seconds. The AIFS is at least DIFS (50 µsec)

and can be enlarged individually for each AC. All IFS relations are shown

in Figure 5.12.

Figure 5.12: EDCA Interframe Spaces

Like in DCF, each CAF senses the medium to be idle for at least

a minimum duration of AIFS[AC]. A transmission can begin immedi-

ately if the medium was sensed idle for this duration, the backoff timer

for that CAF is zero, and these conditions are not simultaneously met

by an AC of higher UP. Otherwise, the QSTA defers until the ongoing

transmission has finished and the medium becomes idle. After deferral,

each CAF senses the medium to be idle for AIFS[AC] again before con-

tinuing with the backoff procedure. If errors occurred during a previous

frame exchange, each CAF waits for EIFS−DIFS +AIFS[AC] before

starting the backoff procedure.
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EDCA Backoff Procedure

The backoff procedure consists of the backoff function like in DCF, which

contains a value measured in backoff slots. Unlike DCF, in EDCA a single

QSTA contains several backoff timers, one for each CAF. These multi-

ple backoff timers run in parallel. The random backoff is defined by the

Contention Window (CW) parameter calculated from the CWmin and

CWmax parameters. To distinguish between ACs, each AC has its own

CW parameter and different CWmin and CWmax values are used for each

CAF as shown in Table 5.2. In most cases, an AC with higher priority

is assigned a shorter CW to ensure that on average the higher-priority

AC can transmit before the lower-priority AC. Each CW parameter is

initialized with CWmin which is reset after each successful frame trans-

mission.

AC CWmin CWmax AIFSN

0 CWmin CWmax 2

1 CWmin CWmax 1

2 (CWmin + 1)/2-1 CWmin 1

3 (CWmin + 1)/4 -1 (CWmin +1)/2-1 1

Table 5.2: EDCA Access Category parameters

The backoff procedure for a CAF is invoked if an AC requests for a

TXOP and the medium is busy as indicated by the physical or virtual

carrier sensing mechanism. Each CAF also waits for a Contention Win-

dow after expiration of the EDCA TXOP if the TXOPLimit has been

reached. The backoff procedure is also invoked if a transmission fails.

In case that a transmission fails, the CW value is incremented to

CW = (CW +1) ·2−1 if CW < CWmax and it is set to CW = CWmax,

if the retry limit has been reached. This CW adaptation algorithm is also

used under DCF. In contrast to the DCF operating mode, the random
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number of backoff slots is chosen uniformly distributed from the interval

[1, CW + 1] instead of [0, CW ]. Therefore, a backoff value of zero is not

possible. The backoff timer is decremented at the end of each backoff

slot if the medium has been idle for the duration of that slot.

TXOP Continuation

Continuation of an EDCA TXOP is granted to a CAF after waiting for

SIFS and after successful completion of a frame exchange sequence. The

continuation is only permitted for the transmission of a frame of the same

AC that was granted the EDCA TXOP. It is not granted in case that the

TXOPLimit has been reached. Therefore, a station can transmit several

frames for a particular AC without performing a backoff or waiting longer

than SIFS before a transmission, realizing short packet bursts.

AC CWmin CWmax AIFSN AIFS TXOPLimit UP

[sec] [msec]

0 31 1023 2 5.0E-05 0 1,2,0

1 31 1023 1 3.0E-05 3.008 3

2 15 31 1 3.0E-05 6.016 4,5

3 7 15 1 3.0E-05 3.008 6,7

Table 5.3: EDCA Parameter Set

The EDCA parameter set is shown in Table 5.3 [IEE03d]. An alterna-

tive parameter set is summarized in Table 5.4 [IEE03e]. This alternative

set is used in the remainder of this work, since the interframe spaces of

the EDCA parameters of Table 5.3 for ACs 1, 2, and 3 equal PIFS. Since

PIFS is used before the transmission of Beacons, and Beacon frames are

used by the AP to distribute management information, no IFS for data

frames should be less than or equal to PIFS. A PIFS equal to AIFS

increases the probability of a Beacon collision with data frames.
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AC CWmin CWmax AIFSN AIFS TXOPLimit UP

[sec] [msec]

0 31 1023 7 1.5E-05 0 1,2,0

1 31 1023 3 7.0E-05 0 3

2 15 31 2 5.0E-05 6.016 4,5

3 7 15 2 5.0E-05 3.264 6,7

Table 5.4: Alternative EDCA Parameter Set

HCF Controlled Channel Access (HCCA)

The HCF Controlled Channel Access mechanism is a polling mechanism

similar to PCF. It defines a centralized coordinator, called Hybrid Co-

ordinator (HC), which operates under QoS-aware rules with some sig-

nificant differences to the Point Coordinator mechanism of PCF. The

HC is collocated with the QoS enhanced AP and uses the PC’s higher

priority to gain access to the wireless medium to initiate frame exchange

sequences for itself or to allocate TXOPs for QSTAs. The higher prior-

ity access to the medium is simply achieved by waiting for PIFS before

accessing the wireless medium.

The HCCA mechanisms operate under both CFP and CP, in contrast

to the PCF, which only operates under CFP. During CP, HCCA can

allocate polled TXOPs for a QSTA to provide a limited-duration Con-

trolled Access Phase (CAP) to transfer QoS data as shown in Figure

5.13. QSTAs use the virtual carrier sensing mechanism NAV during a

CAP to protect ongoing HCCA transmissions.

HCCA operates during both CP and CFP to meet QoS requirements

for different ACs. The HC medium access is defined by a QoS policy

which can be specific for a particular BSS. Another significant difference

to the PC is that the HC grants a QSTA a polled TXOP with a dura-

tion specified in the poll frame enabling the polled station to transmit
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Figure 5.13: HCCA and EDCA Transmission Opportunities

multiple frames within the given polled TXOP. Like in PCF, the HC

may perform a backoff before transmitting a poll frame under certain

circumstances which are beyond the scope of this work.

The problems of this polled HCCA mechanism can easily be seen.

Like in DCF, stations associate with the BSS during the CP. Therefore,

if many CAPs are scheduled in a CP, no station can associate. This is

similar to the problem with PCF, if the CP is assigned very small periods

of time of the Contention-Free Repetition Interval.

Another problem is that CAPs could be deferred, if e.g. a non-QSTA

is transmitting data when a CAP is to be issued. Deferred CAPs can

lead to the problem that a CAP is not issued because the CP is finished.

Thus, the HC cannot guarantee that a particular QSTA gets its CAP

which it applied for.

Finally, HCCA has the same deferred Beacon problem as PCF. All

these problems evolve for single cell scenarios. The deficits of polling

mechanisms in more complex cell scenarios like overlapping or co-located

cells have already been discussed in the last section. These results can be

generalized for basically all MAC layer polling protocols as QoS enabler

for wireless environments.
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5.3 MAC Protocol Performance Evaluation

The last sections presented a detailed introduction to the different MAC

protocols of Wireless LAN. The goal of our studies is to evaluate the

QoS capabilities of the various mechanisms in a 4G environment. Such

an environment necessitates the support of different QoS levels for the

involved WLAN stations.

A detailed simulation was implemented using the OPNETR© simulator.

This includes the different MAC protocols, DCF, PCF, and HCF, as well

as the applications as described in Chapter 3. Today, the IEEE 802.11b

standard is the most widely used. Therefore, our simulations accounted

for its physical layer with data rates of 1, 2, 5.5, and 11 Mbps in the 2.4

GHz frequency band using DSSS modulation.

This section is structured as follows. In Section 5.3.1 performance re-

sults of the basic IEEE 802.11 DCF MAC protocol within single cell

scenarios are shown. This includes simulation studies about the effect of

the number of Web users on the performance of Wireless LAN. These

results indicate that the overhead of the RTS/CTS mechanism in cases

with Hidden Node is too large to increase the system performance. There-

fore a detailed study of the tradeoff between overhead and performance

increase is given.

Then, Section 5.3.2 and Section 5.3.3 present the performance results

for the more complex scenarios. The terms overlapping and co-located

cells are introduced and the simulation scenarios with their involved

applications are discussed. All of these cases are used to study the 4G

environments and their impact on Wireless LAN performance.

5.3.1 Single cell scenarios

To evaluate the performance of a Wireless LAN, simple simulation sce-

narios with only one access point are considered and all the involved sta-

tions perform their transmissions using the basic DCF operating mode.
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The results are used as a reference for the results of the more complicated

scenarios later in this chapter. The basic scenario is shown in Figure 5.14.

It has a single access point surrounded by a number of stations.

Figure 5.14: Basic single cell scenario

The number of stations is varied in the following scenarios. In addition,

Hidden Nodes are introduced in two different ways. First, the stations

form two different groups of stations, where the stations of the two groups

are hidden from one another, while the stations within each group still

receive each others’ transmissions as indicated in Figure 5.15. The second

way is to define all the stations as hidden from one another. In this case,

a station can only receive the signal of the access point, but not of any

other station.

The reason for the two cases is, that the two groups of stations present

a rather realistic scenario. In practical environments, there is often the

case where due to e.g. the structure of a building, there are clients that

form subnet ”islands”. However, in order to study the effect of Hidden

Nodes, the second case is better, since the effect of the Hidden Nodes

becomes more obvious as the number of involved hidden stations is in-

creased.
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Basic performance evaluation of IEEE 802.11b DCF

Wireless LAN operating in DCF mode does not support any kind of

service differentiation. All involved stations equally have to contend for

the medium as is the case of Ethernet-like networks. The medium access

is fairly shared between all stations. In such a scenario, the most widely

used application is certainly the World Wide Web, as explained in Chap-

ter 3. A Web user does not completely utilize the system bandwidth, but

merely retrieves data whenever a new web page is loaded.

Therefore, the utilized bandwidth is no good measure of the perfor-

mance of the system. A much better way to estimate the user-experienced

quality is the average page download time. The higher the utilization

of the system, the longer the page download times gets until a certain

level is reached, where most users are dissatisfied. According to the Web

source traffic model as described in Section 3.1.2, the average page size

greatly varies. Therefore, the important measure is the relative behavior

of the average page download time rather than the absolute value. A

large number of users in this kind of simulation results in an increase in

the delay experienced by each user. Very long delays cause TCP time-

outs to expire and, therefore, lead to TCP retransmissions once a certain

delay limit is reached. Any further increase of the cell load causes TCP

to exceed its maximum number of retransmissions, such that the TCP

connection is dropped and the page download is canceled ([Ste94]). Such

dropped downloads do not contribute to our statistics. Therefore, the

number of possible TCP retransmissions is set to unlimited.

Various performance studies of the Wireless LAN MAC protocol can

be found in the literature, as in [BCG02], [KEW00], [RAHE01], [VBG00],

or [AMC+99]. These publications, however, focus on the properties of

the MAC protocol itself, such as the maximum achievable throughput

or fairness, but they ignore application-specific influences, which are of

great importance to the subjective quality experienced by single users,

e.g. in differing cell-load situations.
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In the following, we study the effect of the number of concurrently

active Web users on the system performance and the user-experienced

quality of service ([Hec03a]). This does not only include the question

of how many Web users can be served with adequate quality within a

single cell, but it also shows the effect of mechanisms that were defined

to overcome problems found solely in the wireless environment, such as

the Hidden Node problem, and how these extensions affect the system

performance.

The goal of these studies is to provide Wireless Internet Service

Providers (WISP) with a better understanding of the capability of their

WLAN infrastructure. We draw conclusions about the realistic capacity

of single WLAN cells, which allow a better planning of WISPs’ Internet

access networks.

Figure 5.15: Multiple Hidden Node groups

The basic simulation scenario has already been shown in Figure 5.14.

Here, we assume that all stations are in reception range of each other. In

the following this case is referred to as the single Hidden Node group. In

addition, simulation scenarios as shown in Figure 5.15 are considered in

order to evaluate the effect of Hidden Nodes on the performance results.

They consist of two groups of nodes that are hidden from one another.

This case is referred to as two Hidden Node groups.
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In the following, the RTS threshold is set to 256 Bytes, which means

that if packets larger than the threshold have to be send, an RTS packet

is issued prior to the data transmission. The WLAN standard allows

fragmentation thresholds in the range of 256 Bytes up to 2312 Bytes.

Only packets larger than the threshold are fragmented. In our simula-

tions a fragmentation threshold of 256 Bytes is used if fragmentation is

explicitly considered. In any other case, the fragmentation threshold is

set to 2312 Bytes, meaning that it is turned off.

Figure 5.16 shows the results for the 1 Mbps scenario. The two solid

lines represent the results for pure CSMA/CA and a single group of

clients (no Hidden Nodes) and the case with two groups of users (with

Hidden Nodes). The average page download time increases from approx-

imately 0.6 seconds for the 10 clients to more than 10 seconds for 100

clients. This increase corresponds to a factor of more than 16, which

means that a user in the 100 client case experiences page download times

16 times longer than for 10 clients. Such an increase is not acceptable,

which means that the maximum number of Web users in the 1 Mbps sce-

nario should not exceed 40 clients. Comparing the two curves yields the

degradation of the system performance due to the Hidden Nodes. The

gray line for the Hidden Node case is only about three percent above the

black curve. Thus, the Hidden Nodes have a small but noticeable effect.

The dashed-dotted lines in Figure 5.16 show the results for the case

that the RTS/CTS mechanism is activated. The average page download

time for this case is always found to be about 10 percent above the

scenario without RTS/CTS. This is true for the one and two groups

scenarios. As we have discussed earlier, the RTS/CTS mechanism lowers

the number of collisions in the 2 groups scenario (gray curves). However,

it produces more overhead in our cases than can be gained by decreasing

the probability of collisions.

Finally, the dashed lines correspond to the cases with additional frag-

mentation of packets larger than 256 Bytes. In our case, the wireless
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Figure 5.16: Wireless LAN performance at 1 Mbps

channel was assumed to be free of errors. The results, therefore, display

the overhead introduced by fragmentation. It can be easily seen that

the page download times are by far greater and that the fragmentation

overhead has a major effect on the overall system performance.

The case where the maximum data rate is set to 11 Mbps as displayed

in Figure 5.17 yields similar results. The Hidden Nodes (gray lines) cause

a performance degradation of no more than three percent compared to

the case without Hidden Nodes (black lines). The RTS/CTS mechanism

overhead reaches about 10 percent and does not improve the overall per-

formance, but leads to a further increase of the average page download

times. The situation changes drastically, once the fragmentation mech-

anism is activated. The page download times almost explode and the

WLAN cell can not handle more than 40 clients appropriately.

108



5.3 MAC Protocol Performance Evaluation

20 40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of active web users

av
er

ag
e 

pa
ge

 d
ow

nl
oa

d 
tim

e 
[s

]
single Hidden Node Group
two Hidden Node Groups

RTS and
Fragmentation 

only RTS 

no RTS
no Fragmentation 

Figure 5.17: Wireless LAN performance at 11 Mbps

Nevertheless, the results in Figure 5.17 show that in the 11 Mbps case

the system can easily handle up to 140 clients as long as fragmentation

is not used. The average page download time for the 140 client case is

less than 20 percent above the 10 client case. Considering the fact, that

most currently available access points cannot support 140 simultaneously

attached clients, we can conclude that in practice the performance of the

system is still good enough to satisfy the Web users’ demands even in

environments with high cell loads.

Hidden Nodes and RTS/CTS

As explained earlier, the RTS/CTS mechanism was introduced to the

Wireless LAN standard in order to solve the Hidden Node problem. It
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decreases the collision probability, such that a performance gain in terms

of user experienced throughput can be reached. On the other hand, it

adds to the overhead of the MAC protocol. However, it is expected that

the gain is larger than the overhead, and thus an overall performance en-

hancement is reached. However, the results from the last section indicate

that the overhead is too large, such that the performance is even more de-

creased when using the RTS/CTS mechanism in Hidden Node scenarios.

These results are also approved by earlier studies as in [BCG02], [XS02],

[Hec03a], and [Hec03b]. Therefore, we focus on this topic and discuss

the various parameters that influence the tradeoff between additional

overhead and performance enhancement in this section (see [HPW04]).

Again, the simulation scenario shown in Figure 5.14 is chosen. A num-

ber of WLAN stations surround the access point. Two different cases are

considered. In the first case, all the involved WLAN clients are in the

reception range of each other, such that no Hidden Nodes are present.

Comparing the simulation results for the cases with and without the

RTS/CTS mechanism yields the pure overhead caused by the MAC pro-

tocol extension.

In the second case, all the Wireless LAN stations are considered to be

hidden from one another. This is accomplished by ignoring all but the

access point’s signal at the receiving clients. Again, the Wireless LAN

performance can be studied with and without the RTS/CTS mechanism.

Several MAC protocol parameters can be adapted in order to increase

the potential gain caused by RTS/CTS. One such parameter is the packet

size. The larger the packet size, the larger the probability of a collision in

the case without RTS/CTS. Therefore, the packet sizes 2312 Bytes and

1500 Bytes are used in our simulations. The simulation scenario neglects

all effects caused by a wired backbone, which is the desired behavior.

The data rate is set to 11 Mbps and we assume that the signals can

be received without any bit errors in the close distances assumed in the

scenario.
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A number of different applications is assumed. For the first set of sim-

ulations, it was assumed that all stations are saturated sources of UDP

traffic, i.e. each WLAN station has always data to transmit using the

maximum packet size of 2312 Bytes. Each single client can, thus, use up

all the available system bandwidth. The access point does not transmit

any data to the stations, such that only uplink traffic is assumed. The

results are shown in Figure 5.18. It depicts the average overall through-

put with 90 percent confidence intervals. The abscissa shows the number

of involved clients, and the ordinate represents the throughput in Mbps.
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Figure 5.18: Average UDP uplink throughput at the access point using

maximum packet size

The two gray lines show the case where all the involved clients are

within the reception range of each other, i.e. no Hidden Nodes are
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present. The solid gray line is the case where the RTS/CTS mecha-

nism is deactivated. We can see that a maximum throughput of about

7 Mbps can be reached in this case. Comparing it with the dashed gray

line, where RTS/CTS is turned on, yields the overhead of RTS/CTS. In

this case we can see that the overhead is approximately 20 percent.

The black lines, on the other hand, show the case where all the involved

clients are hidden from one another. The solid black line is the case with

no RTS/CTS, while the dashed black line has RTS/CTS turned on. It

can be seen easily that even for just two Hidden Nodes, the RTS/CTS

mechanism improves the system performance. As the number of Hidden

Nodes increases, the dashed black line decreases only slightly, but still a

good performance can be reached (around 4 Mbps average throughput).

