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Abstract—The Network Functions Virtualization (NFV)
paradigm offers network operators benefits in terms of cost
efficiency, vendor independence, as well as flexibility and scala-
bility. However, in order to profit most from these features, new
challenges in the area of management and orchestration of the
virtual network functions (VNFs) need to be addressed.

In particular, this work deals with the VNF chain placement
problem (VNFCP). For a given network situation, the task
consists of determining the number, location, and assignment
of VNF instances and the routing of demands. At the same time,
several metrics like CPU utilization and the delay of individual
flows need to be taken into account. For applicability in networks
with dynamically changing conditions, algorithms need to explore
the solution space of this NP-hard problem in a timely manner.

The contribution of this work is threefold: firstly, we design
MO-VNFCP, a multi-objective heuristic for the VNFCP. Secondly,
we investigate the convergence behavior of the algorithm in a case
study. Finally, we provide a comparison between the proposed
algorithm and an alternative approach from literature.

Index Terms—NFV, VNF Chain Placement, Multi-Objective
Optimization.

I. INTRODUCTION

In today’s networks, a wide range of networking tasks,
like load balancing and firewalling, are performed by spe-
cialized hardware middleboxes. Although they provide high
performance, there are also downsides with respect to capital
expenditures, flexibility, scalability, and dependence on the
vendor of the appliance. These limitations are addressed by
the Network Functions Virtualization (NFV) paradigm [1]. By
leveraging virtualization techniques, middleboxes are replaced
with software instances that run in a virtualized environment
on commodity-of-the-shelf hardware. In addition to a lower
initial capital cost, flexibility is improved due to the possibility
of relocating virtual network functions (VNFs) between points
of presence. Furthermore, dynamic scaling can be performed
by adapting the number of active VNF instances.

In order to reap these benefits, mechanisms for the manage-
ment and orchestration of VNFs need to be developed. In this
context, several questions arise:

1) How many VNF instances are required?
2) Where should they be deployed?
3) Which demands are handled by which instance?
4) Which path should a demand take through the network?

Combined with requirements like link capacity and ultra-
low latency that have to be met, these questions define the
virtual network function chain placement (VNFCP) problem
that is addressed in this work. Usually, operators need to
optimize multiple, possibly competing goal functions. Existing
approaches deal with this by aggregating multiple objectives
into a single, weighted sum, or only focus on a specific subset.
However, this aggregation might conceal trade-offs between
the objectives. Furthermore, the operators’ preferences might
not be known beforehand and usually also depend on the
available alternatives. Hence, we approach this problem in
a multi-objective fashion. If necessary, the performance of
each placement can still be aggregated into a single score
while taking into account the observed characteristics of the
objective functions, enabling automated decision making [2].

As the VNFCP problem is NP-hard, exact solutions like
integer linear programs (ILPs) have large requirements on
computational resources and time. Thus, they are usually un-
feasible for realistic problem scales. On the other hand, many
heuristics from literature are either limited by a local view
on the problem due to time constraints, or have high memory
demands. In contrast to these, our algorithm performs a global
optimization by considering all demands simultaneously.

Our approach is capable of generating a set of Pareto-
optimal solutions that represent different trade-offs between
competing objectives. Hence, it is applicable during the plan-
ning phase of a network in which human decision makers are
involved. Furthermore, MO-VNFCP can be used for regular re-
optimization during the operational phase, correcting possible
deviations caused by faster online approaches, which often
neglect downscaling when demands change. We focus on the
offline part of the optimization for the remainder of this work.

The contribution of this work is comprised as follows. In
Section II, we provide a formal problem statement for the VN-
FCP. Section III describes our multi-objective heuristic MO-
VNFCP, whose source code is available online1. Our evalua-
tion methodology and scenarios are introduced in Section IV,
and the evaluation results are presented in Section V. Finally,
related work is discussed in Section VI, and Section VII
concludes the paper.

1https://github.com/lsinfo3/mo-vnfcp
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II. VIRTUAL NETWORK FUNCTIONS CHAIN PLACEMENT

In this section, an overview of the VNFCP problem is given.
The input and output variables are formalized and extended
by various constraints regarding link bandwidth, delay re-
quirements, and node resource capacities. Finally, exemplary
optimization objectives are introduced. For reference, Table I
summarizes all used symbols in these definitions.

Notation. In the following, the term a{x,y,z} represents
the enumeration ax, ay, az . In contrast, ax,y,z refers to the
composition, i.e., ((ax)y)z or axyz

, respectively. For example,
rinst,i is defined as the i-th element of rinst.

A. Input Variables

(1) The network is represented by an undirected graph
G = (V,E). Nodes v ∈ V represent network elements that can
be part of a telco cloud point of presence and therefore may
have access to computational resources (vcpu, vram, vhdd ∈ R).
Network links are modeled by edges e ∈ E with their
respective bandwidth ebw ∈ R and delay ed ∈ R.

(2) The available network function types t are given in a
set T . Each function t ∈ T has a specific amount of required
resources (tcpu, tram, thdd ∈ R) and possesses similar attributes
as links (tbw, td ∈ R).

