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Chapter 1

Big-Data helps SDN to improve application
specific quality of service

Susanna Schwarzmann, Andreas Blenk, Ognjen Dobrijevic,
Michael Jarschel, Andreas Hotho, Thomas Zinner, Florian

Wamser

1.1 Introduction

Managing the quality of real-time multimedia services, such as video streaming and
networked virtual reality, still poses many technological challenges. For instance,
data rate demand of video streaming services is dramatically increasing. At the same
time virtual reality applications call for low user-to-server latency. These opposing
demands are dictated by the evolution of the quality concept, which has been trans-
formed over the past decade from more technical, network-level Quality of Service
(QoS) into user-centric Quality of Experience (QoE) [1, 2]. Going beyond QoS,
which commonly conveys network performance in terms of measurable parameters
like throughput and delay, QoE identifies additional factors that influence service
quality as perceived by end-users. The latter QoE influence factors (QoE-IF) may,
for example, include user-device screen resolution and previous service usage expe-
rience.

Recently, many research results have exploited the paradigm of software-defined
networking (SDN) [3] as a means to implement QoS-/QoE-oriented network con-
trol and management (CaM). The respective “CaM loop” aims at customizing the
network configuration to reflect the specified quality improvement target, e.g. re-
ducing the number of video stream stalling events. SDN, with its separation of net-
work control logic from data plane devices into distinct controller entities, provides
architectural blocks to realize QoS-/QoE-centric CaM [4]. Well-defined communi-
cation interfaces, as advocated by SDN, enable network applications that work with
SDN to communicate information about multimedia application states to the net-
work controller, on the one hand. On the other hand, SDN facilitates the acquisition
of network-wide performance statistics on the controller entities by means of, for
example, OpenFlow [5]. As a result, SDN is able to maintain a global application
state across the network, supported by the fact that it has access to both stakeholders.

Furthermore, with the introduction of QoE as a CaM objective, which calls for
(a) measuring and collecting QoE-IF data, (b) processing and analyzing this data,
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and (c) producing and enforcing action decisions, network CaM faces the challenges
of dealing with large data sets, i.e. “Big Data” (BD) [6]. Recent network-level
solutions were only provided for small data-scale scenarios, since they lack BD-
related technologies that are able to handle huge data sets. In the QoE CaM context,
a respective SDN system might consider a vast number of QoE -IF data sources
(i.e., data variety) that produce large data quantities (or, data volume) on different
time scales (referred to as data velocity). New developments of BD technologies,
e.g. Deep Learning or MapReduce, allow for an efficient processing of such large
data. Moreover, BD techniques facilitate efficient execution for most of the state-
of-the-art machine learning and data mining algorithms. Combining SDN control
logic with methods of BD analytics, e.g. by integrating them into an SDN controller,
would enable taking into account a wide range of QoE-IFs and, thus, “more precise”
decision-making that conforms to the specified CaM goal. Moreover, BD techniques
could be used, e.g., for customizing QoE estimation models during service run-time
to consider categories of end-users with different demographics.

This chapter first provides an outline of the current results in the domains of:
(a) QoS/QoE CaM for real-time multimedia services that is supported by SDN, and
(b) BD analytics and methods that are used for QoS/QoE CaM. Then, three spe-
cific use case scenarios with respect to video streaming services are presented so
as to illustrate the expected benefits of incorporating BD analytics into SDN-based
CaM for the purposes of improving or optimizing QoS/QoE. In the end, we describe
our vision and a high-level view of an SDN-based architecture for QoS/QoE CaM
that is enriched with BD analytics’ functional blocks and summarize corresponding
challenges.

1.2 Classification of SDN-based Context-aware Networking
Approaches

In the following, we discuss various approaches that use SDN for QoS/QoE-oriented
network control and management of multimedia services (QoS/QoE CaM). Since,
in particular, data variety and information gained by monitoring, as well as data
analytics and related control actions play an important role in the Big Data context,
we consequently classify the presented approaches based on QoE influence factors
(QoE-IFs), the control actions triggered from these information, and the resulting
implications. An overview of the investigated approaches with their classification is
shown in Table 1.1.

In the area of SDN and QoS/QoE management, video streaming is currently one
of the main drivers, as it is responsible for most of the Internet traffic [7] and plays a
strong role with representatives such as MPEG DASH and HTTP adaptive streaming
solutions. For that reason, the solutions discussed in the following all focus on video
streaming or video conferencing.
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Source Monitored QoE-IFs Control Action Implication
[8] Packets in the net-

