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Abstract

Graph sampling refers to the process of deriving a small subset of nodes from a possibly huge graph in order to
estimate properties of the whole graph from examining the sample. Whereas topological properties can already be
obtained accurately by sampling, current approaches do not take possibly hidden dependencies between node topology
and attributes into account. Especially in the context of online social networks, node attributes are of importance as
they correspond to properties of the social network’s users. Therefore, existing sampling algorithms can be extended to
attribute sampling, but still lack the capturing of structural properties. Analyzing topology (e.g., node degree, clustering
coefficient) and attribute properties (e.g., age, location) jointly can provide valuable insights into the social network and
allows for a better understanding of social processes. As major contribution, this work proposes a novel sampling
algorithm which provides unbiased and reliable estimates of joint topological and attribute based graph properties in a
resource efficient fashion. Furthermore, the obtained samples allow for the generation of synthetic graphs, which show
high similarity to the original graph with respect to topology and attributes. The proposed sampling and generation

algorithms are evaluated on real world social network graphs, for which they demonstrate to be effective.
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1. Introduction

With steadily increasing size and popularity, online
social networks (OSNs) such as Facebook, Twitter, and
Google+ have drawn the interest of the scientific com-
munity. Analyzing the structure and properties of these
networks allows research in various fields. By studying so-
cial behavior and finding patterns in the networks’ struc-
ture, it is possible to acquire knowledge about require-
ments and parameters for future networks and applica-
tions. Additionally, OSNs have a high impact on today’s
users’ choice and consumption of online media. Coupled
with widespread availability of mobile Internet, these phe-
nomena give rise to the scientific field of socially aware traf-
fic management [29]. The main idea in this discipline is to
utilize social information about Internet users in order to
enhance existing traffic management strategies. For exam-
ple, information from OSNs about users’ interests allows
for improved caching solutions. However, complete social
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networks are seldom available due to privacy restrictions
and the OSN providers’ reluctance to publish the core of
their business data. Furthermore, running complex algo-
rithms on social network graphs in the order of magnitude
of hundreds of millions of nodes is usually infeasible due
to time and resource constraints.

Graph sampling techniques address the latter issue by
examining only a representative subset of a given graph.
Formally, the task of deriving a node sample from a given
graph G = (V, E) with node set V of size n and edge
set E can be defined as finding a subset of nodes Vg C
V' whose topological information can be used in order to
reliably estimate various properties of G. There are two
main quality requirements for sampling strategies. First,
the generated sample has to be unbiased. That is, the
expected value of the sampled data and the actual value of
the estimated parameter are equal. Second, the minimum
amount of samples required for reliable results should be
low.

Unfortunately, state-of-the-art graph sampling tech-
niques are limited to the topological analysis of huge
graphs whereas socially aware traffic management requires
additional information on user attributes like interests, ge-
ographic location, and age. Retrofitting these algorithms
with attribute sampling capabilities implicitly assumes the
independence of attributes and topology, and can pro-
vide inferior results. Therefore, this work transfers ideas
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from graph sampling to graphs with node attributes by
proposing a joint sampling of structure and attributes,
which takes possible dependencies between topology and
attributes into account. The resulting sampling mech-
anism provides unbiased and reliable estimates of joint
topological and attribute based properties of social net-
work graphs in a resource efficient fashion. As an ap-
plication of this sampling approach, a graph generation
method [8] is augmented to use a collected sample for gen-
erating synthetic social network graphs, which show joint
structure and attribute properties similar to the original
graph. In order to quantify this similarity, measures were
developed, which assess similarity not only with respect to
topology but also take attributes into account.
Thus, the contribution of this work is threefold:
e Existing sampling algorithms are extended to node
attributes
e A novel sampling algorithm is proposed which allows
for joint capturing of structure and attribute char-
acteristics
e A graph generation method is presented that repro-
duces topology and attribute related properties of
the original graph based on sampling
Therefore, this work is structured as follows. Section 2
covers relevant related work on attribute sampling and
graph generation, and describes the used social network
data sets. Section 3 introduces the sampling mechanism
and presents results. Topological graph similarity mea-
sures are extended to additionally assess attribute related
similarity in Section 4. A method to generate synthetic
social network graphs from a node sample with attributes
is proposed in Section 5. The performance of the algo-
rithm is evaluated for different social network graphs and
attributes. The results are discussed and an outlook on
future work is given in Section 6.

2. Related Work

2.1. Graph Sampling

Numerous approaches have emerged since graph sam-
pling became a relevant scientific topic. We revisit state-
of-the-art graph sampling algorithms that are classified
into three categories, namely, Uniform Node Sampling
(UNI), Breadth First Search (BFS), and random walks
(RW). Though primarily focused on sampling topolog-
ical graph properties, these algorithms provide a solid
foundation for the design of novel sampling algorithms.
Due to extensive reseach and several performance bench-
marks [19, 17, 18], they have proven properties and behav-
ior and are also well-established in practice.

In the context of UNI, a given amount of ng nodes is
drawn at random from the original graph’s set of nodes
V. While this procedure guarantees an unbiased sample,
it is not practical in most situations due to several pos-
sible restrictions. These include sparse ID spaces where
multiple queries may be required in order to obtain a sin-
gle sample, or even completely unknown ID spaces where

no information about the domain of user IDs is available.
Thus, UNI is considered as reference for the theoretical
best case. Although BFS and related methods like depth
first search [17] and snowball sampling [12] were used for
various sampling tasks in the past [25, 24], current research
suggests avoiding these methods due to a bias towards
nodes with high degree [17, 18]. Additionally, this bias is
graph specific and no mechanism for correcting this bias
has been developed yet. Recent graph sampling mecha-
nisms rely on random walks [20, 11, 27], a family of algo-
rithms that require only the basic operation of querying a
node for its set of neighbors. With the possibility to ex-
actly quantify the node degree bias encountered in random
walks, techniques for correcting this bias have been devel-
oped and allow collecting samples that are unbiased with
respect to topology. Most commonly used representatives
include the Metropolis Hastings Random Walk (MHRW)
and the Re-Weighted Random Walk (RWRW). Based on
the Metropolis Hastings algorithm [23], MHRW is a re-
jection sampling technique that corrects the bias on the
fly. Its applications range from the analysis of P2P net-
works [31, 26] to that of directed [34] and undirected [7]
OSNs. In contrast, RWRW first performs a biased RW
and then applies the Hansen-Hurwitz estimator [10] to the
degree distribution observed in the sample. By dampen-
ing the occurrence probabilities of high degree nodes, this
yields an unbiased distribution. The main advantage of
RWRW over MHRW is that RWRW avoids spending a
large portion of its sampling budget on rejections. In the
case of MHRW, around 55% of iterations are rejections [7].
Therefore, on average, MHRW’s resulting set of sampled
nodes not only consists of fewer unique nodes but also
stems from a shorter walk. A generalization of the RWRW
algorithm is presented in Section 3 and is the basis of the
developed sampling algorithm. It allows for estimation of
the two-dimensional distribution of node degrees and at-
tribute values. While literature also offers techniques for
sampling from dynamic, time dependent graph streams [1],
our proposed method works with static graphs. The main
reason for this behavior is that typical methods involving
dynamic graphs require operations like drawing a graph’s
edges uniformly at random which is not possible in real
world OSN graphs. Furthermore, algorithms for estimat-
ing a graph’s size have been proposed [13]. However, we
assume that the graph’s size is part of the input.