(3) The set R of traffic requests (or traffic demands) consists
of tuples r = (rsrc, rdst, rbw, rd, rc). The source and destination
nodes of the respective demands are given by rsrc, rdst ∈ V ,
while rbw ∈ R represents the minimum required bandwidth,
and rd ∈ R is the maximum tolerated latency of the request r.
The requested network function chain is represented by a
sequence of function types ti ∈ T : rc = (t1, . . . , t|rc|). These
functions need to be applied to all respective flows of this
traffic request exactly in the given order.

For some use cases, a subset of the above requirements
may be sufficient. For example, delay insensitive flows can be
incorporated by lifting the respective restriction, e.g., rd =∞.

B. Output Variables

The resulting placements are represented by the following
variables in the solution space:

(1) Each placed instance z ∈ I has a specific type ztype ∈ T
and a location znode ∈ V . Additionally, the set of all traffic
requests r that utilize the instance are given by zreqs = {r ∈
R | z ∈ rinst}.

(2) For each request r ∈ R, both the route rroute and
the utilized VNF instances rinst are given. The route through
the network is represented by a node sequence vi ∈ V :
rroute = (v1, . . . , vrℓ). The used instances rinst are modeled by
a sequence of the same length rℓ. It contains the used VNF
instances for each visited node vi ∈ rroute: rinst = (z1, . . . , zrℓ),
where zi ∈ I ∪ {∅} for all 1 ≤ i ≤ rℓ. If zi = ∅, no network
function is applied to the traffic on node vi.

(3) For each node v ∈ V , all respective VNF instances
placed on v are given by vinst = {z ∈ I | znode = v}.

(4) For each link e ∈ E, the multi-set of all traffic requests
r ∈ R whose route includes e = {v1, v2} is given by ereqs =
{r ∈ R | (v1, v2) ⊆ rroute ∨ (v2, v1) ⊆ rroute}. Note that ereqs

TABLE I
OVERVIEW OF USED SYMBOLS.

Symbol Description

v, V Set of network graph nodes v ∈ V .
e, E Set of network graph edges e ∈ E ⊆

(V
2

)
.

G Network graph G = (V,E).
v{cpu, ram, hdd} Available resources v{cpu, ram, hdd}∈R on node v∈V .

(∗) vinst Set of placed VNF instances z ∈ I on node v ∈ V .
ebw, ed Available bandwidth ebw ∈ R and imposed delay

ed ∈ R on link e ∈ E.
(∗) ereqs Multiset of all requests r ∈ R that traverse the link

e ∈ E.
t, T Set of available network function types t ∈ T .

t{cpu, ram, hdd} Consumed resources t{cpu, ram, hdd}∈R by type t∈T .
tbw, td Available bandwidth capacity tbw and imposed delay

td of type t ∈ T .
r, R Set of traffic requests r = (rsrc, rdst, rbw, rd, rc)∈R.

rsrc, rdst The traffic request’s source and destination nodes
rsrc, rdst ∈ V .

rbw, rd Requested bandwidth rbw ∈ R and maximum ac-
cepted delay rd ∈ R of traffic request r ∈ R.

rc Requested service chain: sequence (t1, t2, . . . ) with
ti ∈ T .

(∗) rroute Assigned path through the network: rroute =
(v1, v2, . . . , vrℓ ), vi ∈ V .

(∗) rℓ Length of the assigned path.
(∗) rinst Applied VNFs (z1, z2, . . . , zrℓ ) with zi ∈ I ∪{∅}.
(∗) rseq Locations rseq = (v1, . . . , v|rc|), vi ∈ V of all

applied functions t ∈ rc.
(∗) z, I Set of placed VNF instances z ∈ I.
(∗) ztype, znode The type ztype ∈ T and node znode ∈ V of an

instance z ∈ I.
(∗) zreqs Set of all requests r ∈ R that use the instance z ∈ I.

Rows labeled with (∗) indicate output variables.

may include the same request multiple times, e.g., if the link
is used in both directions.

Here, vinst, ereqs, and zreqs can be calculated from the values
of I, znode, rroute, and rinst. They are merely specified for
convenience. Only the latter are subject of the optimization.

C. Constraints

With the above model for input and output variables, the
following constraints are considered for the VNFCP problem
in this work. Let P = {cpu, ram, hdd} be the set of considered
node resource types.

∀r ∈ R, ∀(v, w) ⊆ rroute : {v, w} ∈ E ∨ v = w (1)
∀r ∈ R : rroute,1 = rsrc ∧ rroute,rℓ = rdst (2)

∀r∈R, ∀i∈{1, ..., rℓ} : rinst,i=∅ ∨ rinst,i,node=rroute,i (3)
∀r ∈ R : rc = rinst\{∅} (4)
∀t ∈ T : |{z∈I | ztype = t}| ≤ tlicenses (5)

∀v ∈ V, ∀p ∈ P :
∑

z∈vinst

zp ≤ vp (6)

∀e ∈ E :
∑

r∈ereqs

rbw ≤ ebw (7)

∀z ∈ I :
∑

r∈zreqs

rbw ≤ ztype,bw (8)

∀r ∈ R :
∑

(v,w)⊆rroute

{v, w}d +
∑

z∈rinst

ztype,d ≤ rd (9)
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Equation 1 ensures that all used links actually exist in the
network. With Equation 2, the source and destination of each
request are always the first and last node on its assigned route.
Equations 3–4 establish consistency between rroute, rinst, and
rc. Equation 5 respects the maximum allowed numbers of in-
stances. Physical resource constraints are covered by equations
6–8. Finally, Equation 9 tackles service level agreements and
ensures that the requested maximum delays are not exceeded.

