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Abstract

We consider the problem of computing optimal sets of paths between source-
destination pairs in large IP networks. Given the traffic demands between the pairs
of nodes, link capacities and the topological structure of the network we wish to
allocate the traffic streams to routes such that either the maximum link utilisation is
minimized, or the average link utilisation of the network is minimized. An
interesting feature of the optimisation is that the set of paths selected, for all pairs,
must be constrained to satisfy shortest path principles.

Two approaches are developed. The first, based on use of k’th shortest paths,
iteratively modifies link costs to achieve the selected objective. The second method
seeks to apply network decomposition effectively such that the LP technique of
Staehle, Kohler and Kohlhaas [11] may be implemented on each subgraph in an
iterative algorithm.

1. Introduction

The problem considered in this research report is described fully in [11].

Essentially, given a fixed network defined by its link adjacency matrix, the traffic
demands between node pairs of the network and link capacities, an optimal routing
pattern is required. The routing pattern (set of paths between the source-destination
pairs) is optimal if the carried flows meet the link capacity constraints, minimize an
objective function and satisfy shortest path principles. That is, once the paths have
been determined costs (not necessarily unique) can be assigned to the links of the
network such that application of a shortest (cheapest) path algorithm to the network
would result in the unique selection of the previously mentioned optimal routing
pattern. The objectives considered in [10] are to minimize the maximum link
utilisation, or to minimize the average network link utilisation or to minimize a
linear combination of these two values.

To solve the first problem, that is to find the optimal path allocations, the problem is
formulated as an Integer Program. Because only one path is to be selected for each
source-destination pair (an “all or nothing assignment”) and the selected paths must
correspond to shortest paths, these routing constraints imply that the solution to the
integer program can be found using Linear Programming (LP). That is, the solution
to the LP gives integer values for the decision variables.

The method for finding a set of link costs that would generate the optimal paths
using shortest path routing at each node is to also formulate and solve a second LP.
This problem is an inversion of the Dijkstra [3] shortest path problem. In this report
we will focus on the first part of the problem, that is, the determination of the
optimal set of paths.

At the present time, finding an optimal solution by the two-LP method of [11] seems
to be restricted to problems with less than 30 or so nodes.



The number of constraint rows in the LP is the limiting factor.

In order to extend the range of applicability for large networks and to improve the
computational speed we consider two heuristic approaches. The first, based on use
of k’th shortest paths, iteratively modifies link costs to achieve the selected objective.
The second method seeks to apply network decomposition effectively such that the
LP technique of Staehle, Kohler and Kohlhaas [11] may be implemented on each
subgraph in an iterative algorithm.

We first define the optimal routing problem and describe the LP formulation.

2. Formulation of the Problem

The decision variables are zero-one variables X, which take the value 1 if and only

if the link (7,j) belongs to the selected path for source-destination pair u-v. The traffic
demand from u to v is fi» and the capacity of link (i,j) is c;. The ratio of the total flow
on link (i,j) to its capacity cij gives the link’s utilization.

The objective function (see below) comprises two terms, the second being the sum of
all link utilisations for the entire network (this is proportional to the average link
utilisation) and the first is a bound on the maximum link utilisation. Minimizing the
variable f (a percentage, see the utilisation constraints below) effects the reduction
of the maximum link utilisation. The parameter a; is a weight to control the
importance of the first term relative to the second term.

The routing constraints deserve special comment.

The insistence on shortest path routing means that if the path from node i to node v
includes link (s,#) then if the path from u to v passes through node i, it also must
include link (s,¢).




The derivation of the routing constraints is illustrated below.
Other constraints in the formulation are standard network constraints.

x¥ =1b X! £xy canbeformulated as
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Capacity Constraint s
axrtveag, for all links (i, j)

Utilisation Constraint s
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Routing Constraint s

XY+ XY - XY £1 for all flowsu-v, routersi I {u,v} and links (s,t)
Xy +xg - X £1 for all flowsu-v, routersj T {u,v} and links (s,t)

(e x'=1b x{ £x¢ and X, =1P x{ £ )
Delay Constraint s

a x'd, £ady,
ij

As the graph is undirected, to avoid cycles from the source (or destination) to an
adjacent node and back to the same node (i.e. the existence of disconnected paths) we
set the variables x* and x equal to zero. The minimization of the average utilisation

in the objective function will result in the avoidance of cycles in the connected paths
between a source and destination.
The delay constraints specify that the delay on any selected path between nodes u-v

must not exceed a multiple a, of the minimum delay path d;;, between u and v.

min



3 K Shortest Path Cost Adjustment Heuristic

We reformulate the above problem directly in terms of link costs. Denoting the cost
label on link (i,j) by wj;, and the vector of link costs by w the formulation is:

o O fuv o
Min & & X (W)
ij uv ij

w30

+at(w)

That is, the objective function is simply a function of the link costs w .
We are given the network topology, the flow demands, link capacities and delay
constraints. Once the link costs are specified the X" follow directly from the shortest

paths.

We will describe the heuristic with the aid of an example.

The first step is to allocate link costs to all links, and to then determine k’th shortest
paths for each source-destination pair u-v. From the shortest paths we can compute
the total load carried on each link and the link utilisations. The k shortest paths are
used in re-allocating flows, that is, a re-selection of new shortest paths is made with
the aim of reducing the objective function. The important question is, “How can we
alter the link costs in an iterative algorithm such that the maximum link utilisation
(and as far as possible also the average link utilization) are minim ized?” The details
of how this is done are given in section 3.1

We first recall that in [11] it was necessary (the second LP) to determine a set of link
costs consistent with a given set of shortest (cheapest) paths. This is a non-trivial
inversion of the shortest path problem. The approach adopted in the heuristic avoids
this inversion problem.

3.1 Example of the KSP Cost Adjustment Heuristic

We select the initial set of link costs such that links with large capacities have less
cost than links with smaller capacities. Specifically the initial cost associated with link

(i) is:

C . . . .
[a—2] wherec,_,, isthe maximum link capacity for the network,

i
G, isthe capacity of link (i, j)
[X] denotes the smallest integer 3 X
and a isan integer multiplier.

We consider the following 10 node network:



The traffic demands between the nodes of the network and the link capacities are s
shown in the two matrices below. Our objective is to determine a set of link costs
such that under shortest path routing a minimization of the maximum link utilisation
is achieved (as the prime objective) and also a reduction in the average link
utilisation.

112 |3 |4 |5 |6 |7 |8 |9 |10
110 |8 |5 (12|33 |7 |4 |10|6 |1
2 18 |0 |2 |11]|9 |14|3 |13|5 |7
3 |5 |2 |0 |3 |7 |6 |4 |3 [14]|8
4 (121113 |0 |4 |1 |2 7 |3
5 |3 (9 (7 |4 10 |3 |7 |2 |9 |5
6 |7 |14|/6 |1 |3 |0 |8 |10(4 |2
7 14 |3 (4 ]2 |7 |8 |0 |7 |2 |1
8 [10|13|3 |1 |2 |10|7 |O |3 |9
9 |6 |5 [14]|7 |9 |4 |2 |3 |0 |4
101 |7 |8 [3 |5 |2 |1 |9 (4 |0

Flow demands



112 |3 |4 |5 |6 |7 |8 [9 |10
1 |0 |30]40
2 |30]0 |60 40
3 400|600 |40 98
4 40 |0 20
5 0 [60 40
6 98 60 |0 80
7 40 0 [60
8 40 60|0 |20
9 20 80 200 |50
10 5[0
Link capacities

The initial set of link costs are now :

E.g. for link (1,2) its cost is [10+98/30] = 33

Initial link costs- witha= 10

Next, we compute the k’th shortest paths for each source-destination pair. Yen's
algorithm [12] was used for this purpose. It is described in the Appendix, together
with some observations concerning computation of k’th shortest paths.

A feature of this heuristic is that it is only necessary to compute the k’th shortest
paths once. Path cost adjustments are performed in a simple manner, thus avoiding
an O(nd) calculation at each iteration of the algorithm. For our example, the k=3
shortest paths are shown in the tables below. It is thought that it is only necessary to



consider a few shortest paths for each source-destination pair of nodes rather than to
generate all paths satisfying the path delay constraints. Further experimentation will
establish further information on what value of k to use; this will be a function of the
size of a network.

