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� Introduction

Modeling is �nding a representation of reality in a scale we can handle� Mod�

ern telecommunication systems are among the most complex technical contri�

butions to our reality� Thus� tremendous amounts of modeling work was car�

ried out and still has to be carried out for the development of the most recent

telecommunications technology� the Asynchronous Transfer Mode �ATM��

Most of the publications about modeling� however� are primarily concerned

with the modeling of the technical system itself since the objective of re�

search was to make it work� Currently� the viewpoint is changing from the

pure technical system towards the services that are to be provided by this

system and the kinds of tra�c that will be carried by these services� In the

early stages of ATM research and development� simple tra�c models were

adequate since the ideas about the tra�c were rather vague� For instance�

nobody thought about internet or multimedia tra�c� Now� as user needs be�

come visible� there is a demand for more accurate tra�c modeling� It has to

be evaluated under which conditions an ATM�based network is able to carry

this tra�c while meeting the user�s quality requirements�

In this monograph� we devote our attention to the most complex part of

multimedia tra�c� the transmission of video sequences� Since uncompressed

video sequences require a bandwidth that even ATM networks cannot pro�

vide for a larger number of connections� video compression standards were

developed� Among these standards� the ISO Moving Pictures Expert Group

�



� Introduction

�MPEG� standard is favored for video transmission over ATM networks�

There are two bit rate modes that can be used for compression� constant

bit rate �CBR� or variable bit rate �VBR�� We focus on VBR MPEG video

since it is attractive for users and network providers� Compared to CBR

video� VBR video provides a better quality for the same average bandwidth

used� Assuming the same video quality� more VBR than CBR connections

can be transmitted over a given ATM link� The disadvantage of VBR video

is the problem of controling such tra�c sources�

Based on tra�c models for VBR MPEG video� we intend to identify traf�

�c properties that may lead to problems in an ATM network and to support

their solution� The tra�c characteristics are determined by the MPEG cod�

ing technique and the content of the uncompressed video sequence� Thus� a

detailed statistical analysis of several MPEG encoded video traces has to be

the �rst step of the model development� Based on these results� a variety of

modeling approaches� ranging from simple histograms to more esoteric self�

similar processes� are tailored to match the statistical properties as good as

possible� To simplify the validation of the models� logical layers of the video

are introduced� such as single frames� groups of frames� scenes� etc� Finally�

the models are adapted to the transmission protocols of ATM networks� The

statistical properties of the models are compared to those of the measured

data sets� and the models are veri�ed by using them as performance predic�

tors� For instance� cell loss rates or cell delays at a multiplexer bu�er are

determined�

Despite the complex nature of video tra�c� it is our intention to keep

the models as simple as possible� i�e�� in a scale we can handle by both

simulation and analysis� Two examples illustrate how the models can be

applied in performance analyses�

�



��� MPEG

��� MPEG

There are several standards available for the compression of digitized video

sequences �see Aravind et al� ����
��� However� only the MPEG standards

are currently regarded as being state�of�the�art and future�proof� MPEG is

an international standard �see ISO ����
�� Le Gall ������� for the compres�

sion of digital audio and video for storage or transmission on various digital

media� including compact discs� remote video databases� movies on demand�

cable television� etc� Originally� MPEG was the name of the group of people

working on the standard �Moving Pictures Expert Group�� but soon it be�

came the name of the standard itself� There are several phases of the MPEG

standard� We are focusing on MPEG�� and MPEG�� which are considered

for Broadband Integrated Services Digital Network �B�ISDN� video services�

Currently� MPEG�� is under development� which is intended for video trans�

mission over very low bandwidth channels�

����� MPEG��

The MPEG�� video compression standard� primarily aimed at coding video

for digital storage media at rates of � to ��
 Mbps� is well suited for a wide

range of applications at a variety of bit rates� The standard mandates real�

time decoding and supports features to facilitate interactivity with the stored

bit stream� It only speci�es the syntax for the bit stream and the decoding

process� Although the intention was to design the standard for digital storage

media� such as CD�ROMs� the group�s goal� however� has been to develop

a generic standard that can also be used in other digital video applications�

such as in telecommunications� The MPEG standard has three parts�

� Part � describes the synchronization and multiplexing of video and

audio�

� Part � describes video�






� Introduction

� Part 
 describes audio�

In the following� we will focus on the video part of the MPEG stan�

