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Abstract: The Universal Mobile Telecommunication System (UMTS) operates with
Wideband Code Division Multiple Access (WCDMA) over the air interface. In the
literature, the CDMA uplink, e.g. as implemented by the IS-95 standard, receives
most attention due to its limiting influence on the overall network capacity in voice
only environments. But with the growing demand of the mobile user for multime-
dia content, the 3G systems like UMTS provide service classes specifically designed
for asymmetric traffic such as video streams. This makes the WCDMA downlink
(forward link) the potential bottleneck for the network capacity. Another distinc-
tion of WCDMA to IS-95 is the introduction of fast power control mechanisms on
the downlink. In this paper, we propose an analytic algorithm to approximate the
WCDMA downlink cell capacity in a multi-service environment. It is based on a
recursion formula and includes the effects of soft blocking and imperfect power con-
trol. Due to its design, the algorithm is time and memory efficient and is well suited
for the use in network planning tools for e.g. capacity planning or dimensioning issues.
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1 Introduction

The Wideband Code-Division Multiple Access (WCDMA) scheme is proposed and imple-

mented as air interface of the 3G and 3.5G mobile communication networks such as UMTS.

The predecessors of this technology, such as IS-95 from Qualcomm, were primarily designed

for voice-traffic. Since this kind of traffic is symmetric in respect of up- and downlink, the

uplink is the limiting factor for the overall network capacity. This fact is reflected in the

high amount of literature regarding the CDMA uplink. One of the first papers in this field
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was [1]. Others such as [2, 3, 4, 5, 6] included multiple services, imperfect power control,

user activity, soft handover and othercell interference in their studies.

All these works concentrated on the CDMA and WCDMA uplink, respectively. In 3G

systems, however, it is expected that asymmetric data transfers such as video streams or

web traffic will play a major role in the overall traffic volume and the downlink thus is

becoming the limiting factor of the cell capacity. So, in this scenario the downlink becomes

a crucial factor for the proper dimensioning and planning of mobile networks. It is therefore

important to find algorithms which are able to estimate the downlink capacity of WCDMA

networks in a time and memory efficient way to ensure that the mobile network providers

can use them in their planning tools.

In the literature, most approaches for evaluating the downlink performance rely on

Monte-Carlo simulations, such as in [7] or [8]. The authors of the latter use sophisticated

simulation techniques to reduce the required simulation time for the computation of cover-

age and service availability probabilities. One of the earlier works using analytical methods

is [9]. The authors introduce a closed form for the outage probability in the case of no

multipaths, and a Chernoff bound in case of several multipaths. The capacity is calculated

by setting a boundary for the outage probabilities which has to be satisfied. In [10], the

capacity is calculated for voice and data users with additional consideration of signaling

and shared channels. A recursive scheme for reducing the computational complexity is

used.

One of the most prominent properties of WCDMA systems is the so called soft capacity.

This term denotes the fact that in a WCDMA system, capacity is not a deterministic

but a stochastic value. This results from the various effects of multipath propagation,

pseudo-orthogonality on the uplink, thermal noise, etc., on the received interference at the

mobiles and NodeB, respectively. Hence, the term soft blocking and resulting from that,

soft capacity, describes the possibility that virtually in every system state blocking of an

incoming connection is possible, but with varying probabilities. In our work we propose an

analytic algorithm for the calculation of blocking probabilities which includes the effects of

soft blocking. The proposed algorithm is time and memory efficient making it well suited
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for the use in planning tools.

The paper is organized as follows: In Section 2, a more detailed description of the

problems arising from the capacity determination in WCDMA is given. In Section 3,

we describe our system model including the interference model and develop a model for

the calculation of the transmission power depending on the number of power controlled

mobiles. Based on this model, in Section 4 an algorithm for the calculation of downlink

blocking probabilities and downlink capacity of a WCDMA cell is introduced. In addition,

the approximation algorithm is proposed, which is validated and used in a short parameter

study shown in Section 5.