P |12 33 Pg | 1369 48 Pg |278 42
P, | 132 42 Py | 12369 73 P,g |236,58 69
P, |1365872|119 P |1349 99 P,s |23698 89
Pz |13 25 Poo | 1,369,110 |68 Py 2369 40
P |123 50 Py | 1236910 |93 P,y | 21369 81
P.s | 1278563 | 127 Py | 1.349,10 119 P,o |2789 91
P, | 134 50 Pos |23 17 P10 | 2.3,6,9,10 60
P, | 1234 75 Ps | 213 58 P10 | 21,3,69,10 | 101
P, | 13694 97 P,; |278563 |9% P10 | 2,7,8,9,10 111
Ps | 1365 52 P | 234 42 Py, (34 25
P.s | 123,65 77 P, |2134 83 Ps, |3694 72
P.s | 12785 100 P, |23694 89 Ps4 |365894 |150
P |136 35 P,s | 2365 a4 P.s |365 27
P |1.236 60 P,s |2785 67 P,s | 32785 84
Ps | 13496 112 P,s |21,36,5 85 P,s | 36985 97
Py | 127 58 Ps | 236 27 P:s | 3,6 10
P, | 1327 67 P | 2136 68 P | 3496 87
P.; |136587 94 Ps | 27856 84 P.s |327856 101
Pg | 1278 75 Py |27 25 Ps7 |327 42
Ps | 13,658 77 P,; |236587 86 Ps; |36587 69
Ps | 13278 84 P, |236987 |106 Py, | 3127 83

Pso |89 49

Pso |8569 55

Py |87,2369 82

Pg10 | 89,10 69

P8—10 815!619110 75
Ps1o | 8,7,2,3,6,9,10 | 102

Py | 910 20




P,g | 3658 52 P, | 43609 48 Ps; | 6327 52
Pig | 3278 59 P.o |49 49 Ps; |6587 59
P;g |3698 72 P,o |436589 126 P, |6987 79
Pio |369 23 Py1o | 436910 68 Psg | 658 42
Py |349 74 P,10 | 49,10 69 Psg |698 62
Py |36589 101 P, | 43658910 | 146 Pss | 63278 69
P310 | 36,910 43 P.s |56 17 Pso |69 13
P3i0 | 34,910 %4 P-s |5896 87 Pso |6,349 84
P3io | 3658910 | 121 Pss |587.236 %4 Pso |6589 91
Pes | 4365 52 P., |587 42 Ps1o | 69,10 33
Prs | 4965 79 P, |56327 69 Ps1o | 6,34,9,10 104
Pys |432785 |109 Ps; |56987 % Ps1o | 658910 |111
Pis | 436 35 Pss |58 25 P.s |78 17
Prs | 496 62 P:s |5698 79 P.s |723658 |94
Py | 4327856 | 126 Psg | 563278 86 Pg | 723698 |114
Prz | 4327 67 Py |56.9 30 P.o |72369 65
Pyz [436587 |94 Py |589 74 P.o |789 66
Pyz | 43127 108 Py |56349 101 P,y | 78569 72
Prg | 43658 7 P51 | 5,6,9,10 50 P, | 7236910 |85
Prg | 43278 84 P51 | 589,10 94 P, | 7,8,9,10 86
Pig | 43698 97 Psi | 5634910 |[121 P, | 7856910 |92

Having found the shortest paths, we next compute the total flow on each link and
their utilisations.



Link Flow Capacity Utilisation (decreasing order)

3,6 117 98 1,19387755
2,7 47 40 1,175
34 44 40 1,1
23 62 60 1,03333333 Note: Asthe flow demand and
6,9 74 80 0,925 link capacity matrices are
symmetrical in this example,
56 54 60 0,9 .
thelink (6,3) has the same
13 34 40 0,85 utilisation as link (3,6) etc.
9,10 40 50 0,8
12 22 30 0,73333333
78 37 60 0,61666667
89 12 20 0,6
58 23 40 0,575
49 0 20 0 ]
CPLEX solution
Average utilisation 0,80786238 Average utilisation 0.82894427
Maximum utilisation 0.96666666
Maximum utilisation 1,19387755

We note that the initial feasible solution has a lower average utilisation for the
network than that of the optimal solution found by the method described in [11], but
the maximum utilisation is greater. We also note that the link with the greatest
utilisation is link (3,6). Our initial strategy is to increase the cost of link (3,6). In order
to describe the manner in which this is done, we introduce some notation.

10



P“" isthe shortest path betweenu - v

P“"(k) isthek'th shortest path between u-v P"Y@° P“Y)

QG,j) ={P"":(,j)T P"} i.e thesetof shortest pathsthat uselink (i, j)
d;"" isthe smallest value of k suchthat link (i, j) T P*"(k)

w(P"Y(Kk)) isthe sum of thelink costs for path P* ¥ (k).

i.e w(P""(k)) = é m, ;wherem, isthelink cost for link (i, j)

(i) P (K)

D" =w(P""(d;"")) - w(P"") i.e. the increment in the cost of link (i, j) needed
to equalise path costs for P*¥(d;"") and P**

For each u-v, we identify the next cheapest path that does not contain link (3,6) (the
max. utilization link) and compute its cost difference from that of the cheapest path,
D" =w (P (dj™)) - w(P™™).

u-v dsg D3¢ f P™Y(d;"™")
15 3 48 3 1,27,85
16 3 77 7 1,34,96
1-9 3 51 6 1,34,9
1-10 3 51 1 1,3,4,9,10
25 2 23 9 2,785
26 3 57 14 2,7,856
29 3 51 5 2,789
2-10 3 51 7 2,7,89,10
35 2 57 7 32785
Fdfind 36 2 77 6 3496
paths with 38 2 7 3 3278
least Dig 39 2 51 14 34,9
310 2 51 8 349,10
45 2 27 4 4965
46 2 27 1 49,6
48 2 7 1 43278
\ 49 2 1 7 49
410 2 1 3 49,10
79 2 1 2 7,89
7-10 2 1 1 7,89,10
i>j T 76 2 7 8 7,856

11



The source-destination pairs with the smallest cost difference are identified. In this
example, the smallest value of D" is equal to 1 for pairs 4-9, 4-10, 7-9 and 7-10.

By incrementing the cost of link (3,6) by 2 we remove the traffic load for these source-
destination pairs from link (3,6); thus decreasing its utilization. Formally, the next
steps of the algorithm can be described as follows:

Denote the selected link with maximum utilisation by (i, j°).
For our examplethisislink (3,6).

We identify paths P*"(d:".") for which The next shortest
! (cheapest) path between
D;i'jY = w(P“'V(dit‘J;V)) -w(P"Y)=min Di“;jY:Dmin u-v not using link (i*, j*)

The differencein

(Note that w(PY™V(d " V))-w(P" V)3 0) path costs

]

The paths satisfying the above condition are: pA 9(2), pA- 10(2), p’- 9(2) and P’- 10(2)

Next we increment the cost for link (i", j°)

m..=m..+ D,,t1
The effect of al thisisto shift flow away from link
(3,6) onto links of the new cheapest paths:
For our example, m;s =m,; +2=12 ph 9 p# 10 79 ggp10
Thus the utilisation of link (3,6) will
decrease
u-v  old path new path offered flow
4-9 4,3,6,9 49 7
4-10 4,3,6,9,10 49,10 3
7-9 7,2,3,6,9 7,89 2
7-10 7,2,3,6,9,10 7,8,9,10 1

I I

Paths containing Paths not containing link (3,6)
link (3,6)

12



Link Changein flow New flow

— (3,6)° -7-3-2-1=-13 104
—— (4,3) -7-3 =-10 34
(6,9 -7-3-2-1=-13 61
(9,10) 3+3-1+1= 0 40
(7.2 21= -3 44 T  Link (4,9) now receives
' flow- previously it was
(2,3) -2-1= -3 59 unused
(4,9) +7+3=+10 10
(7,8) +2+1= +3 40
(8,9 +2+1=+3 15

* similar flow valuesfor links (6,3), (3,4) and (2,7)

Results after oneiteration of the KSP cost adjustment heuristic

Link Flow Capacity Utilisation (decreasing) Link New flow  New utilisation
3,6 117 98 1,19387755 3,6 104 1,06122449
2,7 47 40 1,175 2,7 44 1,1
34 44 40 11 3,4 34 0,85
23 62 60 1,03333333 2,3 59 0,98333333
69 74 80 0,925 6,9 61 0,7625
56 54 60 0,9 5,6 54 0,9
13 34 40 0,85 1,3 34 0,85
9,10 40 50 0,8 9,10 40 0,8
12 22 30 0,73333333 1,2 22 0,73333333
78 37 60 0,61666667 78 40 0,66666667
89 12 20 0,6 8,9 15 0,75
58 23 40 0,575 5,8 23 0,575
49 0 20 0 49 10
CPLEX:
Average utilisation 0,80786238 Average utilisation 0,77169676 0.8289443
Maximum utilisation 1,19387755 (link (3,6)) Maximum utilisation 1,1 (link (2,7) 0.9666666

13



The link costs for the start of the second iteration are as shown below.