work (DPI)
App-aware path se-
lection

Prevention of video
stallings

[9] Packet loss, delay App-aware path se-
lection

QoE-enhancement of
a multitude of appli-
cations

[10] Network congestion
indication

Flow prioritization Quality enhancement
of live video transmis-
sion

[11] YouTube Video
Buffer

App-aware path se-
lection

Prevention of video
stallings

[12] Network throughput,
video buffer

Flow prioritization
and quality adaptation

Prevention of video
stallings

[13] Active DASH
streams, available
bandwidth, client
properties

Bandwidth reserva-
tion

Fairness w.r.t. video
quality

[14] Available bandwidth,
network latency,
client properties

Dynamic resource al-
location

Fair QoE maximiza-
tion

[15] Available bandwidth,
packet loss rate, jitter,
initial delay, buffer

Change of routing
paths and transport
nodes

QoE enhancement for
video streaming

[16] Active DASH
streams, network
resources, client
properties

Bitrate guidance,
bandwidth reserva-
tion

Fairness w.r.t. video
quality

[17] Available bandwidth,
video buffer

Network resource al-
location

Fair QoE maximiza-
tion

Table 1.1: Classification of SDN-based context-aware networking approaches

1.2.1 Monitoring of QoE Influence Factors (QoE-IF)

We begin with a classification of selected management approaches according to the
monitored parameters. Each SDN-based CaM approach monitors at least one QoE-
IF. These factors can be classified in terms quantity and location of monitoring. We
consider in the following four dimensions of monitoring. There are commonly mech-
anisms that perform (1) monitoring in the network at packet level, (2) monitoring
at flow level, (3) monitoring of application information that are available within
the client software, and (4) mechanisms that perform monitoring at network and
application-side, i.e. monitoring of network parameters as well as application-side
QoE-IFs updates.
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Monitoring at packet level in the network. An approach that exploits net-
work information on packet level is [8] by Jarschel et al. for QoE management of
web and video traffic. By means of Deep Packet Inspection (DPI), packets are in-
spected on their way from source to destination. Based on significant fields in the
packets the application can be identified. The challenge is that a wide range of infor-
mation has to be collected at different points in the network in order to get a holistic
picture of the application in the network. It also discusses whether a northbound
interaction between application and SDN controller is more beneficial than packet
DPI, since encrypted traffic poses another major challenge through end-to-end en-
cryption. The approach from [9] collects information about packet loss and packet
delay and refrains from the reading of application information from packet payload.
A major challenge is here the collection of packet-level statistics at different points
in the network. The efficiency of such approaches and the associated detection of the
bottlenecks in the network strongly depends on the possibility of comprehensively
monitoring the network.

Monitoring at flow level in the network. Following the approaches that mon-
itor the network on packet level, there are also approaches that examine the network
at the flow level. For this purpose, no individual packets are analyzed, but the flow
through the network is considered. In [10], for example, monitoring is performed to
quickly detect network congestion based on network flow statistics.

Monitoring of application information. An example where application in-
formation is used as basis for control actions is [11]. This proposal relies on the
client’s buffer state as QoE-IF. In this case, the client buffer state is only one exam-
ple, which is investigated for the considered use case video streaming. A further de-
velopment of collecting information on application level might reveal that a targeted
monitoring of specific application parameters is desirable for each active application
and for each client to optimize QoS/QoE management in the network.

Monitoring at network- and application-side. Unlike the previously men-
tioned mechanisms, which either rely on network monitoring or application mon-
itoring only, the mechanisms presented in [12–17] consider both, application and
network information, to decide about control actions. This may include upon others
the number of active video streams, the capabilities of the used devices in terms of
screen resolution, and QoE-IFs like current buffer or the number of quality switches.
Thereby, a new challenge arises in multi-application scenarios, where information
on other applications’ traffic flows must be gathered as well at a large scale. This
requires monitoring variety of data, but it also offers a value-added, as it is possible
to make decisions for the benefit of all applications. All above-mentioned challenges
lie in the direction of Big Data and machine-based data analysis, because data variety
and volume are crucial for the success of these approaches.

1.2.2 Control Actions of Management Approaches

The presented mechanisms are based on various adaptations in the network in order
to meet the requirements of an application. In addition to the control actions im-
plemented in the network, some of the approaches also take into account additional
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control actions within the application. However, in the following, we are only go-
ing to detail the network-side adaptations, since the focus in this work is on SDN,
which naturally performs the adaptations on the network side using the OpenFlow
Southbound API. As the presented classification table shows, several proposals em-
ploy the same or similar control actions. Dynamic application-aware path selection
is performed in [8, 9, 11], and [15], whereby the latter one additionally performs a
dynamic selection of the transport node. Having the knowledge from the monitoring
entities and the QoE models, an algorithm decides about the network path for the
specific flows in order to meet the application requirements. The challenge in this
context is to make coordinated, fine-grained decisions. The granularity of the infor-
mation hereby improves the decision-making process. Fine-grained information can
be used to carry out more targeted actions on the network. If also machine learning
is used on the mass of data, it is possible to better estimate the required application
parameters influencing the control actions, such as clients’ video buffers. For all
approaches, the amount of data is essential to make efficient decisions and not to
discriminate against other applications on the network.

The mechanisms of [10, 12] temporarily prioritize specific flows in the network
in order to prevent QoE degradation. This is realized by implementing at least two
queues, whereby one is set up as best-effort queue, while the other one processes the
packets of the prioritized flows. The packets in the high-priority queue are preferably
scheduled in contrast to the packets in the best-effort queue.

Dynamic allocation of resources, e.g. bandwidth reservation, is considered in
[13, 14, 16, 17]. These mechanisms have in common that they take into account
fairness aspects. This can either mean that all video clients - which possibly have
different device capabilities (e.g. screen resolution) and hence different demands on
the network - have a fair video quality, or that the QoE is maximized whilst fairness
constraints are considered.

Big Data and machine learning approaches have potential to support those mech-
anisms in the decision process. For example, it is conceivable to use reinforced
learning. An algorithm learns from the impacts triggered by specific control ac-
tions. Hence, it continuously optimizes its decisions and is aware of the currently
best-fitting control action. The basis on which the algorithm decides on control ac-
tions, i.e., the feature set considered for learning, is extensive and includes, among
other things, commonly network and application behavior. By using user-defined
data obtained through monitoring the user behavior (e.g. video-stalling duration or
initial delay thresholds that provoke the user to abort), it is even possible to react in
a user-centric manner.

