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Abstract—In this paper we present an analytical model for
deriving the other-cell interference distribution in the multi-cell
UMTS with recent evolvement, high speed uplink packet ac-
cess, enabled. Fixed-point equations are employed for iteratively
computing the distribution, and log-normal approximations are
suggested to increase the efficiency of algorithms significantly.
The accuracy of the approximation is further enhanced with
certain techniques. The accuracy of analytical model is then
verified through the comparisons with simulation results, where
good matches are achieved implying the possibility of application
in practical network planning.

I. INTRODUCTION

The UMTS is the European standard of 3G mobile telecom-
munications systems with WCDMA as its air interface. The
performance of packet access in UMTS keeps improving,
firstly by the introduction of HSDPA (High-Speed Downlink
Packet Access) [1] in Release 5 for increasing bandwidth
demands in the downlink direction, and then recently with
the proposal of HSUPA (High-Speed Uplink Packet Access)
[2] in Release 6 to meet the growing traffic requests in the
uplink direction. Three new major features are employed in
the UMTS HSUPA in order to fulfill the higher bandwidth
requirements, which are fast hybrid ARQ, fast scheduling
implemented in NodeB and short TTI (Transmission Time
Interval) of 2ms [3]. Among these features, the relocation
of the scheduler from RNC (Radio Network Controller) to
NodeB allows much more rapidity and flexibility for the
implementation of RRM (Radio Resource Management).

The analytical models for the interference in conventional
QoS traffic-only systems operating with either target SIR
(Signal-to-Interference-Ratio) oriented RRM [4] [5] [6] or
target received power oriented RRM [7] [8] have been in-
tensively studied. Moreover, much effort has been spent on
the interference model construction and performance analysis
for the QoS/best-effort data integrated multi-service CDMA
systems [9] [10] and recent 3G networks [11]. For the newly
evolved HSUPA-enabled 3G systems, analytical interference
and load models are proposed in [12] to give the blocking
probability, cell load and bit rate. However, this paper only
accounts for the single-cell scenarios since the other-cell
interference is simply assumed as an independent random
variable.

In this work, we extend the analysis on the base of [6] and
[12] to present an analytical model for the other-cell interfer-

ence characterization in multi-cell environments. Unlike the
previous assumption that interference levels in each cell are
totally independent, in practice, a fluctuation in the other-cell
interference level of a certain cell results in corresponding
varying of the transmission power of all the UEs (User
Equipments) in such cell, which then influences the other-
cell interference received at each NodeB in all the other cells
and again that in the reference cell. These interactions among
cells are defined as feedback behavior in [4], which makes
the modeling task not straightforward any more, and most
previous studies on best-effort traffic supported systems do not
take this factor into account. In order to capture the feedback
behavior, we formulate the other-cell interferences with fixed-
point equations, and solve them by iterative approach. Further-
more, to avoid the numerous convolutions which are involved
in the direct distribution derivation, log-normal approximations
are suggested with further enhancement of the accuracy of
approximation discussed.

The rest of this paper is organized as follows. In section
II, the distributed RRM for HSUPA-enabled UMTS is de-
scribed. Section III demonstrates the uplink interference model
with deterministic user patterns. while section IV derives the
stochastic model with random user patterns. Also in section
IV, a log-normal approximation approach is described with
an accuracy enhancement technique to capture the effects of
interference feedback. Both simulation results from Monte-
Carlo simulations and numerical results from analytical mod-
els are illustrated in section V to verify the suggested analytical
approximation approach. The paper is concluded in section VI,
and the scope for future work is highlighted.

II. ON THE RADIO RESOURCE MANAGEMENT FOR HSUPA

The employed RRM plays an important role in the system
behaviors, and in turn for the other-cell interference. There-
fore, before going into the interference model construction,
we explain in this section the resource management schemes
such as blocking criteria, rate allocation algorithm, etc., which
are used for the later proposed analytical model. One major
advance of HSUPA compared with the conventional uplink is
the fast scheduling, which allows the resources for UEs to be
allocated at each individual NodeB, rather than at the RNC
in previous releases. A new MAC (Medium Access Control)
entity has been introduced in each NodeB for this purpose,
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thus the RRM algorithms employed in HSUPA become de-
centralized, which differs most from that of classical UMTS
uplinks, and accordingly affects the interference model.

