
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

ABSTRACT

Cluster tools have gained a lot of importance in today’s
semiconductor manufacturing. A cluster tool basically con-
sists of several processing chambers in a mainframe, sev-
eral load locks to insert wafer lots and a robot arm to move
them. This means that these tools are able to work on more
than one lot at the same time. Since the lot combination
processed together can have an influence on the cycle
times of these lots, scheduling is needed to ensure that the
overall cycle times are kept low. In a previous work, we
presented a method based on filtered beam search using
slowdown factors as evaluation methods. Here, we will
present another evaluation method based on recipe com-
parison that produces even better results. We will also
show results of a beam width parameter study.

1 INTRODUCTION

In semiconductor manufacturing, cluster tools have be-
come more and more important because of their potential
for cost reduction. By performing several process steps in
one machine, the clean-room space needed is minimized as
well as the danger of pollution. Moreover, cluster tools of-
fer speed advantages by pipelining. The basic structure of a
cluster tool is shown in Figure 1.

The tool consists of several processing chambers
which are connected to a mainframe. The chambers are the
machines that perform the actual wafer processing. There
are different chambers for different tasks, like alignment,
heating, etching etc. Each processing step takes time. Dur-
ing that time the chamber is blocked, because there is no
waiting space inside the cluster tool. Load locks are the in-
terfaces to the outside of the tool. Each load lock can be
loaded with one lot. Then the load lock adjusts the air pres-
sure and cleanliness to a level suitable for the interior of
the cluster tool. The handler is a robot that moves the wa-
fers around. It takes a wafer out of its lot cassette or cham-

ber and puts it in the chamber that is next in the wafers rec-
ipe, i.e., list of processing steps.

SCHEDULING CLUSTER TOOLS USING
FILTERED BEAM SEARCH AND RECIPE COMPARISON

Simon Oechsner

Department of Computer Science
University of Würzburg

D-97074 Würzburg, GERMANY

 Oliver Rose

Department of Applied Computer Science
Technical University of Dresden
D-01062 Dresden, GERMANY

 Figure 1: Sketch of a Typical Cluster Tool

Since there is more than one load lock in typical cluster
tools, more than one lot can be processed at the same time
in the tool. Of course, the wafers of these lots compete for
the resources like handler and chambers and therefore in-
fluence each others cycle time.

The scheduling of the wafer movements, the so-called
internal scheduling, is normally done by the cluster tool.
However, the use of the chambers strongly depends on the
sequence in which a given set of lots enters the tool. For
example, if two lots of the same type are in the tool at the
same time, the wafers from these lots need to be processed
in the same chambers. Therefore, waiting times for at least
some of the wafers can occur. However, if lots that use dif-
ferent resources are combined in the cluster tool, the over-
all processing time may be significantly reduced.

 The choice of the lot order influences the makespan of
that lot set, so the external scheduling tries to find a lot se-
quence that minimizes the makespan for a given lot set
(Figure 2).

Load locks

Chambers

Handler

c©2005 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, in-

cluding reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers

or lists, or reuse of any copyrighted component of this work in other works. The definitive version of this paper has been published in Winter Simula-

tion Conference, 2005, 10.1109\/wsc.2005.1574507.

Oechsner and Rose

 Figure 2: The Scheduling Process for Our Problem

2 RELATED WORK

In (Dümmler 2004), M. Dümmler tried to optimize small
lot sequences by using a genetic algorithm. While being
successful, the general purpose genetic algorithm lacks
performance when used on specific problems that could be
solved faster when using knowledge about the system.
More work was done on the internal scheduling (Bohr
1999), as well as on the approximation of cycle times in
the cluster tool (Niedermayer and Rose 2003) . In an ear-
lier work (Oechsner and Rose 2005), we described the fil-
tered beam search algorithm with evaluation methods
based on slowdown factor comparison.

3 EXTERNAL SCHEDULING WITH FILTERED
BEAM SEARCH

In this section, we will discuss the basic filtered beam
search algorithm that we used, as well as the actual evalua-
tion methods we implemented.