1.2.3 Potential of Big Data for SDN QoE Management

The applicability of Big Data for SDN-based QoE management approaches is in-
disputable as discussed in the previous sections. The trend for more data and more
monitored QoE-IFs dictates the use of Big Data in this area. Nevertheless, at the
moment approaches do not exploit this potential and avoid the use of Big Data, since
the approach and the way of thinking are different with this mass of data.
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In contrast to the traditional approaches, Big Data helps in evaluating informa-
tion in three different directions. Firstly, Big Data supports the statistical analysis
of encrypted traffic, which is important in today’s networks. On the basis of privacy
issues traditional approaches refrain on packet analysis and rather collect statistics
on network and packet throughput to get information about the applications. Sec-
ondly, Big Data can help to analyze data within the whole network at different points
of presence. Many CaM approaches can improve their optimizations by taking into
account information about the entire network. Thirdly, Big Data also helps at appli-
cation level where all applications need to be considered and, consequently, a lot of
information needs to be gathered.

Besides the collection and analysis of the huge amount of data, BD can help with
its analytics methods. Feasible are, for example, algorithms that facilitate to learn
and predict appropriate control actions based on the given data. Some ongoing work
in the context of Big Data and QoS/QoE management is presented in Section 1.3.2,
including also examples where network control decisions rely on the outcomes of
Big Data analytics mechanisms.

The challenge in the context of control actions is to make coordinated, fine-
grained decisions. For all approaches, the amount of data is essential to make ef-
ficient decisions and not to discriminate against other applications on the network
with respect to fairness in the network.

1.2.4 Conclusions

We conclude this discussion about SDN-based QoE management approaches and
the related assessment for the approaches with respect to Big Data with a list of
challenges:

1. Encrypted traffic represents a challenge for traditional SDN QoE man-
agement approaches. Encrypted traffic makes it difficult to use DPI proce-
dures. Instead, more statistical methods based on a lot of data need to be
used. Patterns in traces can help to train models to specify application classes
although traffic is encrypted.

2. Network-wide monitoring is a challenge for QoE management approaches.
A network-wide overview of key QoE-IFs is necessary for efficient and fair
control decisions. To control the network (e.g. path selection), it is necessary
to know the complete network. This requires lots of information from lots of
devices throughout the whole network.

3. At the application level, the challenge is to monitor all applications with
appropriate granularity. When monitoring is performed on application layer
(e.g. to support QoE fairness), it is not sufficient to monitor one client or
application instance. You must be aware of all relevant applications running
and their requirements.

4. Dedicated network control is a challenge. For fine-grained and targeted
control actions in the network, information from all areas must be known. For

6
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all approaches, the amount of data is essential to make efficient decisions and
not to discriminate against other applications on the network with respect to
fairness in the network.

5. Other challenges. Another further challenge for management approaches
is the processing of the large amount of data. The questions arises how to
store, handle and structure the different information with respect to the de-
sired outcome. Additionally, subjective studies on QoS/QoE mapping, which
are needed to train models to automatically identify the resulting QoE, are very
costly.

The key derivation must therefore be, that in order to counter the challenges of
QoE management in the present time, the network and application status must be
learned and the effects of the actions on the network must be examined. Next, the
resulting model must be set up with the help of unsupervised or supervised learning
methods to automate network/application control actions in an efficient way.

1.3 Big Data Analytics to Support QoS/QoE Management

In this section we focus on the potential of Big Data analytics to support QoS/QoE
management. We first give a short overview on BD analytics approaches and after-
wards present current work that apply those techniques in the context of QoS/QoE
management.

1.3.1 Big Data Analytics

This subsections provides a short overview on typical Big Data analytics techniques.
We will not discuss BD in general as it focuses not only on machine learning and data
mining approaches but also addresses a broad range of data handling aspects [18].
Data handling aspects are only of limited importance here since we have to deal with
the “3 Vs”: Volume, we need to handle a huge quantity of data, Velocity, as we need
to deal with the incoming data just in time and partially with Variety, when we bridge
the gap between the network flow data and the application level. We ignore the other
“2 Vs” of Big Data. Therefore, we will focus on typical machine learning and data
mining approaches which form the basis for an analysis of the collected data with
special emphasis on BD aspects. An in depth discussion of the combination Big Data
and SDN can be found in [19].

The goal of machine learning (ML) is to learn from a given set of examples and
to build models from it. This model can be later applied on newly and unseen data.
A second goal is to gain new insights about present data by means of those models.
Data Mining includes this model learning step in a bigger process, which includes
also data handling and application of learned models as other important steps. Due to
this data centric view, a bunch of new “data mining” techniques have been developed
in the past. The most prominent example is the association rule mining approach
which is part of a more general class of methods known under the term pattern

7
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mining. In general, ML and DM techniques are broadly classified into Supervised-,
Semi-supervised-, or Unsupervised Learning. An introduction to Machine Learning
can be found in [20–22] and to Data Mining in [23–25].

When supervised learning is applied, the classification rules (model) are learned
based on labeled data. Labeled data, or training data, indicates the desired output,
the correct feature value, depending on the given input. Hence, the model builds a
relationship/function that relates input parameters to the output feature. This model
is then applied to unlabeled data and the output is predicted based on that. Typical
supervised learning algorithms are Support Vector Machine (SVM), Decision Tree,
Naive Bayes, k-Nearest Neighbor (k-NN), and Random Forest. These techniques are
often super-ordinated as Classification. In contrast to classification, where the output
variable is a pre-defined class, Regression predicts continuous values. Other learn-
ing approaches like bagging, boosting or ensemble learning combine either weak or
strong learners to a new model.