2 Problem Formulation

In contrast to the WCDMA uplink, where the received Multiple Access Interference (MAI)

at the NodeB defines the cell capacity, the downlink is limited by the maximum trans-

mission power. The NodeB has to satisfy the Eb/N0-requirements of all power controlled

mobiles. The required power level not only depends on the QoS-requirements of the ser-

vice, but also on the position of the mobile in the cell1. Furthermore, the use of orthogonal

spreading codes reduces the intracell interference at the MS, but in practice this effect is

reduced by multipath propagation. Therefore, an orthogonality factor α ≤ 1 is introduced

describing the fraction of power which is seen as interference by mobiles power controlled

by the same NodeB.

In WCDMA as implemented by UMTS, fast power control is responsible for meeting the

minimum required transmission powers to each mobile on the downlink. In mathematical

terms, these minimum powers are defined by the power control equation as shown in (1):

ε̂∗k,x =
W

Rk

Ŝk,xd̂k,x

WN̂0 +
∑

y �=x Ŝyd̂k,y + αd̂k,x(Ŝx − Ŝk,x)
, (1)

where

1A cell in this context is equivalent to a sector
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• ε̂∗k,x is the target-Eb/N0-value for mobile k at NodeB x,

• Ŝk,x is the transmit power for MS k from NodeB x,

• d̂k,x is the corresponding attenuation factor,

• N̂0 is the thermal noise,

• W is the system bandwith in Mcps,

• Rk is the requested bitrate

• and Ŝx is the total transmission power of NodeB x.

The power control equation defines the theoretical minimum transmission powers. With

the assumption that the power control works optimal, we speak of perfect power control.

In reality, however, the desired target-Eb/N0 values are not exactly achieved. Instead,

the received powers fluctuate slightly around the optimal value. This behaviour is called

imperfect power control. Measurements in CDMA networks [2] have shown that the received

target-Eb/N0 values are normal distributed in the dB-domain, hence can be modelled with

a lognormal distribution.

Our goal is to develop an analytic algorithm to calculate the blocking probabilities of

each service class s in a cell belonging to NodeB x. Then, with reasonably chosen service

dependent boundaries for the blocking probabilities, the overall capacity of a cell can be

calculated.

The call admission control (CAC) in WCDMA on the downlink estimates the increase

of transmission power that an incoming connection, i.e. radio bearer, causes. This increase

depends on the service class of the radio bearer, since the different service classes have

different QoS-requirements which are reflected in the transmission power Sk,x. If the newly

estimated transmission power is above a certain threshold, the call will be blocked. So, in

order to calculate blocking probabilities it is required to know the total transmission power

of a NodeB depending on the number of power controlled mobiles. This is done by using

a similar approach as in [11].
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3 System Model

We consider a UMTS network with L NodeBs from which x is the examined NodeB and

Y = L \ {x} is the set ff surrounding NodeBs. The set Kx comprises the mobile stations

which are power controlled by the examined NodeB x, from which Ax mobiles are active.

The coverage area Fx of the NodeB x is partitioned in subareas f with a Poisson distributed

number of users offering a traffic density of af . The probability that a specific mobile

requests a radio bearer of service class s is ps. A service class is defined by its bitrate

Rs and its required target-Eb/N0-value ê∗s.
2 The set of service classes is S. We consider

imperfect power control, so the experienced Eb/N0-value is a normal distributed random

variable in the dB-domain and a logormal random variable in the linear domain. The

distances of the NodeBs to the subareas f lead to specific attenuation factors dk,x. We use

the determistic model from [12]:

dk,x = −128.1 − 37.6log10(dist(x, k)) (2)

where dist(x, k) is the distance between NodeB x and an mobile k in area f . Throughout

the paper, we assume a thermal noise density of N0 = −174dBm/Hz and a system chiprate

of 3.84Mcps. The transmission powers of the NodeBs y �= x are modelled as independent

lognormal random variables including an constant power fraction Ŝc reflecting the com-

mon channels. One cell is modelled with |S| Poisson arrival processes and exponentially

distributed service times with load as per service class s.