dard� Uncompressed digital video requires an extremely high transmission

bandwidth� For instance� digitized video in North American Television Stan�

dards Committee �NTSC� resolution has a bit rate of about ��� Mbps� With

digital video� compression is necessary to reduce the bit rate to suit most

applications� The required degree of compression is achieved by exploiting

the spatial and temporal redundancy present in a video signal� However� the

compression process is inherently lossy� and the signal reconstructed from the

compressed bit stream is not identical to the input video signal� Compression

typically introduces artifacts into the decoded signal�

The primary requirement of the MPEG video standard is that it should

achieve the highest possible quality of the decoded video at a given bit rate�

In addition� most applications require some degree of resilience to bit errors�

Furthermore� a variety of video formats should be supported�

Compression algorithm overview

The compression approach of MPEG video uses a combination of the ISO

JPEG still image compression standard �ISO ������� and the CCITT H����

video conferencing standard �CCITT �������� Since video is a sequence of still

images� it is possible to compress or encode a video signal using techniques

similar to JPEG� Such methods of compression are called intraframe cod�

ing techniques� where each frame of video is individually and independently

compressed or encoded� Intraframe coding exploits the spatial redundancy

that exists between adjacent pixels of a frame�

As in JPEG and H����� the MPEG video�coding algorithm employs a

block�based two�dimensional Discrete Cosine Transform �DCT�� A frame is

�rst divided into ��� blocks of pixels� and the two�dimensional DCT is then

applied independently to each block� This operation results in an ��� block

of DCT coe�cients in which most of the energy in the original block is typi�

�



��� MPEG

cally concentrated in a few low�frequency coe�cients� A quantizer is applied

to each DCT coe�cient that sets many of them to zero� This quantization is

responsible for the lossy nature of the compression algorithm� Compression is

achieved by transmitting only the coe�cients that survive the quantization

operation� and by entropy coding �Hu�man coding� their runs and ampli�

tudes� Figure ��� shows how the bit stream for one block of a still image of

W�urzburg�s castle is generated�
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Figure ���� Intraframe coding

The quality� however� achieved by intraframe coding alone is not su�cient

for typical video signals at bit rates around ��
 Mbps� Therefore� interframe

coding techniques are used to reduce the temporal redundancy which re�

sults from a high degree of correlation between adjacent frames� The H����

algorithm exploits this redundancy by computing a frame�to�frame di�er�

ence signal called the prediction error� In computing the prediction error�
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the technique of motion compensation is employed to correct for motion� A

block�based approach is adopted for motion compensation� where a block of

pixels� called the target block� in the frame to be encoded is matched with

a set of blocks of the same size in the previous frame� called the reference

frame� The block in the reference frame that best matches the target block

is used as the prediction for the latter� i�e�� the prediction error is computed

as the di�erence between the target block and the best�matching block� This

best�matching block is associated with a motion vector that describes the

displacement between it and the target block� The motion vector informa�

tion is also encoded and transmitted along with the prediction error� The

prediction error itself is transmitted using the DCT�based intraframe encod�

ing technique summarized above� In MPEG video� the block size for motion

compensation is chosen to be ����� pixels� representing a reasonable trade�

o� between the compression provided by motion compensation and the cost

associated with transmitting the motion vectors�

Bidirectional temporal prediction� also called motion compensated inter�

polation� is a key feature of MPEG video� In bidirectional prediction� some

of the video frames are encoded using two reference frames� one in the past

and one in the future� A block in those frames can be predicted by another

block from the past reference frame �forward prediction�� or from the future

reference frame �backward prediction�� or by the average of two blocks� one

from each reference block �interpolation�� In any case� the block from the

reference frame is associated with a motion vector� so that two motion vec�

tors are used with interpolation� Frames that are bidirectionally predicted

are never used as reference frames�

Bidirectional prediction provides a number of advantages� The primary

one is that the compression obtained is typically higher than that obtained

from forward prediction� To obtain the same picture quality� bidirectionally

predicted frames can be encoded with fewer bits than frames using only for�

ward prediction� However� bidirectional prediction introduces extra delay in

the encoding process since frames must be encoded out of sequence� Fur�
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ther� it entails extra encoding complexity since block matching has to be