If RTS/CTS is not used, the performance drops rather quickly to almost

zero. Here, we can clearly see an advantage of RTS/CTS in Hidden Node

environments.

To study the effect of the packet size the same simulations of UDP

upstream traffic were performed with a packet size of 1500 Bytes. This is

a much more realistic scenario, since the maximum allowed packet size of

2312 Bytes is hardly ever seen in a normal environment, where Wireless

LAN is combined with Ethernet. The results are shown in Figure 5.19.

First of all, it can be derived that the maximum performance drops

from almost 7 Mbps to just about 6 Mbps. This 15 percent performance

degradation is solely based on the smaller packet sizes and the increased

overhead. Then, we can see that the overhead of the RTS/CTS mecha-

nism in the case with no Hidden Nodes, as shown by the two gray curves,

stays about the same. It is again about 20 percent. The black curves,

which again represent the case where all the clients are hidden from one

another, show a similar behavior to the case with maximum packet sizes.

However, this time the dashed black line crosses the solid black line for

values greater than two. This means, that if only two Hidden Nodes

are present, the case without RTS/CTS still outperforms the case with
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Figure 5.19: Average UDP uplink throughput at the access point using

1500 Bytes packet size

RTS/CTS. For more than two clients, the dashed black line again drops

gradually, while the solid black line shows a fast decrease to almost zero.

The system performance in the case of RTS/CTS is, thus, less affected

by further increasing the number of Hidden Nodes.

UDP traffic on the downlink was not considered, since it is not at all

influenced by the number of Hidden Nodes in the system. Traffic only gets

transmitted from the access point to the different clients. Collisions never

occur. Therefore, the maximum throughput in the case of UDP downlink

traffic is decreased by about 20 percent when utilizing RTS/CTS, since

no performance gain can be achieved and only additional overhead is

induced.
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Now, FTP traffic is considered. We distinguish the cases with only

uplink traffic, only downlink traffic, and a mixture of uplink and downlink

traffic. Stations do not have any idle periods, i.e. as soon as a download

or upload is finished, the next one is started immediately. It should be

pointed out that a fairness problem occurs in the case of FTP traffic.

It turns out that in all Hidden Node cases where pure FTP uploads

or the mixture of FTP up- and downloads are considered, all but one

FTP (TCP) connection setup fails and therefore only one of the Hidden

Nodes gets served. However, such a behavior is not acceptable. Using the

RTS/CTS mechanism does not at all change the situation. The problem

is that the probability of a collision is large. The number of retries in

setting up a new FTP/TCP connection is rather small. Therefore, the

probability of a collision has to be further diminished by changing the

Contention Window size. In the case of pure FTP upload and mixed FTP

up- and downloads, the CW parameter CWmin is set to 255 instead of

31, while the CWmax value is left untouched at 1023.

In all of these cases, the measure of choice to evaluate the performance

of the system is throughput in Mbps. It is calculated as the sum of all

the data packets correctly received by any station or by the access point

supposing the packet was addressed to the station or access point. The

RTS/CTS packets are not considered. Therefore, our measure yields the

overall system performance.

When considering pure FTP downloads, merely downlink traffic from

the access point to the Wireless LAN stations occurs. Therefore, similar

results to the case with pure UDP downlink traffic can be found as shown

in Figure 5.20. We can see that there is two pairs of coinciding curves.

The first pair consists of the two dashed lines, where RTS/CTS is turned

on. The other pair, consisting of the two solid lines, has RTS/CTS turned

off. The number of Hidden Nodes does not have any impact on the system

performance. The RTS/CTS mechanism just adds to the overhead of the

MAC protocol. The performance drops by about 20 percent.
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Figure 5.20: Average throughput in the case of FTP downloads

The situation changes completely once we consider FTP upload traffic.

First of all, the Contention Window parameters have to be adapted to

the situation as explained above. Due to the increase of the collision

probability, all but one Hidden Node are not able to successfully set up a

TCP connection. Consequently, only one station can exclusively commit

an upload, which is definitely not an acceptable system behavior.

After adapting the Contention Window parameters, all the stations

are successful in uploading files to the FTP server, virtually located in the

access point. However, in this case the Hidden Nodes have a remarkable

influence on the average throughput of the system as shown in Figure

5.21. In the case where no RTS/CTS is used, the performance drops from

just above 3.4 Mbps to less than 1.8 Mbps, which is a decrease of almost

50 percent. On the contrary, if RTS/CTS is turned on, the throughput
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is decreased from around 2.8 Mbps to just above 2.4 Mbps, which is a

decline of less than 15 percent.

1 2 3 4 5 6 7 8
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

number of active Wireless LAN clients

av
er

ag
e 

ov
er

al
l t

hr
ou

gh
pu

t [
M

bp
s]

no hidden nodes, no RTS/CTS
no hidden nodes, RTS/CTS
hidden nodes, no RTS/CTS
hidden nodes, RTS/CTS

Figure 5.21: Average throughput in the case of FTP uploads

Another interesting fact can be seen in Figure 5.21. The achievable

throughput increases with the number of active stations in most cases.

This is caused by the backoff algorithm that is simultaneously performed

by all stations, i.e. the backoff slots are simultaneously decreased in all

stations. The average packet interarrival time as seen by the access point

is, thus, smaller than the mean number of backoff slots of each client.

Nevertheless, it is important to notice that a scenario with only FTP

upload seems rather hard to find in reality. Usually, there is much more

downlink traffic than uplink traffic. Therefore, a more realistic case of an

equally shared mixture of FTP uplink and downlink traffic is considered

next. The results are shown in Figure 5.22.
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Figure 5.22: Average throughput with mixed FTP uplink and downlink

traffic

Most of the curves exhibit a similar behavior as the results for pure

FTP uplink traffic. The average throughput increases with the number

of active stations (gray solid line and dashed lines). However, in this case,

the performance for the Hidden Nodes case without RTS/CTS, the solid

black line, shows a completely different shape. While it dropped dramat-

ically for an increasing number of Hidden Nodes in the previous scenario,

it increases gradually in this case. It always lies above the dashed black

curve, which means that even in the case with Hidden Nodes, the perfor-

mance of the system is better when RTS/CTS is turned off. Interestingly,

this is also true comparing the solid black line and the dashed gray curve.

Even in the case where there are eight Hidden Nodes, the system without

RTS/CTS shows a better performance than in any RTS/CTS case.
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Summing up the FTP scenarios, we can conclude that there is only

one case where RTS/CTS can improve the system performance in terms

of throughput. That is where solely FTP upload traffic is simulated.

Considering the low practical relevance of such a scenario compared to

the cases of pure FTP downloads and a mixture of uplink and downlink

traffic, we are clearly inclined to prefer a system configuration without

RTS/CTS. On the other hand, we have to keep in mind that there is an

unfairness problem in the FTP case which made it necessary to adapt

the Contention Window parameters.

Finally, Web users and HTTP traffic are studied. It is the most real-

istic scenario considered in our RTS/CTS studies. Web users are by far

the most common traffic sources nowadays, especially in wireless envi-

ronments. However, a Web user significantly differs from the UDP and

FTP users described above. They do not consume all the bandwidth

offered by the system. Therefore, a different kind of measure has to be

chosen in order to evaluate the system performance in this case. So far,

we considered the overall average throughput reached by the system.

This was a good choice, since all the clients had enough traffic to use up

the complete system bandwidth. In the case of Web users, the situation

changes completely. Each user just has a demand for less than 10 Kbps

on average. Therefore, system bandwidth is not used up completely even

for large numbers of users, and the maximum throughput of the system

cannot be retrieved here. A good measure for this type of simulation is

the average page download time for the involved Web users. It clearly

states the subjective quality of service that each user experiences. On

the other hand, it allows to compare the results for the different test

cases.

The results are shown in Figure 5.23. It can be seen that an increase in

the number of users leads to a linear decline of the performance for the

two cases where RTS/CTS is turned off, the two solid lines. Otherwise the

two dashed lines with RTS/CTS switched on, indicate that the system
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Figure 5.23: Subjective page download time experienced by Web users

almost reached its limits and a further increase in the number of users

leads to an explosive increase in page download time.

Comparing the two solid lines, we can conclude that the Hidden Nodes

lead to a performance decrease of less than three percent, which can

hardly be noticed by the user. On the other hand, the RTS/CTS cases

all exhibit a by far worse behavior. No matter if there are Hidden Nodes

in the simulated environment or not, the performance is degraded by

more than 15 percent.

Summing up all the results found in the RTS/CTS and Hidden Node

study, we can conclude that the results greatly depend on the type of

traffic that is simulated. In cases where the uplink traffic is predominant,

RTS/CTS can clearly improve the system performance in Hidden Node

scenarios. However, the more downlink traffic occurs, i.e. the higher the
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practical relevance of the studied scenario, the worse does the RTS/CTS

mechanism perform.

Another important point is that it is hard to find practical Wireless

LAN scenarios with up to eight Hidden Nodes. This is definitely an

exceptional case. Our experience indicates that the number of Hidden

Nodes in a single cell is hardly greater than two. This again adds to the

conclusion to leave RTS/CTS turned off.

After a number of single cell scenarios have been analyzed in this

section, we turn to more complex simulation scenarios involving multiple

cells in the next section.

5.3.2 Overlapping and co-located cells in DCF mode

The last section presented results about Wireless LAN performance stud-

ies in single cell scenarios. Various other performance studies of the Wire-

less LAN MAC protocol can be found in the literature, e.g. [CGL00],

[GZ03], [CWKS97], [LAS01b], and [LAS01a]. These publications, how-

ever, focus on MAC protocol performance issues within single cell sce-

narios. This is not sufficient for the evaluation of Wireless LAN as a

future access technology in 4G networks. Therefore, we investigate the

impact of overlapping and co-located cells on the performance of the dif-

ferent Wireless LAN MAC protocols in this section. We evaluate how

the users in different cells interact and what the consequences are on the

performance. We identify situations where the communication of single

clients is completely blocked due to high collision probabilities and the

unfairness in distributed environments.

Simulation Scenarios

In order to study the effect of multiple cell scenarios on the performance

of the MAC protocol, we have to identify the scenarios where such effects

might arise. Due to the small number of non-overlapping channels in
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Wireless LAN, there might be situations where an overlap of cells in

terms of coverage and channel can not be avoided.

Figure 5.24: Wireless LAN deployment in a large office building

Consider the scenario shown in Figure 5.24. It shows a large office

building that is completely covered by Wireless LAN. However, IEEE

802.11b only supports three non-overlapping channels, as we have al-

ready seen in Section 4. This means, that overlaps occur and the tech-

nology has to make sure that it can deal with these situations. This is

especially necessary if QoS demanding applications, such as VoIP, are

used.
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The IEEE 802.11a standard which utilizes the 5 GHz band, supports

up to eight non-overlapping cells. Nevertheless, the signal attenuation

in the higher frequency is by far larger and therefore, the IEEE 802.11b

standard is usually better suited for indoor usage, not considering special

cases. If the IEEE 802.11a standard is to be used indoors, a much higher

access point density has to be used, which again leads to a higher number

of channels necessary to avoid overlaps in coverage and channel. Thus,

even in these cases overlaps occur, and the MAC protocol has to take

care of it.

In the following, we consider simulation scenarios that consist of two

access points (A1 and A2) and a single Wireless LAN station within each

of these cells. Station C1 is communicating with access point A1, while

station C2 in connected to access point A2. There are seven different

scenarios that can be defined in this case. We distinguish the cases where

the two access points are not within reception range of one another, the

overlapping cells, and the cases where the access points are in reception

range of each other, the co-located cells.

The planning process of a Wireless Internet Service Provider tries to

avoid co-located cells, since they do not exploit the maximum coverage

that the two access points can reach. Placing the access points farther

apart would usually lead to a larger covered area. However, there are

situation where this is not possible, such that co-located cells definitely

have to be dealt with by the MAC protocol.

In the case of overlapping cells, there are three possible scenarios as

shown in Figure 5.25. The first overlapping cells scenario is marked with

an A. It shows the coverage areas of the two access points A1 and A2

as gray solid circles around the nodes. The two Wireless LAN stations

C1 and C2 are placed in the coverage area of both access points. In

this scenario both clients experience the same problems caused by the

overlap. The reception range of the two clients is indicated by the dashed

gray circles.
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Figure 5.25: Multiple cell simulation scenarios: overlapping cells

Scenario B changes the position of client C1. It is not in the reception

range of the access point A2, but still receives the packets transmitted

by the other client C2. The client C2 is still in the coverage area of

both access points. Finally, in scenario C the client C1 is placed farther

away from the access point A2 and the client C2. It is now only in the

reception range of its associated access point A1. The client C2 is still

located in the area covered by both access points.

The different scenarios that can be found for co-located cells are shown

in Figure 5.26. In all these cases, the access points are in the reception

range of each other. An appropriate planning process should try to avoid

these situations, but as more wireless operators start their service while

private users set up their own private hot spots, these scenarios are
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Figure 5.26: Multiple cell simulation scenarios: co-located cells

definitely possible in practice. The Wireless LAN MAC protocol should

still be able to serve the users in a fair manner and with the assigned

QoS level.

The scenario marked with an A shows the case where all the involved

stations are placed in close vicinity. Each node receives the transmissions

of all the others. This case should not be too different from the case

where two clients are located in the vicinity of a single access point,

in terms of the bandwidth they can receive. Scenario B, on the other

hand, shows the case where the two clients C1 and C2 are located in

the reception range of their own but not of the other access point. The

clients’ transmissions are not disturbed by the access points. However,
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the access points disturb each other’s signals.

In scenario C, the station C1 is located outside the reception range

of access point A2, while station C2 can receive the signals from all the

involved nodes. Scenario D is a slight modification of scenario C. Here

the client C2 is moved away from the client C1, such that client C2 is

outside the reception range of client C1. However, it is still in the area

covered by both access points.

In order to evaluate the effect of the overlapping an co-located cells,

reference cases are needed. In our studies we define three different refer-

ence scenarios that allow us to study the influence of the location of the

various stations and access points on the performance of the Wireless

LAN cells. These scenarios are shown in Figure 5.27.

Figure 5.27: Multiple cell simulation scenarios: reference scenarios
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Scenario A consists simply of one access point and a single station. It

is used to derive the maximum performance of the Wireless LAN MAC

protocol in the absence of multiple stations and access points. Scenario B

involves a second station. All stations are located in the reception range

of each other. This helps to evaluate the performance of a two station

scenario without the influence of multiple cells. Finally, in scenario C the

clients are located farther apart from each other. This helps to include

the influence of Hidden Nodes, a common case in multiple cell scenarios.

Fairness Indicator

One of the main goals of a Medium Access Control protocol is to achieve

fair access to the medium for all involved stations. If QoS aware applica-

tions are used, a prioritized access might be implemented, but stations

operating on the same QoS level should be treated in the same way, i.e.

fairness has to be guaranteed.

Nevertheless, there might be cases where the average throughput is

shared equally over longer periods of time, such that fairness in terms

of average throughput is given on large timescales. However, if we look

closer we might find that average throughput is not the only important

factor. The stations do not always alternate their access on the medium

as we might expect, i.e. fairness on smaller timescales might not be given.

The following figures show different ways the two stations C1 and C2

get access to the medium. The bars depict representative time periods

of 10 seconds. A gray line from top to bottom shows a successful packet

reception of one station while the black lines represent the packet re-

ception at the other station. Alternatively, depending on the simulated

scenario, the gray and black lines could also represent a successful packet

reception at the stations’ associated access point.

Figure 5.28 shows a fair sharing of the medium. Over the whole 10

second period the two stations alternatingly receive packets. Small black
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0 s 5 s 10 s

Figure 5.28: Fairness Indicator: fair, alternating access to the medium

or gray blocks indicate that the particular station received multiple pack-

ets. This result was found using reference scenario B. Conversely, Figure

5.29 shows the unfair counterpart. The alternating gray and black blocks

show that the stations block each other over longer periods of time. For

the first five seconds, one station exclusively utilizes the medium shown

by the black blocks. Then, the situation changes and only the other client

receives data packets for the remaining time shown by the gray blocks.

Such an unfair behavior is not desired.

0 s 5 s 10 s

Figure 5.29: Fairness Indicator: unfair sharing of the medium

Therefore, in all our studies we have to account not only for fairness

in terms of average throughput, but also in terms of alternating access

to the medium.
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Best-effort traffic performance

In this section, the contention-based Medium Access Control protocol

as defined in the IEEE 802.11 and IEEE 802.11b standard is analyzed.

The Distributed Control Function (DCF) is explained in details in Sec-

tion 5.2.3. The main goal is to evaluate fair medium access in overlap-

ping and co-located cell scenarios. The involved stations perform FTP

downloads using different file sizes from the FTP server located on their

associated access points as explained in Section 3.3. This simple case is

used to better understand the impact of the multiple cell scenarios (see

[Hec03b]).

To compare the results with the single cell cases, we first present the

performance studies for the reference scenarios. The results are summa-

rized in Table 5.5. It shows the average throughput in KBps (Kilobytes

per second) experienced by the two Wireless LAN stations. The refer-

ence scenarios are all symmetric, such that both clients receive the same

average throughput. Therefore, just one value is given for each case.

Scenario RTS 10 KB 100 KB 1 MB 10 MB

A - 80 520 714 751

256 80 520 597 616

B 80 260 354 374

256 80 260 312 303

C 79 258 347 358

256 77 256 289 297

Table 5.5: Reference scenarios: average throughput in KBps

Table 5.5 shows that the throughput increases as the size of the re-

quested file is increased from 10 KB to 10 MB. The results for refer-
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ence scenario A show the maximum achievable throughput at about 750

KBps, because no other station is involved, such that the number of

collisions is minimal. In addition, it shows the overhead induced by the

RTS mechanism (an RTS threshold of 256 Bytes was chosen). It reaches

a maximum of about 20 percent in the case of 10 MB file downloads.