While Equations 1–4 are mandatory for reasonable place-
ments, constraints 5–9 represent resource limitations. If they
are not satisfied, the respective solution is called unfeasible.

D. Objectives

Typical objectives of the VNFCP problem involve the
minimization of costs and delays. The former can be deduced
further, e.g., into the number of active VNF instances and the
amount of used physical resources in the network. The latter
can, for example, either be expressed by an overall sum of all
requests’ delays in a given placement, or by considering their
relation to the shortest possible route for a fair comparison.

In this work, the objectives F = (fdelay, fhops, finst, fcpu) are
minimized simultaneously, which are defined as follows.

fdelay :=
∑

r∈R


 ∑

(v,w)⊆rroute

{v, w}d +
∑

t∈rc

td


 (10)

fhops :=
∑

r∈R

|{(v, w) ⊆ rroute | v 6= w}| (11)

finst := |I| (12)

fcpu :=
∑

z∈I
ztype,cpu (13)

Thereby, the overall delay of all demands is represented
by fdelay, and their total number of hops by fhops. Objective
finst attempts to minimize the total number of placed instances,
regardless of their resource demands, while fcpu is specifically
focused on used CPU resources. This choice of objectives
matches the aims of the reference algorithm from literature
and enables their performance comparison in Section V.

E. Pareto-Optimal Solution Set

In the multi-objective context, the output usually consists
of multiple solutions. The solution set contains all Pareto-
optimal placements that the respective algorithm encounters
during the optimization, i.e., all such placements that cannot be
improved in any way without deteriorating another objective
at the same time. These Pareto-optimal placements are called
Pareto frontier in the objective space (R4).

III. HEURISTIC PLACEMENT

Our algorithm is based on a simplified model to obtain a
Pareto frontier approximation. In this section, we introduce
this model, as well as the heuristic that explores the solution
space by means of a neighborhood search.

rseq rrouterc

heuristic shortest
paths

bin packing
(first fit)placement

G, T, R

∀r ∈ R

I, rinst

Fig. 1. Overview of the placement generation strategy.

A. Simplified Model

The simplified model deals with the different layers of VNF
placements individually, i.e., instance location, assignment of
demands to instances, and routing of demands. Figure 1 sum-
marizes the solution generation strategy with this intermediate
representation. In that context, a placement s is represented
by a set of node sequences s = {rseq | r ∈ R}. For each
demand r ∈ R, the locations of the requested VNFs rc =
(t1, . . . , t|rc|) ∈ T |rc| are stored in rseq = (v1, . . . , v|rc|) ∈
V |rc|. Thereby, the actual route through the network rroute is
acquired by applying a shortest path algorithm for each pair
(rsrc, v1), (vi, vi+1) ∀i ∈ {1, . . . , |rc| − 1}, and (v|rc|, rdst).

The number of required VNF instances can be derived from
rseq by solving the bin packing problem. For each node v ∈ V
and each network function type t ∈ T , the objects {rbw | r ∈
R, ∃i : rseq,i = v ∧ rc,i = t} need to be placed in bins of size
tbw. Because the bin packing problem itself is NP-complete
[3], a first-fit heuristic is applied in this work that produces
results within the 1.7-fold of the optimal solution [4].

B. Heuristic Algorithm: MO-VNFCP

In order to obtain optimized placements, we apply a modi-
fied variant of Pareto simulated annealing [5], a multi-objective
extension of the simulated annealing algorithm that has
achieved promising results in the context of other placement
problems [6]. Algorithm 1 provides an overview of its main
steps. In addition to the three problem specific input variables
(G, T , R), the algorithm requires five additional parameters.
The initial temperature τ0 ∈ R+, the minimum temperature
τmin ∈ R+, and the cooling factor ρ ∈ (0, 1) determine the
number of temperature levels for the outmost while-loop. For
0<τmin <τ0, there are ⌈logρ(τmin/τ0)⌉ temperature levels in
total. The number of inner for-loop iterations for the same
temperature level is defined by m ∈ N. Finally, the parameter
|S| ∈ N determines how many individual placements are
explored simultaneously by the algorithm.

At first, an initial solution set S is generated with the strate-
gies outlined below. This set is then improved by iteratively
modifying small bits of existing solutions and evaluating these
new neighbor solutions. Based on their performance, new
solutions are either accepted into S, effectively replacing their
parent, or dropped and the algorithm continues at the existing
placement, as defined by a dedicated acceptance probability.