2.2. Graph Generation

Modeling real networks is an important branch of sci-
ence with many applications, including the analysis of bi-
ological and social systems. When a model is able to use a
real graph to consistently generate synthetic graphs that
capture the majority of the original graph’s properties,
its resulting graphs can be used as input for algorithm
benchmarks and simulations, or as a means of anonymiz-
ing crawled data before publication. This section outlines
three state-of-the-art models that can be used to generate



synthetic graphs given either the full input graph or even
just a sample of its node set.

Exponential Random Graph Models (ERGMs) [16, 35,
30] constitute a family of statistical models whose goal
is to reveal dependencies in the process of edge creation
in networks. This is achieved by quantifying the impor-
tance of various graph statistics that summarize structural
patterns in the graph. ERGMs are often used for char-
acterizing social networks [28, 6, 4]. Additionally, these
models allow generating synthetic graphs once model pa-
rameters have been estimated. However, ERGMs require
complete information on the input graph and current im-
plementations’ time complexity prohibits the analysis of
graphs whose size exceeds a few thousand nodes [36], thus
excluding most real world OSNs.

In [14], the Multiplicative Attribute Graph
Model (MAG), a generative model for graphs with
categorical node attributes, is proposed. The basic idea
is that the probability of two nodes being involved in
an edge depends on the nodes’ pairwise combinations
of attribute values. By quantifying the probability of
edge formation for each possible combination of attribute
values, various relationships like homophily, heterophily,
or the tendency to seek connections to a specific attribute
value can be expressed. Given the original graph, model
parameters representing the aforementioned probabilities
can be estimated. Based on these parameters, the model
is capable of generating synthetic graphs with realistic
topological and attribute related properties [15]. Unfor-
tunately, MAGs also require the full input graph G for
parameter estimation. As in the case of ERGMs, this is
the factor that makes the approach unsuitable for this
work’s goals of analyzing real world OSNs and generating
similar networks based on samples.

The authors of [8] present a method for generating a
topology similar to the one of a real world graph without
requiring full knowledge of that graph. The input consists
of a node sample collected during a random walk on the
graph of interest. Main aspects to reproduce are the joint
degree distribution (JDD), basically an edge count for each
type of degree-degree combination, as well as the average
clustering coefficient per node degree. For this purpose,
values of the aforementioned measures are derived from
the collected sample and are forwarded to an algorithm
that generates graphs whose measures approximate the
targeted values.

The notion of 2.5K-Graphs stems from the work on
dK-series [22] that describes graph models that contain
increasing degrees of information on the graphs’ structure
and have increasing complexity:

0K captures the average node degree.

1K captures the node degree distribution.

2K captures the joint degree distribution.

3K captures two distributions: counts of wedges (node
chains of length three) and counts of triangles
among triples of node degrees k1, ks, k3.

For a graph G = (V, F') with node set V and edge set E,
the 2K model specifies the JDD as defined in Equation 1.
For each pair of node degrees k and [, it returns the number
of edges between nodes of those degrees. The sets Vi and
Vi denote subsets of V' that consist exclusively of nodes of
degree k and [, respectively.

JDD(k,1) = Z Z L{{abyeEy (1)

a€Vy beV;

Unfortunately, the JDD does not contain information
on any sort of clustering or centrality, thus making the 2K
not expressive enough to model real networks. 3K, on the
other hand, does contain such information, but there is
currently no efficient algorithm for the 3K model. There-
fore, 3K is not suitable for the analysis of real networks
either. The 2.5K model tries to bridge this gap by adding
the average clustering coefficient per node degree ¢(k) to
the 2K approach, thus maintaining the efficiency of 2K
but also providing a centrality measure in order to achieve
more realistic results.

The first step in the 2.5K framework consists of per-
forming a random walk on the graph to replicate. The
random walk does not only record each visited node’s ID
and degree but also its adjacency list. Later, it is possible
to induce edges in the traversed graph by checking differ-
ent nodes’ sets of neighbors for intersections. By applying
the Hansen-Hurwitz estimator to the sampled set of nodes,
the node degree bias of the random walk is corrected and
estimates for the JDD and ¢(k) are derived. After a post-
processing step that includes smoothing of the JDD and
ensures that the resulting JDD is actually realizable by a
real graph, the generation phase of the algorithm is initi-
ated.

In this phase, the algorithm first creates a set of nodes
that follows the degree distribution encoded in the JDD.
Each of these nodes has a target degree and is therefore
considered to have “stubs” that can be connected to edges.
In the second step, these stubs are connected. Two impor-
tant constraints are enforced during this procedure. First,
an edge may only be added if the resulting graph does not
exceed the edge count defined in the JDD. Second, edges
are added in a greedy fashion that strives for a high clus-
tering coefficient. The latter part is important for runtime
purposes. In the final steps, double edge swaps are per-
formed in a Markov Chain Monte Carlo (MCMC) fashion.
These swaps guarantee that the JDD is preserved while
¢(k) approaches the targeted distribution.

The results presented in the paper compare the 2.5K
graphs with real and generated graphs from the 2K model
and show far better performance while being fast enough
for practical use on large real world graphs. Graph statis-
tics in this comparison include the distributions of node
degree and average neighbor degree per node degree, the
average clustering coefficient per node degree, and the joint
degree distribution.

Considering the goals of this work, the main issue with



the 2.5K approach is that its only interest lies in repro-
ducing the input graph’s topology while ignoring node at-
tributes. Another concern may be that the output graphs
need to have roughly the same size as the input graph as
the JDD matrix contains absolute integer values that lead
to varying edge densities depending on the size of the out-
put graph. The approach presented in Section 3.2 tries to
generalize the JDD estimation in order to support node
attributes.

In [9], two graph generation algorithms capable of re-
producing different characteristics of a given input graph
are presented. Both algorithms guarantee achieving the
same joint degree distribution as the input graph. Ad-
ditionally, the first algorithm aims at achieving an aver-
age clustering coefficient that is close to that of the input
graph while the second is directed towards the joint distri-
bution of node degrees and attribute values. Similarly to
the approach presented in this work, the algorithm uses an
extension of the JDD that captures attribute related prop-
erties, referred to as JDAM (joint degree and occurrence
of attributes matrix), which is a concept already used in
earlier work [21, 5]. In contrast to [9], our proposed graph
generation mechanism strives towards both goals simul-
taneously, i.e., joint degree and attribute distribution as
well as average clustering coefficient. Furthermore, our al-
gorithm deals with the challenge of having an incomplete
view of the input graph as its input consists of a random
walk node sample rather than the entire graph.