3.1 Schedule Trees

To introduce the methodology of our search algorithm, we
first have to model the scheduling process by means of a
tree structure. Each node of the tree represents a (partial)
schedule. The root is the sequence with no lot scheduled on
a distinct position (i.e., (*,*,*,*), with * being a place-
holder for one slot in the sequence). Each child is a partial
schedule with one lot scheduled on the first position of the
sequence and for each child this lot is different (e.g.,
(1,*,*,*), (2,*,*,*), etc.). On each consecutive level, one
more lot is put into the sequence, until full se-
quences/schedules are reached (Figure 3). These are the
leaves of the tree. This means that on level i, one of the lots
still to be scheduled is selected for position i of the lot se-
quence. With a finite set of different lots, the number of
children per node decreases by one on each level, since
fewer lots remain to be scheduled. If we have a set of lots
that consists of a few lot types only with several lots per
type, the initial number of children per node is of course

smaller (the number of types/recipes), but it decreases only
if all lots of one type are already scheduled.

Figure 3: A Part of a Schedule Tree with 4 Different Lots

3.2 The Filtered Beam Search Algorithm

Filtered beam search (FBS) is a variant of the branch and
bound algorithm (Pinedo 2001). Consider the scheduling
process as a tree like in 3.1. For a large set of jobs, this tree
becomes very big because of the large number of children
of each node on higher levels. Branch and bound now aims
to eliminate some of the children of a node by evaluating
each node and comparing the resulting value with a prov-
able lower bound. If the value is larger, the node and all of
its children are discarded. Thus fewer nodes have to be
considered on the next level. However, usually many nodes
remain that have to be evaluated. While a branch and
bound algorithm produces optimal solutions, it is very
time-consuming if used on NP-hard problems. Since
scheduling falls into this category, branch and bound is not
the best option when results (not necessarily optimal) need
to be obtained fast.

The aim of filtered beam search is to limit the number
of nodes that have to be evaluated on each level of the
search tree. With each step, a certain set of nodes is se-
lected based on an evaluation function, the rest is dis-
carded. Only the surviving nodes are expanded, keeping
the size of the tree small. The number of these nodes is
called the beam width of the search. When the search tree
has been expanded fully, this means that on each level ex-
cept the first, there are at most beam width nodes. This re-
sults in the same number of lot sequences that have to be
simulated. Thus, the algorithm is quicker than branch and
bound, but it can not guarantee optimality anymore. How-
ever, if the selection process for the nodes is good, a near
optimal or even optimal solution can still be obtained. On
the other hand, if the evaluation is too complex, the speed
advantage might be lost.

To achieve acceptable speed while still gaining a good
result, a filter is used. The filter is used on all nodes of a
level. It uses a quick evaluation method to select a number
of candidate nodes which are then evaluated thoroughly as

Lot set

Lot types

Lot sequence

scheduling

,,*,

1,*,*, 2,*,*, 3,*,*, 4,*,*,

1,2,*, 1,3,*, 1,4,*,
…

Oechsner and Rose

described above. The number of these nodes is called the
filter width of the algorithm. It is clear that the beam width
can not be larger than the filter width. Of course, if a fast
but still thorough evaluation method can be found, the fil-
ter step can be omitted. In this work, we aim to develop
fast methods that still produce good results.

3.3 Evaluation Functions

As the framework of our algorithm is given, we now need
to find adequate evaluation functions used to prune the
search tree as described above. These should be appropri-
ate for the problem given, so we have to analyze the mode
of operation of a cluster tool.

In reality, most cluster tools have one or two load
locks. Since cluster tools with one load lock are quite sim-
ple to analyze from a schedulers point of view we concen-
trate on cluster tools with two load locks.