1) Initial Solutions: The initial solution set should not
only be generated with regard to covering a broad area in
the solution space, but ideally also contain both feasible and
partly optimized placements. In this work, the following four
placement strategies were used.

3



Algorithm 1: mo−vnfcp(G, T,R)

Additional parameters: τ0, τmin, ρ,m, |S|
1 S ← generateInitialSolutions(G, T,R)
2 M ← initializeParetoFrontier(S)
3 τ ← τ0
4 while τ > τmin do
5 for i ∈ {1, . . . ,m} do
6 Y ← {generateNeighbor(s, τ) | s ∈ S}
7 M ← updateParetoFrontier(M,Y )
8 S ← accept y ∈ Y with probability p(S, Y, τ)

9 τ ← τ · ρ
10 return M

Random: The simplest approach is to assign all VNF loca-
tions randomly. For each demand r ∈ R and each requested
VNF ti ∈ rc, the respective location vi ∈ V is picked at
random from all available nodes.

Short Pre-Optimization: The above random placements can
be pre-optimized by applying a shorter MO-VNFCP execution
before attempting the actual optimization. The initial solutions
then consist of elements from the short execution’s Pareto
frontier.

Minimize Delays: This heuristic assigns all demands to their
shortest path and applies all network functions on this path.

Minimize Number of Instances: A minimum number of VNF
instances is placed in the network to cover all requests. Their
locations are based on the betweenness centrality, i.e., the
instances are placed on those nodes with the highest number
of shortest paths from unserved requests traversing them. The
routes are, in turn, composed of the shortest paths through
all requested VNF instances. This is a greedy assignment, i.e.,
the first served requests usually have more instances to choose
from.

2) Neighbor Generation: In general, new neighbor place-
ments are generated by randomly modifying one (or multiple)
node sequences rseq. In an effort to support the convergence
w.r.t. the considered objectives, several improvements were
incorporated in the selection process. Figure 2 provides a high
level overview of the neighbor generation control flow.

As the distribution of instances is derived indirectly from
rseq, the selection of new sequences is extended by dedicated
probability parameters. With the probability premoveVNF, the
algorithm reassigns all rseq for each r ∈ zreqs of a selected
instance z ∈ I, as opposed to only reassigning a single
demand. This effectively removes the instance, as all of its
assigned requests are migrated. Similarly, during the selection
of nodes vi ∈ rseq, only nodes with compatible VNF instances
are considered initially. With a probability pcreateVNF (or if
existing instances are congested), all nodes with sufficient
resources are taken into account instead. Both probabilities
can be configured by the operator and may depend on the
current temperature level in order to adapt towards the end of
the optimization. This enables better control of the instance
distribution and provides some flexibility to deal with varying

problem inputs.
To handle the large decision space, weighted randomness

is applied during neighbor generation. Both the selection
of the reassigned demands r ∈ R and the choice of their
new locations rseq are performed w.r.t. their impact on the
objectives. Figure 3 shows an example of one such rseq
selection, inspired by [7]. Figure 3a displays the current VNF
distribution in the network without the respective unassigned
demand r (Figure 3b). A multistage graph with node and
link weights is constructed with one stage for each requested
function t ∈ rc, as shown in Figure 3c. Each node in a stage
represents an available location for the corresponding function.
A node’s weight is determined by the cumulative delay on the
shortest path from a to the node. Each node vi in stage i
is connected to each node vi+1 in stage i + 1, and the links
(vi, vi+1) are weighted by the delay of the shortest path from
vi to vi+1 in the real network. Then, a weight-based selection
is performed from rdst to rsrc, as indicated by Figure 3d. For
each choice v, the probability corresponds to the inverse of its
respective weights, including the node’s weight (delay a→ v)
and all links’ weights from v to b. In this example, the node
with the highest probability is always chosen.

During the above procedure, new VNFs might be instanti-
ated. In this case, requests that used other instances before are
rerouted towards the new instance if it benefits their delays
and number of hops. As far as the considered objectives are
concerned, this can be done without deteriorating other aspects
of the placement.

3) Acceptance Probability: In order to prevent getting stuck
in local optima, the algorithm accepts worse placements with
a certain probability. However, depending on the problem
instance, the quality of generated neighbor placements may
vary significantly. Hence, the acceptance probability dynami-
cally adapts to the situation and supports convergence towards
global optima. In addition, the current temperature level is
taken into account in order to reduce the acceptance rate of
worse solutions towards the end of the optimization.

When comparing two individual solutions a, b in the multi-
objective context, the following cases are relevant here:

• b is dominated by a , i.e., a is not worse in any objective,
and better in at least one of them,

• a is dominated by b,
• a and b are incomparable (or similar), i.e., neither is better

than the other w.r.t. all objectives.
Further details regarding the solutions’ relationship can be
obtained from literature [8]–[11].