In the UMTS uplink, the shared resource is the interference
power received at NodeB, which normally depends on the
user data rate, the target bit-energy-to-interference-ratio, etc. In
[13], a new term ‘cell load’, which can be uniquely determined
by the received interference, is introduced and the load ηx in
cell x is defined as

ηx =
Ix

Ix +WN0
(1)

where Ix is the received interference at NodeB x from all the
DCH (Dedicated Channel) and E-DCH (Enhanced Dedicated
Channel) users over the system, W is the system bandwidth
and N0 is the background noise density. The received interfer-
ence consists of power from DCH users and E-DCH users in
own cell and other cells (i.e. Ix = IDx,own + IEx,own + IDx,oc +
IEx,oc), hence the cell load can be consequently decomposed
into four corresponding parts according to different sources
(ηDx,own, η

E
x,own, η

D
x,oc and ηEx,oc). The data rates of E-DCH

users can be easily determined from the own-cell load based on
some equations introduced in the next section, thus the essence
of rate allocation translates into the own-cell load evaluation.

In our analytical model, we further assume that rate alloca-
tion performed only with local load information, which aims
to keep the own-cell received load as own-cell target load η∗own

by adjusting ηEx,own

ηx,own = ηDx,own + ηEx,own = η∗own. (2)

The other-cell interference under such strategy can be ana-
lytically characterized with known PDF being a function of
own-cell target load η∗own by techniques introduced later in
this paper. The network capacity can be then easily analyzed
and adjusted with the parameter η∗own from such a model.

Note that even though RRM does not consider the interfer-
ence from other cells, interference levels at different NodeBs
still depend on each other during operation due to the feedback
behavior, which is the key point in the analysis. Also with such
‘waterfilling’ radio resource management, the above equation
always holds unless there is no E-DCH user in the current
cell, where ηx,own is simply equal to ηDx,own that cannot be
adjusted by rate allcation.

The own-cell target load η∗own also serves as a reference for
admission control in the RRM. If the received load from own-
cell DCH users together with the minimum load contributed by
own-cell E-DCH users (i.e. each E-DCH user is only allocated
RE

min) exceed the threshold η∗own, a Blocking event occurs,
during which no incoming users can be admitted. Thus η∗own

is also an important parameter for the blocking probability.

III. DETERMINISTIC UPLINK INTERFERENCE MODEL IN
HSUPA-ENABLED UMTS

From the UMTS uplink power control equation:

ε∗k =
W

Rk
· Sk

x

Iown
x + Iocx +WN0 − Sk

x

(3)

with target Eb/I0 value ε∗k, received power Sk
x and bit rate Rk

of UE k at NodeB x, we can solve for Sk
x following similar

procedures in [12] as

Sk
x =

ωk

1−
(
ηDx,own + ηEx,own

) (Iocx +WN0) (4)

where ωk is defined as:

ωk =
ε∗kRk

W + ε∗kRk
. (5)

With above equations, together with the load definition and
decomposition, the own-cell load from DCH and E-DCH users
can be easily represented again from [12] as follows

ηDx,own =
∑

k∈Dx

ωD
k and ηEx,own =

∑

j∈Ex

ωE
j (6)

where Dx and Ex refer to all the DCH and E-DCH users
controlled by the NodeB x. It can be seen that ω is in essence
the effective load contributed by each individual user to its
serving NodeB, thus referred to as SLF (Service Load Factor).

The rate allocation for each E-DCH user within one cell
depends on the employed scheduling discipline. Assuming
parallel equal-rate scheduling is employed, then every E-DCH
user within one cell shares the same SLF ωE

j , where the instant
ωE
j is determined from (2),

ωE
j =

η∗own − ηDx,own

nE
x

(7)

where nE
y refers to the number of E-DCH users in this cell.