2.8. Data Set Description

In order to conduct performance evaluation of various
graph algorithms presented in this work, realistic input
data are required. As the envisaged application of the algo-
rithms is in the field of social networks and socially aware
traffic management, we focus on publicly available graphs
of OSNs. The use of real world input graphs ensures rep-
resentative results. For the experiments performed in this
work, two data sets containing topological and attribute
related information were used. The Pokec data set! pub-
lished in [32] contains the whole network of Pokec?, a popu-
lar Slovakian OSN with over 1.6 million users. User profiles
feature information on age, interests, gender, and several
other attributes. With over 1.6 million nodes, it is the
biggest network studied in this work. Additionally, a col-
lection of 100 Facebook subgraphs® published in [33] is
analyzed. These subgraphs cover different American col-
leges and universities whose sizes range from 760 to 41,000
nodes. They include information on students’ gender, class
year, major, high school, and dormitory. Details regard-
ing the graphs’ topological and attribute related properties
can be found in the corresponding publications. Various

Ihttps://snap.stanford.edu/data/soc-pokec.html
?http://pokec.azet.sk/
3https://archive.org/details/oxford-2005-facebook-matrix

characteristics of the subset of graphs that is used for eval-
uating the proposed sampling and graph generation algo-
rithms are listed in Table 3.

3. Proposed Sampling Approach

3.1. Extending Existing Sampling Algorithms to Attributes

When designing sampling algorithms that take into ac-
count both the graph’s topology and its attribute values, a
first approach could be extending existing graph sampling
algorithms to collect attribute values when visiting a node.
While UNI, BFS, and MHRW can be intuitively extended
to estimate the two-dimensional degree attribute distribu-
tions, the re-weighting process of RWRW needs some mod-
ification. The resulting estimator for the two-dimensional
attribute-degree distribution is presented in Equation 2,
which indicates the corrected probability for a node v with
degree deg, = d and attribute value att, = a. As the ran-
dom walk bias does not depend on the node attribute, the
Hansen-Hurwitz estimator of the one-dimensional RWRW
can be adopted.

Z 1{degy, =d,atty=a}
weVg d

1
ZWEVS deg,,

P(deg, = d,att, = a) = (2)

Figure la presents the two-dimensional joint distribu-
tion of age and node degree for the Pokec graph. Nodes’
age and node degree value combinations are aggregated
in bins in order to achieve a smooth plot. Each bin rep-
resents the combination of an individual age value with
a range of degree values. In the figure, each rectangular
cell corresponds to a bin with age values on the x-axis
and degree margins on the y-axis. Analogous to logarith-
mically scaling the y-axis, the bin width with respect to
node degree increases logarithmically in order to fit the
whole range of possible degree values. The color of each
cell indicates the probability of occurrence for the respec-
tive range of combinations. Figures 1b, 1lc, le, and 1f
illustrate results of UNI, BFS, MHRW, and RWRW for a
sample size of 100,000 on the Pokec graph. Additionally,
the performance of these algorithms with respect to esti-
mating the input graph’s two dimensional degree attribute
distribution is evaluated by calculating the Kolmogorov-
Smirnov D statistic between the two dimensional degree
attribute distribution observed in the input graph and the
distributions estimated by the sampling algorithms. This
statistic indicates the supremum of the distance between
the respective empirical cumulative distribution functions,
which is sensitive to both their locations and shapes, and is
thus an appropriate metric for the similarity of the distri-
butions. While UNTI yields a distribution that is barely dis-
tinguishable from that of the original graph (D = 0.0052),
it does not come as a surprise that BFS does not per-
form well in the joint sampling scenario (D = 0.3658) as it
has already been shown to be no viable approach even in



the context of topological graph sampling. Also MHRW
(D = 0.0341) clearly struggles with accuracy, especially
in the lower half of the figure where probabilities of com-
binations involving low degree values are plotted. This
phenomenon can be explained with the discrepancy in-
troduced by the rejection procedure of MHRW. RWRW
(D = 0.0141), on the other hand, shows the best perfor-
mance of the three sampling algorithms that are feasible
in practice.

Although the two-dimensional distribution can be re-
produced quite accurately by RWRW, no structural depen-
dencies can be captured by the existing sampling meth-
ods. Therefore, we propose a novel sampling approach
based on RWRW, which adds an estimate for the joint
two-dimensional degree attribute distribution. This esti-
mate lays the foundation for a new graph generation al-
gorithm, which allows for the reproduction of topological
and attribute related properties of the original graph.

3.2. Sampling Method

The sampling algorithm developed during this work is
based on the 2.5K approach of Gjoka et al.[8] that is out-
lined in Section 2 and works as follows. First, a random
walk is performed on the original, unknown graph. This
random walk not only collects node degrees and associ-
ated attribute values but also saves each visited node’s ID
and a list of the IDs of its neighbors. Due to the multi-
tude of possible attribute-degree combinations and there-
fore often very low number of node occurrences per type,
binning is applied with respect to the node degree. After-
wards, the random walk’s node degree bias is compensated
by applying the Hansen-Hurwitz estimator to the created
bins. These re-weighted bins can be used to estimate the
probability distribution of attribute-degree combinations
in the original graph. Additionally, the adjacency lists of
sampled nodes can be used to induce edges beyond those
traversed by the random walk. Therefore, an estimate of
the joint degree attribute distribution (JDAD), Jﬁﬂl
can be derived. Intuitively, the JDAD can be thought of
as a distribution of edges in the graph. For each edge type
defined by the degrees and attribute values of involved
nodes, the JDAD returns the number of edges of this type
in the graph. A formal definition of the JDAD is provided
in Equation 3, where V;; denotes the subset of nodes that
have node degree ¢ and attribute value j. The JDAD is
conceptually similar to the JDAM proposed in [9], which
provides the number of edges for a tuple of degree and at-
tribute pairs. In contrast, the JDAD maps a set of pairs,
which is more appropriate in the context of undirected
graphs.

JDAD({(Za])7 (k’ l)}) = Z Z 1{{1),u7}€E} (3)
veEVi; weViy

Analysis of JDAD allows estimating the assortativity
of attributes of interest as well as edge densities for ob-

served edge types. Details of the binning, re-weighting,
and edge induction steps are presented in the following.

The binning mechanism works as follows. After setting
a constant bin width wy, the observed degree range of each
attribute is divided into bins with width w,. Each node v is
assigned to a bin bin(v) depending on its node degree and
attribute value. Recommended values for the bin width
are 4 to 6. This results in sufficiently filled bins while
retaining enough accuracy with respect to observed node
degrees. After binning, an aggregated JDAD, JDADy;y,,
can be defined according to Equation 4. Given two bin
identifiers 4 and j, JDADy;,({i,7}) denotes the number
of edges in G that are present between nodes inside these
bins.

JDADyin({i, ) = > Y. l{wuwiery (4)
(2% weV

v
bin(v)=i bin(w)=j

In OSNs, not all users make all their information pub-
licly available or may choose to provide incomplete profile
data. Thus, in practice, sampling algorithms come across
users with unknown attribute values. In order to cope with
such cases, the proposed sampling algorithm maps unset
attribute values to a unique reserved attribute value (e.g.,
-1, N/A). On the one hand, this allows statements about
the percentage of users with unavailable attribute infor-
mation. On the other hand, the sampling budget spent on
fetching the user’s data is not wasted as topological prop-
erties still contribute to the overall estimates, regardless
of attribute values.