New link costs

A simple adjustment to the path costs, for those links of paths affected by the
increase in cost to link (3,6) gives the new ordering of path costs shown in the
following tables. The four cheapest paths are tabulated for each source-destination
pair.

14



P, 12 33 Piy 1369 50 Pog 2,78 42
P2 | 132 42 Py 12,369 75 Pog 23658 71
PL,(3) 1,36,58,7,2 121 Py 1,349 99 Prg 236938 91
P4 | 1369872 141 Py 12349 124 Prg 213658 112

Pog 2,369 42
Py 13 25 P 136,910 70 Pro 21369 83
P 123 50 Pun 1,236,910 9%5 Poo 2789 o1
Pis 1,2,7,8563 129 Pi1o 1,34,9,10 119 Poo 2349 o1
Pis 1,2,7,8963 149 Prio 1,2,3,4,9,10 144 '

Py10 2,3,6,9,10 62
Pig 134 50 P23 23 7 Poio 2,1,36,9,10 103
Py 1234 75 P,s 213 58 Py1o 2,7,89,10 111
P4 13694 99 P 278563 9% Poro 23,4910 111
Py 1,2,3,694 124 P,3 2,789,6,3 116

Pas 34 25
Pis 1,365 54 Py 234 42 Pyy 36,94 74
Pys 1,2,36,5 79 P 2134 83 Pss 36,5894 152
P 1,2,785 100 Py 23694 91 Psy 3278,94 157
Fis 132785 109 P4 2785634 121

Pss 36,5 29
Pig 136 35 P,s 2,365 46 Pas 32785 84
Pis 1236 62 Pys 2,785 67 Pys 36985 99
Pis 13496 12 P,y 21365 87 Pys 34964 104
Pig 127856 u7 Pos 236985 116
r 127 s Pss 36 12
B 1327 7 B 236 29 Pss 3496 87
5 136587 % Py 2136 70 Pss 32,7856 101

17| SO0
iy 136987 16 P 2,7856 84 Pse 327896 121
Pys 27,896 104

P. 327 42
Pig 1278 I Poy 27 2 PZ 36587 71
Pig 13658 & Bap 236587 88 Py 3127 a3
Pg 13278 84 P, 236,987 108 P 36,987 ~
Py 13698 9 P,y 2136587 129 !
Psg 36,58 54 Pao 49 49 Ps 6,327 54
Psg 32,78 59 Pao 4369 50 Pss 6,58,7 59
Psg 36,98 74 Pao 436589 128 Pss 6,9,8,7 79
Pyg 31,2,7,8 100 Po 432789 133 Pss 6,31,2,7 95
Pso 36,9 25 P, | 4910 69 Pss 6,58 42
Pso 34,9 74 Poo | 436910 70 Pss 6,9,8 62
Pyo 36,589 103 P, | 43658910 148 Psg 6,3,2,7,8 71
Pso 32,789 108 Pao | 43278910 153 Psg 631278 112
Psyo | 36910 45 Pss 56 17 Pso 6,9 13
Py o | 34910 94 Pse 5896 87 Pss 6,349 86
P30 | 3658910 123 Pes 587,236 9% P 6,589 91
Psyo [ 3278910 128 Pss 5,8,7,2,1,3,6 137 Pso 6,32,7,8,9 120
Pys 4365 54 B 587 42 Psw | 69,10 33
Pys 4965 79 B 56,327 71 Psio | 634,910 106
Pys 432785 109 Ps, 56,987 96 e 6,5,8,9,10 111
Pys 4985 123 BN 563,127 112 P | 63278910 140
Pus 436 37 Psg 58 25 Pg 7,8 17
Pas 496 62 Psg 56,98 79 Pg 723658 96
Pyg 4327856 126 g 56,3,2,7,8 88 Prg 7,236,938 116
Pyg 49856 140 B 56,3,1,2,7.8 129 P 7,213,658 137
Paz 4327 67 g 56,9 30 Po 789 66
Py 436587 96 g 58,9 74 g 7,2,3,6,9 67
Py7 43127 108 Bag 56,34,9 103 P.o 785,69 72
Py 4987 115 Pso 58,7,2,3,6,9 109 Pro 7,2,1,36,9 108
Pyg 43658 79 P | 56910 50 P.p | 78910 86
Pyg 432,78 84 Psio | 589,10 94 P, | 7236910 87
Pug 498 98 P | 56,34,9,10 123 Po | 7856910 2
Pyg 43698 9 Py | 587236910 129 P | 72136910 128

15




Peo |89 49
Peo |8569 55
Peo |87.2369 84
Peo |87.21369 125
Peyo | 89,10 69
Payo | 856910 75
Peyo |87.2369,10 104
Peyo |87.2136910 |145
Peyo | 9,10 20
P9—10 - -
I:)9—10 - -
I:)9-10

4-shortest paths and their path costs

Note: paths with excessive delay can be culled at this step

We now proceed to the next iteration. Of interest is the question of whether a
deadlock situation could arise, resulting in cycling between a pair (or more) links
having successive maximum utilisation. We will see that this can occur and a method
will be proposed for breaking a cycle. The next few steps are described in the tables

below.

Iteration 2
Link (2,7) now hasthe maximum utilisation.

Note that it is not necessary to re-compute k’th
shortest paths. Paths with links (2,7) and (7,2) have

their distances incremented by: ( Min DY)+1
u-v:PUViQ2,7)
Only some re-ordering of paths is necessary.

If link (3,6) had retained the maximum utilisation

we would simply consider next P38 and observe that D;’f =5
The new link cost for link (3,6) would be m,; =12+D,;, +1 =12+5+1=18

Thisvaueisthe old value -2

The new paths affected would be P38 and P48

16
We now proceed to identify QO(2,7)




u_

1-7
1-8

2-8
3-7
4-7
6-7

Path
pL-7
pl-8
p2-7
p2-8
p3-7
pa-7
p6-7

\'

u-v
d 2,7

NINDNDNMNMNMNNW®

Flow Demand
4 units

10 units

3 units

13 units

4 units

2 units

8 units

u-v uv
DY f

38

63
29
29
29

PU- V(dZU'-7V

= e
W WO =

xR N B

Q@2,7)= {P:27)1 P}

1,3,6,5,8,7
1,3,6,5,8
2,3,6,5,8,7
2,3,6,5,8
3,6,5,8,7
4,3,6,5,8,7
6,5,8,7

We see here the danger of reintroducing additional flow on link (3,6) -

in which case it is possible that we may either cycle or converge in a non-monotonic
manner. That is, the objective function may increase in order to avoid a local optimum and
then subsequently decrease. This would occur if transfer of flow to link (3,6) increased its
utilisation, so that it once more had greatest utilisation, and then further cost increment to

link (3,6) led to a greater reduction in its utilisation.

Continuing the principle of selecting the paths with

the least cost increment we would select P*®(2) as the first path to

deviate from using link (2,7) and effect this by incrementing the cost of
link (2,7) by 4+1 =5. Thatis, m,, =25+4+1=30.

17



u-v  old path
1-8 1,278

I

Peths containing
link (2,7)

Link

12
@27)
(7.8)
(13
(36)
65
(58)

new path offered flow
1,3,6,5,8 10

Paths not containing
link (2,7)

Changein flow New flow

-10 12
-10 A
-10 30
+10 44
+10 114
+10 64
+10 ee]

* gmilar flow vauesfor links
(21),(7,2),87),(31),(63),(85)

18



Results after two iterations of the KSP cost adjustment heuristic

Link Flow Utilisation (decreasing) Link New flow  New utilisation
3,6 104 1,06122449 (3,6) 114 1.163265306
2,7 44 11 2,7) 34 0.85

34 34 0,85 (3,4) 34 0.85

2,3 59 0,98333333 (2,3) 59 0.983333333
6,9 61 0,7625 (6,9) 61 0.7625

5,6 54 0,9 (5,6) 64 1.083333333
1,3 34 0,85 1,3) 44 1,1

9,10 40 0,8 (9,10) 40 0.8

1,2 22 0,73333333 1,2) 12 0.4

7.8 40 0,66666667 (7,8) 30 0.5

8,9 15 0,75 (8,9) 15 0.75

5.8 23 0,575 (5,8) 33 0.825

4,9 10 0.5 (4,9) 10 0.5

Average utilisation 0,77169676 Average utilisation 0.81287936
Maximum utilisation 1,1 (link (2,7) Maximum utilisation 1,1 63265 (link (3,6)

Note: Both the maximum and average utilisation have increased after the
second iteration but these values are till less than the original values.
Isthistelling us that we didn’t add enough cost to link (3,6) or that we will
cycle?