So far only the received power from own-cell users is
characterized, then to model the other-cell interference, we
first investigate the inter-cell received power Sk

y→x at NodeB
x, which is the power contributed by one UE k that belongs
to the NodeB y. With the same propagation model in [6], if
we further assume each UE chooses the NodeB with least
attenuation as its serving NodeB, Sk

y→x can be represented as

Sk
y→x = Sk

y∆
k
y→x (8)

where ∆k
y→x is used to denote the attenuation ratio (dky/d

k
x)

γ .
Again we have a similar form of linear equations as in [4]

Iocx =
∑

y 6=x

Iouty→x (9)

Iouty→x =
(
Iocy +WN0

)
Fy→x, (10)

but now they differ from previous work in Fy→x, where an
additional component for E-DCH traffic is included.

Fy→x =
1

1−
(
ηDy,own + ηEy,own

)


 ∑

k∈Dy

ωD
k ∆k

y→x +
∑

j∈Ey

ωE
j ∆

j
y→x




(11)
From above equations, it can be seen that the variable

Fy→x in (11), which consists of user population and location
information, is independent of Iocx and Iouty→x. If the user pattern
is deterministic, all the parameters in (11) would be given and
Fy→x becomes a constant. Then (9) and (10) may construct a



system of linear equations with respect to Iocx with rank equal
to the number of NodeBs. The Monte-Carlo simulation can be
accordingly applied and the moments of Iocx are obtained for
the verification of analytical model.

IV. STOCHASTIC UPLINK INTERFERENCE MODEL IN
HSUPA-ENABLED UMTS

A. Analytical Model Formulation and Direct Approach

The stochastic fixed-point equations representation of (9)
and (10) are formulated as

Ioc
x =

∑

y 6=x

Iout
y→x and Iout

y→x =
(
Ioc
y +WN0

)
Fy→x.

(12)
where Ioc

x , Iout
y→x and Fy→x are the corresponding random

variables. Similar to the system of linear equations in last
section, this set of fixed-point equations also have exactly the
same structure as those in our previous work [4] with the only
exception of Fy→x, which now becomes

Fy→x =

∑T
t=1 ω

D
y,t

∑nD
y,t

k=1 ∆
k
y→x + ωE

y

∑nE
y

j=1 ∆
j
y→x

1−
(
ηDy,own + ηEy,own

) (13)

where nD
y,t refers to the number of DCH users of class t in

cell y. Therefore, the task now reduces to the characterization
of the distribution of Fy→x in our current model, and then we
can apply the same approach for the distribution of other-cell
interference.

If the number of users in each class is fixed as n̂D
y

and n̂E
y in the above expression where n̂D

y stands for the
vector

(
n̂D
y,1, . . . , n̂

D
y,T

)
, the values of ηDy,own, ηEy,own, ωD

y,t

and ωE
y can be easily determined from (5)-(7). Then to-

gether with the PDF of ∆y→x that is approximated in closed
form in [6] [8], the conditional PDF P

(
Fy→x ≤ z|n̂D

y , n̂E
y

)

can be derived in theory. Finally for the complete PDF of
Fy→x, we apply the total probability theorem to uncondition
P
(
Fy→x ≤ z|n̂D

y , n̂E
y

)
as

P (Fy→x ≤ z) =
∑

n̂D
y ,n̂E

y ∈S

P (n̂D
y , n̂E

y )·P
(
Fy→x ≤ z|n̂D

y , n̂E
y

)

(14)
where the user distribution P (n̂D

y , n̂E
y ) is given according to a

spatial homogeneous Poisson process [14] as a product form

P (n̂D
y , n̂E

y ) = P0 ·
(
NE

y

)n̂E
y

n̂E
y !

T∏

t=1

(
ND

y,t

)n̂D
y,t

n̂D
y,t!

(15)

where ND
y,t denotes the mean number of DCH users of class t,

NE
y refers to that of E-DCH users and P0 is the normalizing

constant. The admissible region S is defined by the admission
control policy suggested in the previous section, where the
sum of own-cell DCH load and minimum E-DCH load cannot
exceed own-cell target load η∗own

n̂D
y , n̂E

y ∈ S if n̂E
y ω

E
min +

T∑

t=1

n̂D
y,tω

D
y,t < η∗own. (16)

Theoretically, with all the acquired PDFs of the random
variables above, the PDF of Fy→x can be obtained, however,
it is quite a hard task due to the involvement of numerous
convolutions which is in fact numerical intractable. Thus we
will investigate some approximation techniques in the next
section to reduce the computational complexity. For the same
reason, the approximation approach is employed for the other-
cell interference Ioc

x as well.