The results for scenario B show the average throughput when two

clients are simultaneously active in a single cell. In the case of small

file sizes, the medium is under low load, such that both stations can be

served like in the case with just one station. This is due to the dalay

caused by the setup of the FTP connections. Each of the two stations

receives about 80 KBps. As the file size, and thus the load increases,

the clients still share the throughput equally. Under high load, the RTS

mechanism causes an overhead of 20 percent.
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Figure 5.30: Average throughput in the overlapping cells scenario A
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The last two rows of Table 5.5 show the impact of the two stations

being hidden from one another. As long as the load is low, the average

throughput can be kept at the same level, but as the load increases, the

throughput declines by around five percent in the case without RTS and

two percent with RTS.

In the reference scenarios, the Fairness Indicator shows that the two

stations are served in a fair manner. They alternate their access to the

medium. As an example Figure 5.28 is a representative time period for

reference scenario B with a file size of 10 MB.

Let us now consider the simple case of the overlapping cells scenario A,

where both stations are located in the overlap of the two access points.

This is a symmetric case, such that the results are the same for both

involved stations. Figure 5.30 shows the average throughput received by

either of the two stations. By comparing the results to the reference

scenarios, we can figure out that the achievable throughput is decreased

by just a few percent, even though the number of collisions in this case

is considerably higher.

However, the representative time period shown in Figure 5.31 indicates

that the DCF MAC protocol does not guarantee fairness. While there

are only short periods of time when both stations alternatingly receive

data packets, there is a period of eight seconds where one of the stations

almost exclusively utilizes the medium, which is not a desirable system

behavior.

0 s 5 s 10 s

Figure 5.31: Fairness in the overlapping cells scenario A
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Figure 5.32: Average throughput in the overlapping cells scenario B

This unfairness is by far intensified once we consider overlapping cells

scenario B. In this asymmetric case, only station C2 is in the overlap

of the two access points, while station C1 is not disturbed by the data

transmission of access point A2. Figure 5.32 shows that for an increasing

load on the medium, the station C1 can take all the bandwidth it needs,

while station C2 is only able to utilize the remaining bandwidth. For

large file sizes this means that station C2 is not able to receive any more

data. The figure also shows that using RTS/CTS does not at all ease the

problem. The station C2 can still only utilize the remaining bandwidth.

As a solution to this problem, the chances of a successful transmission

of station C2 have to be increased. This can be achieved by adjusting

the Contention Window parameters appropriately. We introduce a set

of different priority classes as shown in Table 5.6. The higher the pri-
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ority class, the larger the Contention Windows, and thus the lower the

probability of getting access to the medium.

Priority class 0 1 2 3 4 5 6

CWmin 7 15 31 63 127 255 511

CWmax 15 127 255 511 1023 2047 4095

Table 5.6: Wireless LAN priority classes

Alternatively, other MAC protocol parameters could be used to priori-

tize certain stations over others, such as the Interframe Spaces. However,

it turned out that varying the Interframe Space has just little impact on

the fairness in multiple cell scenarios.

Using the different priority classes in the overlapping cells scenario B

yield the results shown in Table 5.7. Again FTP downloads from their

associated access point were performed with the 1 MB file size.

The results show that for the cases without RTS/CTS, the only ac-

ceptable way to achieve a solution to the problem is to use the lowest

priority class 6 at station C1 and the highest priority class 1 at station

C2. The bandwidth is not shared equally. The station C1 still receives

264 KBps or about 63 percent of the available bandwidth, while station

C2 can only use up 157 KBps or 37 percent of the available bandwidth.

The drawback of this way of prioritization becomes obvious as well, be-

cause the overall bandwidth received by the two stations sums up to

be only 421 KBps, compared to the 714 KBps maximum throughput

received in reference scenario 1. This is a 40 percent reduction of the

available bandwidth. However, it allows a fair sharing of the medium,

which is the more important factor, since fairness is of highest priority

to all MAC protocols.

On the other hand, Table 5.7 shows that when RTS/CTS is used, a

number of different priority settings become possible. The priority classes
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Priority Priority RTS/CTS throughput throughput

Class C1 Class C2 C1 C2

4 1 - 556 KBps 0 KBps

5 1 - 417 KBps 2 KBps

5 2 - 417 KBps 2 KBps

6 1 - 264 KBps 157 KBps

4 2 256 459 KBps 2 KBps

5 2 256 364 KBps 13 KBps

5 3 256 233 KBps 10 KBps

6 3 256 204 KBps 163 KBps

6 4 256 224 KBps 108 KBps

6 5 256 237 KBps 70 KBps

Table 5.7: Overlapping cells scenario B with prioritization (1 MB files)

(6,3), (6,4), and (6,5) lead to acceptable results. This means that the ro-

bustness of the DCF MAC protocol is by far increased if the RTS/CTS

mechanism is used in multiple cell scenarios. In addition, such a priori-

tization leaves some higher priorities unused, such that there is still po-

tential for higher priority classes, for example in the case of high priority

traffic. Therefore, we set our focus to these parameters in the following.

Figure 5.33 presents the results for the different priority classes that

can be used when RTS/CTS is applied. It can be seen that there is the

option to use different priority settings to perform a fine-grained prioriti-

zation. While priorities (6,5) privilege station C1 in terms of throughput,

a setting of (6,3) leads to more equal shares regarding the throughput

rates.
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Figure 5.33: Average throughput in the overlapping cells scenario B with

prioritization

The Fairness Indicator in Figure 5.34 shows that fairness is not just

given on the average throughput basis, but also in terms of alternat-

ing access to the medium. The overall performance in terms of average

throughput sums up to 367 KBps for the (6,3) priority classes, 332 KBps

for the (6,4) case, and 307 KBps for (6,5) priority classes. This means

that the maximum performance drops down to 51, 46, and 43 percent

respectively, but considering the dramatic problems of the pure DCF

mechanism in overlapping cells, this seems rather acceptable.

Applying these priority settings to the overlapping cells C leads to the

results shown in Figure 5.35. In this case, we can conclude that a station

in the overlap of two cells should increase its own priority to either class

4 or 5. In addition, it has to inform its associated access point to change
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Figure 5.34: Fairness in the overlapping cells scenario B with prioritiza-

tion

its Contention Windows settings. Stations that can only receive a single

access point, meaning that they are not in an overlapping area, should

use priority class 6.

The Fairness Indicator in Figure 5.36 shows that also in the case of

overlapping cells C, the prioritization of the disadvantaged station leads

to fair medium share. Most of the time, the two stations alternate their

access to the medium as is desired.

Summarizing the results found for the overlapping cells, we can con-

clude that there are dramatic fairness problems if the standard DCF ac-

cess mechanism is used. Stations in the overlap cannot receive an equal

share of the medium compared to stations that are located outside of

the overlap. In the worst case, i.e. if a station outside the overlap utilizes

the whole bandwidth, a station that is located within the overlap but

associated to the other access point can not access the medium at all.

Therefore, these disadvantaged stations have to be prioritized in some

way. It turned out that the Contention Window parameters CWmin and

CWmax provide an easy and flexible way to implement such a prioritiza-

tion. Applying different priority classes to the station depending on their

location eases the problems. If the RTS/CTS mechanism is turned on,

the robustness of the MAC protocol is further increased, and a number

of different priority adaptations become possible.

Let us now turn to the co-located cells scenarios. The two symmet-
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Figure 5.35: Average throughput in the overlapping cells scenario C with

prioritization

ric co-located cells scenarios A and B do not cause any fairness prob-

lems. The simulations with the default Contention Window setting yield

throughput rates that are comparable to the reference scenarios as shown

in Table 5.8. Again, the maximum achievable throughput increases with

the file size. In the case of 10 KB file downloads each station receives the

full 80 KBps as in the reference scenarios. Once the file size is increased

to 10 MB the bandwidth of the medium is completely utilized. However,

in the case of co-located cells B, the maximum throughput for the 10

MB file size is 378 KBps for each of the two stations, compared to 428

KBps in the co-located cells A. The reason is that the two stations in the
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Figure 5.36: Fairness in the overlapping cells scenario C with prioritiza-

tion

Scenario RTS 10 KB 100 KB 1 MB 10 MB

A - 80 263 418 428

256 51 256 312 319

B - 78 260 325 378

256 51 256 312 319

Table 5.8: Results for co-located cells A and B

co-located cells B are hidden from one another, such that the number of

collisions increases, which leads to a reduction of the bandwidth.

Nevertheless, the two symmetric co-located cells A and B do not cause

any fairness problem. No corrective actions have to be taken.

However, for the co-located cells C, the situation changes dramatically.

Figure 5.37 shows that one of the stations is experiencing an extreme

unfairness. It can not receive any more data packets when the load of

the cell reaches a certain level. The RTS/CTS mechanism does not ease

the problem. In contrast to the overlapping cells, here the station C1 is

disadvantaged. This means that in the co-located cells not the station

within the overlap but the station in the reception range of a single access

point has to be privileged.

Applying the priority classes as found for the overlapping cells but
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Figure 5.37: Average throughput in the co-located cells scenario C

in reverse order leads to the results shown in Figure 5.38. Again, the

problem is solved and both stations share the throughput adequately.

Also fairness is given as shown in Figure 5.39.

Similar results can be found for the co-located cells D as summarized

in Table 5.9. Again, different priority settings can be used to perform a

fine-grained prioritization if the RTS/CTS mechanism is used.

Combining the results for both, the overlapping cells and the co-

located cells, the following mechanism can be proposed. For increased

robustness of the DCF MAC protocol in multiple cell scenarios, the

RTS/CTS mechanism should be turned on. The stations inform their

associated access points whether they are in the coverage area of one

or more access points. The Beacon frames that are transmitted by the

access points on a regular basis, can be used for the location assessment
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Figure 5.38: Average throughput in the co-located cells scenario C with

prioritization

of stations. The access points, on the other hand, scan their channel for

other access points in their reception range. Again this can be imple-

mented by simply listening to the Beacon frames. If the access point

finds itself in an overlapping cell, it tells all its associated stations that

are in an overlap to increase their priority level to class 6. In the case the

access point is placed in a co-located cell this process is inverted. Clients

in the overlap are told to use the low priority class 4, while all others

should use priority class 6.

There are situations where such a prioritization is not necessary, but

the maximum performance can be reached if the default Contention Win-

dow settings are used. However, in order to provide a robust system and

to keep the configuration tasks at a minimum level, this simple algorithm
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Figure 5.39: Fairness in the co-located cells scenario C with prioritization

Priority Priority RTS/CTS throughput throughput

Class C1 Class C2 C1 C2

5 6 256 297 KBps 134 KBps

4 6 256 415 KBps 78 KBps

Table 5.9: Results for co-located cells scenario C (file size: 1 MB)

should be applied. Implementing this solution improves the fairness in

overlapping and co-located cells, both in terms of average throughput

and alternating access to the medium. On the downside, the proposed

prioritization scheme causes a performance degradation compared to the

standard Contention Window setting of about 20 to 30 percent in some

of the scenarios. Considering the big advantage of the fairness improve-

ment, such a tradeoff is rather acceptable.

Unfortunately, this approach can not be implemented in the case of a

IEEE 802.11b network. The reason is that all stations associated with a

single access point are treated alike. The access point can not distinguish

the different stations. Therefore, these problems remain in pure DCF

mode. However, in the following section we show how the IEEE 802.11e

standard with its enhanced prioritization mechanisms can be used to

implement the solution.
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Voice Traffic performance

Section 3 introduced different voice codecs that are frequently used in

voice applications. However, these codecs are very different in terms of

bit rate, frame size, and look ahead size. Therefore, they differ in their

suitability for Wireless LAN scenarios. In this section, we study the com-

bination of Wireless LAN and voice clients using different voice codecs.

The simulation scenario is shown in Figure 5.40. A number of stations

(Voice clients) is located in a single Wireless LAN cell. They perform

voice conferences with clients on the wired network behind the access

point using the Distributed Coordination Function. All wired compo-

nents are connected over a 100 Mbps Ethernet link, so the delay on the

wired network can be ignored.

Figure 5.40: Voice clients in a Wireless LAN environment

Figure 5.41 shows the maximum number of clients in a Wireless LAN

cell for variable frame times and different data rates. If a clients uses a

frame time of 30 ms and a data rate of 5.3 Kbps (the default settings of

the G.723.1 standard [IT96c]), it is possible to support 18 clients with

an acceptable end-to-end delay and a delay variation of less than 1 ms.

Due to retransmissions on the wireless network, no packet loss occurs on

a higher layer in the scenario.
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Figure 5.41: Maximum number of voice clients in DCF mode

If the GSM codec [Eur94] is used, only about 12 simultaneous voice

calls can be supported. The G.729 standard [IT96b] only allows 6 concur-

rent voice clients. The most widely used G.711 standard [IT93a] performs

worst in a Wireless LAN environment. Only up to 2 simultaneous voice

calls can be supported.

Simulations with varying frame sizes and differing bit rates were per-

formed. The results for the bit rates are shown as different lines. It can

easily be seen, that not the data rate is responsible for the maximum

number of clients. The main cause for the end-to-end delay is the frame

size shown on the X-axis. The larger the frame size, meaning the larger

the packet interarrival time of the voice codec, the more clients can be

supported.

These results clearly show the importance of the voice codec on the
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performance of the Wireless LAN network. This fact has to be taken

into account if a Wireless LAN environment should support voice con-

ferencing. The conclusion has to be drawn that the only two voice codecs

suitable for Wireless LAN networks are either G.723.1 or GSM. In the

following, we constrict our simulations on the G.723.1 standard, since it

shows the best results.

Similar results are found for the Point Coordination Function. How-

ever, since PCF is not suitable for multiple cell scenarios, we do not

discuss the results here.

5.3.3 Overlapping and co-located cells in HCF mode

The last section presented a detailed analysis of the effect that over-

lapping and co-located cells have on the DCF operation mode in IEEE

802.11 networks. It turned out that fairness problems arise once there

are overlapping areas. Depending on the type of overlap, a different pri-

oritization scheme has to be applied in order to restore the fairness of

the MAC protocol. The drawback is a reduced achievable throughput.

In this section, we want to extend the proposed solution to the IEEE

802.11e Hybrid Coordination Function MAC protocols. The goal is to

support different priority classes, such that the fairness problem in over-

lapping and co-located cells can be solved. On the other hand, the HCF

access control protocol is supposed to provide QoS capabilities to Wire-

less LAN networks. Therefore, service differentiation has to be provided

by the MAC protocol even in the multiple cell scenarios. In this section,

different QoS aware applications are simulated in order to evaluate the

HCF protocols.

One of the conclusions drawn in the last section was that the pri-

oritization scheme that is necessary to provide fairness in multiple cell

scenarios, can not be implemented in IEEE 802.11b networks, since the

DCF MAC protocol does not support service differentiation. All stations

143



5 LLC - WLAN Logical Link Control

are treated in the same way. The HCF MAC protocol extensions is sup-

posed solve this problem. One additional goal in this section is to clarify

the question whether HCF is flexible enough to do this.

Traffic Model

As for DCF, the same simulation scenarios as described in Section 5.3.2

are studied for the HCF case. User mobility is still not considered in our

simulation. The stations are located at the positions as specified in the

scenarios. The goal here is to study the impact of the user positions on the

performance of the Wireless LAN MAC protocol. Mobility is the topic

of later sections. The Wireless LAN clients use the Hybrid Coordination

Function (HCF) MAC protocol of the IEEE 802.11e standard [IEE03d].

HCF is explained in detail in Section 5.2.5. It provides different priorities

in order to support service differentiation to QoS aware applications. In

HCF, voice applications are supplied with the highest priority. The next

highest level is applied to video transmissions, while the background

FTP traffic always gets the lowest priority.

In order to evaluate the prioritization mechanism of the IEEE 802.11e

standard in multiple cell scenarios, all three different traffic types are

considered. They are discussed in detail in Section 3. Voice traffic as in

interactive, bi-directional voice calls with different voice codes is the top-

level priority application. The next highest priority usually goes to the

video traffic, such as video conferencing. Finally, non-prioritized back-

ground traffic has to be considered as well. Again we consider FTP traffic

as a worst-case scenario of Web traffic.

In all our simulations, the effect of the backbone network on the per-

formance is not under study. Therefore, the backbone network is ignored

where possible. The access points usually act as the terminating endpoint

of the data communication in our simulation environment. The results

are presented in three different parts. The first part considers the over-
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lapping cells scenarios, while the second part is confined to the co-located

cells scenarios. In the third part a combined solution is presented.

Overlapping cells and HCF

First, we consider the overlapping cells scenario B from Figure 5.25. It is

asymmetric, since only station C2 is in the overlap of both access points,

while station C1 is not disturbed by the data transmission of the access

point A2. The worst-case scenario here is that the station C2 performs

a QoS demanding application, while station C1 downloads files from

the access point A1. This is due to the fact, that in an overlapping cell

scenario the client within the overlap, here client C2, is disadvantaged

as shown in Section 5.3.2. In the following, the station C1 performs 1

MByte file downloads. The goal is to adapt the IEEE 802.11e access

machanisms such that the station C2 can perform real-time applications

even if it is disadvantaged over station C1.

In the case of voice traffic and standard DCF or HCF operation, the

MAC protocol can not provide an acceptable VoIP service for station C2.

In DCF mode, the mean packet loss for the voice client C2 reaches 59.97

percent, which maps to a MOS score of 1.0 meaning not recommended.

In HCF mode the average packet loss for station C2 even reaches 63.54

percent and again a MOS score of 1.0.

This is clearly not acceptable. DCF cannot provide any QoS, such

that the results for DCF mode are not surprising. However, HCF with

standard parameters already applies a much higher priority to the voice

client than to the best-effort user. The problem is that with the standard

parameters of CWmin = 7 and CWmax = 15, the collision probability is

very high, since the retransmission attempts are performed after a rather

short backoff period. Therefore, we can conclude that choosing such small

Contention Window parameters is not suitable for the overlapping cells

scenario B.
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In order to overcome these problems, we adapt the Contention Win-

dow parameters as shown in Table 5.6. The set of priority classes is

defined according to different CWmin and CWmax values. Table 5.10

shows the results for the new Contention Window parameters. For com-

pleteness, the results with the default DCF and HCF modes are shown

as well.

