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Abstract—Software-defined Networking (SDN) provides an
increased flexibility and cost savings by separating the data from
the control plane. Despite these benefits, this separation also
results in a greater attack surface as new devices and protocols
are deployed. OpenFlow is one of these protocols and enables the
communication between the switch and the controller. Ideally
this connection takes place over an encrypted TLS channel,
but as this feature is marked optional, it is not supported by
all devices. This allows an attacker to eavesdrop and alter the
communication, hence resulting in a comprised network. In this
work, we demonstrate a new approach for authentication based
on device fingerprinting to enhance the security in scenarios,
where cryptographic mechanisms are unavailable.

I. INTRODUCTION

The ability to dynamically react to changing network
requirements, not only improves the flexibility but also results
in cost savings. One concept providing a high adaptability
is Software-defined Networking (SDN) [1]. Here, the control
plane is decoupled from the data plane and outsourced to
a programmable controller. The communication between the
controller and the data plane, which remains in the SDN-
enabled switch is governed by protocols such as OpenFlow [2].

Despite the advantages of this separation, the introduction
of newly created protocols and networking devices also
adds to the overall attack surface of the network. As the
controller configures a switch upon its first connection and
may reconfigure the switch if network requirements change,
an attacker impersonating a switch is able to learn vital
information concerning the network topology. Hence, a proper
authentication of legit switches has to be guaranteed.

In OpenFlow the communication between the controller and
the switch is ideally established over a TLS [3] encrypted
connection, which enables an end-to-end verification of the
participating devices. However, during the migration from
OpenFlow 1.0 to 1.1 the requirement of an encrypted commu-
nication channel has been marked as optional. Hence, several
products lack this functionality as stated in [4].

In this demonstration, we show a novel approach to ensure
the authentication of devices using fingerprinting, which applies
in scenarios where cryptographic mechanisms are unavailable.
For this, we implement a module for the ONOS [5] controller,
which extracts the required information for the generation of the
device fingerprint as well as prevents unauthenticated access.

II. FINGERPRINTING MODULE

The fingerprinting module is written as plugin for the
ONOS OpenFlow controller. Its main responsibilities are
the creation and management of device fingerprints as well

as authenticating connecting switches. In the following we
describe these functionalities in more detail.

A. Fingerprint Generation

The generation of the device fingerprint is based on the ob-
servation that the OpenFlow switch specification differentiates
between required and optional features. Thus, the vendor is
responsible to define which of these features are supported by
their products. Therefore, devices may differ in their provided
capabilities and as no concrete implementation requirements are
given, even common functionalities may differ concerning their
processing times. Based on these discrepancies it is possible
to identify a device.

During the process of creating the fingerprint, the module
takes several attributes of a device into account, which can be
categorized by static or dynamic features. Whereas we define
static features as all items which can be directly polled such
as the number of ports, we define dynamic features as all
indicators, which are computed during the direct interaction
with the switch such as timings of specific operations. The final
fingerprint is then composed as vector containing the results
of all tested features.

The computation of the fingerprint is triggered upon recep-
tion of the first message of a newly connecting switch.As all
static features could be obtained and replayed by an attacker
which is able to eavesdrop on a legit switch connection, the
module additionally starts benchmarking the device for specific
operations and records the timings. As these timings are
conducted during direct interaction with the device, they are
harder to reproduce and add an extra layer of security.

One candidate for such a dynamic feature, is provided by
the investigations of [6]. Here, the authors evaluate the time
span required for the switch to process a varying number of
flow mod messages. Their results show that different switches
can be easily clustered by their processing times. The same
procedure has been implemented by the fingerprinting module
which repeats the measurements several times to accommodate
for timing differentiations. In addition to the timings of the
individual runs, the average, minimum and maximum as well
as the standard derivation is computed for future reference
during the authentication procedure.

B. Registering a new switch

Whenever a new switch is deployed, the switch has to be
registered at the fingerprinting module to create a database of
trusted devices. For this, the switch needs to be configured to
connect to the OpenFlow controller running the fingerprinting
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(a) Scenario I: Depicting the successful attack. (b) Scenario II: Illustrating the mitigation of the attack.

module. The module then automatically determines the connec-
tion attempt of an unauthorized device and lists every device
in a graphical view to the network operator, where the new
switch can be approved. This triggers the generation of the
fingerprint and adds it to the list of trusted devices.

C. Authentication

Upon connection of a device the fingerprinting module
is notified by the ONOS framework and directly initiates a
block. This prevents other ONOS plugins to use the device
until the authentication process is completed. Furthermore, the
computation of the fingerprint is started. Once the computation
is completed the result is checked against the list of registered
fingerprints. If a match is returned, the initial block is removed
and the device can be used as intended. However, if the
authentication fails, the device is remains isolated and is
reported to the network operator. In addition, all incoming
messages from the device are dropped to prevent further
resource consumption and attack surface.

III. DEMONSTRATION

In our demonstration we show how an attacker can imper-
sonate a switch to obtain and alter information regarding the
network topology and how this attack is mitigated without the
need of TLS by using the fingerprinting module.

The demonstration setup consists of an OpenFlow controller
running ONOS and the fingerprinting application as well as
two OpenFlow-enabled switches for managing the data plane.
Furthermore, several virtual machines are used to propagate
the network and one notebook resembles the attacker.

The benefits of the fingerprinting module are demonstrated
in two scenarios which are illustrated in Figure 1a and 1b.
In the first scenario, the OpenFlow controller is not running
the fingerprinting module and thus the attacker is able to
connect to the controller by impersonating a legit switch. As
no authentication is required the attacker is provided with vital
information as part of the initial configuration, which is sent
by the controller. Furthermore, the attacker actively alters the
network topology by sending forged packets to the controller,
resulting in a compromised network.

In the second scenario, we demonstrate how the prior attack
is successfully mitigated by activating the fingerprinting module.
As illustrated in Figure 1b, the two legit switches are registered

at the module and their fingerprint is generated. Once the
registration is complete, both switches are able to connect to the
controller and the network functions as intended. The previous
attack is then repeated. In contrast to the first scenario the
attack no longer succeeds as the fingerprint which is generated
for the attacker differs from the entries of trusted devices.
Hence, the connection to the controller fails and the security
of the network is improved.

IV. CONCLUSION & OUTLOOK

In this work, we demonstrate the computation of finger-
prints of OpenFlow switches and use this information to
enhance the security in scenarios where authentication based
on cryptographic mechanisms is unavailable. For this, we
determined a set of features based on static capabilities as
well as dynamic attributes of OpenFlow-enabled switches to
identify different products. This procedure is then incorporated
in a novel authentication mechanism implemented as proof of
concept for the ONOS controller.

Future extensions of our work aim for incorporating more
features for the generation of the fingerprint as well as
determining a minimized set of features which uniquely identify
a specific switch. Hereby, we strive to reduce the connection
setup times and the number of possible false positives.
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