3.1 Interference Model

Since the call admission control (CAC) on the WCDMA downlink is based on the maximum

transmission power of a NodeB, it is crucial to know the transmit power a MS k receives

2Note that we denote a linear value by â while a is in decibels
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from a NodeB x. From Eq. (1) the transmit power Ŝk,x is derived as

Ŝk,x = ωk

(
WN̂0δ̂x,k +

∑
y∈Y

Ŝy∆̂y,k + αŜx

)
. (3)

The term ωk is the service load factor defined similar as in [5], but with consideration of

the orthogonality factor:

ωk =
ε̂kRk

W + αε̂kRk
and ωk,y =




ωkδ̂k,x if y = 0

ωkα if y = x

ωk∆̂k,y if y �= x

(4)

Consequently, the sum of the service load factors of all active mobiles power controlled by

NodeB x defines the load ηx of NodeB x:

ηx =
∑
k∈Ax

ωk and ηx,y =
∑
k∈Ax

ωk,y (5)

The random variable δ̂k,x is the reciprocal of the attenuation factor d̂k,x, and ∆̂k,y is defined

as the ratio of the attenuations from NodeB y to MS k and NodeB x to MS k: ∆̂k,y =
d̂k,y

d̂k,x
.

Now, if we sum over all transmit powers Sk,x we get the total transmission power of NodeB

x:

Ŝx = ηx,0WN̂0 +
∑
y∈Y

ηx,yŜy + ηx,xŜx + Ŝc (6)

⇔ Ŝx =
1

1 − ηx,x

(
ηx,0WN̂0 +

∑
y∈Y

ηx,yŜy + Ŝc

)
(7)

where Ŝc is the contribution of the signaling and common shared channels to the transmis-

sion power, which is assumed to be constant. Knowing the total transmission power we

can now use it within the admission control condition. A mobile is granted a new radio
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bearer if it holds that

Ŝx < Ŝmax ⇔ 1

1 − ηx,x

(
ηx,0WN̂0 +

∑
y∈Y

ηx,yŜy + Ŝc

)
< Ŝmax

⇔ ηx,0WN̂0 +
∑
y∈Y

ηx,yŜy + Ŝc < Ŝmax − ηx,xŜmax

⇔ ηx,0WN̂0 +
∑
y∈Y

ηx,yŜy + ηx,xŜmax < Ŝmax − Ŝc

⇔
∑
k∈Ax

ωk

(
WN̂0δk,x +

∑
y∈Y

∆k,yŜy + αŜmax

)
< Ŝmax − Ŝc.

(8)

Now, if we define the random variable Qk as

Qk = WN̂0δk,x +
∑
y∈Y

∆k,yŜy + αŜmax, (9)

the admission control condition (8) can be rewritten as

Ŝ∗
x < Smax − Ŝc with Ŝ∗

x =
∑
k∈Kx

νkωkQk. (10)

The “dedicated” transmission power Ŝ∗
x now considers all mobiles Kx which are power

controlled by NodeB x. The activity factor νk reflects the service dependent Bernoulli

activity of each mobile. The variable Qk depends on the position of the MS k only. For

this reason we refer to it as positional load factor in the remaining of the paper.

One possibility is now to use an event-driven simulation to calculate the blocking prob-

abilities depending on the number of mobile stations K. This requires a relatively long

simulation time due to the large number of stochastic factors wich have to be considered.

For this reason, we model Ŝ∗
x as lognormal distributed random variable following [13], and

are then able to calculate the blocking probabilities for a specific number of mobiles ana-

lytically. This means that we have to know the first and second moment of the left hand

side in the blocking condition in dependence on the current number of mobiles.
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The first moment of Ŝ∗
x is derived easily from (3) and (9):

E[Ŝ∗
x] = E[

∑
k∈Kx

νkωkQk]

=
∑
k∈Kx

νkE[ωk]E[Qk]

(11)

and

E[Qk] = WN̂0E[δ̂x] +
∑
y∈Y

E[∆̂y]E[Sy] + αŜmax (12)

Note that we assume that the location of the mobiles are i.i.d. so it holds that E[δ̂k,x] =

E[δ̂x] and E[∆̂k,y] = E[∆̂y]. The moments of δ̂k,x and ∆̂k,x are obtained by summing over

all subareas f ∈ Fx. The probability that a subarea is within the coverage area of NodeB

x is given by

p(f ∈ Fx) = P (d̂k,x = min{d̂k,y}), x, y ∈ L (13)

and the overall traffic intensity at NodeB x is

ax,s = ps
∑
f∈Fx

afp(f ∈ Fx). (14)