MAC Priority Priority Packet Loss MOS

Protocol Class C1 Class C2 C2 [%] Score

DCF default default 59.97 1.0

HCF default default 63.54 1.0

HCF 4 1 7.64 < 2.6

HCF 4 2 8.29 < 2.6

HCF 5 1 0.53 3.428

HCF 5 2 0.77 3.371

HCF 6 1 0.00 3.704

HCF 6 2 0.04 > 3.6

HCF 6 3 0.03 > 3.6

HCF 6 4 0.03 > 3.6

HCF 6 5 0.39 3.535

Table 5.10: Overlapping cells scenario B: MOS values (1 MByte FTP

files)

An acceptable solution for this problem can be found when applying

the priority classes (5,X) or (6,Y) with X ∈ {1, 2} and Y ∈ {1, 2, 3, 4, 5}.
In case of priority class (4,1) and (4,2), the MOS lies below 2.6 and leads

to a user satisfaction which is not recommended. For priority classes (6,1),

(6,2), (6,3), and (6,4) the voice quality is still acceptable with just a few

users dissatisfied. For priority classes (5,1), (5,2), and (6,5) the voice

quality drops just below acceptable.
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Figure 5.42: Overlapping cells scenario B: voice delay
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Figure 5.43: Overlapping cells scenario B: FTP throughput (voice)
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The results show that station C1 must at least have priority class 5.

These results are summarized in Figures 5.42 and 5.43. The 99 percent-

quantile of the end-to-end delay of the voice application is shown in Fig.

5.42. It gives us proof that in scenarios with varying FTP load (depending

on the FTP file size), the results that were described above still hold.

One drawback of lowering the priority setting of the best-effort FTP user

can be seen in Fig. 5.43. It shows the average throughput in KBps that

the FTP user experiences. Clearly, the lower the priority (larger value

means lower priority), the lower the average throughput gets.

However, as it is more important to provide QoS service than maxi-

mum throughput in the Wireless LAN scenarios considered here, choos-

ing a priority setting of (5,X) is a good compromise. A good FTP perfor-

mance can still be reached without interfering with the voice application.

MAC Priority Priority Packet Loss PSNR MOS

Protocol Class C1 Class C2 C2 [%] Score

HCF default default 86,19 12.66 Bad

HCF 4 1 6.84 25.45 Fair

HCF 5 1 5.67 25.69 Fair

HCF 5 2 6.01 24.60 Fair

HCF 5 3 6.34 26.55 Fair

HCF 6 1 0.07 40.67 Excellent

HCF 6 2 0.19 40.97 Excellent

HCF 6 3 0.43 46.84 Excellent

HCF 6 4 0.53 45.27 Excellent

Table 5.11: Overlapping cells scenario B: PSNR values (1 MByte files)

Table 5.11 shows the results for the case of video traffic. It can be seen

that priority classes (4,1) and (5,X) with X ∈ {1, 2, 3} only provide fair

video quality (MOS=3). If the priority set (6,Y) with Y ∈ {1, 2, 3, 4} is

used, the MOS value changes to 5 indicating excellent video quality. The

148



5.3 MAC Protocol Performance Evaluation

PSNR is always above 37 in all simulation runs.

Again, Figure 5.44 shows the 99 percent-quantile of the end-to-end

delay in ms for the video applications. Figure 5.45 depicts the average

throughput the FTP user experiences when applying different priorities.
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Figure 5.44: Overlapping cells scenario B: video delay

Thus, for overlapping cells B we can conclude that when applying

different priority settings to the voice, video, and best-effort user, it is

possible to provide QoS and still allow FTP users to get good throughput

rates. Different priority settings are possible and can be used by WLAN

Internet Service Providers to adapt the settings to specific needs.

Overlapping cells A is the only symmetric overlapping cells scenario.

Both stations are located in the overlap and both experience problems

in the case of default HCF parameters. However, since both stations

experience the same problems, the solution is easier than in the former

case of overlapping cells B. Here, the priority settings (3,1) and (4,1) are
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Figure 5.45: Overlapping cells scenario B: FTP throughput (voice)

already sufficient. This means that the priority of the FTP user can be

higher here, compared to the former case. This allows the FTP station

to receive an even higher share of the bandwidth than before.

Overlapping cells C, on the other hand, behaves almost exactly like

overlapping cells B. The results are shown in Figures 5.46 and 5.47, while

the results for the video case can be seen in Figures 5.48 and 5.49.
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Figure 5.46: Overlapping cells scenario C: voice delay
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Figure 5.47: Overlapping cells scenario C: FTP throughput (voice)
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Figure 5.48: Overlapping cells scenario C: video delay
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Figure 5.49: Overlapping cells scenario C: FTP throughput (video)
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Again, we can conclude that there exists a number of different prior-

ity settings that can be used in order to provide QoS. The priority of

the FTP clients has to be set low enough in order to not disturb the

QoS demanding application. On the other hand, it should be as high as

possible in order to allow a maximum throughput.

Co-located cells and HCF

In the case of co-located cells, the situation turns out to be less critical.

Due to the fact, that the access points are within the reception range

of each other, the transmitting FTP server is interfered by at least one

QoS client (in our case the other access point). Therefore, the standard

HCF parameters prove to be sufficient in these cases.

The 99 percent-quantile of the end-to-end delay is 10 ms. The MOS

value for voice is always above 3.6 indicating acceptable quality. For the

video client, the 99 percent-quantile of the end-to-end delay is less than

10 ms, no packets are lost, such that the video quality is excellent. The

FTP performance in the case of standard HCF parameters is as good as

it can get.

Combined Solution

The goal of the QoS enabled MAC protocols is to provide QoS for voice

and video applications at the same time. In order to evaluate our priority

settings for such a case, we simulated the worst-case scenario, overlap-

ping cells B, with station C2 using voice and video at the same time.

Station C1 still performs FTP downloads. The priority settings (6,2,1)

are chosen. This means that the voice application uses priority class 1,

the video application was configured to use priority class 2, while the

best-effort FTP traffic was handled with priority class 6. The results are

shown in Table 5.12.
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Traffic Prio. Packet Delay 99%- Delay Jitter MOS

Type Class Loss [%] quant. [ms] Max. [ms] Score

Voice 1 0.03 10.77 22.12 5.68 >3.6

Video 2 0.27 34.94 59.53 75.04 5

Table 5.12: Combined solution (1 MB files), voice and video

It can be seen that HCF with priority class (6,2,1) can provide ad-

equate QoS even if both multimedia applications are used in a single

station. The same simulation with default HCF parameters results in

packet loss for both voice and video applications above 80 percent, which

certainly provides bad voice and video quality. The best-effort FTP user

suffers a performance degradation in terms of average throughput of

about 50 to 60 percent.

Summarizing the simulation results found in this section, we can con-

clude that the prioritization parameters as proposed for the HCF opera-

tion mode, are not sufficient in overlapping and co-located cells. They can

prioritize certain stations, but they lead to high levels of packet loss, and

thus to large quality degradation in case of voice and video applications.

Our studies also showed that different sets of prioritization parameters

can be applied that provide the required level of prioritization while still

allowing high medium utilization.

QoS support in large-scale Wireless LAN environments is possible (see

also [PHWTG04], [GK03], [MCM+02]). However, further studies should

focus on additional mechanisms that are necessary for Wireless LAN to

become a 4G technology. One such issue is admission control. It is only

possible to support QoS in any (wireless) network, if the number of users

is kept below a certain threshold. This number is influenced by the type

of traffic that is used and the environment considered, e.g. overlapping

or co-located cells.

One other issue in wireless networks is handover techniques, especially
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in QoS demanding scenarios. It has to be clarified if the handover mech-

anisms that have been defined for Wireless LAN can be used while still

keeping the performance at the necessary level. We focus on this issue

in the remainder of this chapter.

5.4 Handover Mechanisms

Wireless LAN was introduced as an extension of wired local area net-

works, e.g. in locations where cables are not an option. However, the

huge success of Wireless LAN shows that the users demand for the great

flexibility and mobility that a wireless network can provide them with.

Whole office buildings and campuses have been covered by a single Wire-

less LAN network in the meantime. The user can wander about the cov-

ered area and seamlessly stay connected to the network all times.

On the network side, it has to be made sure that the connection of

the users is handed over from one access point to another, once the

coverage areas are crossed. Such handover procedures are necessary in

all large-scale wireless networks.

Several different approaches to perform a handover are known from

legacy mobile networks. The easiest is the hard handover, also known

as break-before-make. The connection to the ”old” base station is dis-

connected before the connection to the ”new” base station is initiated.

There is always a certain delay in which the mobile is not connected

during the handover process. The goal of a hard handover is to keep this

delay as short as possible.

More sophisticated handover mechanisms have been introduced in

CDMA based mobile networks, such as soft and softer handover (see

[Rap96], [Sch03], [Tyc02]). With soft handover a mobile sets up a number

of connections to all the base stations within a certain range. Therefore,

a handover does not imply a delay in which the mobile is not connected.
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On the contrary, these multiple connections can even be used to lower the

bit and packet error probability as shown in [HSL02]. Softer handover is

an extension of soft handover. It defines that a mobile can have several

connections to the different sector antennas of a single base station. This

makes sure that the handover between different sectors is ”soft” as well.

A Wireless LAN, on the other hand, does not allow such highly so-

phisticated techniques. The technology is supposed to be cheap. There-

fore, Wireless LAN only allows to perform hard handovers between the

different access points. However, this still allows a number of different

approaches, that greatly differ in terms of performance [MSA02]. In this

section we study the different proposed handover techniques. The goal is

to find a handover mechanism that allows handovers that keep the delay

short enough to support voice calls and video conferences.

A hard handover in Wireless LANs consists of three different parts.

First, scanning is performed by a roaming station. Scanning is used to

find the access points that surround a station and to perform the han-

dover decision. The second part is authentication. It is used to make sure

that the station is allowed to access the network. Finally, the association

or reassociation takes place. It is the actual connection setup phase. In

the following we discuss these three parts in greater detail.

5.4.1 Scanning

The basic parameter for a roaming station is the Signal-to-Noise Ratio

(SNR). As soon as the SNR drops below a certain threshold, called the

Cell Search Threshold, the station starts the handover process. During

this process, the station searches for new access points and if the dif-

ference between the SNR of the old access point and the potential new

access point reaches a threshold known as the Delta SNR, the station

initiates the actual handover [Luc98]. This process in shown in Figure

5.50.
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Figure 5.50: Signal-to-Noise Ratio and handover decision

As the station moves away from the access point, from left to right in

the figure, the SNR from access point 1 (AP1) decreases. At the same

time the SNR from access point 2 (AP2) increases as the station moves

closer. Once the SNR of AP1 drops below the Cell Search Threshold,

indicated by position 1 on the horizontal axis, the roaming station enters

the Cell Search state and starts its scanning process. When the station

moves closer to the second access point, the difference between both

SNRs finally exceeds the Delta SNR value and the station switches over

to the second access point (position 2), but remains in the Cell Search

mode until the SNR has passed the Cell Search Threshold, marked as

position 3.

If the SNR keeps decreasing as the station moves farther away from the
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Figure 5.51: Signal-to-Noise Ratio and station out of range

access point while no other access point can be found, the SNR ultimately

drops below another threshold, called Out of Range Threshold, as shown

in Figure 5.51. In a situation where the roaming station experiences a

SNR below the Out of Range Threshold, it may fall back in speed from

11 Mbps to 5.5 Mbps or even down to 1 Mbps. If the SNR still is below

the Out of Range Threshold, the station disconnects from the access

point.

The different thresholds can be chosen depending on the access point

density parameter. The access point density can be set by the user or

administrator. Three different values are allowed: low, medium, and high.

Table 5.13 shows the Cell Search Threshold and the Delta SNR value

for these densities.
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Threshold Access point density

Low Medium High

Cell Search [dB] 10 23 30

Delta SNR [dB] 6 7 8

Table 5.13: Access point density parameters

They are used to avoid handover oscillation, a situation where the

station performs rapid handovers between different access points. The

higher the access point density, the higher the values of Cell Search and

Delta SNR Threshold are chosen. Thus, the coverage area of a single

access point is smaller for the higher densities, while the difference be-

tween the old and the new access point has to be larger before a handover

is performed. Therefore, fewer candidates for a potential handover are

found and the number of handovers can be reduced.

As already explained above, the scanning procedure is started, once

a potential candidate is found. In the following, the different scanning

mechanisms are introduced. In principle, two different scanning mecha-

nism can be distinguished: active and passive scanning. Passive scanning

is performed by listening to the medium for networks to announce them-

selves. With active scanning, the station takes on an active role and

transmits special packets to identify the environment that it is currently

located in.

The scanning process is very important as it is the first step of a han-

dover. The two simple approaches still leave room for further extensions.

One such extension is the Neighborhood Detection [JWKZ03]. Although

it has not yet found its way into the official Wireless LAN standard, it

is discussed in this section as well.
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Passive Scanning

In the Passive Scanning mode, a station does not send any data on

the wireless medium. It scans the medium for networks to announce

themselves. Each access point transmits Beacon frames for this purpose.

The station listens to each channel for a specific time interval and waits

for the Beacons. The received Beacons are buffered by the station and

the important information is extracted. Beacons are designed to allow

a station to receive the necessary information about the Basic Service

Set of the access point. It contains information about the supported

data rates, the Service Set ID, the physical layer characteristics, and

information about the supported MAC protocols. Two different types of

passive scanning can be distinguished, the normal passive scanning and

the fast passive scanning.

Normal passive scanning defines that a station switches to the first

channel allowed by the regulatory domain and waits for Beacon frames.

If no Beacon is received after a specific time, the station switches to

the next channel until all channels are scanned. The station scans each

channel which results in a great overhead, because it receives the Beacon

frames from all the access points that use the scanned or one of its

overlapping channels.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2.401 Ghz 2.495 Ghz22 Mhz

Figure 5.52: Overlapping channels in the Wireless LAN 2.4 GHz band

Fast passive scanning, on the other hand, exploits the overlapping

channels of Wireless LAN as shown in Figure 5.52 for the 2.4 GHz band.

The station only scans the non-overlapping channels, e.g. the channels

160



5.4 Handover Mechanisms

one, six, and eleven. This fast passive mode reduces the period of time

used for scanning compared to the normal passive scanning. However,

it is more error-prone. The signal of an access point operating in an

overlapping channel is received with a smaller SNR, which has to be

accounted for. On the other hand, if a Beacon frame is delayed due to

a previous data transmission, the scanning station could switch to the

next channel without receiving a Beacon frame. If all the channels were

to be scanned, such a scenario becomes less probable, since there are

several scanning periods in which the Beacon of a single access point can

be received.

Active Scanning

A more active role is designated to the stations when active scanning is

performed. They do not just listen to the traffic on the different channels,

but they actively try to find potential access points by transmitting

Probe frames.

First, the channel is passively scanned for a specific period of time, the

Probe Delay Time. If the channel is found to be in use, i.e. packets are

transmitted, the scanning procedure probes this channel. This timeout

is used to keep an empty channel from blocking the remaining scanning

procedure. Once the station decides to actively scan the channel it trans-

mits a Probe Request frame using the normal DCF mode. If the channel

stays idle for a time referred to as MinChannelTime after the Probe Re-

quest frame was sent out, the station moves on to the next channel. If,

however, the channel gets busy within the timeout period, the MinChan-

nelTime timeout is canceled and the station continues to listen for Probe

Response frames until the maximum time, called MaxChannelTime, has

passed.

An access point answers a Probe Request frame with a Probe Re-

sponse frame. The station in turn acknowledges the successful reception
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Figure 5.53: Active Scanning procedure for a single channel

of the Probe Response frame. This is necessary, since the Probe Response

frames are sent in DCF mode as well. If the successful reception is not

notified to the access point, it tries to retransmit the packet as usual.

The whole procedure is depicted in Figure 5.53.

A Probe Request frame is answered by all the access points in the

reception range of the station. However, if there are several access points

trying to transmit Probe Response frames using DCF, the transmission

of some of the access points is delayed due to the transmission of the

other access points. Therefore, the higher the access point density, the

larger the MaxChannelTime needs to be in order for all access points to

be able to answer the station’s call. This topic is evaluated later in this

section.

The original IEEE 802.11 standard only defines the normal scanning

operation, where a station performs the scanning procedure on each of

the channels allowed by the local regulatory domain. Nevertheless, as for

the passive scanning mechanism all access points even those operating

in overlapping channels, receive the Probe Request and send a Probe

Response. Therefore, in normal active scanning each access point is found

repeatedly. This again allows to optimize the scanning procedure. In

recent years, a number of different active scanning mechanisms have been

proposed. The two most promising approaches are fast active scanning

and active scanning with neighborhood detection.
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The fast active scanning mechanism simply utilizes the fact that all

access points operating on the scanned or one of the overlapping channels

announce themselves by transmitting a Probe Response frame. Rather

than scanning all the channels of the regulatory domain, only non-

overlapping channels have to be scanned. As for fast passive scanning

this could be channels one, six, and eleven. This helps to lower the over-

head of the scanning operation. On the downside, the same problems

arise as for fast passive scanning. One problem is that the SNR mea-

sured by the station has to be adjusted if the access point operates in

an adjacent channel. The other problem is that an access point’s Probe

Response frame could get lost a couple of times in normal active scan-

ning mode without disturbing the operation. This is caused by the fact

that an access point has several chances to announce itself to a calling

station. In fast active scanning mode, an access point usually has just

one single chance.

Active Scanning with Neighborhood Detection

The two active scanning mechanisms introduced earlier, do not have

any information about the network they are located in, once they start

scanning. A number of channels has to be scanned and all access points

in the reception range of the scanning station are supposed to announce

themselves. However, since scanning is performed every time a handover

should be initiated, it is crucial to the network to speed up the operation

as much as possible.

One promising active scanning approach discussed in the literature

is active scanning with neighborhood detection. It is introduced in

[JWKZ03], [BS03], and [PC02]. The main idea is that the access points do

not only announce information about themselves in the Beacon frames,

but they also include information about neighboring access points. This

allows all associated stations to directly communicate with all poten-
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tial neighboring access points. Probe Response frames also include the

neighborhood information. The maximum number of neighboring access

points that can be announced that way is set to twelve.

It is left to the access points to retrieve the neighborhood information

from their (sub-)network. In the easiest case, all the access points are

located in a single subnet, such that discovery is an easy task. However,

if there are several different subnets involved, more sophisticated tech-

niques have to be applied. Another important issue is, what access points

are to be announced if there are more than twelve candidates available.

In [PC02], the list of neighboring access points is calculated using han-

dover probabilities for specific access points with the movement ratio.

Alternative approaches are discussed as well.

The actual scanning mechanism can be performed in different ways.