While the node sequence Vs = (s1,...,5s,) returned
by a random walk of length n yields at most n — 1 edges,
namely those traversed by the random walk, a multitude of
edges can be induced when adjacency lists of visited nodes
are also taken into account. Edge induction exploits the
fact that the original graph G contains an edge {u, v} iff u
is part of v’s set of neighbors N (v). However, if v is sam-
pled, not all elements of N (v) are necessarily visited by the
random walk. Thus, degree and attribute information is
only available for pairs {u, v} where both v and v are in the
sample, and only edges between such nodes can be added
to the JDAD. Because of the random walk’s bias towards
high degree nodes, the distribution of induced edges also
has an inherent bias. In order to reduce effects caused by
this bias, the idea of using a safety margin M as proposed
in [8] is employed. Ignoring induced edges that result from
checking the adjacency lists of nodes that are closer than
M positions in the node sequence returned by the random
walk decreases introduced bias. It is recommended to use
values in the range 10 < M < 100 [8].

As in the case of the two-dimensional degree attribute
distribution, the number of possible edge types defined by
the degree and attribute values of involved nodes is very
large while individual numbers of occurrence are low. For
this reason, the same binning procedure is applied to the
list of induced edges, resulting in edge types being defined
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Figure 1: Comparison between the original two-dimensional degree age distribution in the Pokec graph and those observed by the extended

sampling algorithms

by pairs of bin IDs instead of pairs of degree-attribute com-
binations. After this conversion, the lists of traversed and
induced edges are aggregated into an estimate of a joint
bin distribution JEA\DZ,M. For each observed edge type
{i,7}, the value Jf\ADbm({i,j}) represents the ratio be-
tween the number of edges of this type and the maximum
possible number of such edges, given the sequence of sam-
pled nodes Vg. Equation (5) defines this value formally.

>

SKsS1E€EVS,
s.t. bin(sg)=i,bin(s;)=43,
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As entries in mem represent density measures for
each edge type, they can be used to calculate an estimate
of the original graph’s assortativity. Additionally, scaling
of this distribution with respect to the output graph size
is used in the context of graph generation in order to de-
termine goal values for the number of edges per type in
the output graph.

3.3. Results

As explained in Section 3.1, existing graph sampling
algorithms can easily be extended with attribute sampling
capabilities. Figure 2 quantifies the performance of these
algorithms with respect to estimating two dimensional de-
gree attribute distribution of the Bucknell University Face-
book subgraph in terms of the Kolmogorov-Smirnov D

statistic. Additionally, the performance of UNI and the
proposed sampling algorithm is presented. The x-axis indi-
cates the sampling budget in terms of the original graphs’
sizes, while the calculated Kolmogorov-Smirnov D statis-
tic is provided on the y-axis. In addition to the mean D
value across 50 repetitions indicated by the bars’ heights,
whiskers denote 90 percent confidence intervals. For vari-
ous values of the bin width parameter, the proposed graph
sampling algorithm was applied to different social network
graphs. The results indicate that minimum D values are
achieved with bin widths of 4 to 6. As discussed in Sec-
tion 2, BFS and RW suffer from a bias towards high degree
nodes which results in a skewed degree distribution among
the collected nodes. Thus, it is not surprising that these
algorithms perform significantly worse than the presented
alternatives. With increasing sampling budget, BFS’s per-
formance improves slightly. This can be explained by the
fact that the BFS algorithm visits each node at most once
and thus, is guaranteed to visit lower degree nodes when
a higher sampling budget is available. UNI is the theo-
retical best case as it draws random sample pairs from
the original distribution. This is reflected by UNI having
the lowest D score among all sampling strategies. For ev-
ery sampling budget, the proposed algorithm outperforms
MHRW, which is statistically shown by a two-sample ¢-
test with p-values of 0.0028,0.0002,0.0038,0.0026 for the
different fraction values 0.1,0.2,0.3, 0.5, respectively.

The above presented results for a rather small social
network graph with only 3824 nodes showed that the al-
gorithms require sample sizes beyond 20% of the original
graph’s number of nodes in order to achieve a good perfor-



o
w
-

Sampling Algorithm
BFS

o
N

RW
MHRW
Proposed
UNI

Kolmogorov-Smirnov D
o
e <

0 e

01

o
o
[

02, 03 05
Fraction Sampled

Figure 2: Performance comparison of different sampling strategies
with respect to the two dimensional degree attribute distribution.
Algorithm parameters: attribute dormitory and Bucknell University
Facebook subgraph as input graph

mance with respect to the Kolmogorov-Smirnov distance.
However, results obtained from sampling huge graphs like
the Pokec graph show that a sampling budget in the or-
der of magnitude of two to five percent of the original
graph’s size is sufficient in order to produce a reliable es-
timate. This behavior is presented in Figure 3 where the

Kolmogorov-Smirnov distance between the original J D ADy;y,

and its sample based estimate, which is the foundation for
the proposed graph generation mechanism, is displayed for
various graphs and sample sizes. While the x-axis shows
the sampling budget, the y-axis indicates the aforemen-
tioned Kolmogorov-Smirnov distance with respect to the
JDADy;,. For the four Facebook subgraphs Haverford,
Rice, Stanford, and Rutgers, the dormitory attribute was
sampled. In the case of Pokec, age was chosen. Three lev-
els of performance corresponding to the graphs’ size can
be identified in the plot. First, the small graphs Haverford
and Rice with 1446 and 4083 nodes which result in the
highest Kolmogorov-Smirnov distances. Second, medium
sized graphs Stanford and Rutgers containing 11586 and
24568 nodes have significantly better performance values.
Finally, for the Pokec graph consisting of more than 1.5
million nodes, a sampling budget of 2% is sufficient for
achieving D values below 0.01. These observations suggest
that in the context of huge real world graphs, the resource
efficiency achieved via sampling increases significantly.
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Figure 3: Influence of the sampling budget on the Kolmogorov-
Smirnov distance between JDADy;, and JDADy;,

1.000-

o
i
o
=}

Attribute

Smirnov D

Age

= Dormitory

= Major
School Year

Kolmoogorov—
o
I
o

0.001-

10 100 10000 100000

1000
Sampling Budget

Figure 4: Graph and attribute independent relationship be-
tween sampling budget and Kolmogorov-Smirnov distance between
JDADy;y, and JDADy;y,

Additional investigations show a graph and attribute
independent relationship between the absolute sampling
budget and the resulting Kolmogorov-Smirnov distance.
Figure 4 presents an aggregated view on samples of dor-
mitory, major, and year attributes from the four Facebook
subgraphs Haverford, Rice, Stanford, and Rutgers, and the
age attributes from the Pokec graph. It displays a scatter
plot of absolute sampling budgets on the x-axis alongside
the corresponding D values on the y-axis. Furthermore, lo-
cally weighted polynomial regression yields the smoothed
curve with a shaded area indicating the 95% confidence
intervals. When both axes are logarithmically scaled, the
fitted curve resembles a straight line which in turn corre-
sponds to a power law distribution. Thus, for the investi-
gated social network graphs, rather than relative sampling
budget, the absolute sampling budget seems to be a key
performance indicator of the proposed algorithm. Hence,
following figures present absolute values.