B. Log-normal Approximation Approach

In order to avoid the extremely time-consuming computa-
tion for the PDF derivation of Ioc

x , we propose an efficient
approximation technique in light of the excellent log-normal
approximation of other-cell interference in QoS traffic only
UMTS in [4] [6]. Through similar verification experiments but
with additional best-effort traffic, both Fy→x and Ioc

x are still
shown to be well approximated by the log-normal distribution.
This reduces the problem to determining only the first and
second moments of both random variables.

Again by the total probability theorem, the first moment of
Fy→x is given as

E [Fy→x] =
∑

n̂D
y ∈S,n̂E

y =0

P (n̂D
y , 0)

ηDy,own

1− ηDy,own

E [∆y→x]

+
∑

n̂D
y ,n̂E

y ∈S\(n̂E
y =0)

P (n̂D
y , n̂E

y )
η∗own

1− η∗own

E [∆y→x]

(17)

and the second moment is

E
[
F2

y→x

]
=

∑

n̂D
y ,n̂E

y ∈S

P (n̂D
y , n̂E

y )
(
V AR

[
Fy→x

(
n̂D
y , n̂E

y

)]

+E
[
Fy→x

(
n̂D
y , n̂E

y

)]2)

(18)

where Fy→x

(
n̂D
y , n̂E

y

)
denotes the random variable Fy→x

conditioned on known particular user combination. The con-
ditional variance is calculated as

V AR
[
Fy→x

(
n̂D
y , n̂E

y

)]
=

∑

n̂D
y ∈S,n̂E

y =0

P (n̂D
y , 0)·V AR [∆y→x]

·
∑T

t=1 n̂
D
y,t

(
ωD
y,t

)2
(
1− ηDy,own

)2 +
∑

n̂D
y ,n̂E

y ∈S\(n̂E
y =0)

P (n̂D
y , n̂E

y )·V AR [∆y→x]

·
∑T

t=1 n̂
D
y,t

(
ωD
y,t

)2
+ 1

n̂E
y

(
η∗own − ηDy,own

)2

(1− η∗own)
2 .

(19)

To calculate E[∆y→x] and V AR[∆y→x] that appear in the
above expressions, we simply follow the same procedure in [6]
with the approximated PDF of ∆y→x. Altogether, the moments
of Fy→x are thus computed. Once Fy→x is characterized, with
the assumption of mutual independence between Fy→x and
Ioc
y as well as among Iout

y→x, the first and second moments of
the other-cell interference can be derived by iterative method
in [4] or by direct matrix equation solving in [15].



C. Accuracy Enhancement of the Approximation

In the derivation above, we made the assumption of com-
plete independence between Fy→x and Ioc

y . However, due to
the feedback behavior caused by mutual influences among
transmission power of all the UEs, the correlation between
these two random variables cannot be neglected, thus intro-
duces some errors in the suggested analytical model. In this
section, we try to investigate how to alleviate such errors.

If the dependence between Fy→x and Ioc
y is considered, the

first moment of Ioc
x should be written as

E [Ioc
x ] =

∑

y 6=x

[
WN0·E [Fy→x] + E

[
Ioc
y

]
E [Fy→x]

·
(
1 + GIoc

y ,Fy→x

)] (20)

with a new function G introduced, which is defined as

Gx,y = cx·cy · ρx,y (21)

where cx, cy are the coefficients of variation of x and y,
and ρx,y is the correlation coefficient between these two
random variables. If we determine the value of GIoc

y ,Fy→x from
the Monte-Carlo simulation, the modified mean of other-cell
interference can be accordingly calculated.