One way is shown in Figure 5.54. The scanning station transmits a Probe

Request frame to one of the potential access points using normal DCF

operation. In turn, the access point answers the call by issuing a Probe

Response frame after a SIFS interframe space. This is called fast active

scanning with neighborhood detection. Here, the term fast refers to the

instantaneous answer of the access point. Such an approach becomes

possible, since the scanning station sends its request directly to the access

point, rather than issuing a broadcast.

Figure 5.54: Fast Neighborhood Scanning procedure

On the contrary, the access point might send its Probe Response frame

at a later time as shown in Figure 5.55. This normal neighborhood scan-

164



5.4 Handover Mechanisms

ning operation specifies that the access point acknowledges the reception

of the Probe Request frame with a normal ACK packet. After that it

responds with the Probe Response frame using either a PIFS interframe

space or normal DCF operation with a standard backoff.

Figure 5.55: Normal Neighborhood Scanning procedure

These different approaches for the neighborhood scanning procedure

are discussed in more detail in [JWKZ03]. In the following, only fast

neighborhood scanning is studied, since it clearly defines the fastest scan-

ning mechanism.

5.4.2 Authentication

The second step of a handover that a station has to perform is the

authentication at the new access point. The goal of the scanning proce-

dure as described above is to find the best candidate. Once the station

has decided which access point it wants to roam to, the authentication

procedure in the access point decides whether the station is allowed to

associate to it.

Two different authentication procedures are defined in the initial IEEE

802.11 standard. The open system authentication is not really an au-

thentication process, since any station is by default allowed to access

the network. It is merely performed as a type of a placeholder for more

advanced authentication mechanisms.
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The more widespread type of authentication is the shared key au-

thentication. It uses the Wired Equivalent Privacy (WEP) algorithms to

decide on the access request by the station [PF03]. Here, a shared secret

key is used for the purpose of authentication. The access point checks

if the station has been configured with the same shared secret key that

has been configured within the access point’s configuration. Usually, the

network administrator is responsible for the management of these secret

keys. Once the access point positively checks for the right secret key, the

station receives access.

One other potential authentication mechanism is described in [PC02],

referred to as preauthentication. It is based on the fact that the standard

does not necessarily demand an explicit authentication of a station at

each access point that it tries to connect to. Therefore, an authentication

could be performed the first time that a station enters a network, which

is valid not only for this single access point but for all access points

within this network. Such a preauthentication allows a station to skip the

authentication procedure in case of a handover within a single network.

Other types of preauthentication are discussed in the literature as well.

In [Gas02], the authors propose that a station authenticates with several

access points during the scanning process. Whenever one of these access

points is entered, the authentication procedure can be skipped.

Authentication is a part of the Wireless LAN security, which is iden-

tified as one of the major drawbacks in today’s legacy systems. Many of

these security mechanism have been shown to be weak. Wireless LANs

operated within a company, however, necessitate a high level of security.

This should be considered an important part of the planning process.

5.4.3 Association and Reassociation

The previous sections explained the scanning and authentication pro-

cedures. If both of these procedures are finished successfully, then the
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association or reassociation is the only task that remains before the sta-

tion is connected to the network and the handover is completed. The

goal of this task is to register the station on the (wired) network, such

that all data traffic destined to the station is sent through the access

point the station is currently associated with.

This can for example be achieved by sending an ARP message within

the wired backbone, such that the MAC address of the station is associ-

ated with the switch port leading to the access point.

Two different situations can, however, be distinguished. In case the

station newly entered the Wireless LAN network and, thus has not been

connected so far, it has to associate itself with the access point. A han-

dover represents the second case. The station has already been associated

to one of the access points in the network. In order to perform a han-

dover, the reassociation takes place. In addition to an association, the

reassociation has to make sure that the station’s association at the old

access point is deleted. The Wireless LAN standard explicitly forbids

multiple associations of a single station.

Association

A station that newly enters a Wireless LAN network has to perform an

association procedure after successful authentication. For that purpose,

the station sends an Association Request frame to the access point. This

Association Request contains information about capabilities, listen in-

terval, SSID, and supported data rates of the station. The capability

information is used for PCF operation. It tells the access point if the

station should be polled. The listen interval is used to inform the access

point about the times the station wakes up to listen for Beacon frames.

This is necessary if the station is run in power saving mode.

The access point acknowledges the successful reception of the Associ-

ation Request by issuing an Association Response frame, which informs
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the station about PCF capabilities, status of the association, Association

ID, and supported data rates of the access point. The PCF capabilities

are used to indicate whether the access point acts as a Point Coordi-

nator or not. The status of the association shows the station that the

association has been competed successfully or otherwise what the reason

for the failed Association Request is. The Association ID is merely used

internally to identify the station. The station acknowledges the Associ-

ation Response frame which completes the association procedure of the

station.

In case of a successful association, the access point informs the wired

network of the new station by transmitting an Address Resolution Pro-

tocol (ARP) packet within the wired backbone. This configures the

network to forward the packets destined for the station to its associated

access point.

As pointed out earlier, there are cases where the other access points

within the (local) network have to be informed about the new station.

One such case is preauthentication. The access points are equipped with

the Inter Access Point Protocol (IAPP) (see [IEE03a]) for this purpose.

It is explained in greater detail in the following section.

Reassociation

In case of a handover within an Extended Service Set (ESS), the station

is already associated to some access point within the network. There-

fore, the normal association procedure is not suitable to perform such

a handover, but a reassociation has to be issued. On the wireless side,

a reassociation is almost identical to the association, but on the wired

backbone side, more data has to be exchanged. The reassociation proce-

dure is shown in Figure 5.56.

The reassociation is used to inform the old access point of the new

location of the station. In addition to the information within an Associ-
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Figure 5.56: Reassociation procedure

ation frame described in the last section, a Reassociation frame contains

the MAC address of the old access point. The new access point, there-

fore, can use the Inter Access Point Protocol to validate the request as

explained in more detail in the next section. Once the new access point

has validated the information of the station, it sends a Reassociation

Response frame to the station, which is acknowledged by the station.

After the successful transmission of the Reassociation Response frame,

the new access point is responsible for the newly associated station. The

old access point deletes the association and forwards the buffered packets

for the station to the new access point.

It is worth mentioning that there are proposals for a fast reassocia-

tion procedure in PCF mode. It is presented in [GW99]. Rather than

using the DCF mode and CDMA/CA operation, polling is used by an

access point to search for new stations within its reception range. The

access point transmits Who is New (WN) frames in the Contention-free

Period, which inform the stations about the correctly associated sta-

tions. Then, a (Re)Association interval follows, which allows stations to

transmit association requests to the access point.

Nevertheless, since polling mechanisms have major problems in the

multiple cell scenarios considered in this work, PCF and the fast reas-

sociation procedure can not be considered a good candidate and are,

therefore, not considered in the remainder of this work.
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Inter Access Point Protocol (IAPP)

In large-scale Wireless LAN implementations, where handover between

the involved access points occur frequently, there is a need to exchange

information between the access points. Therefore, the IEEE standard

802.11f [IEE03a] was defined. It specifies the Inter Access Point Protocol

(IAPP) that allows communication between the access points of a single

ESS. The IAPP is located on top of the Wireless LAN MAC protocols

as the stack in Figure 5.57 shows.

Figure 5.57: Wireless LAN protocol stack

The IAPP protocol uses TCP for the communication between the ac-

cess points, while UDP is used for the communication to the Remote

Authentication Dialing User Service (RADIUS), which is used for cen-

tralized AAA management. The IAPP also has to make sure that the

forwarding tables of switches or routers in the wired backbone network

are updated in case of a handover. Therefore, IAPP can directly access

the 802.2 layer in order to submit layer 2 update frames.

On top of the IAPP layer sits the Access Point Management Entity

(APME). It utilizes all the services offered by the IAPP through the
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Inter Access Point Protocol Service Access Point (IAPP SAP). The gray

areas in the figure indicate that there is no communication between these

layers. It is used to show for example that the APME layer does not

communicate with most of the lower layers except the MAC Layer Man-

agement Entity (MLME) and the Physical Layer Management Entity

(PLME) sublayers. These two sublayers allow the APME to configure

the parameters of the MAC and Physical layers in order to adapt them

to certain situations.

It was mentioned earlier that the IAPP is essential in cases where

handovers are performed within a Wireless LAN network. They have

to perform important administrative tasks. In the following the IAPP

functionality in case of an association and reassociation is explained.

In case of an association, there is actually little the IAPP has to do.

A station tries to newly get access to the network. However, the station

could still be associated with some other access point. In such a case,

the station should perform a handover and the reassociation procedure

instead, but erroneous station devices have to be taken into account.

Figure 5.58 shows the data flow once an association procedure is ini-

tiated within an access point. The local MLME sublayer sends an indi-

cation to the local APME sublayer, telling it that a new station tries to

associate. The APME issues an add request (IAPP-ADD.request) at the

IAPP layer. The IAPP now transmits the layer 2 update frame on the

wired backbone network. This updates all the forwarding tables of the

devices in the local subnet, such that the packets destined for the station

are forwarded through the access point.

Then, the local IAPP layer transmits a notify packet to all the other

access points on the local network segment. This packet is used to inform

all other access points of the ESS about the new station. All receiving

access points check their local association tables for this station, and if

they find an entry, the station is disassociated from this access point.

Finally, the local IAPP layer confirms the operation by issuing a con-
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Figure 5.58: Data flow during an IAPP Association procedure

firm message to the local APME layer. This concludes the IAPP proce-

dures in case of an associating station.

In case of a reassociation, the IAPP procedure is more complex. As

shown in Figure 5.59 the operation starts with the MLME sublayer indi-

cating the APME sublayer that a station tries to reassociate. The Reas-

sociation Request frame from the station includes the information about

the access point that it was formerly associated with. It is left to the

IAPP layer to inform this old access point of the handover. Therefore,

the MLME also forwards this information to the APME layer. The local

APME layer on its part notifies the local IAPP layer of the reassociation

request and the old access point. The IAPP layer informs the old access

point about the movement of the station.
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Figure 5.59: Data flow during an IAPP Reassociation procedure

This Move-notify packet is transmitted using TCP in order to make

the transmission reliable. On the side of the old access point, the infor-

mation traverses the IAPP and the APME layer and is finally passed

to the MLME layer which takes care of the disassociation of the sta-

tion. In turn, the old access point replies with a Move-response packet

that acknowledges the successful reception of the Move-notify packet.

Ultimately, the local APME layer of the new access point receives the

IAPP-MOVE.confirm packet, that finishes the procedure.

Once, the movement of the station is confirmed by the new access

point, the layer 2 update packet can be sent in order to update the for-

warding tables of the devices in the local subnet. The old access point

also updates its forwarding table. If this old access point still has buffered
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frames for the station, it can forward them through the new access point.

On the other hand, if it turns out that the moving station can not be

found in the association table of the old access point, the association

request at the new access point is denied and the new access point trans-

mits a deauthentication frame to the station.

This procedure shows that a station has to be deregistered from the

old access point before it can be associated with the new access point,

since a station is not allowed to associate with more than one access

point at a time.

5.5 Handover Performance

The last section has shown the three tasks, scanning, authentication,

and (re)association, that have to be performed when a handover occurs.

It was pointed out that there are several ways to perform the different

procedures. In the following, the different tasks are analyzed in terms of

performance. The goal is to find a handover mechanism that can support

the strict QoS requirements of voice and video applications [PH04]. This

is a necessity in 4G networks, where Wireless LAN is supposed to play

an important role.

Scanning, as the first step of the handover procedure, is responsible

to decide on which access point to roam to. The last section showed that

there are a number of different approaches to search the channels for ac-

cess points. All of the presented procedures are evaluated and compared

to each other. Authentication is an important part of a handover, as

well. However, preauthentication can be performed, i.e. the station’s ini-

tial authentication is valid for the whole (local) subnet. Thus, a renewal

of the authentication is not necessary in the cases considered here, such

that the authentication is not critical for the whole handover procedure.

(Re)Authentication on the other hand, necessitates to transmit pack-
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ets to a neighboring access point within the backbone network. This

communication has to be performed before an access point is allowed to

give the station access to the network. The handover is not performed be-

fore the reassociation has finished. Therefore, reassociation is important

for the performance of the handover and has to be accounted for.

The evaluation of the handover procedure is divided into four different

parts. First, an empty network is considered. No background traffic can

defer the handover. This scenario helps to understand the basics of the

different approaches. In the second part, voice clients are studied. The

scenario consists of a number of stations that perform voice calls with

fixed clients in the wired backbone network. The third scenario concen-

trates on video traffic. Finally, the last part of this section considers a

mixture of stations using different applications. It answers the question

of whether there are suitable handover procedures for Wireless LAN in

4G environments.

5.5.1 Handover Performance in Undisturbed

Environments

In order to understand the different handover approaches and to study

their effect on the system performance, a system scenario is considered in

this section that is not disturbed by any additional traffic on the wireless

channels. The scenario as shown in Figure 5.60 is analyzed.

It consists of two access points AP1 and AP2, which are connected

to a Switch using a 100 Mbps Ethernet connection. The switch is itself

connected to a router which leads the data packets to the destination

workstation in the wired backbone. A single station moves back and

forth between the two access points. The access points are placed 70

meters apart from each other. Once the station moves about 50 meters

away from its associated access point it starts the handover procedure

according to the SNR rules explained in Section 5.4.1.
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Figure 5.60: Handover scenario without disturbing background traffic

The station is preauthenticated to both access points, such that a

renewed authentication in case of a handover is not necessary. The station

assumes a low access point density, such that the scanning procedure is

started once the SNR of the associated access point drops below 10

dB. The reassociation starts once the station finishes the scanning task

and the new access point has been found. All scanning mechanisms are

considered in the following.

In this simple scenario, the station does not perform any kind of appli-

cation, i.e. no other than handover related traffic is transmitted. There-

fore, the reassociation procedure, which consists of a number of packets

being transmitted between the two access points, is not delayed, such

that the reassociation task always amounts to approximately the same

time. The differences in handover performance are, thus, solely caused

by the scanning procedures.

Figure 5.61 shows the relation between the time spent for scanning

versus the reassociation time. As just explained, the reassociation time
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Figure 5.61: Ratio between scanning versus reassociation delay

can be assumed to be identical in all five cases. Therefore, the figure

shows that scanning is by far the dominating factor. From about 60 per-

cent to more than 98 percent of the total handover time is needed for the

scanning mechanism. As expected the normal passive scanning performs

worst, while the most advanced mechanism, Neighborhood scanning, is

the fastest.

It is easy to see from these results, that scanning plays the most impor-

tant role in a handover in terms of performance. Therefore, the different

scanning mechanisms are explicitly studied in the following.

Passive Scanning

The passive scanning mode specifies that a station does not start any

transmission in order to find other access points in the vicinity. It merely

switches through the different channels and listens for Beacon frames

indicating the presence of an access point. If such a Beacon frame is

received, the station stores the SNR, the channel the access point is
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operating in, and other related information. Once the scanning procedure

is finished, the station chooses the access point with the highest SNR and

initiates the handover by issuing a Reassociation Request.

By default, the interarrival time of a Beacon frame at an access point

is set to 100 ms. If the station performs the normal passive scanning

operation, all channels are scanned individually. Considering the 13 al-

lowed channels in most of Europe, the scanning mechanism at least takes

1300 ms. In fast passive scanning mode, where only the non-overlapping

channels are scanned, the whole operation needs no less than 300 ms.

Therefore, even the fast passive scanning operation is too slow for most

QoS demanding real-time applications. However, the scanning time can

be further reduced, if the interarrival time of the Beacon frames is cho-

sen to be shorter than 100 ms. This is a valid approach, since the IEEE

802.11 standards do not demand such a setting.

In Figure 5.62 the results are shown for the varied Beacon Interarrival

Times. The dashed line shows the total handover time in milliseconds.

It is directly proportional to the Beacon Interarrival Time. In case of

a Beacon Interarrival Time of 5 ms, the handover can be finished after

about 20 ms while a 100 ms Beacon Interarrival Time leads to a total

handover time of about 305 ms.

However, choosing a smaller Interarrival Time for the Beacon frames

has a drawback as well. This can be shown by evaluating the maximum

throughput that can be achieved in the different scenarios. In our case,

the station acts as a saturated UDP source, such that it utilizes the whole

bandwidth that remains. This maximum achievable throughput is shown

as the solid line in Figure 5.62. With 100 ms Interarrival time, more than

5.5 Mbps can be reached. Setting it to 50 ms leads to a reduction of just

about 50 Kbps, which is quite acceptable considering the fact that the

time for a handover is roughly cut in half.

However, the maximum achievable throughput drastically decreases

once the Beacon Interarrival Times are set to a value lower than 20
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Figure 5.62: Fast Passive Scanning with varied Beacon Interarrival

Times

ms. Therefore, values of around 50 ms and fast passive scanning are a

good tradeoff between maximum achievable throughput and handover

performance. In this case the handover can be performed within 150 ms,

which is sufficient for QoS demanding real-time applications.

Active Scanning

In case of Active Scanning, the handover performance does not depend

on the Beacon Interarrival Time, but on the two timers MinChannel-

Time and MaxChannelTime. As explained earlier, the station transmits

a Probe Request frame on the scanned channel and waits for Probe Re-

sponse frames for a period of at least MinChannelTime. If no activity

is detected, the station moves on to the next channel. If, on the other
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hand, a Probe Response frame is received, the station keeps on listening

on the channel for a period of MaxChannelTime. This is due to the fact

that multiple access points might be set to the same or an overlapping

channel, such that multiple Probe Response frames can be received on

a single channel.

Therefore, the MaxChannelTime has a direct influence on the dura-

tion of the active scanning procedure. The goal is to minimize it as much

as possible. However, Probe Response frames are send using the stan-

dard DCF operation. The more answers a station receives on a specific

channel, the longer the MaxChannelTime should be chosen. This fact

can be seen in Figure 5.63. It shows the maximum delay in case of a

varying number of Probe Response frames received by the station on a

single channel.
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Figure 5.63: Probe Response Delays in Active Scanning Mode
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Number of Maximum Access Point MaxChannelTime

responses Delay density

1 2.6 ms

2 4.2 ms low 7 ms

3 5.9 ms

4 8.0 ms

5 10.3 ms medium 17 ms

6 12.7 ms

7 15.6 ms

8 18.6 ms

9 22.3 ms high 27 ms

10 26.1 ms

Table 5.14: Active Scanning MaxChannelTime setting based on access

point density

In the case of just one Probe Response frame, the delay only varies

between about two and three milliseconds. On the other hand, if ten

access points answer the station’s call, up to 27 milliseconds are necessary

to receive all the responses. It is necessary for a station to receive as

many of the answers as possible, since these answers directly influence

the handover decision.