Depending on the intended use case, different user at-
tributes may be of interest when performing attribute sam-
pling and later graph generation tasks. Figure 4 already
showed that a large sampling budget provides accurate
samples almost independent of graph size and attribute
type. However, for small OSN graphs with low numbers of
sampled nodes some challenges may arise. Figure 5 pro-
vides an overview of the attribute sampling algorithm’s
performance when applied to the same topology but dif-
ferent attributes. In 20 experiment repetitions per config-
uration, the graph sampling algorithm was applied to the
small Haverford graph (1446 nodes) using the attributes
dormitory, major, and school year. While dormitory and
major are categorical attributes, school year is a numerical
attribute with integer values. With the sampling budget
on the x-axis and the Kolmogorov-Smirnov D statistic on
the y-axis, the plot contains results for all three attributes.
Each bar color represents one attribute. The mean D
score of all repetitions is indicated by the bars’ height, and
whiskers depict the 90% confidence intervals. Similar to
previous observations, similarity correlates with the sam-
pling budget. However, the school year attribute requires a
significantly higher sampling budget in order to reach rea-
sonable distance values. An explanation for this behavior
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D values between JDADy,;, and J/D-fTDbm for different node at-
tributes. Algorithm parameters: Haverford College Facebook sub-
graph and bin width 4

is that the characteristics of this attribute distribution are
different from the two categorical attribute distributions.
For example, the school year attribute has a high fraction
of values which only occur very rarely. Therefore, the sam-
pling algorithm needs to visit a larger amount of nodes in
order to observe enough representatives and provide reli-
able estimates. With a sampling budget of 289 (20%), the
mean D value drops below 0.1 for all attributes.

On a machine equipped with an Intel Core i7 4770
CPU at 3.40 GHz and 16 GB of RAM, the sampling and
J D ADy;, estimation procedure for the Facebook subgraphs
is completed within few seconds. In the case of the large
Pokec graph with more than 1.6 million nodes, runtimes
in the order of magnitude of one hour are observed.

To sum up, using the proposed algorithm allows the
same level of accuracy as MHRW while investing a lower
sampling budget, or a higher level of accuracy than MHRW
while investing the same sampling budget. Additionally,
the results confirm the intuition that increasing the sam-
pling budget results in better performance. As this effect
is mainly depending on the absolute number of sampled
nodes, only for small social network graphs a larger sam-
pled fraction is needed. Additionally the properties of the
sampled attributes have to be taken into account in this
case. For huge graphs, on the other hand, small sampling
fractions are sufficient to obtain accurate samples almost
independent of graph and attribute properties.

4. Graph Similarity

In order to evaluate and compare the performance of
algorithms that generate synthetic graphs based on a given
input graph, it is necessary to be able to quantify the out-
put graph’s similarity to the input graph. This section
presents approaches for assessing topological and attribute
related similarity between graphs.

4.1. Attribute Based NetSimile

The comparison of multidimensional graph property
distributions (e.g., by the Kolmogorov-Smirnov test)

quickly becomes computationally expensive and does
not provide insights into complex graph characteris-
tics. Therefore, dedicated graph similarity measures like
NetSimile [2] were designed specifically to assess graph
similarity based on a variety of topological characteris-
tics. The key idea of the algorithm is to extract node
level features from each graph, aggregate these features
in five ways (namely, mean, median, standard deviation,
skewness, and kurtosis), and return a size independent,
graph specific signature vector for each graph. By apply-
ing a distance measure to the resulting vectors, the graphs’
similarity can be quantified. Unfortunately, the basic ver-
sion of NetSimile is restricted to topological comparisons.
Thus, additional attribute based features are introduced
in order to cope with graphs that have node attributes.
Following the idea of the established NetSimile measure,
the developed extension, NetSimileatt, does not rely on a
single attribute related property. Instead, differently ag-
gregated statistics which represent diverse characteristics
are taken into account simultaneously.

The developed NetSimileai; measure contains four
node centric attribute based properties. Before this mea-
sure can be applied, the graphs to be compared need
to undergo a preprocessing step that converts them to
graphs with edge weights. Based on the attribute val-
ues att; and att; of nodes involved in an edge {7, j} and
whether the attribute in question is categorical, contin-
uous, or discrete, the edge’s weight is determined. If the
attribute is categorical, the edge weight wy; ;y is defined as
Wiy = att;=att;}- On the other hand, if the attribute
is continuous or discrete, the edge weight is defined as
wii ) = e~latti=att;| - This exponentiation ensures that
in either case, edge weights are normalized in the range
[0; 1] where a value close to 1 indicates a homophilous re-
lationship between the edge’s nodes and a value close to
0 indicates a heterophilous relationship between them, re-
spectively.

The following four node centric properties are analyzed
by NetSimileaty:

Mean node weight For each node v, the mean weight
of its edges is calculated. This statistic is defined as
W, = ﬁ ZuEN(v) W{y,p}y and quantifies the simi-
larity between a node and its neighbors.

Mean neighbor weight For each node v, this property
captures the mean value of w, among all of v’s neigh-
bors u. Doing so extends w, by an additional hop
and thus analyzes the degree of homophily found in
the two hop neighborhood of v.

Egonet edge homophily The sum of edge weights in a
node’s egonet (i.e., the subgraph induced by
vUN(v)) is calculated. Summation allows making a
statement about both the size of anode’s egonet and
the level of similarity between included nodes.

Egonet neighbor homophily Similar to NetSimile’s
count of egonet neighbors, the sum of potential edge
weights between node v and neighbors of its egonet u



is calculated. Again, this extends the previous prop-
erty by a hop and allows for a deeper insight into a
node’s surroundings.

Like in the case of plain NetSimile, each of these statis-
tics is computed for every node in the compared graphs.
Then, the five aggregation functions are applied to the re-
sulting vectors which finally yields the graphs’ signature
vectors. The NetSimilea value between the input graphs
is defined as the Canberra distance between these signa-
ture vectors. Low values indicate a high level of similarity
while high values denote dissimilarity between graphs. In
particular, the NetSimile and NetSimileat measures are
zero when the input consists of two identical graphs. Sec-
tion 4.3 shows examples of typical values for similar and
dissimilar pairs of graphs and experimentally demonstrates
the measure’s suitability for similarity assessment.

4.2. Attribute Based Figenvalue Extraction

Another measure for graph similarity is briefly intro-
duced in [2]. The Eigenvalue Extraction (EIG) algorithm
stems from the area of spectral graph analysis and is based
on the idea that eigenvalues can be used as an index of
centrality in network structures [3]. First, given graphs
are mapped to signature vectors. These vectors consist of
the k largest eigenvalues of the graphs’ adjacency matri-
ces, where k is an algorithm parameter. Usually, a value
of k = 10 is sufficient. After that, the similarity measure
is defined as the Canberra distance between the resulting
vectors.

Unlike NetSimile’s local feature extraction from each
individual node, this approach extracts global features by
considering the whole adjacency matrix at once. As in
the case of NetSimile, EIG can not quantify the similarity
of graphs with node attributes. Therefore, using the pre-
processing approach developed for NetSimileast, EIG can
also be extended to support graphs with node attributes.
First, the graphs’ edges {4,7} are assigned weights wy; ;}
as defined in the previous section. Then, the same pro-
cedure as in EIG is applied: the k largest eigenvalues of
the graphs’ weighted adjacency matrices are computed.
These eigenvalues compose the graphs’ signature vectors
that are finally compared via the Canberra distance. This
whole method of comparing graphs with node attributes
is referred to as EIGayt.

4.3. Results

In this section, various methods for assessing graph
similarity were introduced. These include NetSimile
and EIG as well as their attribute based counterparts
NetSimileayr and EIGayt, respectively. Before the next
section discusses the performance of graph generation al-
gorithms with respect to these similarity measures, a brief
overview of the domains of these measures is provided. For
this purpose, the measures’ behavior for pairs of social
network graphs that are intuitively similar or dissimilar
based on criteria like size, edge count, and attribute based

assortativity is analyzed. Results from these comparisons
provide a reference for assessing the performance of the
graph generation algorithm.