New link costs
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Continuing the next iteration we observe that the algorithm is repeatedly selecting
links (3,6) and (2,7) for cost incrementation. We display the variable values for the
next iteration and then address the matter of how we can avoid this repetition, or
cycling.

1-8 dgg e T P (dys
1-5 2 51 3 12,785
1-6 3 7 6 1,349,6
1-8 2 1 10 12,78

1-9 3 49 6 1,349

1-10 3 49 1 1,3,4,9,10
2-5 2 26 9 2,785
2-6 3 70 14 2,785,6
2-9 3 49 5 2,349

2-10 3 54 7 2,3,49,10
35 2 60 7 32,785
3-6 2 75 6 3,4,9,6
3-8 2 10 3 32,78
3-9 2 49 14 349

3-10 2 49 8 3,4,9,10
4-5 2 25 4 4,9,6,5
4-6 2 25 1 49,6
4-8 2 10 1 432,78

. _ m,,=12+D_, +1 =12+5+1=18
Starting iteration 3 '
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At iteration 2 we had:

u-v  oldpath new path offered flow
1-8 1278 136,58 10

At iteration 3 we have:

u-v  old path new path offered flow
1-8 13658 1,2,7,8 10

Path 1-8 isthe path first
affected by theincreasein link
distance

If we continue for athird iteration we will find that (i*,j*) is (2,7) and
the old pathis 1,3,6,5,8 and new path is 1,2,7,8 for O-D 1-8.

That is, the algorithm would cycle. Each time the link distances are
incremented for links (3,6) and (2,7) until their distances are large
enough to cause re-direction of the traffic to other links — thus breaking
the cycling

Cycling can occur between links (3,6) and (2,7) (i.e. the
links with maximum utilisation — until their costs are
sufficiently large relative to the other links and then the
path deviation is to another path )
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Link Flow Utilisation

3,6 104 1,06122449

2,7 44 1,1

34 34 0,85

2,3 59 0,98333333

6,9 61 0,7625

5,6 54 0,9

1,3 34 0,85

9,10 40 0,8

1,2 22 0,73333333

78 40 0.66666667 Note that we do not have to recompute the link

89 15 0.75 utilisations the same paths have been involved in the

58 - 0575 cycle ( see back 3 dlides). The only effective change

49 10 05 isthat the link costs for link (3,6) and link (2,7) are
being increased.

Average utilisation 077169676 It would be possible to compute in advance the
smallest increasein link costsfor thesetwo links

Maximum utilisation 1.1 (link (2,7) to break the cyclefrom the original costs- thus

avoiding morethan one cycle.

Cycle-breaking

A cycleis detected by the following sequence of
events:

(1) A link I, has max. utilisation. On checking for the
smallest D for shortest paths using link |, we have
aset of paths P, ,to which |, belongs, that 1ose
flow and another set of paths P, ,to which |, does
not belong, that receive flow.

We increment the link distance for |, by D +1.

(2) Thenext link with greatest utilisation is|.,.
The set of paths to which |, belongs that |ose flow
isP,, and the set of paths to which |, does not
belong, that receive flow, isP;.
(Thisimpliesthat |, would once again be the link
with greatest utilisation)
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To break the cycle we seek the smallest D for shortest paths with link
[, not involving |, This may involve 39 shortest paths or 4™ shortest
etc.

Next we add the value of this new D' to the distances of both links |,
and|,.

Will the strategy of always increasing the cost of the link with the

greatest utilisation always work?
Referring to the following network we discuss a counter-example.

For the current example, suppose we detect a

cycle at this stage:
18 Az Dy P"(d3g)
1-5 2 51 3 1,2,7,85 Smallest
-6 3 T % AT vdueof D
1-8 2 1 10 1,2,7,8
19 3 49 6 1,349
1-10 3 49 1 1,3,4,9,10
2-5 2 26 9 2,785
2-6 3 70 14 2,7,85,6
2-9 3 49 5 2,349
2-10 3 54 7 2,3,4,9,10
35 2 60 7 3,2,7,85
3-6 2 75 6 34,96
38 2 10‘w
39 2 49 14 349 Second smallest D
3-10 2 8
4-5 2
4-6 2
4-8 2

The valueof Dchosenis25as P '(d;¢ does not include links (2,7) or (3,6)
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Capacity = 1000
Distance=5

Capacity = 1000
Distance=5

Capacity = 1000
Distance = 10

Capacity = 1000
Distance = 10

Capacity = 1000
Distance = 100

= 1000
Distance=5

Capacity = 100
Distance = 91 > 3 Capacity = 200
Distance=1
Capacity = 200
> 4 Distance=1
Capacity = 100
Distance = 91

Flow demands

24

Links (1,3) and (2,4) will always
have the greatest utilisation



Shortest paths
PA-D A'2'4‘D 97
Pab A-1-3D 192
Pab B-1-3-D 97
Pab B-2-4-D 102
PC-D C'2'4‘D 97
Peo C-1-3-D 102

For this problem the optimal solution isto
also have the B-D flow using link (1,3).
Then both links with max. utilisation have
values of 0.45. Can this be achieved?

97 —1— 5 distanceof link

Pas A-2-4D 97 = o
Pas A-1-3D 192

PB_D B'1'3'D 97

PB_D B'2'4‘D 102

Pep C-2-4D

Peo C1-3D 102 — |

The effect of thisisto change the
shortest path for C-D to C-1-3-D.

A-D traffic will remain on path
A-2-4-D. The new utilisations

for thelinks are:

o

Link utilisations

(3.D)

(A1) 0
(A2) 0.005
(B,1) 0.04
(B,2) 0
(C,1) 0
(C2) 0.005

(1.3)
(24)

0.2

(4.D)

0.25

We increase the

(2,4) by 6

(A1) 0
(A2 0.005
(B,1) 0.04
(B.,2) 0
(C1) 0.045
(C2) 0
(1,3) 0.85
(2,4) 0.05
(3.D) 0.425
(4,D) 0.025
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New shortest paths

D
PA_D A'2'4"D 97
PA_D A'1'3'D 192
Pap  |B-1-3D 97 |
Pso B-2-4-D 102 |
PC-D C'l'S'D 102 \> 1
Peo C-2-4D 103 |

We note that the method of selecting the
initial link distances

(i.e. short distances for high capacity
links) could have annulled

this counter-example. But it illustrates the
potential for failure of

the algorithm to find an optimal solution.

The link costs at this stage are as shown:

Capacity = 1000

We increase the distance
of link (1,3) by 2.

The effect of thisisto change the
shortest path for C-D back to C-2-4-D.
When we apply the cycle breaking
technique we see that there are no

k'th shortest paths that do not contain
either link (1,3) or link (2,4).
So the algorithm would stop at this
stage with the best solution:

Min (Max. utilisation) = 0.5
Thus missing the optimal solution.

After iteration 2

Capacity = 100
Cost=03 |

/

Capacity = 1000
Cost=5

Capacity = 1000
Cost = 10

—>3

— 4

Capacity = 200
Cost=1

Capacity = 200
Cost=1

Capacity = 100
Cost =97

Capacity = 100Q

26
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We next propose an extension to the algorithm to avoid the problem illustrated in the
counter-example. The problem arose because of the algorithm’s inability to recognize
the potential for improvement from transferring flow to links with small utilisation.
Thus, in addition to the procedure involving links with high utilisation, we now
include the following procedure.

When a cycle results in termination, proceed as follows:

For the set of O-D pairs u-v that have been involved in the cycle, select a link with
minimum utilisation and decrease its link cost by the smallest amount needed to
create a new shortest path using that link. If a new shortest path cannot be found,
apply the above for all O-D pairs.