Then, the means of δ̂k,x and ∆̂y are given by

E[δ̂x] =
∑
f∈Fx

afp(f ∈ Fx)∑
s∈S ax,s

E
[

1

d̂f,x
|f ∈ Fx

]
(15)

and

E[∆̂y] =
∑
f∈Fx

afp(f ∈ Fx)∑
s∈S ax,s

E
[
d̂f,y

d̂f,x
|f ∈ Fx

]
. (16)
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The second moment of Ŝ∗
x is given by

E[Ŝ∗2
x ] =

∑
k∈Kx

E[(νkωkQk)
2]

=
∑
k1∈Kx

∑
k2∈Kx

k1 �=k2

νk1νk2E[ωk1]E[ωk2 ]E[Qk1Qk2] +
∑
k∈Kx

ν2
kE[ω2

k]E[Q2
k].

(17)

Furthermore, the second moment of Qk which is required for this calculation is

E[Q2
k] =(WN̂0)

2E[δ̂2
x] + 2WN̂0

∑
y∈Y

E[Ŝy]E[∆̂y δ̂x] + 2αŜmaxWN̂0E[δ̂x]

+ (αŜmax)
2 +

∑∑
y1 �=y2

E[Ŝy1 ]E[Ŝy2]E[∆̂y1∆̂y2 ] +
∑
y∈Y

E[Ŝy]E[∆̂2
y]

(18)

and the combined moment of Qk1Qk2 is given by

E[Qk1Qk2 ] =(WN̂0)
2E[δ̂x]

2 + 2WN̂0

∑
y∈Y

E[Ŝy]E[∆̂y]E[δ̂x]

+ 2αŜmaxWN̂0E[δ̂x] +
∑
y1

∑
y2

E[Ŝy1 ]E[Ŝy2 ]E[∆̂y1 ]E[∆̂y2 ]

(19)

Now, we can compute the probability that the maximum transmission power of NodeB x

is exceeded. We approximate S∗
x as lognormal distributed random variable and calculate

the probability that S∗
x > Smax − Sc. Mean and variance of the distribution are provided

by E[S∗
x] and E[S∗2

x ] − E[S∗
x]

2. Since this probability strongly depends on the number of

power controlled mobiles and the cell load ηx, resp., we write the blocking probability as

β(ηx):

β(ηx) = 1 − LNµ,σ(S
∗
max − Sc) (20)

The location and shape parameters µ, σ are defined by the first moment and variance of

Ŝ∗
x:

µ = ln(E[Ŝ∗
x]) − 1

2
σ (21)
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and

σ =
√

ln(ρ)2 + 1), (22)

where ρ denotes the coefficient of variation of Ŝ∗
x.
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Figure 1: Local soft blocking probabilities depending on the mean transmission power

In Fig. 1, the pdfs of the dedicated transmission powers for different numbers of mobiles

are shown for the 12.2kbps service with a maximum transmission power Smax of 8000mW

and a constant part of 2000mW. The blocking probabilities correspond to the area between

the right hand side of the line labelled Smax−Sc and the pdfs. The different curves exemplify

different system states and show how the soft blocking probabilities are influenced by the

cell load.

4 WCDMA Cell Capacity

The soft blocking probabilities we obtained in the previous section depend on the current

system state, that is on the cell load. Therefore, these soft blocking probabilities can be seen

as local blocking probabilities. However, for the calculation of the capacity of a WCDMA

cell we are interested in the total blocking probabilities which depend on the offered load

only. We obtain these probabilities by modifying the Markov arrival process to include the
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effects of soft blocking i.e. the local blocking probabilities.

In the previous section, the dedicated transmission power Ŝ∗
x already includes the in-

coming connection. But since the amount of radio resources the new connection requires

depends on the service class, the resulting blocking probability β is service class specific

too. We introduce the notation Ŝ∗
x+1̄s for the arrvial of a new connection j of service class

s and define

E[Ŝ∗
x + 1̄s] = E[Ŝ∗

x] + E[ωs]E[Q] (23)

E[(Ŝ∗
x + 1̄s)

2] = E[Ŝ∗2
x ] + 2E[ωs]E[QQ′]

∑
t∈S

ntνtE[ωt] + E[ω2
s ]E[Q2]