The term Clustering denotes the unsupervised learning methods, where no la-
beled data is given in advance. Typical clustering techniques include density based
methods like DB-Scan, standard statistical approaches like k-Means, k-Medoids, and
Expectation-Maximization (EM) (for a survey [26]). More recently, methods like
LDA become popular in many areas. The basics are already addressed in text books
like [22].

Semi-supervised learning is part of supervised learning, with the difference that
it makes use of both, labeled and unlabeled data. In this way, fewer labeled data is
needed, but as larger quantity of the available data is used, a more general model can
be learned.

Machine Learning and Data Mining approaches discussed so far typically need
to be able to access all data during the model learning or pattern detection phase.
Storing all the “Big” data is sometime impossible and therefore, classical ML and
DM methods can’t be applied. Stream data mining refers a set of methods adopted
in such a way that models can be learned or patterns can be detected directly from
a stream of data. Besides adopted standard methods like tree learner, one can find
special methods like time series analysis which inherently rely on data streams in this
area. An overview of stream mining algorithm is given in [27]. As there is no longer
a need to store the data, we can address the Big Data issue of Volume and Velocity
within our network analysis setting. We can directly stream the data to a learning
machine which computes new models on the fly. These models can be deployed on
the network devices or controllers and take care of the network flow. The Apache
Storm framework1 provides a distributed stream processing framework which can be
adopted to efficiently learn from a data stream.

Reinforcement learning is another machine learning paradigm (cf. [28]) where
an agent autonomously learns a strategy. It can be seen as a kind of weak supervi-
sion, as minimal feedback is provided which is used to learn the strategy. The agent
is not trained in terms of actions to take, instead, it is rewarded (positively as well
as negatively) for its decisions. Typical examples are game playing (the feedback is
winning the game or getting higher score) or controlling machines like a robot mov-

1http://storm.apache.org
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ing trough a labyrinth. The benefit of such a system is, that it learns continuously,
even if it is in practical application.

With the advances of deep learning methods, reinforcement is becoming more
and more popular and successful as shown by examples like game learning for Atari
computer games [29]. The main idea is the use of a deep neural network to do
the different processing steps on the corresponding layer. This includes the image
processing which in a classical learning step would be a kind of feature engineering,
but also the judgment of the reward over the long time. Without going into details of
how deep learning methods work, one could apply similar deep learning approaches
on network traffic with the goal of controlling the flow trough the network. The
neural network could learn the reconfiguration of the network by directly analyzing
the network traffic. This could also be done in a stream stetting, by utilizing one of
the stream frameworks.

If we are not able to do stream mining we need to store and process BD for
learning. In the past years a bunch of typical paradigms were developed. Among
them are the MapReduce approach implemented in Hadoop (disk focused) or Spark
(memory focused) mainly developed by the search engine vendors to process web
scale data. MapReduce is a method to efficiently process large datasets [30]. The two
functions map and reduce form the key of the approach and call each other iteratively.
During the map phase, the input data is filtered or sorted with respect to some criteria
implemented as a user-defined function in parallel. The results are distributed and
send to the reducers. The reduces summarize the values in order to obtain a smaller
set or even the final result set and return it. If the data is stored in a distributed fashion
the first map job will directly access these distributed data which allows us to easily
work on a big network dataset in parallel. Another paradigm developed in the past
years to store huge amount of data are NoSQL databases. In contrast to classical
relational databases, these databases follow a different main principles when storing
the data, like columns, documents, key-values, graphs, and multi models. Beside the
change of the storage model, such databases favor speed over traditional properties
like consistency. An introduction into the new often distributed storage models can
be found in [18].

1.3.2 Current and Ongoing Work

Mestres et al. [31] present a new paradigm called Knowledge Defined Networking
(KDN) based on the idea of a Knowledge Plane for the Internet [32]. Their idea is
to learn from network behavior and automatically operate the network accordingly.
They present a loop of constant learning. An SDN controller analyzes the network
and provides the information to an analytics platform that transforms this information
into knowledge. To do so, several ML techniques are applied: Supervised learning,
unsupervised learning, and reinforced learning. The knowledge is provided to the
controller, which can find appropriate control instructions based on this knowledge
and its global network view. Information about performed control actions and im-
pact on network behavior are again provided to the analytics platform. The authors
present two use-cases for the proposed Knowledge Plane. The first one focuses rout-

9
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ing in an overlay network, the second one targets on resource management in an
NFV scenario.

In [33], six classifiers (Naive Bayes, SVM, k-NN, Decision Tree, Random Forest,
and Neural Networks) are compared with respect to their applicability to estimate
the QoE from QoS parameters. The authors present a framework in which users
can rate their satisfaction with the quality of a YouTube video during playback and
after the playback is completed. Simultaneously, the framework monitors the video
characteristics (QoS parameters). The framework is used within a large-scale crowd-
sourcing study in order to obtain training data which map video QoS to QoE values.
Besides the crowd-sourced approach, the authors conduct experiments in a controlled
environment. Hence, the objective MOS can also be matched with QoS parameters
like packet loss, jitter, and delay. Based on this data, models have been trained for
the six different classifiers. With regard to the mean absolute error, Decision Tree
(DT), yields the best classification result in a 4-fold cross-validation. In terms of
the correctly classified share from the test set, Random Forrest and Decision Tree
outperform the other techniques.