To evaluate a certain node of the search tree, we have
to decide how well it fits to the end of the partial schedule
that was already determined. Because we have only two
load locks, not every lot that is already scheduled is of in-
terest. Most lots that have been scheduled before have al-
ready finished processing and are therefore no longer of
interest. We only need to look at the lots that are serviced
in the cluster tool at the same time, because only those lots
will have an effect on each others cycle time (Figure 4).

Figure 4: Evaluation Criteria

We will now describe three evaluation functions that do
exactly the comparison of lot combinations as described
above. The first two have already been presented in
(Oechsner and Rose 2005), but still a quick overview is
given in 3.3.1 for sake of completeness.

3.3.1 Slowdown Factor Comparison

As described in the last section, this evaluation function
concentrates only on the last lot that was already scheduled
and tries to find lots not yet scheduled that work well in
combination with it. To this effect, the slowdown factor of

all possible two-lot-combinations is computed, with the
slowdown factor being defined as follows (See also (Nied-
ermayer and Rose 2003)).

)(
)|(),(

ACycleTime
BAACycleTimeBAslowdown ∪

=

where CycleTime(A|AUB) is the mean cycle time of a wa-
fer of lot A when it is serviced at the same time as lot B.
CycleTime(A) is the mean cycle time of a wafer of lot A
with only this lot being processed in the cluster tool. Since
this slowdown factor is much higher if two lots do not fit
together well, e.g., when they compete for a resource, it is
a good indicator for evaluating lot combinations. All these
cycle times are obtained by short simulations and the com-
puted slowdown factors are stored for easy access by the
filtered beam search algorithm.

We can expand this method by accounting for a spe-
cial case. We assume that at least two lots have been
scheduled already, and call the last two lots 'i-1' and 'i' re-
spectively (according to their position in the schedule). Lot
i is the last lot scheduled, but has a small cycle time com-
pared to the cycle time of lot i-1. This means that lot i-1 is
still being processed when lot i has left the cluster tool. Of
course, the lot to be scheduled next must be compatible
with lot i-1, not lot i.

In this case, we try to find a lot that has a low slow-
down factor if processed at the same time as lot i-1. To de-
cide which method to use, we look at the cycle times of lot
i-1 and lot i. If CycleTime(i - 1) ≥ 4 * CycleTime(i), there
is a high probability that lot i will be finished before lot i-1,
and we choose the method described. If the condition
above is not true, we use the normal method that computes
the slowdown factors for the last lot scheduled. The factor
of 4 is chosen based on estimation and may be tweaked.

3.3.2 Recipe Comparison

With this evaluation function, we concentrate on the last
lot that is already scheduled and try to find lots that don't
compete for too many resources with it.

A lot set consists of subsets of lot types. A lot type is
defined by the recipe of the wafers of this lot as well as the
number of wafers in it (all wafers in one lot have the same
recipe). A recipe is the exact sequence and duration of the
processing steps a wafer must be subjected to in order to
manufacture the final product.

In our case, this simply means a list of chambers with
associated process times for that chamber. However, be-
cause there is possibly more than one chamber for a certain
process step, alternatives can be noted for each step, thus
allowing a more flexible production.

Since we analyze only one cluster tool, all recipes we
use feature chambers of that cluster tool only.

Lots already
scheduled

?

Load lock A Load lock B

Time

?

Only this lot
has an effect

Lot to be
scheduled next

Oechsner and Rose

The recipes we consider have the following basic structure:

recipe := <step> [<step>]*
step := <chamber><time> [<chamber><time>]*
chamber := String
time := int

An example taken from a CluSim (a cluster tool simulator,
see (Schmidt 1999)) definition file therefore looks like this:

Recipe RecipeA
 Step Step1
 ClusterTool ETCH1
 Chamber ChamberA 587
 Chamber ChamberB 585
 Step Step2
 ClusterTool ETCH1
 Chamber ChamberC 583
 Chamber ChamberD 586

In this example, chamber A or chamber B can be used for
the first step, and the second step needs chamber C or
chamber D. The integer numbers denote how long a wafer
must be in the according chamber in order to finish the
step. The time unit is seconds.