= E[Ŝ∗2
x ] + 2E[ωS]E[QQ′]E[ηa] + E[ω2]E[Q2]

(24)

Note that we can assume here that E[Qk] = E[Q] and E[ωk] = E[ωs] for connections k with

service class s. E[QQ′] corresponds to the moment of the product of two positional load fac-

tors of different mobiles k and j, hence to E[QkQj ]. The notation E[ηa] =
∑

s∈S nsνsE[ωs]

is introduced for the sake of readability, with ns as the number of connected mobiles of

service class s. We further assume that the incoming connection is active, hence the ac-

tivity factor is neglected. The service dependent soft blocking probabilities βs are then

calculated as in (20) but with the moments of Ŝ∗
x + 1̄s.

The local blocking probabilities are now applied to the transition rates of the S-

dimensional Markov chain to reflect the effects of soft blocking. In Fig. 2, an example

state space with the reduced transition rates for two service classes is shown.

The total blocking probabilities can be calculated as the sum of the total soft blocking

probability and the hard blocking probability. The latter is simply the sum of the proba-

bilities of the highest states for a specific service class. The total soft blocking probabilities

are given by

Psoft(s) =
∑
n̄∈Ω

βs(ηx(n̄))X̄(φ(n̄)). (25)

The injective indexing function φ : Ω → � maps the state space Ω to �. The state



12
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Figure 2: Example state space with two service classes

probability vector X̄ is computed by solving the matrix equation

QX̄T = 0, (26)

where Q is the transition rate matrix.

4.1 Approximation Model of the State Space

The state space spanned by the system model is an S-dimensional space, which means that

the number of states grows exponentially with the number of supported service classes. For

this reason, we propose similar as in [6] a recursive approximation scheme based on [14].

States with similar resource occupations, that is with similar values of ηx, are combined to

one bigger macro state. This folds the S-dimensional state space into on dimension, with

transitions for the different resource requirements of the service classes.

In order to combine similar states, a common resource must be defined. In this case it

is reasonable to choose the load factor ηx as resource, with the condition that ηx < ηmax.

The maximal load ηmax is implicitly given by the condition that it must hold that ηx <
1
α

for the feasibility of the power control equation. So, we define a basic resource unit g and
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map the service load factors ωs with the activity factor νs to resource requirements ψs

which are multiples of g:

ψs =
(
�νsωs

g
+ 1

2
�
)
g (27)

Note that the maximum cell load ηmax should be a integer multiple of g. In Fig. 3 the

resulting state space diagram for the example state space from Section 4 is shown.

0
2gg

))0(1( 11 βλ − ))(1( 11 gβλ −

1,1µ 1,2µ

3g

1,3µ

))2(1( 11 gβλ −

))(1( 22 gβλ − ))(1( 22 gβλ −

2,3µ
2,2µ

Figure 3: State diagram of the approximated state space

The recursion algorithm defined in [14] must be modified in order to include the local

soft blocking probabilities. This leads to an approximation error since the recursion formula

assumes that transitions in the same dimension have equal transition rates, which does not

hold here because of the soft blocking. The modified recursion formula then becomes

p̃(η∗) = 1
η∗

∑
s∈S

(1 − βs(η
∗ − ψs))p̃(η

∗ − ψs)asψs, (28)

where η∗ is the current system state and is a integer multiple of g. The state probability

follows by normalizing p̃:

p(η∗) =
p̃(η∗)∑

jg≤ηmax

p̃(jg)
, j ∈ N0 (29)

The calculation of the local blocking probabilities βs requires the mean and variance

of the dedicated transmission power depending on the current system load, hence S∗
x(η

∗).