A methodology for estimating YouTube QoE based on statistical properties of
encrypted network traffic is presented in [34]. The authors set up a testbed where
several YouTube videos are played back. During playback, the network traces are
stored. These traces provide information like packet length, size of transferred
data within a fixed interval, packet count statistics, and TCP flag count. Further,
application-level data is captured during video playback. This includes the number
of stallings, stalling duration, and playback time on a certain quality level. Based
on these QoE-related parameters, each video instance is classified into one of three
QoE-classes: low, medium, and high. Several experiments with varying video du-
rations and bandwidth configurations resulted in 1060 videos in total, including the
associated network traces. Using WEKA, this data is used for feature selection and
model building with several classifiers (OneR, Naive Bayes, SMO, J48, Random
Forest). Again, Random Forest outperforms the other methods w.r.t. accuracy when
the model is trained and tested using 10-fold cross-validation of the whole dataset.

Traffic classification is also targeted in [35]. However, unlike the previous ap-
proach, the authors do not aim at predicting a QoE value, but at classifying network
traffic into one of several QoS-classes. A QoS-class summarizes applications that
have similar QoS requirements, e.g. voice, video conference, streaming, bulk data
transfer and interactive data are considered as QoS-classes. To learn the classifier,
network traces are stored and labeled as one of these classes. The knowledge about
an application’s QoS class can then be used to perform a QoS-aware traffic engineer-
ing in order to satisfy the application’s needs.

The authors propose to apply the classifier within a framework that is located in
an SDN controller to take advantage of its global network view, programmability,
and computation capacity.

The feasibility of different ML algorithms for traffic classification is investigated
in [36]. The authors use the OpenFlow protocol to gather information about the
traffic in an enterprise network. They store several features of the TCP flows and
the corresponding packets. These features include flow duration, packet time stamp,

10
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inter-arrival time and packet count. To obtain labeled data, they run applications in a
controlled experiment and store the traffic traces caused by the different applications.
This data set is used to train models for predicting applications based on network
data with three different classifiers: Random Forest, Stochastic Gradient Boosting,
and Extreme Gradient Boosting. Their results indicate that each of this supervised
learning techniques can obtain a high traffic classification accuracy.

Statistical regression analysis is used in [37] to determine the relationship be-
tween several QoS parameters and the resulting QoE for video conferencing on MOS
scale. The authors consider upon others packet loss rate, round trip time, bandwidth,
and jitter to produce the regression coefficients. These coefficients are analyzed for
several access technologies (e.g. Wi-Fi and 3G) in order to predict the QoE for sev-
eral access technologies with the goal to dynamically select the technology providing
the best QoE.

Two more approaches for estimating Qoe from QoS parameters are presented
in [38, 39]. The authors propose to use the predictions to find the input network pa-
rameters to obtain a QoE that satisfies a user’s needs and to decide about appropriate
network management.

The user QoE in an enterprise working environment is focus in [40]. The authors
evaluate the potential of several machine learning algorithms to predict the worker
satisfaction based on objective measurements (waiting times). They use results from
a subjective user study and technical data from the system monitoring to learn three
models, namely SVM, Gradient Boosting, and Deep Neural Networks. The result-
ing classification accuracies reveal that none of the examined algorithms is reliably
applicable for QoE prediction based on non-intrusive application monitoring data.
However, when modeling on a per-user scale, there is a share of about 5-10% of all
users, whose models can classify with over 80% accuracy. Hence, the QoE may be
predicted with good performance for specific users if personalized prediction models
are applied.

1.4 Combining Big Data Analytics and SDN: Three Use-cases to
Improve QoS/QoE

In this section, we present three use-cases which illustrate the envisaged benefits of
combining BD and SDN. The first use-case is an extension of classical network QoS-
monitoring to achieve improvements and adjustments in the network due to certain
network settings. The second use-case assumes a business agreement between a
video on-demand provider and an SDN-based network operator to exchange values
of QoE-IFs, which are then processed by BD-applications. The final use-case, as
opposed to the second one, assumes no direct communication between the video
service provider and the network operator, while Big Data applications are utilized
in order to infer the service-level QoS/QoE.

11
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1.4.1 Improving the Operation of Networks

This subsection deals with the use-case of improving network operation by combin-
ing Big Data and SDN. In particular, we discuss compliance of network performance
with the QoS-requirements for Voice-over-IP (VoIP) traffic.

Traffic flows and their mutual influence within networks are highly complex and
unpredictable in today’s networks. Network-level actions, like queuing, traffic shap-
ing, selective dropping and link-efficiency policies, provide a network operator with
control over how these flows transition the network. This is especially critical for
VoIP and video streaming traffic, since the operator needs to improve network opera-
tion and maintain the specified QoS requirements, such as maximum allowed latency
and minimally required throughput. From a technical perspective, this means that in
cases where network virtualization is not possible, or the use of technologies such
as virtual local area networks (VLAN) is not adequate, network settings and QoS
optimizations can be used in the network to enable a robust traffic flow.

A good example are VoIP networks. There, a telephony application typically
requires the one-way latency not to exceed 400 ms [41]. This must apply to the
entire network, if VoIP traffic is being transported. In this case, layer 3 markings
(preferably Differentiated Services Code Point, or DSCP) or layer 2 prioritization
with the Class of Service (CoS) markings are commonly used for this purpose, in the
outbound direction of each network link.

A continuous measurement and monitoring of the important quality features in
the network forms the basis for the VoIP QoS-management. In the network, switches
and routers are currently being used to generate NetFlow statistics on packet latency
and to perform active tests on how to meet the current QoS requirements for VoIP.
In terms of Big Data and Big Data Analytics, two general paradigms can be applied
in addition to the traditional monitoring and testing: (1) the collection, storage and
processing of the data on a high detail-level using BD mechanisms, and (2) the
analysis and evaluation with BD learning methods to provide better insights, detect
failures, predict future critical situations and usuage trends without direct operator
interaction.