Link distances
P |A24D o<}

P.pb |A13D 192

Pop, |B-1-3D 97

Psp B-24-D 102 For thiscaselink (A,1) would

Peo C-1-3-D 102 be selected and its distance
= C-2-4-D 103 reduced to 9. Hence path A-1-3-
cD D can now be selected and the
optimal solution found
(A1) 0
(A2 0005
(B,1) 0.04
(B.2) 0
€1 0.045 Link utilisations
(C2) 0
13) 0.85
2.4) 0.05
(3.D) 0.425

For our example, application of this rule results in re-allocation of the flow between
A and D, and the optimal solution is then found, namely a min-max utilisation of
0.45.

During the implementation of the algorithm, we work with integer link costs. When
the first set of link costs is generated there is no guarantee that unique shortest paths
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exist for all source-destination pairs. The rule for updating link costs ensures that
paths that are re-ordered have distinct costs but not all shortest paths may be re-
ordered during the implementation of the algorithm. At the conclusion of the
algorithm, we need to ensure that the set of link costs produce unique paths for each
source-destination pair. This is an essential requirement of the IP routing protocol.
The uniqueness can be guaranteed by means of a simple perturbation of the final link
costs (this perturbation will not alter the optimal set of paths). The approach adopted
is similar to that of [2].

Suppose that the network has p links, numbered 1,2,3...p and let s(p) be a
permutation of the integers 1,2,3...p. The cost of link j, w, is replaced by w;j +2°()-#-1.

It can be seen that the sum of the perturbation terms is less than 1 since each
perturbation is selected from the terms of the geometric series 1/2,1/4,1/8,...
Alternatively, this perturbation can be made after the initial set of integer link costs
have been assigned at the first step of the algorithm.

Comment on an Inversion of the Shortest Path Problem

Given a network and a set of single paths between each source-destination pair
satisfying the shortest path principles one can find a set of link costs that would
correspond to these shortest paths. In [11] this inverse shortest path problem is
solved using Linear Programming. These link costs are not unique. In general, there
are many solutions to the problem that do not just involve a constant multiplier. For
example, if a randomly selected set of symmetric link costs are generated such that
w; =Ww; and shortest paths determined, a set of link costs such that w; * w; may be

found as a valid solution.

3.2 Summary

The proposed heuristic should be tested thoroughly against known results from
application of the method of [11]. It has the following potential advantages:

Large network problems may now be considered

Computational time will be reduced (compared to mathematical
programming methods)

It will be easy to evaluate alternative solutions near the optimal solution.

In the next section we examine the issues related to the use of decomposition

methods, for the IP routing problem, with the view to extending the range of
applicability of the method proposed in [11].
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4. Network Decomposition

Suppose that we are given a large undirected network G(V,E), where V denotes the
set of nodes or vertices of the network and E is its set of edges or links. We can
identify two main objectives.
First, we wish to find an efficient algorithm to automatically decompose the network
into disjoint connected subgraphs having the following desirable properties:
Each subgraph is to have approximately the same number of nodes
The number of separator nodes (see below) used in the decomposition is
minimized.
Secondly, we seek an efficient algorithm for independently applying the IP network
routing optimization algorithm to each subgraph and then combining the results to
obtain the optimal (or near-optimal) solution for the original network G.

4.1 First objective

We see that the following network can be subdivided into two subgraphs satisfying
our two desirable properties by separating at node 7. We seek an automatic method
for finding such a node separator set, from the input link data that describes the
network topology.

By eye we can see that to obtain two subgraphs with approximately equal
numbers of nodes (i.e. balanced subgraphs) and with a minimal number of
node separators, we select node 7 as a separator set S
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The general approach we adopt for our first objective is to start with any network
partition [S,B,JV] where S is a node (vertex) separator set. B and W are the two disjoint
subgraphs induced by S. Assume that B is the bigger of the two subgraphs.

We consider strategies to reduce the imbalance and to reduce the separator size based on
the Dulmage-Mendelsohn decomposition [4] and rely significantly on ideas from [1].
First we require some terminology and definitions.

The adjacent set of a vertex v is given by Adj(v) ={u? v|(u,v)1 E}.
A vertex separator S is a subset of V if the subgraph induced by the vertices in V but
not in S has more than one connected component (similar definition for edge
separator). A separator is minimal if no subset of it forms a separator.
max{|BLIW D
min{|B|,|W [}
The parameter a determines the relative significance of minimizing the number of
nodes in the separator set compared to balancing the sizes of the two subgraphs.
We wish to minimise this function.
The interior of a set Yis Int(Y) ={yT Y [Adj(y)i Y}
That is, the adjacent nodes of Y are all in' Y
The boundary of the set Y is the set of nodes not in Y that are adjacent to Y. It is
denoted by Adj(Y).
Adj(Y) ={vT VY [(y, )T E for someyl Y} = (| JAdi(y)\Y

VY

The border of Y is the boundary of the interior of Y (i.e. a subset of Y).

An Evaluation function is proposed in [1]: g[S; B;W] = S|(1+a

If [S,B,W] isatwo set partition of G and Z isasubset of S then
Z ® W denotes the move of the subset Z from Sto W.
This creates the new partition:

B,ow = B\Adj(Z), W,o,, =WE Z, and S,,,, =(S\Z)E (Adj(Z) C B)

The new separator set is S minus Z plus nodes from B in Adj (Z)

Thus the new separator size is |S,q\, F|S|- | Z|+| Adj(Z) C B].

Therefore if we can find a subset Z of S such that | Z |>| Adj(Z) C B,

then the move of Z to W will result in a reduction of the separator set size.

The question now is: "How do we find an optimal set Z that achieves our purpose?”
The solution comes from the theory of bipartite graph matching.

Some further definitions are needed.

A bipartite graph is an undirected graph whose set of nodes can be divided into two
disjoint sets (X and Y) such that every edge (link) has one endpoint in each set.
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A matching of a bipartite graph H is a subset M of edges such that no two edges in
this subset have a node in common.

A node that is incident to an edge in M is said to be covered, otherwise it is exposed.
The number of edges in M is said to be the size of the matching.

A maximum matching is one of largest size for the bipartite graph.

A complete matching from X to Y in a bipartite graph is a one-to-one correspondence
between the vertices in X and a subset of the vertices in Y, with the property that the
corresponding vertices are joined.

If (x,y) belongs to the matching M then x = mate(y) and y = mate(x).

The concept of a complete matching is readily explained with the classical marriage
problem.

Given a finite set of boys each of whom knows several girls, under what conditions
can we marry off the boys in such a way that each boy marries a girl he knows? A
matching is illustrated below with the edges in the matching being given as thick
lines.

Example of acomplete matching
from the nodesin X to thenodesinY

For the example network, with separator set {2,3,5,8}, the sets W and B are as shown
in the following figure.
The bipartite graph induced by the separator set is also shown.
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An induced bipartite graph H = (S, Border(B), E,))

Border (B) =BC Adj(S)

(8) E, istheset of edgesin the bipartite graph H

There are two maximal mappings from the nodes in S to the nodes in B C Adj(S),

one of which is shown below by the thick lines. We see that the matching is not
complete (nodes 3 and 5 are not paired with nodes in BC Adj(S)).

® 6

©) (7)

L

Exposed nodes
in the maximum 9
matching

A maximum matching M
(thisis not a complete matching)
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We want to find a subset Z of S such that | Z > | Adj(Z) C B|. To answer this
question we make use of Hall’s theorem [5].

Hall’s Theorem (1935)
The bipartite graph H has a complete matching of
S into B if and only if for every subset Z of S, |Z |[E | Adj(Z) C B].

Alternative statement:
A necessary and sufficient condition for a solution of the marriage problem is that
every set of k boys collectively knows at least k girls.

We want to find a subset Z of S such that |Z > |Adj,(Z)C B|.

Thus Hall’s theorem can be used to provide a necessary and sufficient condition for
the existence of a size-improving subset Z of S, i.e. that H does not have a complete
matching from S into B.

For our example, we do not have a complete matching; therefore we can find a size-
improving subset of S.

To find the size-improving subset, we require the concept of an alternating path:
Given a matching M, a simple path (sequence of unrepeated nodes)

X1, X2, ... ,Xkis an alternating path if alternate edges belong to the matching.

@ 6
©) (7)

For this example, their are two exposed nodes
in S. Therefore we can find a size-improving

Expoﬁd nodes S.lbset Z Of S
in the maximum
matching @

A theorem due to Liu [7] provides information on the magnitude of the size
improvement.

Liu’s Theorem (1989)
Let xI S be an exposed node in a maximum matching of H.