Based on that, let n{better,worse,incomp} be the number of better,
worse, and incomparable neighbors, compared to their parent,
during the last temperature level with m neighbors in total.
Then, the acceptance probabilities paccept,{better,worse,incomp} are
defined as follows.

paccept,better := 1 (14)

paccept,worse :=
τ

τ0
· cworse ·

nbetter

m
(15)

paccept,incomp :=
τ

τ0
· cincomp ·

nbetter

nincomp
(16)

4



no new instances created

premoveVNF

1 − premoveVNF

select one
z ∈ I

select all
r ∈ zreqs

select one
r ∈ R

∀ selected r

generate new rseq,
taking pcreateVNF

into account

redirect
beneficial
demands

new instance

Fig. 2. Overview of the neighbor generation process.

a b

(a) Network graph and
current VNF locations.

rsrc rdst

t1 t2 t3a b

rc

(b) Traffic demand r.

a bt1 t2 t3

(c) Delay-weighted
multistage graph.

27%
38%
35%

66%
34%

40%
40%
20%

t3 t2 t1

(d) Individual choice probabilities
for each t ∈ rc.

t1 (VNF1)
t2 (VNF2)
t3 (VNF3)

low weight
high weight

Fig. 3. Exemplary weighted rseq selection during neighbor generation.

Here, c{worse,incomp} are additional parameters that allow prob-
lem dependent scaling, if necessary, e.g., cworse = 1.1 and
cincomp = 1.2.

IV. PERFORMANCE ASSESSMENT METHODOLOGY

This section describes the methodology used to compare the
results of multi-objective optimizers. In particular, three qual-
ity indicators, namely the hypervolume, epsilon, and weighted
sum indicators, are used to assess the performance of multiple
points in a multi-dimensional solution set X by means of
a single measure I•(X). Each of them represents different
aspects of the solutions’ quality. Finally, problem instances
and VNF characteristics used in the evaluation are described.

A. Hypervolume Indicator

The idea of the hypervolume indicator IH(X) [11], [12] is
to compute the area of solutions in the objective space that
are dominated by a given Pareto frontier approximation X .
Because this volume is infinite for a minimization problem,
a reference point x is used that bounds the objective space,
as illustrated in Figure 4a. Hereby, higher values of IH(X)
indicate a better performance w.r.t. this indicator.

To cope with differences in the objectives’ ranges, the
points are normalized. The reference point is then defined as
x := (1, . . . , 1)T . Therefor, let n be the number of objectives,
and Fmax = (f1,max, . . . , fn,max) the biggest observed objective
values across all solution sets that are compared with each
other. Then, each point is divided by 1.5 · Fmax, which also
ensures some distance to the reference point.

Due to the complex computation of the hypervolume in Rn,
a Monte Carlo approximation is used in this work. Thereby,
m = 100 000 uniformly distributed random points are gener-
ated in [0, 1]n. Let mdom be the number of such points that
are dominated by the investigated solution set X . Then, the
hypervolume of X can be estimated by IH(X) = mdom/m.

B. Epsilon Indicator

The epsilon indicator Iε(A,B) [10], [11] can be used to
compare two solution sets A,B directly. The idea is to measure

f1

f2
reference point

IH(X)
X

(a) Hypervolume indicator.

A
B

f1

f2

Iε(A, B) = 2.4

(b) Epsilon indicator.

Fig. 4. Illustration of two quality indicators with two objectives.

how far B has to be stretched to be dominated by A.

Iε(A,B) := inf{ε∈R | ∀b∈B ∃a∈A : F (a) ≤ εF (b)} (17)

Figure 4b illustrates the concept in R2. The smallest factor ε
to push all b ∈ B into the dashed, dominated area of A is
ε = 2.4. In accordance to [10], the indicator value is calculated
as follows.

Iε(A,B) = max
b∈B

{
min
a∈A

{
max
1≤i≤n

{
fi(a)

fi(b)

}}}
(18)

A unary version of the indicator can be acquired by defining
a reference solution set E.

I1ε (X) := Iε(X,E) (19)

This reference can be any Pareto frontier approximation, the
actual Pareto frontier, or an arbitrary set of points. In this work,
the grand Pareto frontier of all observed approximations for
the same problem instance is used. This indicator is to be
minimized, smaller values indicate better performance.

C. Weighted Sum Indicator

The weighted sum indicator IWS (X) aims to express how
close the solution set X is to a theoretical optimal value for
each considered objective from Section II-D, without knowing
the actual Pareto frontier.

Let r{latency,hops}(x) be the perceived latency and hop count
of demand r ∈ R for the placement x ∈ X . Further, let
r{shortestLat,shortestHops} be the theoretically smallest possible
latency and number of hops for the given demand r, involving
at least one node with sufficient resources for VNFs on its
path. Let Rt be the subset of all traffic demands r ∈ R that

5



TABLE II
SUMMARY OF THE CONSIDERED PROBLEM PARAMETERS.