Since the actual number of connected mobiles is unknown, the moments of S∗
x(η

∗) must be

computed recursively. This is done according to Eqs. (23) and (24). We set the transmission
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power to zero for η∗ = 0 and obtain:

E[S∗
x(η

∗)] =




0 for η∗ = 0

∑
s∈S

Ps(η
∗) (E[S∗

x(η
∗ − ψs)] + νsE[ωs]E[Q]) for 0 < η∗ ≤ ηmax

(30)

and

E[S∗
x(η

∗)2] =




0 for η∗ = 0

∑
s∈S

Ps(η
∗)(E[s∗x(η

∗ − ψs)
2 + νsE[ω2

s ]E[Q2]

+2νsE[ωs]E[QQ′]E[ηa(η
∗)])

for 0 < η∗ ≤ ηmax

(31)

A similar recursion scheme is used for the calculation of the mean cell load ηa:

E[ηa(η
∗)] =




0 for η∗ = 0

∑
s∈S

Ps(η
∗) (E[ηa(η

∗ − ψs) + νsE[ωs]) for 0 < η∗ ≤ ηmax

(32)

Note that in this case we include the activity factor νs since we are calculating the mean

transmit power. For the soft blocking probabilities βs, full activity of the incoming con-

nection is assumed, so the activity factor is neglected. The rest of the calculation remains

unmodified.

The probability Ps(η
∗) denotes the conditional probability that the current system state

η∗ has been reached from the predecessing state η∗−ψs by an incoming connection of service

class s. This probability is given by

Ps(η
∗) =

(1 − βs(η
∗))p̃(η∗)asψs∑

t∈S

(1 − βt(η∗))p̃(η∗)atψt
. (33)

Finally, the total blocking probabilities can be calculated. As in the multidimensional



15

case they consist of hard and soft blocking:

Pblock(s) =
∑

jg<ηmax−ψs

βs(jg)p(jg)︸ ︷︷ ︸
soft blocking

+
∑

ηmax−ψs<kg≤ηmax

p(kg)

︸ ︷︷ ︸
hard blocking

, j, k ∈ N0 (34)

The soft blocking part reflects the possibility that in every system state η∗ an incoming

connection could be blocked due to the stochastic nature of the transmission power. The

hard blocking part can be seen as blocking due to hardware restrictions if ηmax is chosen

properly, or, if no restrictions are given, due to the theoretical maximum of the cell capacity.

5 Numerical Results

In this section, we investigate the proposed algorithm in respect of accuracy and show

its relative robustness against problematic scenarios. Furthermorse, we carry out a short

parameter study in order to show the effects of several influencing variables on the perfor-

mance of a WCDMA cell. The parameters which remain constant throughout the section

if not stated otherwise are listed in Table 1.

system chiprate 3.84Mcps
number of surrounding NodeBs 6
cell layout hexagonal
attenuation model dx,k = −128.1 − 37.6log10(dist(x, k))
distances between NodeBs 2km
mean transmission power of NodeBs in Y 3000mW
standard deviation of transmission powers of NodeBs in Y 200mW

Table 1: System parameters

The service definitions are shown in Table 2. The 12.2kbps service class corresponds to

the voice service, whereas the classes with higher bitrates are designed for data services.

service class 1 2 3

bitrate 12.2kbps 64kbps 144kbps
target-Eb/N0 5.5 4 3.5

Eb/N0 standard deviation 1.2 1.2 1.2

Table 2: Service class definitions
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The simulation we use for validating the analytical results is an event driven simulation

designed to verify our assumptions. So it does not consider all features of UMTS but

concentrates on the aspects critical for our analysis.

5.1 Analysis of the Algorithm

As stated in the previous sections, there exist several factors influencing the quality of the

approximation the algorithm provides. The algorithm relies on the subsumption of states

with similar load situations. This implies that the granularity of the basic resource unit

g influences the approximation results, since with an increasing coarseness of the state

space more states are subsumed into one macro state. Consequently, this leads to higher

approximation errors. Another aspect is the approximation of the load distribution within

an arbitrary system state with a lognormal distribution. This approximation is based on

the assumption that in a state, the contribution of the different service classes to the load

is similar. This assumption can be violated if in a scenario with several service classes the

activity factors are very distinct from each other.
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Figure 4: Scenario with three service classes
and inhomogenous activity factors
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Figure 5: Scenario with always ON users

Such an scenario is illustrated in Fig. 4. The scenario consists of three service classes

with bitrates of 12.2kbps, 66kbps and 144kbps. The activity factors νs are chosen very

inhomogenously as 1, 0.6 and 0.1. The normalized mean offered cell load corresponding to

ηx ranges from 0.10 to 0.16. These loads are assigned to the service classes with ratios of
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0.70 for the first, 0.20 for the second and 0.05 of the third class. The inhomogenous activity

factors lead to the overestimation of the blocking probabilities by the analytic algorithm

(denoted by the dashed lines) in comparison to the simulated results (solid lines). Although

there is a significant aberration in this scenario, the magnitude of the results are still quite

good compared to the simulated results.