Since the information which resources are used by a
lot can be found in its recipe, we simply compare the reci-
pes of the two lots we consider. If they both use the same
resource anywhere in their recipes, the resulting value used
for computing the evaluation is higher, if alternatives exist,
the penalty is lowered. The penalty formula is

BA AltAlt

p
##

1
⋅

= .

#AltA is the number of alternatives in the step of recipe A
where the coincidence was found, and #AltB is the same for
recipe B. The total evaluation is the sum of all penalties,
i.e., the sum over all coincidences.

We will illustrate this with an example. Below are two
simple recipes in the format used by our simulator.

Recipe Recipe1
 Step Step1
 ClusterTool ETCH1
 Chamber ChamberA 534
 Chamber ChamberB 487
 Step Step2
 ClusterTool ETCH1
 Chamber ChamberC 395

Recipe Recipe2
 Step Step1
 ClusterTool ETCH1
 Chamber ChamberA 565
 Step Step2
 ClusterTool ETCH1
 Chamber ChamberD 349

Both recipes use chamber A. Recipe 1 could also use
chamber B in that step, while recipe 2 has to use chamber
A. Then the penalty that is added to the total would be

2
1

12
1

=
⋅

.

However, if there were also one alternative in recipe 2 (like
in recipe 2b), the penalty would be

4
1

22
1

=
⋅

.

Recipe Recipe2b
 Step Step1
 ClusterTool ETCH1
 Chamber ChamberA 565
 Chamber ChamberE 756
 Step Step2
 ClusterTool ETCH1
 Chamber ChamberD 349

Since the computation of these values can be done when
the recipes are known, the actual evaluation done during
the beam search is just a lookup of the pre-computed value.
This means that the recipe comparison is at least as fast as
the methods using slowdown factors, which also do the ac-
tual work once before the search itself.

The recipe comparison method, while being simple,
has a distinct disadvantage: it does not consider processing
times of lots in the chambers of the cluster tool. Whether a
lot has a processing time of 100 seconds or 100,000 sec-
onds makes no difference to the evaluation function, since
only the appearance (or, to be more exact, the number of
appearances) of the chamber in the recipe counts. While
that is no big drawback when processing times are roughly
equal in all recipes, it could produce wrong results if this is
not the case.

4 SIMULATION RESULTS

In this section, we show the results taken from simulations
done with the CluSim cluster tool simulation software
(Schmidt 1999). We added the filtered beam search algo-
rithm and the evaluation methods described above to the
simulator, and then conducted simulation runs for different
lot set sizes.
We compare our evaluation methods for lot sets of the size
5, 10, 15 and 20. We chose a simplified beam search algo-
rithm for each of the methods described, i.e., the filter step
is discarded and only one evaluation is performed. We can
do this because none of our methods is very time-
consuming. The beam width parameter is set to the lot set
size.

Oechsner and Rose

We simulated 22 randomly generated scenarios (i.e.,
lot recipes and distributions) and deleted the best and the
worst result. Thus, we have 20 scenarios for each parame-
ter setting. Our primary performance criterion is the dis-
tance to the optimum/best found value obtained via a ex-
haustive/random search. In case of a small number of
permutations, exhaustive search is used. However, the
number of possible lot combinations gets huge quickly, so
for the larger lot sets, we had to use a random search that
covers only a part of the solution space. The amount of se-
quences tested is 10% of the total number of sequences
with this method, but it is capped at 15000 runs due to time
constraints.

However, it is also of interest whether the results are
below or above the mean cycle time of all tested lot se-
quences. Since the simulations themselves are determinis-
tic, there is no need to simulate more than once per sce-
nario.

4.1 Slowdown factors with two considered lots

Table 1 shows that the slowdown factor comparison algo-
rithm performs well. It keeps the makespan below the
mean value of all tested lot sequences. However, while the
scheduler produces results close to the optimum for small
lot sets, it's performing worse when more lots are to be
considered (Figures 5 and 6). Still, it stays well below the
mean value in most cases. While the algorithm performs
very well on small lot sets, and produces good results for
more lots, the cycle times it yields are well above 110% of
the optimal cycle time, but still below 120%.