VNF Type t tcpu td [µs] tbw [Mbps]

Firewall 4 45 900
Proxy 4 40 900
IDS 8 1 600
NAT 2 10 900

Network Parameter Internet2 Geant.{1,2} Germany.{1,2}
Nodes, Links 12, 15 22, 36 50, 88
CPU Locations 7 {22, 6} {50, 5}
Requests 132 462 662
Req. Bandw. Variability varying varying homogeneous
Link Delay Variability varying varying homogeneous
Mean Req. Bandw. 45 Mbps 6.5 Mbps 3.6 Mbps
Mean Rel. Req. Delay∗ 3.2 3.5 {35, 3.5}
∗ requested maximum delay in relation to the shortest path

request the function t ∈ T : Rt := {r ∈ R | t ∈ rc}. Then,
the measures mean delay index fMDI, mean hops index fMHI,
median inverse instance load fMedIL, and CPU index fCpuI are
defined as follows.

fMDI(x) :=
1

|R|
∑

r∈R

rlatency(x)

rshortestLat
(20)

fMHI(x) :=
1

|R|
∑

r∈R

rhops(x)

rshortestHops
(21)

fMedIL(x) := median

{
ztype,bw∑
r∈zreqs

rbw

∣∣∣∣∣ z ∈ I
}

(22)

fCpuI(x) :=

∑
z∈I ztype,cpu

∑
t∈T

⌈∑
r∈Rt

rbw

tbw

⌉
· tcpu

(23)

In each case, higher values indicate worse performance, while
a value of 1 represents an optimal performance with respect to
the considered objective, which may not always be attainable
for every problem instance though.

The weighted sum indicator IWS (X) is then defined by:

IWS (X) := min
x∈X

{
fMDI(x) + fMHI(x) + fMedIL(x) + fCpuI(x)

4

}
(24)

D. Problem Instances & Parameters

The evaluation is performed on five different problem
instances based on three topologies. While network topologies
and demand profiles are available in literature, VNF charac-
teristics and function chain requirements are hard to obtain,
hence this work uses mostly artificial data for the latter.

The first part of Table II outlines the different characteristics
of considered VNFs t ∈ T which are based on [7], [13],
as well as the pfSense hardware sizing guide2. Most traffic
demands are generated to request 0–4 functions, uniformly
distributed, in random order.

Similarly, the second part of Table II summarizes the five
problem instances used in the evaluation. The Internet2 graph,
along with its resource demands, was taken from literature [7],
while Geant and Germany were derived from the online

2https://www.pfsense.org/hardware/#sizing

library SNDLib3. For the latter two topologies, the resource
distribution is generated artificially, such that both networks
are evaluated with two resource profiles each, featuring high
and low numbers of CPU locations. Thereby, Germany.1
presents an extreme case where all 50 nodes are available
for VNF placement and the requested maximum delays are
exceptionally high, leaving a wide range of feasible choices
for the placement algorithms.

The algorithm’s parameters are tweaked individually for
each problem instance. Their choice is based on qualitative
differences between problem instances, but also backed by
a previous parameter study. For example, the optimization
of Germany.1 is performed with the minimize-number-of-
instances initial solution strategy and pcreateVNF = 0, while
for Germany.2, minimize-delays and a linear definition of
pcreateVNF are used.

The general applicability of the algorithm is bounded by
the quality / time ratio of its iterative optimization process and
the initial heuristics. This effectiveness is strongly influenced
by problem difficulty and parameters. To this extent, feasible
solutions were acquired for problems with up to 150 available
CPU locations, chains with up to 15 functions, and more than
1,000 requests within less than an hour of time on common
desktop hardware. The details of these parameter studies are
out of the scope of this paper and are therefore omitted.

V. RESULTS

Setup. All experiments are performed on a virtual machine
with 24 CPU4 cores and 4 GB of RAM. The algorithm is
implemented to make use of multiple cores by using a separate
thread for each simultaneously optimized placement s ∈ S. If
not stated otherwise, only feasible solutions are considered in
the evaluation process, i.e., only such solutions that satisfy all
constraints listed in Section II-C. For the sake of simplicity,
only CPU resources are considered.

A. Case Study: Solution Quality Development

To provide an idea of the optimization process and the
expressiveness of the different indicators, Figure 5a displays
their development over 10 s for an exemplary run on the
Internet2 topology. Recall that the hypervolume is to be
maximized, while the epsilon and weighted sum indicators
present better quality with smaller values. Thereby, several
characteristics can be identified.

The biggest improvements of the solution quality occur in
the first 2 s of the optimization. The probability to generate
better neighbor placements is comparably high during the
initial phase, and the solution space is explored vastly, for
example due to loosened acceptance probabilities. At the same
time, some indicators suggest another significant enhancement
towards the end of the optimization. These represent a focused
improvement of previously prepared placements with lower
(or zero) acceptance probabilities for worse solutions and less
variation among the VNF instance locations.

3http://sndlib.zib.de/
4Hosted on OpenStack, host: 2x Intel Xeon E5-2620 v2, HT enabled
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(a) Developement of the individual indicator values.
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(b) Snapshots of the Pareto frontier approximation at different times.

Fig. 5. Exemplary optimization process for the Internet2 topology over time.