1. Collection, storage and processing of the data according to the Big Data
principles. Through large-scale collection and storage of data, QoS-statistics
can be collected across the entire network. It is even possible to add applica-
tion information (Variety) as additional source to do a better network control.
Big Data provides means for efficient data storage, e.g., NoSQL databases,
how the storage cluster needs to be scaled based on the data volume, and how
the data needs to be processed to meet analytical engines such as Hadoop. The
new data allows not only for more detailed statistics due to the higher Volume
of the data. Even more, these data are the basis for learning new models and
extract the hidden knowledge about the usage patterns of the network. Due to
the new size, the insights are more fine grained and the action will allow for
more specific and timely (Velocity) reaction with respect to users’ need. This
could even reach a level where personalized traffic requests can automatically
be met by the network when learning is used.
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2. Analysis and evaluation with Big Data learning methods. By analyzing
the collected data and learning QoS models from it, conclusions can be drawn
about the QoS-compliance. It can be checked whether the QoS-requirements
are enforceable or not, and whether the QoS should be adapted based on the
models learned from historical data. Daily patterns and traffic situations can
be estimated, appropriately handled, and evaluated for the network control
purposes. It is even possible to predict future traffic situations and to take long
term actions based on the collected data. Examples of successful machine
learning applications on network traffic are described in Section 1.3.2 which
show what is currently possible with state of the art models. With the adoption
of stream data mining and deep learning models, we expect self-adaptable
SDN controllers given some high level strategy of the network provider which
show the full potential of Big data analytics in this area.

The implementation and configuration for QoS management takes place in the
entire network with the help of SDN. With SDN, for instance, the control actions are
passed to the devices and dynamic adjustments can be made based on the output of
the BD-analytics engine.

In the end, the use of BD in QoS-management means the logical continuation of
the idea, in which data is evaluated to enforce QoS-requirements for special types of
multimedia services.

1.4.2 Improving the Quality of Video-on-Demand Streaming based
on Business Agreements

This subsection gives another example of how the integration of BD applications
into an SDN-based network environment can enhance QoS/QoE. The example as-
sumes that a video-on-demand (VoD) streaming service provider (SP), e.g. Netflix or
Amazon Prime, has negotiated with a future SDN-based network operator (SNO) to
exchange service-level and network-level information relevant to QoS/QoE control.
Such a business agreement between SPs and SNOs may provide mutual benefits: SPs
offer improved QoS/QoE to their end-users, while NPs can utilize their network re-
sources more efficiently. The business agreement encompasses varying points. The
SNOs agree to provide ”prioritized” traffic treatment for the SPs’ customers.

Further, SPs and SNOs agree on the exchange of values for the relevant QoS/QoE-
IFs. In case of VoD streaming, we identify the following parameters to be reported
by the SPs:

• (anonymised) user demographics data (e.g. user age range), which is reported
during the video session establishment phase;

• previous service usage experience (beginner/advanced user), which is reported
during the video session establishment phase;

• service cost (flat rate, cost per video, etc.), which is reported during the video
session establishment phase;

13



“chapter” — 2017/2/28 — 16:28 — page 14 — #14

14 Running Head Verso

• user device type (e.g. smartphone, tablet, and laptop), which is reported during
the video session establishment phase;

• user device characteristics (screen size, OS, CPU and RAM features, etc.),
which are reported during the video session establishment phase;

• video client statistics (e.g. buffer status, number of video freezes), which are
reported periodically for the session duration;

• service features (MPD information), which are reported during the video ses-
sion establishment phase; and

• server statistics, which are reported periodically for the session duration

However, this constitutes a large number of QoE-IFs, which need to be efficiently
monitored and provided by SPs. Here, BD-applications might be utilized by the SPs
in order to efficiently process and compress the monitored data on end-users and
VoD service.

In order to put such an architecture into effect, further implementation steps are
necessary. As a first adjustment, the VoD clients and servers would be extended so
as to report QoS/QoE-IFs, e.g., by piggy backing HTTP traffic. For the information
exchange between SPs and SNOs, an orchestrator may be used that serves as the
collection and extraction point to the data on relevant influence factors. To interact
with the SDN control plane, the orchestrator can use a Northbound interface provided
by one of the open-source SDN controllers.

To make use of Big Data services, two ways are possible. Either the orchestrator
interacts with a Big Data infrastructure via another interface, or it integrates Big
Data applications directly. Furthermore, the operation of the orchestrator might be
optimized on run-time with the help of Big Data applications. For instance, delay
information might be extracted, which helps to improve the network optimization.
In addition, BD-applications lower the burden of extensive data processing on SDN
controllers, or even relieve them of the processing raw information completely.

On the SNO side, SDN controllers might periodically collect network-wide statis-
tics on the performance of the data plane elements. Based on the received infor-
mation from the orchestrator and the monitoring data on the network, the control
plane can make the best possible decision according to the business agreement and
the overall network optimization goal. The SDN controller could use VoD service
and end-user information to make decisions. This information could allow the SDN
controller to make distinctions, e.g., between advanced users and beginners (”a be-
ginner is less likely to be annoyed with video flickers than an advanced user”). Other
end-user information could be the service cost. Here, an end-user paying for each
video expects more value-for-money than a flat-rate end-user. Such insights and
metrics can be delivered via Big Data applications running on the SP side. Further-
more, other BD-received information could provide insights into the reasons of video
freezes. Here, end-user information allows to differentiate between video freezes
due to poor client performance, e.g. a stressed end-device running too many appli-
cations, and video freezes as a result of misconfigured network operations. Other
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service information can be frequent changes in video quality. Thus, the SDN con-
troller can support video traffic to provide a more stable delivery and thus reduce
quality changes. In case of general over-utilization, information retrieved from BD
applications allow to distinguish end-users based on their previous usage experience,
i.e., history of application use.