Define S, ={sl S|sisreachable from x via alternating paths} .
Then |S, |- |Adj,(S) F1

The alternating path 2,6,5 in the maximum matching allows us to now place the
nodes 2 and 5 in /W and to put the node 6 into S. The isolated node 3 can also be
placed in W.
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At this stage, we have the new decomposition of the network as shown below.

We note that the set S was not a minimal vertex separator (nodes 2,5 and 8 would

have given a separation of the graph into two subgraphs). Node 3 did not feature in
the matching.

We now have a better-balanced decomposition of the network and a reduction in the
number of nodes in the vertex separator.
This process can be made even more efficient.

In applying Liu’s theorem, the set S» can be determined by performing an alternating
breadth- first search starting from the exposed node x.

The first improvement is to use all exposed nodes in S to find a subset Z in S that
maximises the decrease in separator size.

A theorem due to Pothen and Fan [10] is useful in helping to select the optimal set X
from S.

Pothen and Fan’s Theorem (1990)

Define a set of nodes S :{ST S|sisreachable from some exposed node in S via alternating paths}
Then:

IS [- [Adjy(S)] > 0

1S |- 1A, (S) | =Ma{|Z |- | Adj, (2) [

S isthesmallest subset of S with this maximum vaue |S |- |Adj,(S) |

Although the subset S; gives the maximum reduction in separator size, one might
prefer a smaller reduction in exchange for a better balance between the two
subgraphs.

If Xois any subset of the exposed nodes in S then Z = U{SX |xI X/} satisfies the
condition: [Z| > |Adj,(Z)C B]|.
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We have seen how to improve the decomposition for the case that the maximum
matching in the induced bi-partite graph is not complete. When the matching is
complete the above theorems fail to improve the decomposition, In this case we can
proceed by applying a result based on the Dulmage-Mendelsohn Decomposition [3].

The Dulmage-Mendelsohn Decomposition
(Originally published in the Canad. J. Math. In 1958
Re-stated in our context by Pothen & Fan in 1990)

Suppose that the induced bipartite graph from a given partition [S,B,WV] is H(S,B) and
that we have a maximum matching M on H.

The Dulmage-Mendelsohn decomposition of the vertex separator set S is the
decomposition of S into 3 disjoint subsets: S=S ES, E S;.

S ={sl S| sisreachable from some exposed node in S via aternating paths}

S, ={sl S| sisreachable from some exposed node in B via aternating paths}

S:=S\(SES))
The set Sr is the set of remaining nodes in S, after S; and Sx have been determined.

Theorem:
The Dulmage-Mendelsohn decomposition S, Sx, Sr is independent of
the maximum matching used to define the alternating paths

Theorem (due to Pothen & Fan):
Theset S E S, satisfies:

IS E S |- [Adi, (S E S)FIS |- [Adi,(S)]

S E S isthelargest subset of S with the maximum value
Max{|Z |- | Adj, (Z) b

Sris the smallest subset of S that gives the maximum reduction in separator size
S E S is the largest subset of S that gives the maximum reduction in separator size

Thus, moving either of S;or § E S,will achieve the same size reduction but the

balance for the resulting partition may be better for one or the other of the two
moves.
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By symmetry, we can also decompose Border (B) into 3 disjoint node sets By, Bx, Br.

For example:
B, ={bl B| bisreachable from some exposed node in S via aternating paths} .

Theorem:
S =Adj,(B)and B, =Adj,(S)

Sx can be given by the adjacent set of By, the set of reachable nodes in B from internal
exposed nodes via alternating paths.

Bi can be found by forming the alternating breadth-first forest from the set of
exposed nodes in B.

We illustrate the above results as follows:

Adjacency Theorem:

S, can be given by the adjacent set of B,, the set of reachable

Sc = Adi (B) nodesin B from internal exposed nodes via alternating paths

B, = Adj,(S) B, can be found by forming the alternating breadth-first
x = Al forest from the set of exposed nodesin B

@ 6 S=1{52} Adj(B) = {}
Sc={}

® 2 S=18)

B ={} Adj,(S) ={6}
Bx ={6}

Exposed nodes Br={5}
in the maximum
matching @
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Comments on the Stopping Condition

If a separator-improving subset of S can be found satisfying |Z | > | Adj,(Z)C B|
then we can attempt to use it to gain a better balance between the subgraph sizes.
Otherwise if no such subset can be found, no reduction in separator size by graph
matching is possible. This occurs when the maximum matching is complete. The
current separator S is already of minimum size among covering separator subsets
of SE Border(B).

max{|B|,|W [}

min{|B|,|W [}

We may still be able to improve the imbalance ratio:

We can search for a subset Z in S with | Adj, (Z) F|Z |.

A move of Z to the smaller subgraph W will replace Z by | Adj, (Z) |

in S. There will be no change in separator size, but there may be a reduction in the
imbalance.

If S1is empty, size reduction is not possible for the vertex separator set, but the subset
Sk can be used to reduce the imbalance.

The following lemma is used to show that in the case that S is empty (and it is then not
possible to reduce the size of the vertex separator set), S isthe key to finding abalance-
improving separator subset.

Lemma:

Let SI ={} and consider asubset Z of S.
If ZCSyx isnon-empty then |Z|<|AdjH (Z)]

Theorem:
Let S ={}. The separator subset S; isthe largest

subset of S such that its size isthe same as the size
of its adjacent set.

We list two of the properties of Sr:
|Sk| = [Br]|

Adi, (S E'S,) = B, EB,
Thus if S;is empty then by definition Bx is empty and therefore

Adj, (S) = By
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Therefore, when the separator subset S;is empty, the move of Sk to W will give a new
separator:

Scow =(SEB)\S
S0 that
| Ssow FI(SE B\ S: FIS|

Theorem:
Let [S,B,W] be a partition with |B| > |W| and Si={ }.

Given a subset Z with |Z| = | Adju(Z) | the move of Z to W
Will reduce the evaluation function if and only if |Z| < |B| - |W]|.

Example Dulmage-Mendelsohn
Decomposition:

(@) (@) (@DHe=) =) e
@ @ S, = {4,10,24,25}
@ e @.‘e S, ={9,15,19,20,21}
'@ e B, = {5,11,17,30,31,32}
OSCJONER!
° 0 ° ° @ B, = {16,22,26,27,28}

There is a complete matching of Sinto B, hence § = {}
The size of the separator set cannot be reduced.

Moving S; from Sto W and B to Sgives anew
separator set with the same size and also gives better
balance of the subgraphs
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Shifting S; = {9,15,19,20,21} from StoWand By ={16,22,26,27,28}
fromBto S

4.2 Second objective

We now seek to find an efficient algorithm for independently applying the IP
network link cost optimization algorithm [11] to each subgraph and then combining
the results to obtain the optimal link costsfor the original network G.

Preliminary Comments

It is not possible simply to apply the algorithm to the two subgraphs separately and
to use the link costs obtained for the entire network. Although a shortest path must
consist of shortest subpaths (the optimality principle), the following example
illustrates that the concatenation of two shortest paths may not give a shortest path.
Let S.» denote the shortest (cheapest) path from u to v.

S14=1-2-4 (of length 2)and Ss.7 = 4-6-7 (of length 4). The concatenation of these two
shortest paths gives the path 1-2-4-6-7 of length 6, but S;.7 = 1-3-5-7 is of length 5.
Suppose u is in Wand v is in B.

We need to consider the shortest distance from node u to all nodes in the separator
set and then the shortest distance from such nodes s to v.
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It is pointed out in [8] that the optimality principle does not apply to k’th shortest
paths:

Let P, (k) denote the k'th
shortest path between u and v.

P,,(1) =1,2with distance 0
P,,(2) =1,3,5,2 with distance 2

P_,(1) =1,2,4,3with distance0
P42 =1,2,3withdistance 1
P.4(3) =13 withdistance 2
The 319 shortest path from 1to 3

is asubpath of the 2nd shortest path
from1to2

We see that a k’th shortest path may exist containing a j’th shortest subpath
with j > k.
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If the network has identifiable subgraphs comprising tree structures, there is an
immediate simplification possible. Since a tree has a unique path between any two
member nodes, the costs given to the links of the tree may be arbitrary. For example,
the network below may be reduced to a mesh-type network and two leaves.
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A Preliminary Approach to the Problem

Consider the following decomposition of a network.