Fig. 5 shows blocking probabilities for the same service classes, but with always-ON

users, i.e. with activity factors of 1. Since the contribution of the service classes to the load is

now more homogenous, the approximation is significantly better than in the inhomogenous

case. Especially the blocking probabilities for the 144kbps service class do not diverge to

the extent as in the first scenario.

5.2 Parameter Study

Now we want to investigate the influence of several system parameters on the blocking

probabilities and cell capacity, respectively. One interesting variable is the standard devi-

ation of the target-Eb/N0 values, which reflects the error induced by the imperfect power

control. We define a scenario with three service classes as in the previous section but with

more moderate activity factors of 0.4 for the voice class, 0.6 for the 64kbps service and 0.8

for the 144kbps service class. The service mix is again 0.70, 0.20 and 0.05. Furthermore,

we define a set of maximum acceptable blocking probabilities as 1%, 3% and 5% for the

three services.

We increase the standard deviation of the target-Eb/N0 values from 0.2 to 1.6 and

calculate the cell loads for which the acceptable blocking probabilities are not exceeded.

The resulting curve is shown in Fig. 6. Since higher standard deviations increase the

stochastic moment of the overall system, the cell capacity decreases. Note that typical

values for the standard deviation are around 1.2 to 1.5, so the values left from the indicated

area reflect the (unrealistic) case of a virtually perfect power control. It can also be stated

that whithin this area, even small changes of the standard deviation leads to changing cell

capacities.

Another interesting aspect is the impact of the transmission powers of the surrounding
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Figure 6: Influence of the target-Eb/N0 standard deviation on the cell capacity

NodeBs (the othercell transmission power) on the cell capacity. It is obvious that a higher

othercell transmission power leads to a lower cell capacity, so we focus on the effects of

the variance of these power. For this reason, we increase the standard deviation of the

transmission powers of all surrounding NodeBs from 0mW to 1000mW. The rest of the

scenario is equal to the previous one.
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Figure 7: Cell capacity depending on the
standard deviation of the othercell trans-
mission power
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Figure 8: Corresponding blocking probabil-
ities

The resulting curves are shown in Fig. 7 and 8. The first figure shows the correlation

between standard deviation of the othercell tras nsmission power and the cell capacity.

The cell capacity begins to decline at a deviation of ca. 200mW. These results show that
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the variance of the load of the surrounding cells must be taken into account for a proper

network planning.

In Figure 8, the blocking probabilities corresponding to the cell capacities in Fig. 7 are

illustrated. The dashed lines denote the target blocking probabilities of the service classes.

In this scenario, the limiting service class is the 12.2kbps service, since its target blocking

probability is the most stringent.

6 Conclusion

The goal of this paper was to develop an analytic algorithm suitable for the determination of

WCDMA downlink cell capacities. We developed a system model which includes imperfect

power control, i.e. the power control error, and introduced a service load factor describing

the contribution of the various service classes to the cell load as well as a positional load

factor wich depends on the position of a mobile in the cell. We modelled the call admission

control in WCDMA with a blocking condition based on the current transmission power of

the NodeB. The resulting soft blocking probabilities were used to modify the transition rates

in an S-dimensional Markov chain to include soft capacity in the calculation of the overall

blocking probabilities. In order to make the computation of the blocking probabilities and

capacities feasible within an accepotable time margin, a recursive algorithm was introduced.

The algorithm approximates the state space and provides results with a good match to the

simulation. In the numerical results section we have shown that the power control error has

a significant impact on the overall capacity of a WCDMA cell. Furthermore, we have seen

the strong influence of the surrounding NodeBs’ transmission powers on the cell capacity.

Several extensions of this work are in development. First, the transmission powers of

the surounding NodeBs are calculated by our algorithm and are then used as inputs of

an iterative algorithm which computes the capacity of a whole WCDMA network. Next,

an algorithm which considers both up- and downlink with a two-dimensional state space

reflecting up- and downlink loads is developed. Other aspects such as the soft handover

gain will also be included.
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