In addition to the results presented in this section,
Figure 9 in the next section illustrates a positive corre-
lation between the proposed NetSimileai; measure and
Kolmogorov-Smirnov distances regarding the node degree
distribution, attribute value distribution, and JDADy;,
distribution between input graphs and graphs produced
by our generation algorithm. This relationship indicates
that NetSimileayt is indeed capable of capturing topologi-
cal as well as attribute related graph properties in a man-
ner which is consistent with established alternatives.

Table 1 provides values for the topological measures
NetSimile and EIG for different pairs of graphs from the
Facebook dataset. In the first two examples, intuitively
similar graphs are compared which all have pairwise sim-
ilar sizes with respect to both, node and edge count. For
these, NetSimile values are below 0.16 and EIG does not
exceed 0.06. The following two comparisons show dissim-
ilar graphs. While having an almost identical number of
nodes, the Simmons graph exhibits only half as many edges
as the Haverford or Swarthmore graphs. As a result, Net-
Simile and EIG values rise beyond 0.26.

[ G1 [ Gy | NetSimile [ EIG |
Middlebury | Vassar 0.10 0.06
Ambherst Bowdoin 0.16 0.04
Simmons Swarthmore 0.27 0.26
Haverford Simmons 0.32 0.26

Table 1: Exemplary values of topological graph similarity measures
for different Facebook subgraphs

In order to grade possible values for attribute based
similarity measures, Table 2 presents calculated values for
NetSimileayt and EIGag for different OSN graphs and
attributes. Intuitively, two graphs with node attributes
should be considered similar if they have a similar amount
of nodes and edges as well as a similar degree of attribute
based assortativity. The first three entries of the table
provide such examples. In these cases, NetSimilepay; does
not exceed 0.18 and values of EIG ¢ are 0.16 or less. The
next three instances illustrate cases where assortativity dif-
fers by a factor of around three which directly affects the
measures’ values. They increase beyond 0.24 and 0.30,
respectively.

The bottom part of the table presents comparisons of
the Haverford graph with subgraphs of itself. BFS’I%v de-
notes the subgraph of the Haverford graph that is based on
a BFS sample of k% of its nodes. With increasing k, the
subgraph approaches the original graph and thus, the sim-
ilarity measures take on lower values. While NetSimilea
drops as low as 0.08, EIGa¢’s minimum is 0.10. This
can be explained with the fact that EIGay has a depen-
dency on graph size which adds to the dissimilarity already
present from BFS sampling.



[ G1 [ Go | Attribute | NetSimileas| EIG A
Haverford | Swarthmore | Dormitory 0.15 0.14
Ambherst Bowdoin Dormitory 0.16 0.16
Oberlin Wellesley Dormitory 0.18 0.04
Ambherst Vassar Dormitory 0.24 0.40
Ambherst | Smith Dormitory 0.31 0.44
Bowdoin | Smith Dormitory 0.36 0.30
Haverford | BFS®% Dormitory 0.45 0.82
Haverford | BFS©7% Dormitory 0.22 0.16
Haverford | BFS5% Dormitory 0.08 0.10

Table 2: Exemplary values of attribute based graph similarity mea-
sures for different Facebook subgraphs

The examples provided in this section allow deriving
thresholds for the four similarity measures which in turn
help interpreting the results presented in the following sec-
tion. For NetSimile, EIG, NetSimileats, and EIG a¢¢, these
thresholds are 0.16, 0.06, 0.18, and 0.16, respectively. If
the similarity value between a generated output graph and
its underlying input graph falls below the corresponding
threshold, the output graph is considered to be similar to
the input graph.

5. Graph Generation

5.1. Algorithm

The graph generation algorithm developed during this
work is capable of creating graphs with node attributes
based on a node sample collected during a random walk
and the target size n of the output graph. In this work, n
equals |V, i.e., the size of the original graph, and is part of
the input. An overview of involved mechanisms is shown
in Figure 6.

Random Binning and

Original, Node Sample

: Walk | e |[ReWeighting)  Bins with Node Set
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Figure 6: Outline of the graph generation algorithm
this work

developed in

The algorithm starts off by collecting a node sample via
a random walk. The sampling algorithm presented in Sec-
tion 3.2 calculates occurrence probabilities for every bin
B; = (Bja, Bi, Bi,) defined by its attribute B; , and its
degree range [B; ;; B; ). Multiplying this bin distribution
with the size of the input graph, and subsequent round-
ing results in node counts for every bin B;. These counts
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are used to create a preliminary node set where nodes’ at-
tribute values are fixed, but whose degree range lies in the
range defined by their source bin. Formally, such a pre-
liminary node v is defined as triple (att,, left,, right, ) con-
sisting of its attribute value att, and left and right degree
margins left, and right,, respectively. Furthermore, the

v
sampling mechanism provides JDADy;,, i.e., an estimate
of the joint two-dimensional degree attribute distribution,
which contains the structural characteristics of the graph.

Before connecting the nodes via edges, entries of the
JT)A\Dbm need to be converted from density measures
for each edge type to actual edge counts. For this, the
mem is multiplied with |E |, an estimate for the num-
ber of edges in the original graph. This estimate is derived
by utilizing the reliable degree estimate provided by the
Hansen-Hurwitz estimator and exploiting the relationship
of node degree and edge count. First, the Hansen-Hurwitz
estimator is applied to the node degrees observed in the
random walk’s node sample, which yields estimates for the
occurrence probabilities py of each node degree k. These
probabilities can be used in order to estimate the average
node degree in the original graph.

The ingredients collected so far are sufficient to cre-
ate an output graph whose degree-attribute distribution
is similar to that of the original graph and whose edges
follow the estimated JﬁA\Dbm. The output graph can be
constructed by iterating over all possible edges between
nodes of the created node set and adding only those edges
whose insertion neither violates the degree range of the in-
volved nodes nor leads to exceeding the edge count in the
JDADy;.

As explained in this section’s introduction, such an al-
gorithm ignores possible triangle structures and thus the
created output graph misses key characteristics of the in-
put graph. To address this issue, the algorithm is aug-
mented by an estimate of the input graph’s average clus-
tering coefficient ¢. The estimation is based on the set
of induced edges Fj;,q that is derived during the sampling
process and is described in detail in the work of Gjoka et
al. [8].

Now, the algorithm is extended to first greedily create
triangles and thus an output graph with a high average
clustering coefficient. This is achieved by associating ev-
ery node v in the output node set with a random one-
dimensional coordinate r,, thus assigning each possible
edge a distance with respect to this coordinate system and
iterating through edge candidates sorted by their distance
value. Following this principle, the constraints imposed
by the JfA\Dbm are still met while the resulting average
clustering coefficient is increased [8].