Vertex separator set S

We form from the previous network two associated networks by adding dummy
nodes X and Y.
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Note that the structures of B and S are retained in the network Gx, with dummy node
X, whilst the sub-graph W is condensed to a single node. Similarly, the structure of W

and S are retained in the network Gy, with dummy node Y, whereas B is condensed
to the single node Y.
Suppose that the input data for the network is as follows.

112 |3 |4 (5|6 |7 |8 10 112 |3 |4 |5 |6 |7 |8 |9 |10
1|0 |8 |5 |12|3 |7 |4 |10|6 |1 1 |0 | 30|40
2 |8 [0 |2 |11|9 (143 |13|5 |7 2 |[30|0 |60 40
3 |5 |2 |0 (3 |7 |6 |4 1418 3 [40|60|0 |40 98
4 |112(11|3 |0 (4 |1 |2 7 |3 4 40| 0 20
5 9 |7 |4 |0 |3 |7 |2 |9 |5 5 0 |60 40
6 14|16 |1 |3 |0 (8 (104 |2 6 98 60| 0 80
7 3 (4 (2 |7 |8 (0|7 |2 |1 7 40 0 |60
8 [10(13|3 |1 |2 (10|7 |O |3 |9 8 40 60|10 |20
9 1417 |9 (4 |2 |3 |0 |4 9 20 80 2010 |50
10 8 [3 |5 ]2 |1 (|9 |4 |0 10 50| 0

Actual Flow demands between O-D pairs Original Link capacities

The input data for the two related subgraphs Gx and Gy are obtained by the
following rules.

The demand from node X (or Y) to a node s in S is the sum of the demands to s from
the nodes aggregated together to form node X (or Y).

Let s be anode in S. The capacity of link (Xs) is a ¢

(k) L;kl W
That is, the capacity of link (X,s) is the sum of the capacities of links adjacent to s in
W.

Let s be anode in S. The capacity of link (Y,s) is a c

(k,s)ii L;ki B
That is, the sum of the capacities of links adjacent to s in B.
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Applying the above rules, the flow demands for Gx and Gy are:

4 |5 (6 |7 |8 |9 |10

X |0 26(19|27(11|26|25|16
4 |26 0|4 (1|2 7 |3
5 |19 4 10 (3 |7 (2|9 |5
6 |27 1 (3 |0 (8 |10|4 |2
7 |11 2 (718 (0|7 ]2 |1
8 |26 1 (2 |10(7 (0 |3 |9
9 |25 719 |4 (2 (3 |0 |4
10 | 16 3 |5 (2 |11]9 |4 |0
Flow demands for G,

X |2 (3 |4 |5 |6 |7 |8 (9 [10
X 40 98 | 40
2
3
4 |40 0 20
5 0 |60 40
6 |98 60| 0 80
7 |40 0 |60
8 40 60 (0 |20
9 20 80 200 |50
10 50| 0

Capacitiesfor Gy

112 (3 |4 7 Y
1 (0|8 |5 |12 4 20
2 (8 (0 (2 |11 14 |3 34
3 |52 |0 (3 4 32
4 |12(11|3 2 15
5
6 (7 |14|6 8 19
7 3 8 17
8
9
Y |20(34|32]|15 19|17 0
Flow demands for G,

2 |3 |4 6 7 Y
1 30 | 40
2 |30(0 |60 40
3 |40(60|0 |40 98
4 4|0 20
5
6 98 0 140
7 40 0 60
8
9
Y 20 140 | 60
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We next use the LP to find the optimal routing in the two networks Gx and Gy such
that we minimize the maximum link utilisation (or minimize an objective function
also involving the average utilisation over the network).

The optimal solution to the LP is a set of paths between each pair of nodes, satisfying
the shortest (cheapest) path principle.

We record for each source u and destination v the optimal paths between them in Gx
and Gy, respectively. If u (v) | W (B) in Gx (Gy) the pathis to X (or Y as the case
may be). Let us denote these optimal paths by Px(u-v) and Py(u-v) respectively.

Note that at this stage it is not necessary to know the link costs that would normally
be generated by the usual application of the algorithm in [11].

For the example under consideration the optimal paths Px(u-v) and Py(u-v) are
shown in the table on the following page These were found by solving for optimal
paths on Gx and Gy separately..

Looking at the first entry, the source node is node 1 and the destination is node 10. In
Gy, node 10 I Y and Py(1-10) is 1-3-6-Y. The path between nodes 1 and 10 in Gx is X-
6-9-10. Note that the nodes 1,3 belong to X and the nodes 9,10 belong to Y. The node
6 in S is common to both paths in Gy and Gx. This is an example of what we will call
compatible paths.

Definition: Two paths, Py(u-v) and Px(u-v) are said to be compatible if they consist of
path segments that belong entirely to W, B and S in matching sequences with nodes
in S having an identical sequence for the two paths Py(u-v) and Px(u-v).

The paths 1-3-6-Y and X-6-9-10 each have 3 segments belonging in sequence to

X- §-Y and they have the common node 6 in S. The concept is illustrated with a
further example.

The path Px(u-v) with u =s1 and v = j4 is : s1-j1-j2-52-X-53-X-54-j3-j4. Its segments belong
to S-B-S-X-5-X-5-B respectively.
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6
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Path in Gy

1-3-6-Y
1-3-6-Y
1-3-6-Y
1-2-7
1-3-6
1-3-6-Y
1-3-4
1-3

1-2
2-3-6-Y
2-3-6-Y
2-3-6-Y
2-7
2-3-6
2-3-6-Y
2-3-4
2-3
3-6-Y
3-6-Y
3-6-Y
3-6-Y-7
3-6
3-6-Y
34
4-y
4-y
4-y
4-Y-7
4-Y-6
4-y

Y-7
Y-6

6-Y
6-Y
6-Y-7
7-Y
7-Y

Path in Gx

X-6-9-10
X-6-9
X-7-8
X-7

X-6
X-6-5
X-4

X-6-9-10
X-6-9
X-7-8
X-7

X-6
X-6-5
X-4

X-6-9-10
X-6-9
X-7-8
X-7

X-6
X-6-5
X-4
4-9-10
4-9
4-9-8
4-9-8-7
4-X-6
4-X-6-5
5-6-9-10
5-6-9
5-8
5-8-7
5-6
6-9-10
6-9
6-5-8
6-5-8-7
7-8-9-10
7-8-9

8-9-10
8-9
9-10

Path in G

1-3-6-9-10
1-3-6-9

1-2-7
1-3-6
1-3-6-5
1-3-4

1-3

1-2
2-3-6-9-10
2-3-6-9

2-7
2-3-6
2-3-6-5
2-3-4
2-3
3-6-9-10
3-6-9

3-6
3-6-5
3-4
4-9-10
4-9
4-9-8
4-9-8-7

5-6-9-10
5-6-9
5-8
5-8-7
5-6
6-9-10
6-9
6-5-8
6-5-8-7
7-8-9-10
7-8-9
7-8
8-9-10
8-9

9-10



Now consider the path Py(u-v): s1,Y,s2,11,53,i2,54,Y.

W S

Its segments belong to S-Y-5-W-5-W-5-Y respectively. Now condensing W to X and B
to Y we see that both paths become S-Y-5-X-5-X-S-Y. In addition, the transit nodes in
S are visited in the same sequence (s, s2, s3, s4) and with identical members in each of
the sets S. Thus the paths are compatible.

We can define and form the expansive concatenation of the two paths, denoted by
Px(u-v) A Py(u-v), to obtain: s1~j1-j2-s2- i1-83- i2-54-j3-j4.

This is obtained by replacing X in Px(u-v) by its corresponding elements in W from
Py(u-v). Since Px(u-v) A Py(u-v) = Py(u-v) A Px(u-v), we could also replace Y in
Py(u-v) by its corresponding elements in B from Px(u-v).

We note that the expansive concatenation is, in this case, a connected simple
(loopless) path.

Returning now to the table above, all simple and connected paths in G formed by
expansive concatenation are listed in the last column under the heading “Path in G”.
It is seen that 39 of the 45 source-destination pairs have compatible paths in Gx and
Gy respectively. In all cases the expansive concatenations of their paths are simple
connected paths. We remind the reader that our data matrices are symmetric and
paths from v to u are identical with paths from u to v in any feasible solution.

This example provides an instance where the analysis of Gx and Gy separately does
not lead directly to an optimal solution to the original (larger) network G[V,A]. In
some cases, the optimal solution can be found directly from the optimizations on Gx
and Gy . The following theorem can be used to identify such cases.
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Theorem

If for all source-destination pairs # and v in G[V,A] the expansive concatenation
Px(u-v) A Py(u-v) is a simple connected path then these paths give the optimal set of
paths in G[V,A].