Table 1: Results for the Simple Slowdown
 Factor Comparison

Lot
set
size

Result of FBS in %
of optimum (slow-
down with 2 lots)

Result of FBS in % of me-
dium value (slowdown with
2 lots)

5 102.32 91.76

10 111.23 94.71

15 112.18 96.47

20 116.85 99.38

We have to consider that the values for the minimum and
maximum makespans are obtained by a random search in
the permutation space for the set sizes 10, 15 and 20, so
they are not necessarily the best and worst cases. However,
we can also compute the sum of all lot cycle times in single
mode, which was always above the longest found
makespan in our scenarios. The worst case found by our
search methods is close to this sum in all of our tests. This
shows us that our random search is not far off the mark and

our results cover a large range of the possible schedules
and their results.

The following figures (Figures 5 and 6) show the per-
formance of the algorithm for the individual scenarios.
They depict the cycle times of the tested lot sequences over
the numbers of the tested scenarios. The thick horizontal
line marks the mean cycle time of all tested lot sequences,
with the thin vertical line representing the range of results
we get for those sequences. The dot is the best result
achieved by the beam search algorithm. The triangles mark
the sum of the lot cycle times.

0

20000

40000

60000

80000

100000

120000

0 5 10 15 20
Scenario

Ti
m

e
[s

]

Mean Value BeamSearch Sum of Lot cycle times

Figure 5: Lot Set Size of 5 Lots

0

100000

200000

300000

400000

500000

0 5 10 15 20
Scenario

Ti
m

e
[s

]

Mean Value BeamSearch Sum of Lot cycle times

Figure 6: Lot Set Size of 20 Lots

4.2 Slowdown factors with three considered lots

A first look at Table 2 tells us that the expansion we made
to the evaluation function with slowdown factors has an
effect, if only a small one. In the case of a lot set size of 15,
the improved method even is marginally worse, but still in
the same range. However, a t-Test for corresponding pairs

Oechsner and Rose

of scenarios with confidence level 0.95 showed that there
are no statistically significant differences.

Table 2: Results for Methods Using Slowdown Factors

Result of filtered beam
search in % of optimum

Result of filtered beam
search in % of medium

value

Lot
set
size

slowdown
with 2 lots

slowdown
with 3 lots

slowdown
with 2 lots

slowdown
with 3 lots

5 102.32 101.75 91.76 90.98

10 111.23 110.21 94.71 93.56

15 112.18 112.38 96.47 96.69

20 116.85 115.29 99.38 98.01

A closer look at the scenarios where we used the evalua-
tion method with three considered lots shows that these
setups contained recipes where the cycle times varied
greatly. Between one third and half of the scenarios for
each lot set size had at least one recipe pair with a cycle
time quotient larger than 4. This is of course exactly the
situation our improvement was aiming at. Still, with larger
lot sets, the results are often in the range of the medium
cycle time, with a big distance from the maximum (Figures
7 and 8).

0

20000

40000

60000

80000

100000

120000

0 5 10 15 20
Scenario

Ti
m

e
[s

]

Mean Value BeamSearch Sum of Lot cycle times

Figure 7: Lot Set Size of 5 Lots

0

100000

200000

300000

400000

500000

0 5 10 15 20
Scenario

Ti
m

e
[s

]

Mean Value BeamSearch Sum of Lot cycle times

Figure 8: Lot Set Size of 20 Lots

4.2 Recipe comparison

Surprisingly, the recipe comparison produces good results
although it is the simplest method implemented. Although
the comparison does not consider process times and al-
though the process times given in the tested scenarios var-
ied greatly, this evaluation method seems to employ the
right criteria. The cycle times achieved by the algorithm
using recipe comparison are nearly always within 110% of
the best value found by the exhaustive or random search.
Table 3 gives the mean results for the different lot sets in
percent of the best found value and of the found mean
value.