When comparing the individual improvements of the indi-
cators, each of them represents a different aspect of quality
in general. The epsilon indicator is the only one to show
an improvement in the last seconds, while the weighted sum
indicator displays a rather steady quality throughout the entire
process. This is partly caused by the aggregation during
their computation: the value of the weighted sum indicator
is effectively based on only one solution of the Pareto frontier
approximation, namely that with the lowest value. As long as
this value is not outperformed, changes in the other solutions
are not reflected here. This characteristic is useful to assess
the potential for application in automatic decision making, as
only one solution can be chosen in the end. Nevertheless, the
different behavior of the indicators offers more expressiveness
when used together, as pointed out in [11].

Note that the hypervolume and epsilon indicators are mainly
suited to compare relative performance in the context of a fixed
problem instance, whereas the low value of IWS (X) ≈ 1.125
indicates a good quality w.r.t. theoretical optima.

In addition to the indicator values, Figure 5b shows three
snapshots of the Pareto frontier approximations at the execu-
tion times 0 s, 4.8 s, and 10 s. Note that not all four objectives
are displayed, only the mean delay index (cf. Equation 20) and
used CPU resources are presented to retain a clear overview.

In the first snapshot, all initially generated placements in S
follow the minimize-delay strategy, hence the set of Pareto
optimal solutions only contains the placement with the lowest
resource usage for that delay value. At 4.8 s, many new trade-
offs between CPU usage and delay are presented. However, the
placements with the lowest CPU utilization suffer from high
latencies. At the end of the optimization, at 10 s, they become
dominated by a feasible low-latency solution, which causes the
final improvement for the epsilon indicator. A decision maker
can now choose from placements with roughly 135−175 used
CPU cores fcpu and 1.5− 2.0 mean delay index fMDI.

B. Performance Comparison

This section covers a performance comparison of the MO-
VNFCP heuristic to an incremental heuristic from litera-
ture [7]. The reference algorithm uses a Viterbi-inspired multi-
stage graph to assess the weighted costs of routes and new
VNF instantiations for individual demands as they arrive. Its
cost function includes VNF deployment, energy consumption,
traffic forwarding, and service level agreement violation, all
of which are based on measures that correspond to our four
objectives. Note that it may produce unfeasible solutions w.r.t.
our constraints if the respective penalty is considered cheaper
than the agreement’s satisfaction. Such placements are still
included here.

For this evaluation, 50 runs with varying demand distri-
butions are performed for each problem instance. Since the
Internet2 problem instance is relatively small in terms of
network nodes, CPU locations, and requests (cf. Table II), our
heuristic is configured to optimize for 20 seconds. In case of
the remaining problem instances, we set the optimization time
to 60 seconds to achieve reliable results with the larger search
space as based on empirical studies. Note that these execution
times shall only provide an impression of magnitude with
common hardware resources (cf. Section V-Setup). Thereby,
the influence of the execution environment is negligible in
comparison to the problem scale and difficulty, as the former
usually only varies within the same magnitude.

In contrast, the reference algorithm terminates upon find-
ing one placement and takes between 1 and 5 seconds per
execution.

In order to compare our multi-objective Pareto frontier
approximation X with a single-objective heuristic solution y,
the hypervolume is tweaked to represent a single solution.

IsH (X) := max
x∈X

IH(x) (25)

Then, the following indicator quotients Q• express their rela-
tive performance.

QH :=
IsH (X )

IH(y)
; Qε :=

Iε(y)

Iε(X )
; QWS :=

IWS (y)

IWS (X )
(26)

Thereby, values Q• ≥ 1 indicate that our results were better
in relation to the reference algorithm w.r.t. the used indicator,
while values < 1 express worse performance.

The results of the performance comparison are shown in
Figure 6. For each problem instance and each indicator, the
empirical cumulative distribution function of the 50 quotient
values is displayed. Based on this performance assessment,
MO-VNFCP outperforms the incremental heuristic clearly in
most cases. The only exception is the Germany.2 problem.
In half of these executions, the reference algorithm obtains a
slightly lower weighted sum value compared to our approach.
However, the differences are within roughly 5%, while the
remaining indicators still prefer our heuristic.

In general, the biggest differences are observable for those
problem instances with the most available resources. The mean
quotient values for Geant.1 are in the range 2.08−2.82 for the
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Fig. 6. Relative performance of this work’s approach compared to an incremental heuristic from literature [7].

different indicators, which corresponds to a mean improvement
of more than 100% in every case. For the Germany.1 topology,
even higher values within 2.07− 8.21 are observed, with the
highest indicator quotient suggesting an improvement of more
than 900% with our approach. These findings highlight the
potential for regular re-optimization of placements that are
acquired by faster, incremental heuristics. These are usually
limited by a local view on the overall problem at the moment
they place new instances due to time constraints.

Note that, without knowing the actual Pareto frontier, no
general statement regarding the quality of the placements is
possible. The above measures only allow a relative comparison
which is tied to the applied indicators, their weights and ref-
erence points, and the evaluated problem instances. However,
by application of multiple indicators and the evaluation with
varying topologies, we attempt to provide a thorough view on
the algorithm’s performance.