One way to optimize the active scanning procedure is to set the Max-

ChannelTime according to the access point density, as shown in Table

5.14. If there are many access points surrounding the station, the Max-

ChannelTime should be chosen high, while a low access point density

allows shorter time periods.

Such a setting allows the station to still receive all the Probe Response

frames, while long periods of inactivity due to too large MaxChannel-

Time scanning periods are avoided. The MinChannelTime on the other

hand is the same for all scenarios. The whole scanning time, thus, solely
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depends on the access point density setting. When normal active scan-

ning is performed, the scanning procedure in the 13 channels of most

European countries sums up to a total of 91 ms in low density cases and

351 ms in high density areas. When fast active scanning is performed,

the scanning time ranges between 21 ms and 81 ms, which is acceptable

for QoS demanding applications.

Neighborhood Detection

In the case of scanning with neighborhood detection, a station does not

have to scan all the available channels. As explained earlier, the potential

destinations of a handover are specified within the Beacon and Probe

Response frames of each access point. A 20 Byte block is added to these

frames for each access point that is announced, which leads to larger

packet transmission times.

In addition all of these access points have to be scanned by the station

in order to receive SNR information. Figure 5.64 shows the handover

delay for a varying number of announced access points. It ranges from 4

ms to about 23 ms on average depending on the number of access points

which is varied from two to twelve. No more than twelve access points

can be announced within a single Beacon or Probe Response frame.

As expected, scanning with neighborhood detection turns out to be

the fastest handover mechanism. On the downside, it is the most complex

approach. And there are still some issues that need to be resolved as was

discussed earlier.

Comparison of the Handover Mechanisms

The last sections evaluated the handover mechanisms using the different

scanning approaches. Large differences were found and some possibilities

to optimize the scanning mechanisms were discussed. Table 5.15 sum-

marizes the results. Each of the handover mechanisms was simulated 50
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Figure 5.64: Handover delays with Neighborhood Detection

times, and the average of the results was calculated.

The results show that Neighborhood Scanning performs best. It is

appropriate for all the desired QoS demanding applications considered

here. Handover delays of approximately 21 ms on average can hardly be

noticed by the user. The same holds for fast active scanning. It is about

50 percent slower, but an average handover delay of 31 ms is still quite

appropriate. Voice and video transmissions require one-way delays of

less than 150 ms according to the ITU-T Study Group 12. Therefore, the

normal active scanning as well as the fast passive scanning with handover

delays of 140 ms and 150 ms are rather large. Considering additional

delay due to the wired backbone network or the coding delays can lead

to bad quality of the transmission. However, fast passive scanning is

inappropriate, if the Beacon Interarrival Time is left at the standard
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Scanning Mechanism Scanning Reassociation Full Handover

Passive 650 ms 2.649 ms 652.549 ms

(1300 ms) (1302.649 ms)

Fast Passive 150 ms 2.631 ms 152.631 ms

(300 ms) (302.631 ms)

Active 140.393 ms 2.616 ms 143.009 ms

Fast Active 32.335 ms 2.593 ms 34.928 ms

Neighborhood 21.369 ms 2.315 ms 23.684 ms

Table 5.15: Active Scanning MaxChannelTime setting based on access

point density

value of 100 ms. Finally, normal passive scanning is by far too slow.

Even with the an adapted Beacon Interarrival Time the handover delay

is no less than 650 ms.

5.5.2 Voice traffic

The last section showed that the performance of a handover in Wireless

LAN mainly depends on the time spent for scanning. Two of the five

scanning mechanisms turned out to be very fast. Full handover delays of

just 23 ms and 35 ms were possible. However, no background traffic was

considered. In this section we explicitly study the handover performance

in case of voice clients. The simulation scenario is shown in Figure 5.65.

Several stations are located in each of the different cells while one station

roams between the three attached access points. The access points are 70

meters apart from one another. They use different non-overlapping chan-

nels, i.e. access point AP1 uses channel one, access point AP2 transmits

on channel six, and access point AP3 is set to channel eleven.

As pointed out in Section 5.3.2, the best voice codec in Wireless LAN

environments is the G.723.1 standard. It allows up to 18 simultaneous
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Figure 5.65: Simulation scenario with multiple voice clients

voice clients within a single cell. The voice clients in the following simu-

lations are connected to a voice client in the backbone network.

The first scenario is that there is a single station moving back and

forth. No other stations are considered, i.e. no background traffic occurs.

The results are shown in Table 5.16. Passive scanning was not consid-

ered, since handover delays of 650 ms and more are simply too far from

being suitable for voice data. The table summarizes the number of lost

packets during the handover and the number of forwarded packets for

the remaining four scanning mechanisms.

When neighborhood scanning or fast active scanning is used, only one

packet gets lost. The handover is performed within such a small period

of time, that no packets need to be forwarded by the old access point. On

the side of the station only one single packet is delayed for an average of

4.6 ms with neighborhood scanning and about 26.7 ms on average when

fast active scanning is performed.

Normal active scanning leads to seven lost packets on average. Voice
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Scanning Average Number of End-to-End Average

Mechanism Lost Forwarded Delay Interruption

Packets Packets max. avg. in ms

Neighborhood 1 0 30

Fast Active 1 0 30

Active 7 1.02 121.3 117.3 210

Fast 10.1 5.8 157.1 122.8 303.6

Passive (50)

Fast 19.9 12.0 307.7 232.1 596.4

Passive (100)

Table 5.16: Forwarded packets statistics

packets are sent every 30 ms, such that the overall interruption sums

up to be about 210 ms, which still conforms to the ITU-T requirements

[Cov01]. On average one single packet is forwarded with an average delay

of 117 ms.

Two different scenarios were studied for fast passive scanning. As was

pointed out in the last section, the fast passive scanning mechanism can

be optimized by setting the Beacon Interarrival Time to 50 ms instead

of the 100 ms default setting. The results for both configurations are

shown. For the 50 ms Beacon Interarrival Time, about 10 packets get

lost, leading to a service interruption of about 300 ms. On average about

6 packets are forwarded after the successful handover, with a delay of

123 ms. Such a performance is still acceptable according to the ITU-T

recommendations. If the 100 ms Beacon Interarrival Time is used, on the

other hand, about 20 packets are dropped and 12 packets are forwarded.

The mean interruption of the service with almost 600 ms is, however,

too large for an acceptable voice quality.

Next we want to study the effect of background voice traffic on the

handover performance of a single voice client. Therefore, a varying num-
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ber of fixed stations acting as voice clients are simulated while one single

station is roaming between the access points. Again, the normal passive

scanning procedure is not considered, because it is by far too slow.

The results are shown in Figure 5.66. It compares the handover delays

for the different scanning mechanisms. The number of background voice

clients is varied from zero to 17.
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Figure 5.66: Handover delay with background voice traffic

Again, neighborhood detection is the fastest scanning mechanism.

Handovers are performed within 4 ms to 7.5 ms and the number of

background voice clients has just a minor effect. The same holds for fast

active scanning. The number of background users just has a minor effect

on the performance. Handovers are finished after 26 ms to 30 ms. All

these handovers are very fast and voice users do not notice any interrup-

tion of the service.
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In contrast to these two scanning mechanisms, the active scanning

procedure is by far more influenced by the number of background voice

traffic. Therefore the performance of the handover decreases with the

number of concurring voice clients, such that for high values, the per-

formance of an active scanning handover even gets worse than if fast

passive mode with 50 ms Beacon Interarrival Time is used. Handover

delays range from about 117 ms to approximately 167 ms. However, fast

active scanning as well as passive scanning can still provide acceptable

results. Minor distortions of the voice stream can occur, but the voice

quality still reaches acceptable levels.

Summarizing the results for voice application, we can conclude that

several of the handover mechanisms are appropriate even if there are

multiple voice clients simultaneously active in the network. As expected,

neighborhood detection works best, but the fast active scanning almost

reaches the same quality. The remaining procedures, active scanning and

fast passive scanning, still perform well enough. However, some minor

disturbances occur.

5.5.3 Video traffic

Handover mechanisms in the case of voice traffic with its constant bit

rates, were found to work quite well in the last section. Now, we turn

to video traffic with variable bit rates. The simulation scenario is shown

in Figure 5.67. Again a number of video clients is placed within the

different cells. All of these stations do not move. One additional station

roams through the Wireless LAN coverage area and performs frequent

handovers. The goal is to evaluate the effect of variable bit rate real-time

applications on the handover performance.

As explained in Chapter 3.2.4, CIF and QCIF videos are transmitted

from the video clients in the backbone network to the WLAN stations

and back. This simulates the behavior of interactive video conferences.
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Figure 5.67: Video traffic simulation scenario

In order to evaluate the neighborhood scanning mechanism, a maximum

of twelve access points is placed in the network. Neighborhood scanning

allows the indication of up to 12 access points within the Beacon and Re-

association Request frames of the access points. All of these access points

have to be scanned by the station, such that neighborhood scanning per-

forms worst if the maximum number of access points is used. This allows

us to simulate the worst-case scenario for neighborhood scanning.

All other scanning mechanisms that are studied for the video applica-

tion are simulated using the three access points. As for the case of voice

traffic, the access points use the non-overlapping channels one, six, and

eleven. The clients use video A from Table 3.7. It utilizes the largest

average throughput and has the largest variance. All stations start their

video conference at exactly the same time. This defines the worst-case

scenario.

Figure 5.68 summarizes the results. It shows the handover delay for the

video simulation using the different scanning mechanisms. The number
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Figure 5.68: Handover delay with background video traffic

of background video clients is varied from zero to four.

If there is no other than the roaming station in the network, the han-

dover delay ranges from 22.9 ms for neighborhood scanning to 152.4 ms

for fast passive scanning. Again, neighborhood scanning performs best.

However, if the maximum of twelve access points is indicated to the sta-

tion, the handover for neighborhood scanning ranges from 5.1 ms to 75.4

ms. Here, a large variance of the handover performance becomes obvious.

This is due to the fact that the station scans the access points until it

finds a good candidate, i.e. if the first Probe Request already results in

an answer of an access point, the station quits the scanning and starts

the handover instantly, leading to a handover delay of just 5.1 ms. How-

ever, if the station has to scan all twelve access points until it receives

an acceptable answer, the handover delay reaches up to 75 ms.
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Average Number of Number of Average

Scanning dropped packets dropped packets Service

Mechanism without forwarding with forwarding Disruption

CIF QCIF CIF and QCIF in ms

Neighborhood 1.00 0.73 0-1 40

Fast Active 1.45 1.06 0-1 58

Active 5.92 4.34 0-4 236.8

Fast 6.25 4.58 0-4 250.0

Passive (50)

Table 5.17: Forwarded packets statistics

If more stations are added to the simulation scenario in the form of

fixed video clients, all handover delays increase. In the case of fast passive

scanning and fast active scanning, however, this increase turns out to be

rather small with just about 4 ms additional delay on average. Fast active

scanning performs quite well with less than 40 ms. Fast passive scanning

always leads to delays of about 150 ms to 160 ms. The mean handover

delay with neighborhood scanning increases from about 23 ms to about

39.6 ms, which is just above the delay for fast active scanning. Normal

active scanning experiences the largest degradation. While it lies just

above 140 ms if no background traffic is simulated, it increases to almost

190 ms on average.

Table 5.17 summarizes the average number of dropped and forwarded

packets in the case of background video traffic. Video A in CIF format

and video C in QCIF format were simulated.

Neighborhood scanning and fast active scanning, thus, lead to service

interruptions of 40 ms and 58 ms, respectively. Just about one single

packet gets lost during the handover. In case of forwarding, this number

further decreases. Therefore, these two scanning schemes perform equally

well.
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Active scanning without forwarding on the other hand leads to about

six dropped packets in case of the CIF video, and around 4 dropped

packets in the QCIF case. If the forwarding of buffered packets from the

old to the new access point is enabled, anything between zero and four

dropped packets can be experienced. The service disruption with active

scanning reaches about 240 ms, which is quite acceptable according to

the ITU-T recommendations.

Similar results can be found for fast passive scanning with a Beacon

Interarrival Time of 50 ms. The total amount of time that the video

service is disrupted sums up to 250 ms on average. Considering the 400

ms limit specified by the ITU-T, this mechanism is still quite acceptable.

These simulation results allow to draw the conclusion that even in the

case of video traffic, several scanning techniques and, therefore, several

handover mechanisms are fast enough to perform handovers without dis-

rupting the service. In the next section a traffic mix is studied. The goal

is to find the handover mechanisms that are fast enough, no matter what

kind of clients are active. The only prerequisite is that the system is not

overloaded.

5.5.4 Traffic mix

The last sections studied the effect of voice and video traffic, while there

is traffic of the same type in the background, i.e. voice and video traffic

respectively. It turned out that even in highly loaded systems, there are

handover mechanisms that perform well.

In this section, a traffic mix is studied. The simulation scenario is sim-

ilar to the voice or video simulation scenario. It is shown in Figure 5.69.

Three access points are considered. They operate on the non-overlapping

channels one, six, and eleven. The access points are 70 meters apart, a

handover is performed once the roaming station moves more than 50

meters away from the access point it is associated with.
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Figure 5.69: Traffic mix simulation scenario

The background traffic is generated by a number of fixed stations

positioned at each access point. In order to consume all the available

bandwidth, these fixed stations perform FTP downloads in this section.

The FTP server is positioned in the wired backbone network. FTP down-

loads can be thought of as a kind of worst-case HTTP traffic. Web users

have short periods of time when they perform downloads of objects. In

these time periods, the whole available bandwidth is used up. An FTP

user on the other hand, consumes the whole bandwidth all the time.

In order to study handover performance, a roaming station is con-

sidered that performs a voice transmission with a voice client in the

backbone network. This roaming station moves back and forth within

the access points as indicated in the figure. The different scanning mech-

anisms are analyzed. The normal passive scanning mechanism is not

sufficient for any type of real-time traffic, since it usually takes about

650 ms. Therefore, as in the last section, normal passive scanning is not

studied.
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The cumulative handover delays are displayed in Figure 5.70. It shows

that when fast passive scanning is used, by far more than 90 percent of

the handovers are finished after 155 ms. However, there are hardly any

faster handovers. The fast passive scanning usually takes around 150 ms

and 160 ms and the variance is very low.

Normal active scanning, on the other hand, shows a quite different

behavior. The variance is by far larger. The handover delay ranges from

125 ms to about 225 ms. In about 40 percent of the cases, the normal

active scanning is faster than the fast passive scanning, but in 60 percent

of the cases it is slower. Therefore, fast passive scanning shows a nicer

behavior than the normal active scanning.
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Figure 5.70: Handover delay with traffic mix

Nevertheless, normal active scanning as well as fast passive scanning

are by far slower than the remaining two scanning mechanisms. Using
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fast active scanning, the handover delay ranges from about 20 ms to

approximately 45 ms, which is roughly three times faster than the other

two procedures. Fast passive scanning has a small variance, which is a

desired behavior.

As seen before, the neighborhood scanning mechanism is again the

fastest scanning mechanism. In the traffic mix scenario, the fastest han-

dovers are finished after about 5 ms, while most of the handovers are

finished after no more than 20 ms. In rare cases, the full handover pro-

cedure might take about 40 ms. The variance is still very small.

The simulation scenarios considered here, only used three access

points. However, we have seen in the last section already, that the neigh-

borhood scanning mechanism is susceptible to the (announced) number

of access points. The active scanning mechanism, on the other hand, is

not influenced if we add more access points to the scenario. In addi-

tion, the neighborhood scanning mechanism is by far the most complex

procedure and is not defined in the Wireless LAN standards.

Therefore, the fast active scanning mechanism should definitely be

proposed as the default way of performing the scanning procedure in

QoS enabled Wireless LAN environments as they appear in the context

of 4G networks.

5.6 Conclusions

The goal of this chapter was to evaluate the QoS capabilities of the Wire-

less LAN MAC protocol and its extensions in future 4G environments.

As a practical example, a large office building can be considered. If such

a large-scale environment has to be implemented using Wireless LAN,

several issues arise that need to be taken care of.

First of all, the 2.4 GHz frequency band is considered the better al-

ternative than the 5 GHz band, since coverage in the lower frequencies
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is far easier to reach. However, Wireless LAN in the 2.4 GHz frequency

band defines up to 14 channels, but only three are non-overlapping. Over-

laps in terms of frequency cause interference and limit the throughput.

In large-scale implementations, such overlaps can not be avoided com-

pletely. Therefore, the impact of overlapping cells was studied exten-

sively.

Several different scenarios had to be taken into account. In all of these

scenarios, the Wireless LAN MAC protocol has to support QoS demand-

ing applications. Our studies showed that the interference caused by

overlapping cells can cause great problems. In certain situations, even

best-effort users can block each other completely due to the high proba-

bility of collisions. However, it was shown that the QoS enabling Hybrid

Coordination Function can be configured in a way to support service

differentiation to solve these problems.

It was shown that the proposed default parameters for HCF are not

sufficient. They do not allow the necessary level of prioritization. Differ-

ent priority classes were introduced that support QoS in all the consid-

ered scenarios. An algorithm was proposed that assigns priority classes

automatically as needed.

These studies showed that voice, video, and best-effort traffic can be

performed simultaneously in overlapping and co-located cells, while still

supporting the necessary QoS levels. However, all the stations in these

scenarios were fixed and had no need to perform a handover to a different

access point.

Therefore, handover scenarios were considered in the remainder of this

chapter. It turned out that the most important task during a handover is

the scanning procedure. The Wireless LAN standard proposes a number

of different scanning mechanisms. All of these scanning mechanisms were

studied in detail. In addition, a promising scanning approach discussed

in the literature, was also considered.

Various scenarios were studied. Again the goal was to evaluate the
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capabilities of the mechanisms to support QoS demanding applications.

Several of these scanning mechanisms were proven to provide the nec-

essary functionality. However, in large office buildings with a high num-

ber of access points, neighborhood scanning should not be implemented,

because fast active scanning with a total handover time between 35.3

ms and 39.2 ms is sufficient and performs even better in highly loaded

networks. Therefore, the stations should be configured to perform fast

active scanning as the default scanning mechanism and if no access point

is found, the station shall switch to fast passive scanning.