In most cases, this construction results in an output
graph with an average clustering coefficient greater than
the one estimated in the previous step. Thus, in a final
step, mem preserving edge swaps are performed in
order to achieve an average clustering coefficient close to
the estimate ¢. An edge swap is a rewiring procedure ap-



plied to a pair of edges {u,v} and {w,z} in which the
edges exchange one node with each other. This results in
one of two alternative pairs of edges, namely {u,z} and
{v,w} or {u,w} and {v,z}. A JDADy:, preserving edge
swap is defined as an edge swap that does not alter en-
tries in the mem- Such an edge swap can be achieved
by choosing a pair of edges whose nodes’ bin memberships
overlap. Given ¢, the maximum number of iterations i,,qz,
and an accuracy threshold €, edge swaps are performed in
a MCMC fashion. In each step two random edges originat-
ing from nodes with identical bin membership are chosen
and the edges’ destinations are replaced with each other.
If the swap changes the output graph’s average clustering
coefficient towards its goal value, the swap is accepted.
Either after the maximum number of MCMC iterations
has been performed or the difference between the output
graph’s average clustering coefficient and ¢ drops below
e, the MCMC procedure halts and the output graph is
returned.

The current implementation of the graph generation
algorithm is limited to creating output graphs consisting of
the same amount of nodes as the input graph. Scaling the
output graphs to arbitrary sizes would require nontrivial
changes to both, degree and edge distributions in order to
achieve realistic results. This task is out of the scope of
this paper and left for future work.

5.2. Results

This section investigates the influence of different pa-
rameters on the graph generation algorithm and com-
pares its performance to that of a state-of-the-art algo-
rithm. Figure 7 illustrates the performance of the graph
generation for both, the topology focused NetSimile mea-
sure, as well as for NetSimileats, which covers similarity
with respect to graphs’ attribute values. Both plots are
based on experiments that generated synthetic social net-
work graphs from the Bucknell University Facebook sub-
graph with 3824 nodes. The sampled attribute is dor-
maitory, a categorical value indicating a user’s residence.
To avoid propagated inaccuracies from the sampling pro-
cess, the synthetic graphs are generated using the original
JDADy;,. Thus, the plot presents the theoretical per-
formance of the generation algorithm when it is running
with optimal input. It shows the CDFs of NetSimile and
NetSimileaty values after the generation of 15 synthetic
graphs based on the original J D ADy;,,. The NetSimile val-
ues between the original graph and the generated graphs
range from 0.11 to 0.14. Additionally, NetSimilea; val-
ues form a steep CDF with scores always below 0.11. It
follows that the generated graphs are very similar to the
original graph as both similarity measures are well below
the thresholds found in Section 4.3. This means, the pro-
posed graph generation algorithm is able to accurately re-
produce topological and attribute based properties based
on the JDADy;, of the input graph. Note that in order
to obtain the JDADy;,, full knowledge and processing of
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the input graph is required, which is not feasible for larger
graphs. Therefore, each graph generation is usually pre-
ceded by a sampling process in practice.

The practical application performance of the graph
generation algorithm is presented in Figures 8 and 10. This
means, a sampling was performed on four different graphs
of the Facebook data set with four different sampling bud-
gets and the estimates of mem were used as input to
the generation algorithm. The chosen OSN graphs, namely
Rice, Bucknell, Smith, and Haverford, cover a wide range
of topological and attribute related characteristics. Thus,
the algorithm’s performance on these graphs can be used
as indicator for the algorithm’s overall performance. The
collected attribute is school year. To present the results for
the different graphs in a decent way, sampled fraction is
used on the x-axis. However, note that the above findings
on the accuracy of the proposed sampling algorithm re-
main valid and propagate through the generation process.
This means, instead of sampled fraction, the performance
of the generation algorithm also mainly depends on the
absolute number of sampled nodes.

Figure 8 shows the Kolmogorov-Smirnov distance be-
tween the original J D ADy;, and the JDADy;, of the gen-
erated graph. In contrast to the results reported in Fig-
ure 5, the calculation of the distances presented in this
section also takes into account the fact that the graph



generation mechanism might not be able to reconstruct
the estimate of the JDADy;, exactly. Nonetheless, the
value of the D statistic decreases for each graph when the
available sampling budget is increased.

In order to investigate the relationship between the
similarity measures proposed in Section 4 and the es-
tablished Kolmogorov-Smirnov D statistic, the different
distance measures between original and generated graphs
are calculated and compared with each other. Figure 9
presents the correlation between NetSimileaty and the
Kolmogorov-Smirnov distance with respect to three dif-
ferent distributions. These include the single dimensional
distribution of attribute values, the single dimensional dis-
tribution of node degrees, and the combined distribution
represented by the JDADy;,. While the x-coordinate of
each point denotes its NetSimileat; value, the y-coordinate
represents the corresponding Kolmogorov-Smirnov D. In
addition to this scatter plot, a line representing the lin-
ear best fit is added for each distribution used by the
Kolmogorov-Smirnov statistic. The positive correlation
between NetSimileay; and topological, attribute based,
and joint Kolmogorov-Smirnov distances highlighted in
the figure demonstrates its feasibility for the performance
assessment of our graph generation mechanism. Thus, re-
sults are presented in terms of NetSimileay for the remain-
der of this work.

In Figure 10, the respective similarity measures Net-
Simile and NetSimilea; are shown. Again, bar height
indicates the mean across 20 repetitions while whiskers
represent 90 percent confidence intervals. Figure 10a con-
veys that there is a direct relationship between an out-
put graph’s similarity to the input graph and the size of
the sample the former is based on. This is not surpris-
ing as plots for the sampling algorithm revealed a similar
relation. Thus, the graph generated on a more reliable
estimate is also more likely to express a higher degree of
similarity to the original graph. Figure 10b summarizes
the algorithm’s performance with respect to its ability to
replicate attribute based graph characteristics. Using the
same reasoning as before, an increasing level of similarity
is observed when a higher sampling budget is available.
In contrast to NetSimile, however, the algorithm achieves
good values of 0.18 and below for the NetSimileat; measure
with a sampling budget starting at 30%. Additionally, it
can reliably reproduce attribute characteristics of the Rice,
Bucknell, Smith, and Haverford Facebook subgraphs after
analyzing just 20% of their nodes.

In Table 3, other numerical graph properties of the
original and generated graphs are presented. These prop-
erties include the average clustering coefficient ¢, the assor-
tativity a, the average shortest path length I,, the number
of cliques |C], and the average closeness centrality ¢c. The
values for the generated graphs represent averages based
on ten generation runs. It can be seen that the cluster-
ing coefficient, which is a target metric for the generation,
and the assortativity are well replicated by the generated
graphs especially if the sampled fraction is high enough.
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However, the average shortest path lengths tend to be-
come slightly larger, and also the number of cliques and
the closeness centrality are not close to the original, which
shows that there is still some room for improvement of the
algorithm.