Proof: The optimal flow allocation on Gx minimizes the maximum utilisation over
all possible path selections on B and S (satisfying the shortest path principles).
Similarly, the optimal flow allocation on Gy minimizes the maximum utilisation over
all possible paths in Wand S. Such utilisations in G are not altered if the paths are
compatible and the expansive concatenations are simple connected paths. The paths
are also feasible in G (satisfying shortest path principles). Thus it is not possible to
improve on this path set.

A consequence of the above theorem is that if for all source-destination pairs u and v
in G[V,A] the expansive concatenation

Px(u-v) A Py(u-v) is a simple connected path then the sets of link costs obtained (for
links of G) by applying the algorithm directly to the two smaller graphs G, and G,
may be used as the optimal link costs for the original network.

We still need to consider the case when some of the paths Px(u-v) and Py(u-v) are not
compatible and the question: “Can flows be re-allocated to new paths, retaining
shortest path principles, such that an optimal (or near optimal) solution can be found
for the original network G?”

Lower Bound for the solution on G(V,E)
The link utilisations obtained for the links in G(V,E), from the optimal solutions to
the two smaller graphs G, and G, , provide a lower bound for the min-max solution.

Approaches for the case Px(u-v) and Py(u-v) are not compatible

There are a number of different ways that one could proceed. Although it is not
guaranteed that an optimal solution can be obtained, without some type of
exhaustive search, a near optimal solution is sought.

Method 1
(1) Compute the link costs from the solutions for the networks G, and G, as in [11].

(2) If the costs for links in S differ for G, and G,, randomly select the cost for each
link in § from either its cost in G, or G, .
(3) Use these costs as the initial link costs for the KSP Cost Adjustment Heuristic.

If we examine the table summarizing the results for our example and look at the 6
cases where paths are not compatible we can identify the causes of incompatibility.
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For source-destination pairs 1-8, 2-8 and 3-8, u is in W and v in B. The incompatibility
is due to different transit nodes being selected for paths in G, and G, .

For source- destination pair 3-7, u is in W and v in S. The incompatibility is due to
one solution being a path from W to S and the other solution being a path for W to a
different node in S and then to Y and back to S.

In the case of source-destination pair 4-6, both nodes are in S. The optimal path in G,
is via X (that is, the subgraph W) but the optimal path in G,is via Y ( B).

For source-destination pair 4-5, u is in S and v in B. There is a conflict between
selection of a path u-Y versus a path u-X-S-Y.

Method 2

(1) Order the source-destination pairs with incompatible paths in decreasing order of
their offered traffic loads.

(2) Select in turn each ordered pair of nodes and compute feasible paths from u to the
destination v conforming with the (compressed) path solution from Gx and
satisfying the shortest path principles. Select the path most favourable to the

objective (e.g. minimizing the maximum link utilisation). Repeat with the path
solution from Gy. Select from these two paths the one most favourable to the
objective.

(3) Compute as in [11] the link costs.

Comments on steps (2) and (3)

Because of pre-processing possibilities for the second LP described in [11], the
computation of the link costs can be done directly on the original network G[V,A].
The selection of a path for a source-destination pair with incompatible paths involves
both removal of its load from the links of G in Gx (or Gy) and addition of the load to
the selected path.

The set of paths obtained from the expansive concatenation of compatible paths
satisfy shortest path principles. Thus, if a source-destination pair k-v has been
assigned a path then if the path from node u includes node k then it must have a
common path segment from k to v.

It is ,of course, also possible after completion of step (3) to use these costs as the
initial link costs for the KSP Cost Adjustment Heuristic.

5.  Conclusions

We have considered the problem of computing optimal sets of paths between source-
destination pairs in large IP networks according to the model proposed in [11]. The
traffic demands between the pairs of nodes, the link capacities and the topological
structure of the network are given. The problem is to allocate the traffic streams to
routes such that either the maximum link utilisation is minimized, or the average
link utilisation of the network is minimized, or the objective is a combination of these
two targets. To be feasible, the set of paths selected, for all pairs, must be constrained
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to satisfy shortest path principles.

Two approaches were developed that are potentially fast and able to handle large
networks. The first, based on use of k’th shortest paths, iteratively modifies link costs
to achieve the selected objective. The second method seeks to apply network
decomposition effectively such that the LP technique of Staehle, Kohler and
Kohlhaas [11] may be implemented on each subgraph in an iterative algorithm. It
remains now to evaluate the approaches by applying the methods to a significant
number of test networks.
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Appendix- K Shortest Paths in a Network

The algorithms available in the present literature fall into two main categories, those
that can be applied to find k’th shortest simple paths (those that are without loops)
and those that find all k’th shortest paths. The second class of algorithm is not
directly suitable for finding simple paths. For our problem we must generate k’th
shortest simple paths. The main algorithms for generating k’th shortest simple paths
are:
* Yen’s algorithm (1971).
Applicable to directed and undirected networks

» Katoh, Ibaraki & Mine’s Algorithm (1982).

Applicable to directed networks
* Martins, Queiros & Pascoal’s Algorithm (1999).

Applicable to directed and undirected networks
All of the above algorithms use a path deviation approach. Labelling type algorithms
are not suitable owing to the fact that the “optimality principle” for shortest paths
does not hold for k’th shortest paths.
The main characteristics of the path deviation algorithms are:
*The k’th shortest path p, is the shortest path taken from a candidate set X.
* To form the set X, we start with the k-1"th shortest path and consider in turn each
node on the path except the destination node. The considered node is called the
deviation node and a new path is formed for each deviation node, i. The new path is
loopless and one that is notin { p;, P,,..., Py.1}
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*The new path is formed from the concatenation of p,; the subpath of p;_; from s to i

and p”;; where p”;, is a shortest path from i to the destination node ¢ satisfying the
condition that the new concatenated path is loopless and one that is not in

{P Poyeer Pt
* *The concatenation is denoted by py A p,

Many algorithms exist for the k’th shortest unconstrained path problem (loops
allowed), but these are not suitable for our purpose.

Yen’'s algorithm is explained with an example.

Thek'‘th Shortest Path Pseudo-tr ees

A pseudo-tree composed of shortest and second shortest paths. Note that
all nodes of the original graph may be repeated except for the source.

Yen’s Algorithm

Let p; denote the k’th shortest path, from node s to node ¢, just selected from X. Let p,,
be the subpath of pk from node s to node v (the deviation node).

To form p”,, we

*Remove from the graph all nodes of p,, , except node v, (this effectively also

removes the links between these nodes). This is to ensure that no cycles are found in
the new path
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*Remove links (v,w) that belong to the pseudo-tree ¢k . That is, remove links (v,w)
that have belong to the previously found shortest paths {p,, p,,..., Pc.1s P}

*Find the shortest path, p*,;, in the remaining network, from v to t and then the
concatenation p,, 4 p*,; is formed and the path entered into the set X.

* We repeat this process for all deviation nodes on p; and the shortest path in X

becomes py..

Example

s
t
P,=1267
Deviation nodev | Path ps, Path P\, P, A Py
1 - 1,357 1,357
2
6
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Example (cont.)

Deviation nodev | Path pg, Path p*,, Ps, A P
1 _ 1,357 1,357 (10)
12 2,357 1,2,357 (9

Example (cont.)

Deviation nodev | Path p;, Path P°,; PA  Pu

1 ] 1357 1,357 (10)
1,2 2131517 112131517 (9)
126 6,57 12657 (8)

P,=12357 (length =8)
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Continuing the example, the k’th shortest paths are :

P, 1,2,6,7 7
P, 1,2,6,57 8
P, 1,2,357 9
P, 1,35,7 10
P, 14,7 11
Py 1,2,3567 12
P, 1,3567 13
P, 1,3267 14
P, 1,322,657 15

Although efficient k’th shortest simple and non-simple path algorithms exist for both
directed and undirected networks, these are designed for the case of a single origin
and a single destination. In our problem we may, of course, apply an algorithm
repeatedly to each source-destination pair in the network. This, however, may not be
the most efficient way to compute all pairs k’th shortest paths. In discussion with
Martins [8,9], it seems that no efficient algorithm is known for the all pairs k’th
shortest path problem. This remains an open research area. Currently, the method
adopted in [11] is based on an exhaustive search (with the number of possible paths
reduced by imposing hop-limits) and this is followed by a sorting process.
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