Table 3: Results for the Recipe Comparison

Lot
set
size

Result of FBS in %
of optimum

Result of FBS in % of me-
dium value

5 100.24 90.4

10 104.68 89.57

15 106.68 92.47

20 109.64 93.06

Also, the results are 10% lower than the medium value in
the best case, and still show an improvement of 7% in the
worst case. It has also to be considered that the reference
values were computed with a much higher effort than the
filtered beam search took. Figures 9 and 10 show how well
the algorithm performed with the different scenarios for
small and large lot sets.

Oechsner and Rose

0

20000

40000

60000

80000

100000

120000

0 5 10 15 20

Scenario

Ti
m

e
[s

]

Mean Value BeamSearch Sum of Lot cycle times

Figure 9: Lot Set Size of 5 Lots

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 5 10 15 20

Scenario

Ti
m

e
[s

]

Mean Value BeamSearch Sum of Lot cycle times

Figure 10: Lot Set Size of 20 Lots

Table 4: Result comparison for the different methods.
All values are in % of optimum
Lot
set
size

slowdown
with 2 lots

slowdown
with 3 lots

Recipe com-
parison

5 102.32 101.75 100.24

10 111.23 110.21 104.68

15 112.18 112.38 106.68

20 116.85 115.29 109.64

The values in Tables 4 and 5 show that the recipe
comparison performs better than the slowdown factor
methods. Especially for larger lot sets, the results
achieved with the newer method are significantly bet-
ter.

Table 5: Result Comparison for the Different Meth-
ods. All Values are in % of Mean Value
Lot
set
size

slowdown
with 2 lots

slowdown
with 3 lots

Recipe com-
parison

5 91.76 90.98 90.4

10 94.71 93.56 89.57

15 96.47 96.69 92.47

20 99.38 98.01 93.06

4.3 Parameter study

We will now take a closer look at how the beam width pa-
rameter influences the result of the algorithm. Since we
have found that the recipe comparison method performs
better than the slowdown factor approach, we will use this
evaluation method from now on.

Basically, there is a trade off between the quality of
the result and the speed of the search. The larger the beam
width is, the better we can expect our solution to be. How-
ever, a large beam width also means that more simulation
runs have to be conducted at the end of the search phase.

Since the time needed for the simulations takes by far
the biggest part of the search algorithms running time,
more simulations mean a significantly longer search time
(The pure beam search itself without simulations takes
about the same time as two simulations with a lot set size
and also a beam width of 20.).

Figure 11 shows the influence of the beam width on
the quality of the result. There is a clear trend to better re-
sults with a larger beam width, as was expected. However,
there is no further advantage to expanding the beam width
above a certain limit, which seems to be located at the lot
set size for 10 lots.

1

1,02

1,04

1,06

1,08

1,1

1,12

1 2 3 4 5 6 7 10 15 20 25 30

Beam Size

Pe
rc

en
t o

f O
pt

im
um

/1
00

Figure 11: Results for 10 Lots

Oechsner and Rose

Surprisingly, a beam width of ten seems to be optimal for
larger lot sets, too. Although it should be expected that
beam widths grow with the lot set sizes, our parameter
study shows that this is not the case. Figure 12 shows that
the quality of the result even decreases with larger beam
widths.

1

1,02

1,04

1,06

1,08

1,1

1,12

1,14

1,16

1 2 3 4 5 10 15 20 25 30 40

Beam Size

Pe
rc

en
t o

f O
pt

im
um

/1
00

Figure 12: Results for 20 Lots

While the difference between the values decreases for a lot
set size of 30 (Fig. 13), a beam width between 10 and 20
seems to be sufficient for these scenarios, too. However,
because the performance of the algorithm generally be-
comes worse with larger lot sets, the difference between
the parameter settings is not as significant as for example
for a lot set size of 10.