While the results shown so far demonstrate perfor-
mance and the influence factors of the graph generation
algorithm developed during this work, Figure 11 provides
a direct comparison with a state-of-the-art algorithm. In
addition to the publication introducing the mechanisms
utilized in the 2.5K approach [8], a Python implementa-
tion of the graph generation algorithm is provided. Us-



[ Fraction ‘ c ‘ a ‘ ls ‘ |C| ‘ cc ‘

Rice (|V| = 4087, |E| = 184826)

original 0.300 [ 0.520 | 2.468 [ 1145592 | 1.00-10~*%
0.1 0.201 | 0.601 | 2.714 | 1048786 | 4.37-10 *
0.2 0.241 | 0.624 | 2.661 863602 7.51-1077
0.3 0.258 | 0.575 | 2.636 | 1842283 | 1.27-10°°
0.5 0.310 | 0.577 | 2.644 | 2311427 | 1.94-107°
Bucknell ([V] = 3826, | E| = 158863)

original 0.281 | 0.268 | 2.507 522476 1.05-1072
0.1 0.197 | 0.031 | 2.763 441164 4.20-1077
0.2 0.283 | 0.085 | 2.756 | 685400 | 1.40-10°°
0.3 0.294 | 0.270 | 2.725 690691 2.01-107°
0.5 0.308 | 0.273 | 2.661 | 1039404 | 2.62-10°°
Smith (|V] = 2970, |E| = 97133)

original 0.289 | 0.157 | 2.498 151137 1.37-1071%
0.1 0.182 | 0.411 | 2.820 203916 1.13-107°
0.2 0.228 | 0.137 | 2.713 282275 2.85-107°
0.3 0.283 | 0.086 | 2.765 | 273109 | 3.21-10°°
0.5 0.333 | 0.197 | 2.780 376658 5.35-107°
Haverford (|V] = 1446, | E| = 59589)

original 0.327 | 0.195 | 2.228 475705 3.14-107%
0.1 0.234 | 0.152 | 2.416 232857 2.57-107°
0.2 0.290 | 0.158 | 2.303 | 344723 | 4.23-10°°
0.3 0.311 | 0.153 | 2.277 629996 4.66-107°
0.5 0.333 | 0.188 | 2.307 | 637602 | 5.65-10°

Table 3: Comparison of avg. clustering coefficient ¢, the assortativity
a, the avg. shortest path length I5, the number of cliques |C|, and
the avg. closeness centrality ¢c for original and generated graphs.
Algorithm parameters: attribute school year and bin width 4

ing this implementation?, social network graphs were also
generated via the 2.5K method. Figure 11a compares the
topological similarity achieved by the 2.5K approach with
that achieved by the proposed mechanism. Experiments
were conducted on the Facebook graph of the Bucknell
University, which contains 3824 nodes. The x-axis presents
information on the available sampling budget and the y-
axis displays the mean NetSimile value calculated for the
input and output graphs after 20 experiment repetitions.
Whiskers attached to the bars indicate the 90% confidence
intervals. Different bar colors denote the two graph gener-
ation algorithms. While the 2.5K algorithm outperforms
the proposed method in terms of topological similarity in
all instances, the difference becomes steadily lower until it
is barely relevant beyond a sampling budget of 1148 (30%),
as confidence intervals begin to overlap. The performance
difference can be explained by the binning mechanism in-
corporated in the proposed algorithm. This mechanism
adds some inaccuracy with respect to the output graph’s
node degree distribution in order to cope with estimation
difficulties.

In its published version, the 2.5K algorithm is not
designed for generating graphs with node attributes.
Nonetheless, a comparison with the algorithm developed

4h‘l:tp ://www.minasgjoka.com/2.5K/instructions/index.html
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Figure 11: Performance comparison between the 2.5K approach and
the algorithm proposed in this work. Algorithm parameters: at-
tribute school year, bin width 4, and Bucknell graph

in this work can be drawn by assigning attribute values
to the graphs generated by the 2.5K approach. The at-
tributes are assigned to the output graph’s nodes according
to the degree specific attribute value distribution observed
in the collected sample. Figure 11b presents NetSimileatt
values for this scenario. Due to a lack of information on
the attribute distribution in edges and higher order sub-
structures of the input graph, the 2.5K algorithm fails to
produce similar output graphs. On the other hand, the
algorithm developed in this work expresses a high degree
of similarity as soon as a sampling budget of 1148 (30%)
is available. Paired with its capability of reliably repro-
ducing the input graph’s topology, it should be favored in
scenarios containing graphs with node attributes.

Using the test machine®, the entire process of sampling,
estimation, and generation takes between 20 and 40 min-
utes for the Facebook subgraphs under study. For these,
the number of edges in the graph is identified as the main
influence factor on runtime. In the context of large scale
networks like Pokec, the time and memory requirements of
the current implementation prohibit an evaluation. Future
work will address these issues by investigating alternative
edge insertion mechanisms in order to increase the maxi-
mum size of generated graphs.

5Intel Core i7 4770 CPU at 3.40 GHz with 16 GB of RAM



6. Discussion

In this work, a practical methodology for efficiently
estimating topological and attribute related properties of
graphs with node attributes was developed. As this esti-
mation relies on a node sample whose size is significantly
smaller than that of the input graph’s node set, the devel-
oped sampling algorithm can be used in order to estimate
properties of huge real world graphs like online social net-
works. This property makes it suitable for different use
cases, e.g., socially aware traffic management, where at-
tribute related graph properties need to be computed in a
fast and reliable manner. Furthermore, a mechanism for
generating synthetic graphs with node attributes was de-
signed. In contrast to previous state-of-the-art graph gen-
eration algorithms, it does not require full knowledge of
the input graph in order to replicate the graph’s key char-
acteristics with respect to topology and node attributes.
Thus, crawling a small subset of an input graph allows
generating realistic graphs that can be used in the context
of algorithm benchmarks or simulations.

After designing and implementing both algorithms,
their performance was evaluated in a test framework on
several real social network graphs with attributes. The
evaluation helped to quantify the influence of algorithm
parameters on their performance and to find optimum val-
ues for these parameters. Comparisons indicate that the
developed mechanisms are on a par with state-of-the-art
algorithms when it comes to performance with respect to
topological aspects. However, the implemented algorithms
come out ahead when graphs with node attributes are to
be analyzed or generated. Further experiments show that
small sample sizes are sufficient for reliable estimates of
topological and attribute related graph properties. There-
fore, the developed algorithms provide time and resource
efficient means of analysis and generation of graphs with
node attributes.

In the context of socially aware traffic management,
for example, sampling methods that take into account
not only topology but also graphs’ attribute values can
contribute to enhancing existing traffic management tech-
niques with social information. Time and resource efficient
analysis of social network data (e.g., users’ interests) allows
ISPs to employ techniques like prefetching and caching in
order to minimize expenses for inter-AS traffic and im-
prove QoE for end users. Graph generation algorithms, on
the other hand, can help researchers conduct performance
evaluation of graph algorithms by providing realistic input
data.

The performance evaluation of the algorithms focused
on social network graphs, which are highly relevant be-
cause of their size and the usability of obtained insights.
An open point remains to what extend the proposed al-
gorithms can be applied to other graphs than social net-
works. As the design of the algorithms is very general, a
decent performance for all types of networks can be ex-
pected. However, an extensive evaluation of the sampling

14

and generation algorithms for a huge variety of graphs re-
mains for future work.

With many other possible applications in a variety of
use cases, the developed algorithms provide a solid foun-
dation for further research. In the future, research might
focus on extending the graph generation algorithm with
scaling capabilities. This would allow generating similar
graphs of arbitrary sizes from a single input graph. Thus,
phenomena like the temporary evolution of OSN graphs
could be simulated. Additionally, mechanisms for estimat-
ing missing attribute values in user profiles and practical
extensions to multiple attributes would allow creating even
more accurate and thus realistic output graphs. Finally,
extending the generation algorithm’s capabilities so that
it can handle larger networks can increase the range of
possible applications.
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