1.4.3 Improving the Quality of Applications without Business
Agreements

In a setup where no direct negotiation and information exchange between SNOs and
SPs exist, Big Data applications can still help to improve the overall service and
network performance. In this case, the incentive for an SNO is to serve end-users
with the best possible network performance, as they would most commonly blame
the SNO for poor service quality.

The challenge is to identify reasons for service performance degradations, in par-
ticular for encrypted network traffic. Thus, the goal of an SNO would be to establish
a network monitoring infrastructure with an SDN controller that is making deci-
sions based on the efficiently monitored data. In order not to burden the controller
with intensive data processing, the monitoring infrastructure might incorporate BD
techniques. BD applications would then provide statistics of video streaming traffic
based on, e.g., average packet size, inter-arrival packet time and average throughput.
Since this again might be a huge amount of data, it would be of immense importance
to efficiently provide low-dimensional data presentations, which could be provided
by BD unsupervised techniques or auto encoders. Besides directly connecting and
monitoring SDN infrastructures via OpenFlow, other techniques such as Simple Net-
work Management Protocol (SNMP) or sFlow could be used.

However, as video traffic might be encrypted, such an approach demands for
models that are capable of estimating values of the respective QoS/QoE metrics
solely based on the monitored traffic parameters [34]. While these models are cur-
rently derived based on tests with human subjects, a future BD-based network op-
timization might even incorporate automatic QoS/QoE model creation and user in-
quiry. Furthermore, end-user information about the service usage could be obtained
from test volunteers, who use client-side monitoring solutions or even provide feed-
back on QoS/QoE directly. These kind of solutions would result in a massive amount
of data, which demands the efficient processing in a BD infrastructure. Such models
would be updated on run-time and used by the SDN controllers.

1.5 Vision: Intelligent Network-Wide Auto-Optimization

With millions of transactions and events happening per second in an operator’s net-
work, the goal of leveraging this information for the purpose of quality optimization
and efficiency is truly a Big Data application. Through the scalability of the cloud
and new developments in analytics, it is feasible for the first time to handle this vast
amount of information and gain insight into the global network state on the fly. The
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global network state is an accumulation of the entire network information at any
point of a defined period of time. In particular recent trends in BD technologies,
such as distributed data mining and information retrieval systems like Hadoop [42]
or Spark [43], support such a distributed state collection and efficient processing.
Adding distributed sites connected through SDN-based networks to form a telco
cloud system enables to automatically act on those insights gained both globally and
locally.
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SDN ControllerSDN
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WAN SDN Controller WAN SDN Controller

SDN Controller

Global SDN Controller

Monitoring Infrastructure
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Figure 1.1: Big Data Analytics in Telco Cloud Network

Figure 1.1 represents a high-level overview of how a Big Data Analytics Engine
(BDAE) interacts with a distributed telco cloud network. An exemplary telco cloud
might be structured into three tiers, namely micro points of presence (micro-pops),
central offices, and central data centers. The network functionality of such telco
cloud is provided by virtual network functions (VNFs) running inside the data cen-
ters of each tier. The access networks connect the micro-pops and central offices,
while the backbone networks interconnect the central offices to the central data cen-
ters. The architecture follows the notion of the global-local cloud as described in the
Future X Network [44]. All instances in the three tiers follow the same basic struc-
ture, consisting of computing, storage, and networking resources. The difference lies
within the size and number of each category, e.g., a micro-pop might only consist of
one or two servers and a small storage system connected via a small SDN network,
whereas central data centers may consist of thousands of servers as well as the cor-
responding storage and networking equipment. Accordingly, micro-pops are large
in number, while there are only a few central data centers in the network. Each of
instance of every tear has its own local orchestrator as well as local SDN controller,
which is shown in detail for the central office. The central office consists of several
racks and is traditionally located in metro areas. For the few hyper-scale data centers,
the individual data center locations are connected via high-speed optical networks.
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Figure 1.2: Steps to big-data-enabled local network optimization

While this structure enables high bandwidth and flexible relocation of virtual
functions between locations, a real-time optimization of user experience in a single
session requires the following subsequent steps among all tiers (c.f Figure 1.2): real-
time measurements, real-time analytics, real-time decisions, and real-time actions.
In particular, the information exchange between tiers is important to enable a global
optimization of the network operation. However, even with the increasing process-
ing capabilities of big data applications the overhead of exchanging every piece of
information would be too large. Thus, comprehensive and compact representations
are needed, which could be provided by Big Data applications pre-processing the in-
formation first locally in each tier. Further, with such a concept, even latent variables
of the monitored networks, i.e., the state information, could be efficiently detected
via BD applications. This is enabled by the telco cloud since all functions can be
performed in any of the local data centers. The local monitoring system feeds in-
formation to the local analytics engine, which generates a recommended action for
the local orchestrator. The orchestrator’s task is then two-fold. On the one hand, it
optimizes according to the analytics results the deployment of the involved virtual
functions in its domain, and on the other hand, it instructs the SDN controller to to
steer the network traffic accordingly.