Similarly, for the second moment, it can be represented as

E
[
(Ioc

x )
2
]
=Ĥx +

∑

y 6=x

E
[(
Ioc
y

)2]
E
[
F2

y→x

]

·
(
1 + G(Ioc

y )
2
,F2

y→x

) (22)

where

Ĥx =E [Ioc
x ]

2
+

∑

y 6=x

[
(WN0)

2 ·E
[
F2

y→x

]
+ 2WN0·E

[
Ioc
y

]

·E
[
F2

y→x

] (
1 + GIoc

y ,F2
y→x

)]
−

∑

y 6=x

[WN0·E [Fy→x]

+E
[
Ioc
y

]
E [Fy→x]

(
1 + GIoc

y ,Fy→x

)]2
,

(23)

which can be solved following the same approach in previous,
with the values of GIoc

y ,Fy→x , GIoc
y ,F2

y→x
and G(Ioc

y )
2
,F2

y→x

given from simulations.
It can be seen that if we can determine function G ana-

lytically, the accuracy enhancement can be performed in a
total analytic way. Taking the first moment derivation as an
example, cFy→x is given in previous section, and cIoc

y
can be

iterative computed since (20) can be regarded as a fixed-point
equation, thus the only part undetermined is the correlation
coefficient ρIoc

y ,Fy→x , on which more investigation should be
devoted in the future.

V. NUMERICAL RESULTS

For numerical tractability, we consider an area with two-
tier hexagonal cell rings surrounding one central cell, thus 19
NodeBs in total. Two service categories are supported in the
system, which are one DCH user class with RD = 12.2kbps
and target SIR ε∗1 = 5.5dB, and one E-DCH user class with

adjustable data rates and the same target SIR. The system
bandwidth W = 3.84MHz, background thermal noise density
N0 = −174dBm, and PLE (Path Loss Exponent) γ = 4.
To avoid the border effect due to less neighbors for the cells
located at the boundary, only the sample values at the central
cell are counted.

Fig. 1 illustrates the comparison of mean other-cell interfer-
ence obtained from simulation and from suggested analytical
and enhanced analytical models, while Fig. 2 demonstrates
the corresponding standard deviation comparison. The mean
number of users in one cell N (i.e. the mean in the spatial
homogeneous Poisson process) is assumed to be 9, 15 and 21
respectively, with the ratio between DCH and E-DCH users
fixed at 2:1. Since the mean numbers of users assumed in these
three scenarios are relatively large, the probabilities of no E-
DCH user in one cell are therefore quite small, thus the means
of other-cell interference would be similar to each other, and
then only one set of results with N = 15 is shown. From
the figures, we can see the mean values from all the models
achieve excellent match, while the standard deviations show
slightly greater discrepancy in the case of higher load, which
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is due to the mutual independence assumptions made among
Iout
y→x as well as between Ioc

x and Fy→x. As one of these
independence assumptions (Ioc

x and Fy→x) has been released
in the enhanced analytical model (solid line), better accuracy
has been achieved in most cases than the plain analytical
approximation model (dashed line).

Fig. 3 and 4 demonstrate the same comparisons, but in the
cases where the mean DCH user number is fixed at 10 and the
mean E-DCH user numbers are quite small. Again excellent
matches have been achieved, which implies our model is also
valid even there is no E-DCH user in the system, which is
quite common in practice. All in all, the good matches in
all the scenarios not only verify the validity the log-normal
approximation model, but also suggest the possibilities of
applying such a model into practical network planning.

VI. CONCLUSION

In this paper, an analytical model have been presented
for the characterization of other-cell interference in HSUPA-
enabled UMTS networks with distributed RRM. The iterative
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approach of deriving the PDF of other-cell interference di-
rectly where many convolutions involved is firstly described,
followed by suggesting an approximation model such that the
computation complexity has been greatly reduced and thus
numerical tractable. Then, some techniques are introduced to
enhance the accuracy of the suggested approximation model.

Both the numerical results from analytical models and
the simulation results are illustrated to verify the suggested
approximation model. The first and second moments of other-
cell interference obtained from analytical models and simu-
lations show excellent match, especially in the lower load
region. When the target load increases, the errors over standard
deviations slightly go up due to weak independence assump-
tions made during calculations, which is later compensated by
introducing the accuracy enhancement techniques.

In our current analysis, the traffic model assumed for E-
DCH users is based on the period of time they are stay-
ing in the system. Our future work includes extension of
current interference model with more E-DCH traffic models
considered. Furthermore, applying such an interference model
to the network capacity analysis such as outage probability
calculation is quite worth more efforts.
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