However, QoS on any MAC layer can only be provided as long as

the traffic load in the system is kept at a certain level. In our studies

we found out that using the G723.1 codec for voice traffic, up to 18

simultaneous voice clients can be supported. However, if there are 19

or more stations in the cell trying to perform voice transmissions, the

system gets overloaded and the QoS can not be supported adequately.

Therefore, an admission control mechanism is necessary to make sure

that the load is kept at an acceptable level. It is left for future studies

to solve this issue.

The main conclusion of this chapter is that it is definitely possible

for the Wireless LAN Hybrid Coordination Function (HCF) to support

QoS even in large-scale implementations. Handovers can be realized fast

enough to support voice and video applications by implementing the

fast active scanning mechanism which is defined in the Wireless LAN

standard. Therefore, Wireless LAN has the required capabilities to be

integrated into future 4G networks on the Logical Link Control layer.

197



5 LLC - WLAN Logical Link Control

198



6 IP - Internet Protocol and

Mobility

I do not fear computers. I fear the lack of them. Isaac Asimov

(1920 - 1992)

The last chapter dealt with Quality of Service support of the Wireless

LAN Medium Access Control protocol when large-scale scenarios are

considered and handovers on ISO/OSI layer two are taken into account.

However, the size of a network, where only the capabilities of the MAC

protocol are needed for QoS support, is rather restricted. Such local IP

subnets are usually restricted to a building floor or at maximum the

whole building itself.

Human mobility, however, by far extends these geographical regions,

especially when mobile devices become smaller and almost as powerful

as desktop computers. Therefore, the QoS handover support has to be

lifted to the IP layer as well.

IP mobility has been the topic of many researchers for several years.

The basic approach by Charles E. Perkins even dates back to the year

1996 [Per96]. It could not support any type of QoS and it exhibits some

other major problems, but it still forms the basis of today’s proposals.

In this chapter, we introduce the most important approaches and dis-

cuss their advantages and drawbacks considering a Wireless LAN net-

work with QoS support. One such scenario is shown in Figure 6.1. It

consists of two IP subnets that are both connected to the Internet.
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Figure 6.1: IP handover scenario

Our major interest lies in the fact that once a wireless device roams

from one of these IP subnets to the other, it is not sufficient to simply

perform a handover on MAC layer, where only the associated access point

of a station is changed. In the case of a movement between different IP

subnets, the routing mechanisms of the Internet as well as the Intranet

require a change of the local IP address of the mobile device. However, a

seamless change of the local IP address is not supported by most of the

currently implemented applications. An update of all these applications

is not feasible, such that other approaches become necessary.

The second possible solution is to propagate host-specific routes for

each mobile node. However, considering the explosive growth of the num-

ber of mobile devices, such a mechanism is impractical as well. There-

fore, new proposals are necessary. In addition to the mere change of the

IP address, an integrated 4G network requires the IP handover to be

performed within stringent time limitations. In the following the most

important proposals for IP mobility are presented and their capabilities

to solve the IP handover problem in future 4G networks are studied.

These IP handover mechanisms are greatly discussed for the upcoming

IPv6 protocol. It will have an integrated support for IP mobility. On the

other hand, IPv4 does not have the flexibility to support the protocol

itself. However, the basic mechanisms of IPv4 and IPv6 mobility support
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are rather similar, such that it is sufficient for our purposes to solely

consider the IPv4 proposals.

6.1 Mobile IP

The first proposal for IP Mobility Support was released in 1996 as RFC

2002 [Per96]. In the meantime, several changes and extensions were

added, such that the current version of the document is RFC 3344: IP

Mobility support for IPv4 [Per02].

It defines a way to always identify a node by its home IP address,

regardless of its current location. If the node is away from home, it is as-

sociated with a care-of address, which provides the necessary information

to route the packets through a tunnel to the mobile node.

6.1.1 Mobile IP architecture and procedures

The architecture of the Mobile IP protocol is show in Figure 6.2. It

consists of three different components. The Mobile Node is defined as a

host or router that changes its point of attachment from one IP subnet

to another. During a handover, it may continue to communicate with

other nodes in the Internet, the Correspondent Nodes (CN).

The Home Agent is a special router in the Mobile Node’s home net-

work. It tunnels the datagrams for delivery to the Mobile Node, when it

is located in a foreign network. The Foreign Agent is a router in the vis-

ited network. It provides the routing services to the Mobile Node. This

means, it detunnels the datagrams from the Home Agent and delivers

them locally to the Mobile Node.

Therefore, the communication of the Mobile Node to the CN located

in the Internet is performed as indicated by the dashed arrows in Figure

6.2. Datagrams initiated at the Mobile Node are routed to the CN (1).

Routing is performed according to the destination address. The routes,
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Figure 6.2: Mobile IP architecture and packet flow

thus, do not consider that the Mobile Node’s IP source address is not

within their IP subnet.

The CN simply answers to the requests by transmitting the datagrams

back to the source IP address of the received packets. Therefore, the

routing mechanisms in the Internet make sure that the packets arrive at

the Mobile Node’s home IP subnet (2a).

The Home Agent stores a list of Mobile Nodes that are currently away

from home. The entries of this list consist of the home IP address and the

corresponding care-of address of the Mobile Node and are called Mobility

Bindings. They allow the Home Agent to decide whether the datagrams

simply should be forwarded to the home IP subnet or if they need to be

tunneled to a Foreign Agent (2b).

The list of the Mobility Bindings in the Home Agent is updated by

the Registration service implemented in the Mobile Node. As soon as it

is away from home, it registers its care-of address with its home agent.

This can be done directly or through the Foreign Agent, depending on
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the method of attachment as described later.

In order for a Mobile Node to find a Foreign Agent in a visited net-

work, two different methods are implemented. All Home and Foreign

Agents may advertise their availability by issuing Agent Advertisement

messages. In the initial version of the Mobile IP protocol, the interarrival

time of these messages was set to at least one second. Therefore, upon

a successful association to a foreign Wireless LAN network, the average

delay until a reception of an Agent Advertisement message was 500 msec,

which is too long for video and voice services. Therefore, the interarrival

time of the Agent Advertisement messages can be set to smaller values

as well in the newer version of the Mobile IP protocol [Per02].

In the second case, the Mobile Node plays a more active role. After

it enters a new network, it issues an Agent Solicitation message. The

Home and Foreign Agents answer the request by sending an Agent Ad-

vertisement. This way, the delay until the necessary information of the

connected network is found, can be greatly reduced. The two mecha-

nisms can be compared to the active and passive scanning mechanisms

of the Wireless LAN MAC protocol.

Once the Mobile Node retrieved the necessary Foreign Agent informa-

tion, it can start the care-of address acquisition process. Two different

methods are proposed. In the first mode, the Foreign Agent propagates

its own IP address as the care-of address. The Foreign Agent itself be-

comes the endpoint of the tunnel from the Home Agent. This mode is

referred to as the foreign agent care-of address. This mode is preferred,

since many Mobile Nodes can share the same care-of address and there-

fore put less demand on the already limited IPv4 address space.

The second mode is called co-located care-of address. Here, the Mobile

Node acquires a local IP address through some external means, such as

the Dynamic Host Configuration Protocol (DHCP). It then associates its

own network interface with this local IP address. In this mode, the Mobile

Node is the endpoint of the tunnel to the Home Agent and has to take
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care of decapsulation of the datagrams. In this mode, no Foreign Agent

is necessary, but more global routable IP addresses have to be accessible.

Consider that the co-located care-of address has to be routable from the

Home Agent. Therefore, using this mode of operation within a IP subnet

that performs Network Address Translation (NAT) to the outside, is not

an option!

6.1.2 Mobile IP performance issues

The basic IP mobility support was designed to allow Mobile Nodes to

roam to foreign IP subnets. However, the performance of these IP han-

dovers was of minor importance. The mere goal was to provide the nec-

essary functionality. Therefore, several issues arise that have a negative

impact on the handover performance. These issues are discussed in the

following.

Triangle Routing

As indicated by the architectural overview of the Mobile IP mechanism

in Figure 6.2, the data traffic of a Mobile Node located at a foreign

network and communicating with a Correspondent Node somewhere in

the Internet exhibits triangle routing. Data packets initiated by the Mo-

bile Node are directly transmitted to the Correspondent Node, since the

routing protocols base their decisions on the destination address.

The Correspondent Node answers the requests by issuing packets to

the source address, which is the home IP address of the Mobile Node.

Therefore, the packets are routed to the home IP subnet. From there, the

packets are delivered to the Mobile Node using tunneling. As explained

earlier, either the Foreign Agent or the Mobile Node itself is the endpoint

of the tunnel. In either case, the packets need to be tunneled to the

foreign IP subnet.
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In terms of performance, the triangle routing definitely leads to an

increase of the network delay. In addition to the normal delay, the packets

always have to traverse the tunnel from the home to the foreign network.

Micro-Mobility versus Macro-Mobility

Once a Mobile Node roams to a foreign subnet, it initiates a handover.

First the local registration process is initiated. As explained above, there

are two different methods that allow the Mobile Node to associate with

the foreign IP subnet. In case of a foreign agent care-of address it has to

learn the necessary infrastructure information about the visited network,

while in the case of co-located care-of address, the Mobile Node needs

to retrieve a global IP address from the foreign IP subnet.

After the local registration in the foreign network is completed, the

Mobile Node needs to perform a Binding Update, which informs its Home

Agent of its current care-of address. In turn, the Home Agent can now

start to setup the tunnel for the Mobile Node. This completes the Mobile

IP handover and allows the Mobile Node to continue its communication

with the Correspondent Node.

Such a handover process is frequently referred to as Macro-Mobility.

It defines that the Mobile Node changes its point of attachment in a

way that a binding update at its Home Agent becomes necessary. Three

cases can be distinguished that demand for Macro-Mobility. Either the

Mobile Node moves away from its home IP subnet to a foreign subnet,

or it roams from one foreign IP subnet to another, or it simply returns

home after visiting a different network. In all of these cases, the Home

Agent needs to update its binding list and the related tunnel.

During the Macro-Mobility procedures, the Mobile Node experiences

a certain amount of time where it can not communicate with the Corre-

spondent Node. This handover delay depends on the time for the local

registration and the tunnel establishment. QoS demanding applications
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such as voice conferencing prefer one-way delays of less than 150 msec.

At most a one-way delay of 400 msec is acceptable. Therefore, Macro-

Mobility handovers are critical if a QoS level has to be provided.

Figure 6.3: Macro-Mobility versus Micro-Mobility

However, in large IP subnets a different type of mobility can be con-

sidered. Since large-scale IP subnets are usually separated into logical

subgroups, there are often several Foreign Agents located in a single

IP subnet. In such cases, the utilization of Mobile IP leads to a higher

frequency of Macro-Mobility handovers that are actually not necessary.

Optimizations of the standard mechanisms are possible. These are not

considered in the IP Mobility Support RFCs, but it is mentioned that the

pure Mobile IP functionality is not sufficient for Micro-Mobility support.

In the next section such Micro-Mobility enhancements are explained.

They help to reduce the organizational overhead of the protocol and

therefore lead to a reduced delay.

The difference between Macro-Mobility and Micro-Mobility can be
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seen in Figure 6.3. It shows that a movement between two subnets re-

quires a Macro-Mobility handover while a movement within a single sub-

net can be covered by Micro-Mobility support.

Agent Advertisements and Solicitation Messages

The local registration process of a Mobile Node roaming to a new net-

work itself can be distinguished in terms of handover performance. As

described above there are two different ways a Mobile Node can learn

about the local infrastructure. Either it scans the network traffic for

regularly transmitted Agent Advertisements, or it actively broadcasts a

Soliciation Message to get informed of the Home or Foreign Agent.

In the case of Agent Advertisements, the Home or Foreign Agents,

frequently broadcast data packets that inform the stations in the lo-

cal IP network of their presence. In addition, other relevant information

is transmitted, such as the lifetime or the router address. The original

RFC 2002 specified a advertisement frequency of no less than one sec-

ond. However, this leads to an average delay of 500 msec for Mobile

Nodes entering the network. This is by far too large for many real-time

applications. Therefore, the newest RFC 3344 allows higher frequencies.

Nevertheless, higher advertisement frequencies have the drawback of in-

creasing the overhead of the protocol, such that a good trade-off between

advertisement frequency and protocol overhead has to be found.

Solicitation Messages, on the other hand, allow a Mobile Node to

perform an active search for Mobility Agents in the currently associated

IP network. The RFC 3344 defines that such Solicitation Messages should

only be sent in the absence of Agent Advertisements. After successful

reception at a Mobility Agent, it responds by transmitting an Agent

Advertisement, which in turn informs the Mobile Node of the necessary

information.

In terms of performance, the Solicitation Messages can be used to
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reduce the initial delay of IP handovers. The term ”SHOULD” in the

RFC allows to do so, if understood and carefully weighed. Therefore,

it seems appropriate to perform such active scanning at least for QoS

demanding Mobile Nodes, in order to keep the initial delay as low as

possible.

6.2 Mobile IP Enhancements

In this section, several important enhancements to the basic Mobile IP

proposal are presented. Due to the vast number of proposals that are

known from the literature, it is impossible to even name all of them.

Therefore, just a small number of extensions were chosen.

6.2.1 Route Optimization in Mobile IP

Charles E. Perkins and David B. Johnson proposed a route optimization

scheme for Mobile IPv4 [PJ02]. The first version dates back to the year

1994, while the last version was issued in 2002. It is still considered as

work in progress and has not been released as an RFC by the IETF.

However, first implementations exist and several performance studies

were published.

The main idea is to create a way to get around the triangle routing as

it happens when the basic Mobile IP protocol is applied. In order to do

so, a binding cache is introduced that allows to store the current care-of

address of the Mobile Node and to tunnel the data packets directly to

this care-of address bypassing the Mobile Node’s Home Agent.

A binding cache can be kept by any node. The entries of the binding

cache are inserted every time an authenticated Binding Update message

is received. These messages do effectively change the routing of data-

grams, such that the authentication of such messages is important.
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If no binding cache is used, the datagrams are send as specified by

the basic Mobile IP protocol. The Correspondent Node transmits the

packets to the Mobile Node’s home IP address. There they are inter-

cepted by the Home Agent and tunneled to the current care-of address.

The route optimization extension now specifies, that every time a Home

Agent receives datagrams and tunnels them to the foreign location, it

also sends a Binding Update message to the originating address of the

Correspondent Node.

Correspondent Nodes that do not keep a binding cache may simply

ignore those messages. However, it may also insert a new entry to its

local binding cache. This entry informs the Correspondent Node of the

current care-of address of the Mobile Node. It can then be used to directly

transmit the data packets to the current point of attachment. In order

to do so, the Correspondent Node has to set up a tunnel as the Home

Agent does.

Problems arise, if the Mobile Node changes its point of attachment,

once the Corresponding Node performs route optimization. The packets

are still transmitted to the old care-of address. However, in case of a

foreign agent care-of address, the endpoint of the tunnel can deduce

that the Correspondent Node uses an out-of-date binding cache entry. It,

therefore, informs the Mobile Node’s Home Agent of such a node, which

in turn transmits a new Binding Update message to the Correspondent

Node. Once this Correspondent Node updates its binding cache, the

packets can be delivered to the correct care-of address.

In addition, the route optimization extensions also enable smooth han-

dovers, where the old Foreign Agent of a Mobile Node is informed of the

new care-of address and can, thus, forward stored datagrams to the new

location. In the original approach, the Home Agent changed the care-of

address of the Mobile Node that has moved and sets up a new tunnel

to the endpoint. However, data packets that were intercepted and sent

to the previous care-of address in the time between the handover and
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the registration update, were lost and had to be taken care of by higher

layer protocols.

Route optimization introduces a way to reliably notify the Mobile

Node’s previous Foreign Agent of its new point of attachment. There-

fore, the buffered datagrams can be forwarded to this location. Besides,

this mechanism also allows to forward the packets that a Foreign Agent

receives due to the out-of-date binding cache entries of Correspondent

Nodes. Not only does the Foreign Agent take care of informing the Home

Agent to send a Binding Update message to the Correspondent Node,

but it also makes sure that the packets do not get lost, but are forwarded

to the right location.

It should be mentioned, however, that the route optimization can only

be introduced if the foreign agent care-of address mode is utilized. If there

is no dedicated Foreign Agent in the foreign IP subnet and the Mobile

Node uses the co-located care-of address, out-of-date binding cache en-

tries can not be detected and smooth handover becomes impossible.

6.2.2 Mobile IPv4 Regional Registration

As an optional extension to the Mobile IPv4 protocol, the Mobile IP

Working Group defined the Mobile IPv4 Regional Registration mecha-

nisms [GJP04]. The main idea is to introduce a layer of hierarchy in

a visited domain, such that a fast Micro-Mobility mechanism can be

supported. This is necessary since each router that connects IP sub-

nets within this large IP network has to implement the Foreign Agent

functionality. Instead of registering with the Home Agent every time a

Mobile Node roams to a new location within a large IP subnet, a new

entity is introduced, the Gateway Foreign Agent. It takes care of the

user mobility within the foreign domain. Therefore, the number of sig-

naling messages to the home network is reduced, which helps to reduce

the signaling delay in case of user mobility.
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Figure 6.4: Overview of the Regional Registration support extension for

Mobile IPv4

An overview of the functional components involved in Mobile IPv4

with support for Regional Registration is provided in Figure 6.4. The

foreign IP subnet contains a new entity, the Gateway Foreign Agent,

which is a Foreign Agent with additional functionality. It forms the basis

of a hierarchy of Foreign Agents within the foreign domain and has a

publicly routable IP address. Beneath the Gateway Foreign Agent, one

or more (Regional) Foreign Agents are used.

If a Mobile Node enters such a foreign network the first time, it has to

register its care-of address with its Home Agent as in the basic Mobile

IPv4 approach. However, if regional registrations are supported in the

foreign network, the address of the Gateway Foreign Agent is registered

at the Home Agent. The Gateway Foreign Agent does not change as long

as the Mobile Node is located in the foreign domain.

In order to support regional registration, several messages have to

be extended. The Registration Requests sent by the (Regional) Foreign

Agents to the Gateway Foreign Agent now include a Hierarchical Foreign
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Agent extension. This option informs the Gateway Foreign Agent of a

regional movement of the Mobile Node, such that it can update its local

list for forwarding purposes. The Agent Advertisement messages, telling

a Mobile Node about the presence of a Foreign Agent, are extended to

indicate the support for regional registration.