VI. RELATED WORK

This section provides an overview of publications related
to the VNFCP problem. First, works with a similar problem
formulation are presented. Then, several related problems that
deal with different subproblems of the VNFCP are discussed.
Finally, we cover works that provide solutions to special cases
of the VNFCP by simplifying the problem formulation.

A. VNF Chain Placement

In [14], one of the first formal problem statements for the
VNFCP is provided. The problem is tackled with an ILP-
based approach that takes into account the network demands
of virtual machine requests as well as latency constraints.
Optimization goals include minimizing the number of servers
that host VNFs as well as the total resource usage for VNF in-
stantiation and request handling. Similarly, the authors of [15]
and [16] use ILPs to model the VNFCP. Additionally, both
provide heuristics that can be used in the context of larger
problem instances. These heuristics are based on backtracking
or time-limited ILPs with additional constraints, respectively.
Furthermore, [17] extends the work in [16] by adding the
variable neighborhood search meta-heuristic [18].

In addition to developing an ILP-based solution for static
problem instances with a given set of demands, Bari et al. [7]
propose a heuristic that is also capable of calculating place-
ments dynamically. In this case, newly arriving demands can
be added to the current placement and new VNF instances are
created on demand. The objective function in this optimization

is defined as a weighted sum of costs, including deployment,
energy, and traffic forwarding expenses. Since the authors
provide the source code of their implementation as well as
the input data, we can perform a comparison between their
work and ours (cf. Section V-B).

While the aforementioned approaches deal with a single
objective function, the authors of [19] propose three dif-
ferent goal functions and perform a Pareto set analysis of
the resulting placements. In this context, placements that are
optimized according to each of these functions individually,
are compared with each other. In contrast, our work deals with
the VNFCP in a multi-objective manner, allowing decision
makers to investigate trade-offs between feasible solutions and
to define preferences given the available alternatives.

B. Subproblems of the VNFCP

Although the following approaches do not address all parts
of VNFCP, they can provide useful insights into the individual
steps required for developing VNFCP algorithms. For instance,
the authors of [20] focus on routing of network demands
while assuming that the position of VNF instances is known
beforehand. In an analogous fashion, the locations of virtual
machines (VMs) that can host VNFs are fixed in [21] and the
task consists of mapping and scheduling demands to VMs.

Virtual Network Embedding (VNE) problems [22], [23]
overlap with the VNFCP in terms of the chaining and place-
ment aspects. However, isolation between demands is stricter
in the context of VNE, i.e., multiple demands can not share the
same resource. Similarly, Virtual Machine Allocation (VMA)
problems [24] deal with the task of deciding which VMs to
place on which node in order to balance aspects like energy
efficiency and Quality of Service (QoS).

C. Special Cases

Rather than covering a subset of the VNFCP, the following
publications discuss problems that can be considered special
cases. By reducing the number of constraints or available
VNF types, algorithms that solve the VNFCP could also be
applied to these problems. One common difference to the
algorithm developed in this work lies in considering only
one type of VNF type, as proposed in [25], [26], and [27].
Additionally, these works aim at minimizing only a single
objective function, e.g., the number of VNF instances or the
costs for installation and migration of instances.
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VII. CONCLUSION

Network Functions Virtualization (NFV) addresses many
drawbacks of today’s wide area networks by leveraging vir-
tualization techniques and replacing specialized, expensive
hardware middleboxes with easily scalable software instances
that run on off-the-shelf servers. However, the NFV paradigm
also introduces new challenges in the domain of management
and orchestration that need to be addressed for optimal results.

In particular, this work focuses on the VNF chain placement
problem (VNFCP) which encompasses questions regarding
the number of VNF instances, their location, and the routing
of network demands through service chains. Additionally,
placements need to meet constraints that correspond to SLAs
while optimizing factors like costs or end user satisfaction. To
this end, we propose MO-VNFCP, a multi-objective heuristic
algorithm that calculates a set of Pareto optimal placements
with respect to several objective functions. On the one hand,
this can be used to analyze trade-offs between possibly
competing objectives. On the other hand, heuristics usually
yield results significantly faster than ILP-based approaches.
Therefore, they constitute a more feasible approach for coping
with large scale problem instances and dynamic scenarios.

Apart from designing the multi-objective heuristic, we per-
form a case study in order to trace its solution set over
time. This highlights the different stages of the algorithm,
i.e., exploration in the beginning and targeted improvement
of solutions in the end, and is achieved by analyzing three
quality indicators for Pareto frontiers during its run time. Fi-
nally, a performance comparison with a greedy heuristic from
literature is conducted. The fact that the latter is outperformed
by our algorithm in the majority of scenarios demonstrates our
algorithm’s feasibility for tackling the VNFCP.

There are several directions for future work. First, we plan
to investigate the algorithm’s performance and applicability in
the context of topologies and network demands that reflect
additional real world scenarios as well as the scalability of
individual modules within VNFs. Second, new objectives like
resilience can be taken into account during the optimization.
This can identify characteristics of resilient placements as
well as provide information about the resulting trade-offs
w.r.t. the remaining objectives. Finally, mechanisms for online
optimization can build on the aforementioned insights in order
to place incoming demands in a timely manner.
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