A possible explanation for the observed behavior is the
nature of our evaluation functions. Because of the fact that
we only try to optimize the schedule locally, i.e., only pairs
of lots are considered, it is conceivable that a larger beam
width leaves more room for error. A wider beam means
that there are more possible lot combinations to consider in
the next step. While some of those combinations might
seem good at that time, they could produce a schedule with
a longer cycle time than others. However, because the al-
gorithm is not able to look ahead, the best combination that
is available at the moment is still chosen.

5 CONCLUSIONS

In this work, we studied a filtered beam search approach to
scheduling cluster tools. The aim of the algorithm is to op-
timize the makespan for a given lot set by finding a good
external schedule. While we already had promising evalua-
tion functions that used slowdown factors, we searched for
a different method that still uses knowledge about the sys-
tem.

We developed, implemented and tested a new evaluation
method based on recipe comparison that enhances the per-
formance already shown by earlier approaches without
needing more resources. The achieved results were signifi-
cantly better than the makespans obtained by the slowdown
factor comparison methods.

We also conducted a parameter study that showed that
we do not need to expand the number of simulations above
a certain limit to gain good solutions.

In conclusion, we showed that the already promising
results of a filtered beam search approach can be even
made better by choosing better evaluation functions. How-
ever, it seems that exploiting knowledge about the inner
workings of a cluster tool is a good way to determine lot
schedules.

1

1,02

1,04

1,06

1,08

1,1

1,12

1,14

1,16

1,18

1 5 10 20 30 40 50

Beam Size

Pe
rc

en
t o

f O
pt

im
um

/1
00

Figure 13: Results for 30 Lots

REFERENCES

Bohr, M. 1999. “Schedulingverfahren für Cluster Tools in
der Halbleiterfertigung. (In German)” Master’s thesis.
Department of Computer Science. University of
Würzburg, Germany.

Dümmler, M. 2004. “Modeling and Optimization of Clus-
ter Tools in Semiconductor Manufacturing.” PhD the-
sis, Department of Computer Science. University of
Würzburg, Germany.

Niedermayer, H., Rose, O.. 2003. “A Simulation-based
Analysis of the Cycle Time of Cluster Tools in Semi-
conductor Manufacturing.” Proceedings of 15th Euro-
pean Simulation Symposium, October 26-29, Delft,
Netherlands.

Oechsner, S. and Rose, O. 2005. “A filtered beam search
approach to scheduling cluster tools in semiconductor
manufacturing”. In Proceedings of IERC’05, May 14-
18, Atlanta, USA

Oechsner and Rose

Pinedo, M. 2001. Scheduling. Theory, Algorithms, and

Systems. 2nd edition. Prentice-Hall.
Schmidt, M. 1999. “Modellierung und Simulation von

Cluster Tools in der Halbleiterfertigung. (In German)”
Master’s thesis. Department of Computer Science.
University of Würzburg, Germany.

AUTHOR BIOGRAPHIES

SIMON OECHSNER is a PhD student and member of the
scientific staff of Prof. Dr.-Ing. P. Tran-Gia at the Depart-
ment of Distributed Systems at the University of Würz-
burg, Germany. He received a M.S. degree in computer
science from Würzburg University, Germany. His research
interests include the performance evaluation of peer-to-
peer architectures and the simulation of distributed sys-
tems, such as manufacturing facilities. His Web address is
<www-info3.informatik.uni-
wuerzburg.de/staff/oechsner/>.

OLIVER ROSE holds the Chair for Modeling and Simu-
lation at the Institute of Applied Computer Science of the
Dresden University of Technology, Germany. He received
an M.S. degree in applied mathematics and a Ph.D. degree
in computer science from Würzburg University, Germany.
His research focuses on the operational modeling, analysis
and material flow control of complex manufacturing facili-
ties, in particular, semiconductor factories. He is a member
of IEEE, INFORMS Simulation Society, ASIM, and GI.
His web address is <www.iai.inf.tu-
dresden.de/ms>.