performed twice for each target block�

MPEG bit stream syntax layers

The bit stream syntax should be �exible to support a variety of applications�

To this end� the overall syntax is constructed in several layers� each per�

forming a di�erent logical function� The outermost layer is called the video

sequence layer� which contains basic parameters such as the size of the video

frames� the frame rate� the bit rate� and certain other global parameters� A

wide range of values is supported for all these parameters�

I B B

1 2 3

P B B P B B P B B I

14 5 6 7 8 9 10 11 12

bidirectional prediction

forward prediction

Figure ���� Group of Pictures �GOP� pattern

Inside the video sequence layer is the Group of Pictures �GOP� layer�

which provides support for random access� fast search� and editing� A se�

quence is divided into a series of GOPs� where each GOP contains an intra�

coded frame �I�frame� followed by an arrangement of �forward� predictive�

coded frames �P�frames� and bidirectionally predicted� interpolative�coded

frames �B�frames�� Figure ��� shows the GOP pattern which we used for the

encoding of our sequences and which was also used by Garrett and Willinger

������ to encode the MPEG�� version of the Bellcore Star Wars data set�

The MPEG video standard allows GOPs to be of arbitrary structure and

length�
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The bits produced by encoding a single frame of a GOP constitute the

picture layer� The picture layer �rst contains information on the type of

frame that is present �I� P� or B�� and the position of the frame in display

order� The bits corresponding to the motion vectors and the DCT coe�cients

are packaged in the slice layer� the macroblock layer� and the block layer�

Here� the block is the ��� DCT unit� the macroblock the ����� motion

compensation unit� and the slice is a string of macroblocks of arbitrary length

running from left to right and top to bottom across the frame� The slice layer

is intended to be used for resynchronization during the decoding of a frame in

the event of bit errors� Prediction registers used in the di�erential encoding

of motion vectors are reset at the start of a slice� It is in the responsibility of

the encoder to choose the appropriate length of each slice� In the macroblock

layer� the motion vector bits for a macroblock are followed by the block layer�

which consists of the bits for the DCT coe�cients of the ��� blocks in the

macroblock� Table ��� illustrates the di�erent layers and their use�

Table ���� Layers of the MPEG video bit stream syntax

Syntax layer Functionality

Sequence Context

GOP Random access� video coding

Picture Primary coding

Slice Resynchronization

Macroblock Motion compensation

Block DCT

����� MPEG��

MPEG�� focused on coding of single�layer �non�scalable� progressive �non�

interlaced� video� The MPEG�� standard �ISO ������� addresses issues of
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improved functionality by using scalable video coding� This means that the

compressed video is separated into a base layer bit stream which contains

the most important picture information and one or more enhancement layers

which contain information to improve the base layer picture quality� The

picture quality scaling can be achieved in the spatial or in the frequency

domain� It is also possible to perform a scaling with respect to di�erent

resolutions or picture rates� In addition� the MPEG�� standard facilitates

interlaced video and o�ers a larger variety of motion�compensated predictions

as well as improved DCT coding and quantization techniques�

��� ATM

In ����� the Asynchronous Transfer Mode �ATM� was selected by the CCITT

�now ITU�T� as the basic transmission technique for B�ISDNs� Since then�

work has been continuing on the speci�cation of the details of ATM itself�

and on how ATM interfaces to di�erent B�ISDN services� In this section� we

will highlight the features and principles of ATM which are important for

the modeling of VBR video tra�c transmitted over ATM�based telecommu�

nication networks�

����� Objectives

Wright ����
� lists the following main objectives that can be met using ATM

transport technology�

� provide low� and high�bandwidth services�

� provide high�bandwidth transport�

� provide a single network for all services�

� provide local�wide area network integration�
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� free users of bandwidth granularity�

� allow dynamically changing bandwidth�

� be future�proof�

Although these objectives cover many aspects of network services and

operation� many of them can be achieved by a key feature of the ATM pro�

tocol� the use of short� �xed�length data packets called cells� All user and

network information� whether it be voice� data� or video� is transported us�

ing the same cell format� The main advantages of short� �xed�length cells

compared to variable�length packets is simpli�ed switch design and cell pro�

cessing which is necessary to achieve bandwidths in the order of hundreds or

thousands of Mbits per second�

����� B�ISDN service classes

ATM provides a single mode of transportation for all telecommunication ser�

vices based on cells with a ���octet payload and a 
�octet header� However�

user information comes in a variety of forms� such as voice packets� internet

protocol �IP� packets� or video streams� In order to specify how this informa�

tion is converted into ATM cell format� it is necessary to classify user service

requirements �CCITT ��������

� Class A� Constant bit rate �CBR� service with end�to�end timing� con�

nection oriented�

� Class B� Variable bit rate �VBR� service with end�to�end timing� con�

nection oriented�

� Class C� Variable bit rate �VBR� service with no timing required�

connection oriented�

� Class D� Variable bit rate �VBR� service with no timing required�

connection�less�

��
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Thus� VBR MPEG video tra�c is a typical class�B service� In current