The Mobile IPv4 Regional Registration mechanism is downward com-

patible with the pure Mobile IPv4 proposal. Clients do not have to utilize

the extension. However, considering that Micro-Mobility is assumed to

happen much more frequently than Macro-Mobility, the reduction of un-

necessary handover delays is advisable.

A number of other proposals that help to increase the performance

of Micro-Mobility can be found in the literature ([RVS+99], [Val99]).

Regional Registration is merely one example.

6.2.3 Low Latency Handoffs in Mobile IPv4

Another interesting Internet draft for the enhancement of Mobile IP per-

formance is the Low Latency Handoffs in Mobile IPv4 proposal [Mal04].

As discussed earlier, the delay until a Mobile Node receives the neces-

sary information about the local Mobile IP infrastructure depends on

the interarrival time of the Agent Advertisement messages. In the origi-

nal Mobile IPv4 approach, these messages were sent no more often than

once per second. The latest version allows for higher frequencies. How-

ever, the higher the frequency of these messages, the more load is put on

the link. Therefore, a trade-off between the frequency and the additional

overhead has to be found.

The Low Latency Handoff in Mobile IPv4 proposal, on the other hand,

introduces a different way to lower the initial handover delay. It defines

L2 triggers, i.e. indications initiated on layer two of the ISO/OSI model,

to inform the IP layer of a (successful) handover to a new location. Utiliz-

ing these triggers, three different methods can be implemented that help
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to improve handover performance. They are explained in the following.

The methods are pre-registration, post-registration, and a combined

handover method. It is worth mentioning that such an approach infringes

the clean separation between the different layers of the protocol stack.

When pre-registration is applied, the Mobile Node is assisted by the

network in performing an IP handover, before the MAC layer handover

is finished. L2 triggers are used by the Mobile Node or the Foreign Agent

to initiate particular IP layer events, depending on whether a network-

initiated or a mobile-initiated handover occurs.

Basically, pre-registration uses the concept of Proxy Routers, where

the Mobile Node is being informed of the new Foreign Agent ahead of

the actual handover. The Mobile Node can then start the registration

process with the new Foreign Agent, even if a layer two handover has

not been performed. All the traffic between the Mobile Node and the

new Foreign Agent is routed through the old Foreign Agent as long

as the actual MAC layer handover has not been performed. Therefore,

the old Foreign Agent acts as a ”proxy router” for the new Foreign

Agent. This explains the basic mechanism. However, depending on the

type of handover, mobile-initiated or network-initiated, there are slight

differences, but the concept stays the same.

Post-registration, on the other hand, is performed after the actual

MAC layer handover is finished. L2 triggers are used to set up a bi-

directional tunnel between the old Foreign Agent and the new Foreign

Agent. Here, the old Foreign agent is referred to as the anchor Foreign

Agent. This bi-directional tunnel is used as long as the registration pro-

cess with the Home Agent is not finished. The anchor Foreign Agent

acts as the endpoint of the Home Agent tunnel. Such an approach has

two merits. One is that the delay of a handover is clearly decreased. The

other advantage is that no packets are dropped at the old Foreign Agent,

since they are simply forwarded to the new access point. As soon as the

registration with the Home Agent is finished, the new Foreign Agent
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becomes the tunnel endpoint and normal Mobile IP operation continues.

The third option defined in the Low Latency Handoff in Mobile IPv4

proposal is a combination of pre-registration and post-registration. These

two processes are run in parallel. In this combined solution the pre-

registration process is initiated first. If it completes successfully, the

proxy mechanism is used prior to the actual layer two handover. However,

if the process does not complete before the actual handover is performed,

the post-registration is applied. In such scenarios, the post-registration

is used as a backup mechanism if the pre-registration fails.

It can be concluded that the utilization of L2 triggers can help to

increase the performance of handovers on IP layer. The clear separa-

tion of the ISO/OSI layers is undermined, but the proposed solution can

easily be integrated into the basic Mobile IP mechanism. The proposal

even discusses the integration of the trigger mechanisms in hierarchi-

cally structured environments where Gateway Foreign Agents are used

to support Micro-Mobility.

6.2.4 Wireless Multiprotocol Label Switching

(WMPLS)

Multiprotocol Label Switching (MPLS) defines a switching technology

for IP networks that provides the network operator with mechanisms for

the engineering of network traffic patterns. The traditional layer three

forwarding paradigm is based on independent forwarding decisions at

each single hop between a sender and a receiver based on the IP packet

header. In MPLS networks, on the other hand, the analysis of the packet

header is performed only once when an IP packet first enters an MPLS

network. The packet is then assigned to a stream, which is identified by

a label. These labels are used as lookup indexes into the label forwarding

tables, which in turn stores the forwarding information.

Using MPLS technology, the assignment of the labels to the packets
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can be done based on various parameters. Therefore, traffic differenti-

ation, QoS level assignment, or predefined routes through the network

can be defined. Considering the opportunities of MPLS networks, several

publications ([LGT01], [YM01]) can be found that propose mechanisms

to exploit the advantages in order to support fast handover procedures

with QoS support. Here, just a small set of these proposals is discussed

in order to summarize the common ideas.

The basic way of integrating Mobile IP into an MPLS environment was

presented in Integration of Mobile IP and Multi-Protocol Label Switching

[RTFK01]. It was shown, that the switching mechanism can be used to

take care of the forwarding of data traffic between the Correspondent

Node and the Mobile Node. The IP-in-IP encapsulation is not needed

any more. Basically, normal MPLS operation can be used to take care

of the necessary functionality. Using MPLS tunnels for the packet for-

warding allows to perform traffic engineering on this path, such that the

additional delay can be kept at a minimum.

In addition, the authors showed that such an approach is not restricted

to a network where the Home Agent and the Foreign Agent are both

located within the same MPLS domain. It can be applied to other cases

as well. Multiple MPLS domains with edge Label Switching Routers

exchanging label information are a possible scenario, as is the case where

MPLS domains are connected by an IP cloud in between.

Due to the higher handover rates in micro-cell implementations, such

as in Wireless LAN environments, an extension to the basic integration of

Mobile IP and MPLS was published in [YM01]. It is called Hierarchical

Mobile MPLS: Supporting Delay Sensitive Applications Over Wireless

Internet.

The basic idea is to improve the performance of local handovers within

a single foreign domain. This approach is similar to the Mobile IPv4

Regional Registrations, explained in Section 6.2.2. A hierarchy of Foreign

Agents is established within the foreign domain. The top element in
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this hierarchy is the Foreign Domain Agent (FDA). Whenever a Mobile

Node roams within the domain from one Foreign Agent to another, the

registration requests are not directly forwarded to its Home Agent with

the associated delay, but they are intercepted by the highest level Foreign

Agent, the FDA.

IP-in-IP tunneling is not performed, since MPLS tunnels are estab-

lished, not only between the Home Agent and the FDA, but also within

the local hierarchy of Foreign Agents. Therefore, Hierarchical Mobile

MPLS combines the advantages of Micro-Mobility support with the

traffic engineering capabilities of the integrated Mobile IP and MPLS

infrastructure. Thus, smoother local handovers can be performed.

6.3 Summary

In this section, some of the published proposals for mobility support

on IP layer are presented. The most important mechanism is the IP

Mobility support for IPv4 specified in RFC 3344. This protocol was

initially published by Charles E. Perkins and still forms the basis for all

other protocols.

Mobile networks of the 4th generation will exhibit a need for mobility

support even for QoS demanding devices and applications. It is clear,

that the basic Mobile IP protocol does not support such high demands.

It was designed to allow mobility at all. Therefore, extensions to the

basic approach are definitely needed.

Nevertheless, there is no single proposal that can provide all the nec-

essary capabilities. Some extensions deal with the optimization of Micro-

Mobility, while others improve the overall delays, e.g. by avoiding trian-

gle routing. Yet others discuss the important issue of authentication and

authorization when mobility occurs. None of these proposals considering

AAA has been discussed in this section, which does not mean that they
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are of less importance.

However, there is a large number of publications that are still unmen-

tioned. The IPv6 protocol, for example, provides support for extension

headers, which again allow to integrate mobility support directly in the

IP protocol itself. All of the proposals discussed above can be found in

the IPv6 domain as well. In addition, IPv6 allows for other extensions

[CH02]. The support for QoS within the IP protocol is just one issue.

Therefore, other methods to improve the performance of handovers be-

come possible.

All of these factors clearly show that a myriad of different proposals

and extensions to the basic Mobile IP protocol exist. On the other hand,

the discussion about 4G networks just started and the architecture is

not completely clear yet.

This all adds to the uncertainty of which protocol is the best candidate

for future mobile networks. Clearly no recommendation can be given so

far. Extensive studies of the various protocols are still necessary to get a

better understanding of the differences and their suitability in different

potential architectures.
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The most exciting phrase to hear in science, the one that

heralds new discoveries, is not ’Eureka!’ (I found it!) but

’That’s funny ...’. Isaac Asimov (1920 - 1992)

Wireless networks of the 4th generation are both, a great opportunity

and a big challenge. The integration of heterogeneous networks into one

single system allows to exploit the individual strengths of each technology

but also increases the complexity. The industry has long identified the

potentials and started research projects to study the feasibility. This fact

is reflected by the topics seen at international research conferences that

started to pick up issues of 4G networks into their schedules lately.

However, research in the area of 4G networks has just started. Discus-

sions indicate that there might be potential for a competition between

Wireless LAN based networks and UMTS systems in the future. Nev-

ertheless, these discussions are mostly based on visions and not on a

solid basis of research results. Our studies are intended to shed light on

one specific topic. The question was whether the Wireless LAN protocol

is capable of simultaneously transporting data traffic of different types

while still keeping the user-experienced Quality of Service at an accept-

able or necessary level. This is an important factor, since it is essential

if Wireless LAN networks can be integrated into today’s legacy systems

where these kinds of data traffic occur and are supported.

We started our discussion with an overview of the history of wireless

systems in Chapter 2. It shows the evolutionary development of mobile
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communication up to date. This is followed by a summary of the Wireless

LAN standard and the various standard extensions. In addition to the

basic standard IEEE 802.11, which all Wireless LAN devices are based

on, a total of 19 different standard extensions are listed. Some of them

reached the state of an official supplement, while others are still in the

process of being developed. This clearly indicates that the development of

the Wireless LAN protocol is by far not finished, yet. As the discussion

about the future potential of Wireless LAN continues while research

results frequently show the advantages or drawbacks of various WLAN

features, the protocol is further enhanced to overcome any appearing

problems; Wireless LAN evolves evolutionary.

The most important standard supplement for our studies is the IEEE

802.11e Medium Access Control (MAC) Quality of Service (QoS) En-

hancements. It defines extensions to the MAC protocol itself. The goal

is to differentiate traffic in a way that a prioritization of QoS demanding

traffic can be achieved over best-effort traffic. However, the exact prop-

erties of the different traffic types have to be taken into account in order

to receive valid and significant results. Chapter 3 takes a closer look at

these traffic types. It discusses the File Transfer Protocol (FTP) and

the Hypertext Transfer Protocol (HTTP), and explains the way voice

and video data is transported. This includes a discussion of voice and

video codecs as well as of the User Datagram Protocol (UDP), Transport

Control Protocol (TCP), and Real-Time Protocol (RTP).

Chapter 3 then explains the differences in quality assessments that

are necessary depending on the type of traffic that is considered. While

a Web user mostly cares about the amount of time that he has to wait

until the download of the requested page is finished, it is much more

complicated to judge whether a voice or video user is satisfied with the

received Quality of Service. Different approaches as found in the litera-

ture are explained. The chapter is finished by a summary of the traffic

types that are considered in the studies presented later.
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The Physical layer specifics of the Wireless LAN protocol are explained

in Chapter 4. The different modulation techniques such as BPSK, QPSK,

CCK, and OFDM are presented in detail and their properties and im-

plications on the performance of the wireless channel are discussed. The

chapter is continued with a summary of the important factors that have

to be taken into account when analyzing a wireless channel. This includes

issues such as fading, path loss, and the ways in which bit error rates

or packet error rates can be calculated. The chapter is concluded by an

overview of the parameters used to retrieve the results of later chapters.

The analysis of the Wireless LAN Medium Access Control protocol

and its capability to support QoS demanding traffic and applications is

presented in Chapter 5. In the first part, the different MAC protocols as

defined in the IEEE 802.11 standard and its extensions are explained in

detail. This includes the basic DCF operation mode, with the CSMA/CA

protocol, as well as further enhancements, such as the polling mechanism

specified in the PCF mode and finally the HCF mode, with its different

access mechanisms EDCA and HCCA.

The results for the MAC protocol performance evaluation are pre-

sented in Section 5.3. It starts with simple single cell scenarios and basic

performance studies of the CSMA/CA protocol in the case where only

Web users are present. After that, an extensive study of the Hidden

Node problem and the RTS/CTS mechanism follows. It is shown that

the RTS/CTS mechanism can not improve the system performance due

the fact that it increases the overhead of the protocol.

In the following, overlapping and co-located cells are studied. It is ex-

pected that these cases will occur frequently in large-scale environments

as they are expected when 4G systems are deployed. The Physical layer

restrictions that only allow three non-overlapping channels, lead to sce-

narios where the coverage areas of Wireless LAN access points overlap

both in coverage and in frequency, such that great amounts of interfer-

ence are the consequence. Our studies aim at the question of how well
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the different MAC protocols can deal with such situations while the per-

formance is kept at a high level and QoS demanding applications and

traffic has to be supported.

Section 5.3.2 shows that the pure DCF mode of operation is not capa-

ble to cope with the problems arising in overlapping or co-located cells,

not even in the case where only best-effort traffic is studied. However, it

is shown that if a prioritization scheme based on the Contention Window

sizes, and thus on the average number of back-off slots is introduced, the

unfairness of the CSMA/CA protocol can be eased in the studied sce-

narios. However, it is pointed out that the DCF mode, as defined in

the standard, does not allow to perform such a prioritization scheme.

Therefore, it can be concluded that it is simply not capable of providing

fairness and QoS support in overlapping and co-located cells.

In the next step, the HCF mode with its QoS enabling functionality

for single cell scenarios is studied. This IEEE 802.11e enhancement of the

basic CSMA/CA protocol allows to perform a prioritization based on the

Contention Window size. Therefore, it seems appropriate to perform the

needed prioritization for overlapping and co-located cells. A large number

of different simulation scenarios are studied in Section 5.3.3. Different

mixtures of Wireless LAN clients performing voice, video, and best-effort

traffic in the overlapping and co-located cell scenarios are evaluated. It

turns out that the prioritization based on the Contention Window size

is adequate to support any kind of traffic mixture. Depending on the

scenario, different sets of prioritization have to be chosen in order to

provide the necessary QoS level for real-time demanding applications

while still keeping the performance experienced by best-effort users at

a high level. Finally, it is shown that it is possible to simultaneously

perform voice, video, and best-effort applications in any of the scenarios

and still keep the quality for any of the three at an acceptable level.

It is clear that the system can only provide QoS service to its asso-

ciated clients, as long as the system does not experience an overload
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situation. In order to prevent such situations, however, an access control

mechanism has to be applied. Nevertheless, this was not the topic of our

studies, such that no access control mechanisms have been implemented.

It was merely shown that if the system load is kept at an appropriately

low level, the HCF MAC mechanism can provide adequate prioritiza-

tion to support mixtures of real-time and best effort traffic even in the

challenging scenarios of overlapping and co-located cells.

Another important issue when studying wireless systems and their

capability of supporting QoS traffic is the topic of handover. Therefore,

Wireless LAN stations roaming between different access points are stud-

ied extensively in Section 5.4. The handover procedure consists of three

different tasks. First, scanning has to be performed. It identifies poten-

tial candidate access points that the Wireless LAN station can associate

with. Then, association or reassociation has to be performed. After this

stage, the station is connected to the new access point. Finally, the au-

thentication mechanism has to make sure that the client is allowed to

use the new access point.

It is identified that scanning is the most critical part of a handover in

terms of performance. A number of different scanning mechanisms are

defined in the standards, such as active and passive scanning as well as

variations of these two. Our studies show that not all of these candi-

dates perform equally well in the complex scenarios considered in our

simulations. However, it can be concluded that the fast active scanning

mechanism performs well enough to allow handovers of stations perform-

ing real-time applications even in overlapping and co-located cells.

Summarizing Chapter 5 we can conclude that the IEEE 802.11e stan-

dard with its HCF mode of operation is well suited to support a mixture

of real-time and best-effort traffic in complex Wireless LAN scenarios.

It is important to choose the right parameters, and an appropriate ad-

mission control mechanism to avoid system overload is required, but

Wireless LAN in a 4G environment is possible if it comes to the MAC
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protocol.

It is important to realize, that there exist some more requirements

for the handover in large-scale Wireless LAN environments. Section 5.4

studied the requirements of a handover within a single IP subnet. Here,

the station roams to a new access point, but it can keep up its com-

munication to other nodes because a change of the IP address was not

necessary. However, in large networks, handovers occur between different

IP subnets. In such a case, the IP routing within the Internet requires

a change of the IP address of the client as well. Traditionally this is not

possible seamlessly without additional changes to the protocols. Other-

wise, all the applications have to be informed of a change of IP address,

which usually requires a complete restart.

Therefore, the Mobile IP protocol was proposed. It allows for seamless

handovers. However, the initial draft of the protocol does not deal with

the problem of delays during the handover process. In Chapter 6 an

overview of the basic Mobile IP protocol is given and some performance

enhancing extensions to the protocol are discussed. Due to large amount

of proposed mechanisms, it is impossible to give a complete overview

of the topic in this work. The point merely was to give the reader a

feeling of what the different proposals aim at. At the end of the chapter

we discuss the fact that it is still uncertain which protocol is the best

candidate for future mobile networks. No recommendations can be given

here, but more research work is needed.

Considering the results of our studies, we can conclude that Wireless

LAN has a great potential in the context of 4G networks. There are still

many open issues that have to be clarified before a final answer can be

given, but it is certain that the future Wireless LAN MAC protocols can

provide the necessary QoS levels. From a technical perspective it is pos-

sible that mobile networks of the 4th generation including the Wireless

LAN technology can become a reality.
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