Apart from the local optimization in every tier, the local analytics engine also
identifies and compresses information that is relevant to the network on a global
scale. Which information this entails and how often it is communicated to the global
analytics engine depends on the preferences and optimization goal of the global or-
chestrator. Both, the global orchestrator and analytics engine as well as their re-
dudancies are located in the central data centers. Together, they optimize the whole
network based on macroscopic trends and longer time-scales than the local measures.
By pre-processing and -selecting the information at the local sites, the network is not
congested with monitoring data and the global engine only has to deal with actu-
ally relevant information. The proper granularity of information needed for such a
global optimization system remains an open research question. However, if the right
abstraction can be found, an operator can facilitate fundamental changes within the
network, e.g., core network reconfiguration, and prediction of necessary changes to
and failures of the hardware infrastructure, in an automated fashion. That way, the
operator can minimize the operational cost as well as the error introduced by human
configuration of the network.

An intrinsic challenge here is the identification of information that might be of
global interest as well as the interaction of network elements, controllers, orchestra-
tors, and the big data analytics engine. Accordingly, an intelligent and well designed
information exchange between big data applications and SDN controllers among all
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(a) Controller-centered interaction between
the Big Data Analytics Engine and the SDN
controller.

(b) Data-centered interaction between the Big
Data Analytics Engine and the SDN con-
troller.

Figure 1.3: Architectural options for an integrated Big Data/SDN architecture.

domains is needed. The ideal interfaces and interactions are still an open question
and may vary between different scenarios. The following section will discuss two
possibilities for the access network domain.

1.6 Challenges of a Big Data supported SDN Architecture for
Enhancing Application Quality

Figure 1.3a outlines the interaction between SDN and Big Data as presented in [19].
All available monitoring data on application and network level are gathered by the
SDN control plane and forwarded to a remote analytics engine. If necessary, addi-
tional flow rules can be added to the data plane to gather specific monitoring infor-
mation on demand. Based on this monitoring data, stream processing approaches
as outlined in 1.3 may be applied to deduce context information or control instruc-
tions. These are then passed to the control plane and can be used to enhance the
application quality. Additionally, control actions may be reported back to the BDAE
and used for updating QoS/QoE models, e.g., using reinforcement learning. In this
scenario, the SDN control plane may constitute a bottleneck resulting in a limited
number of monitoring information and control actions being forwarded to the Big
Data Analytics Engine.

A less controller-centric solution featuring the interaction between the BDAE
and the SDN controller is highlighted in Figure 1.3b. Apart from the monitoring
data provided by the SDN controller, the BDAE is able to collect more data from an
additional monitoring system or from the network elements using management pro-
tocols like SNMP, NetFlow or sFlow. Further, the BDAE might also be connected
to the application control plane enabling a direct access to monitoring data of cor-
responding applications. This might result in the availability of more fine-grained
application data and thus a more accurate view on the applications using stream pro-
cessing techniques. Additionally, reinforced learning approaches might be used to
enhance the QoS/QoE models based on the impact of control actions on the appli-
cation quality. Nevertheless, the total amount of exchanged data might be limited
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due to capacity limitations between the network devices and the Big Data Analytics
Engine.

To overcome such capacity restrictions the network devices require additional
knowledge to forward only selected features and examples need for the analysis in
the BDAE. This can be facilitated using ML models on switch and controller level
just for the special task of selecting the right features and examples. These mod-
els can be learned using BD approaches in learning clusters based on the gathered
monitoring information.

1.7 Conclusion

Today’s networks are facing a larger variety of more demanding services than ever
before. Applications range from high-bandwidth multimedia applications and large
numbers of Iot services to low-latency industrial applications. These diverse de-
mands combined with an increasing number of users call for a more efficient net-
work resource control. For this purpose, context information of applications, as well
as a networking architecture capable to enforce resource control actions are required.
Due to the necessity to correlate large amounts of network and application-based
monitoring data, big data approaches are promising solutions to derive such con-
text information, e.g., by deducing QoS/QoE mappings and to update them based
on actual data. This information can be used by an SDN controller in an operator’s
network to enhance the application quality for specific users.

This book chapter is a step towards a better understanding on how Big Data ap-
proaches and Big Data Analytics can be used together with SDN architectures to en-
hance the overall application quality. Therefore, we introduced several SDN-based
approaches that aim at enhancing user-QoE by monitoring QoE-IFs and perform-
ing appropriate control actions in applications or the network. Subsequently, we
highlighted the potential of Big Data Analytics to support QoS/QoE management
by introducing several works that exploit ML techniques in the context of QoE. We
extended this view towards a vision on how networks can optimize themselves in
the future facilitated by Big Data and Machine Learning approaches. Finally, we
focused on challenges and open questions on an SDN architecture that leverages Big
Data for improving the application quality.

19



“chapter” — 2017/2/28 — 16:28 — page 20 — #20

20 Running Head Verso

20



“chapter” — 2017/2/28 — 16:28 — page 21 — #21

Bibliography

[1] Qualinet White Paper on Definitions of Quality of Experience (2012); 2013.
European Network on Quality of Experience in Multimedia Systems and Ser-
vices (COST Action IC 1003), Patrick Le Callet, Sebastian Möller and Andrew
Perkis, eds., Lausanne, Switzerland, version 1.2.

[2] Varela M, Skorin-Kapov L, Moor KD, Reichl P. QoE - Defining a User-centric
Concept for Service Quality. In: Chen CW, Chatzimisios P, Dagiuklas T, Atzori
L, editors. Multimedia Quality of Experience (QoE): Current Status and Future
Requirements. John Wiley & Sons, Ltd; 2015. p. 5–27.

[3] Kreutz D, Ramos FMV, Verssimo PE, Rothenberg CE, Azodolmolky S, Uhlig
S. Software-Defined Networking: A Comprehensive Survey. Proceedings of
the IEEE. 2015;103(1):14–76.

[4] Schatz R, Fiedler M, Skorin-Kapov L. In: Möller S, Raake A, editors. QoE-
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