ATM Forum documents� this service category is referred to as real�time vari�

able bit rate �rt�VBR� �see ATM Forum Technical Committee �����b���

����� ATM�based B�ISDN protocol stack

For very detailed� i�e� cell�oriented models� it is necessary to be aware of

the data��ow from the video tra�c source to the transport medium which

is determined by a layered set of protocols� Figure ��
 shows a simpli�ed

version of the ATM�based B�ISDN protocol stack �see McDysan and Spohn

��������

Higher layers

Convergence sublayer
AAL

Segmentation and reassembly sublayer

ATM layer

Physical layer

Figure ��
� Simpli�ed ATM protocol stack

The physical layer is responsible for the transmission of the bit stream

over a given medium� The ATM layer handles multiplexing� switching� and

control actions based upon information of the cell header� It passes cells to

and accepts cells from the ATM Adaption Layer �AAL�� The AAL passes

Protocol Data Units �PDU� which are generally larger than the payload of

an ATM cell to the higher layers or accepts such PDUs from higher layers�

In our case the PDUs will consist of compressed video images �frames� or

parts of them �slices� and some protocol overhead� The AAL determines

the primitives that can be used for transmission �Convergence sublayer� and

the way cells are formed from the PDUs and vice versa �Segmentation and

reassembly sublayer�� At the moment� there are four AAL types to support

the four service classes mentioned above� In the case of class�B tra�c� AAL�
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provides the appropriate functionality� Currently� the AAL� standard is not

yet well de�ned� We therefore assume that at least the following alternatives

can be realized�

� Bursty transmission� Upon arrival of a PDU� the PDU is segmented

into cells and transmitted at maximum physical layer speed as a burst

of back�to�back cells�

� Smoothed transmission� Since PDUs arrive at the AAL at a constant

rate due to the constant frame rate of a video sequence� the time when

the next PDU is going to arrive is known in advance� Therefore� the

AAL is able to smooth the cell stream by emitting the cells uniformly

during a PDU interarrival period�

����� The tra�c contract

In ATM networks� the tra�c management is based on the concept of a tra�c

contract� The tra�c contract exists for each connection and is an agreement

between a user and a network across a User�Network Interface �UNI� with

regard to the following aspects �see McDysan and Spohn ��������

� the Quality of Service �QoS� that a network is expected to provide�

� the tra�c parameters that specify characteristics of the cell �ow�

� the network�s de�nition of a compliant connection�

The QoS is de�ned by speci�c parameters for cells that are conforming

to the tra�c contract� The following QoS parameters are negotiated accord�

ing to the ATM Forum Tra�c Management Speci�cation Version ��� �April

������

� Maximum Cell Transfer Delay �maxCTD�� It is speci�ed as the �����

quantile of the Cell Transfer Delay �CTD��
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� Peak�to�peak Cell Delay Variation �peak�to�peak CDV�� It is de�ned

as maxCTD minus the �xed CTD that could be experienced by any

delivered cell on a connection during the entire connection holding

time�

� Cell Loss Ratio �CLR�� It is de�ned as the ratio of lost cells and total

transmitted cells of a connection�

delay� � �

probability density

peak�to�peak CDV�xed CTD

max CTD

Figure ���� QoS parameters

Figure ��� illustrates the CTD�based parameters� The tra�c parameters

form a tra�c descriptor which captures intrinsic source tra�c characteristics�

The following key tra�c parameters are considered�

� Peak Cell Rate �PCR� � ��T in units of cells per second� where T is

the minimum intercell spacing in seconds �i�e� the time interval from

the �rst bit of a cell to the �rst bit of the next cell��

� Cell Delay Variation Tolerance �CDVT� � � in seconds� This tra�c

parameter normally cannot be speci�ed by the user� but is set by the

network instead� The number of cells that can be sent back�to�back at
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the access line rate is b��T c	�� where bxc denotes the largest integer

number smaller than x�

� Sustainable Cell Rate �SCR� � ��TS is an upper bound on the average

rate of a bursty tra�c source�

� Maximum Burst Size �MBS� is the maximum number of cells that can

be sent as a burst at peak rate�

The Generic Cell Rate Algorithm �GCRA� is used to de�ne the confor�

mance of cells with respect to the tra�c contract� For each cell arrival� the

GCRA determines whether the cell conforms to the tra�c contract of the

connection� There are two versions of the GCRA� namely the Virtual Schedul�

ing Algorithm and the Continuous�State Leaky Bucket Algorithm� which are

equivalent in the sense that both versions declare the same cells of a cell

stream as conforming or non�conforming� In this monograph� we refer to the

Virtual Scheduling Algorithm which is depicted in Figure ��
� This algo�

rithm was proposed �rst by the ITU�T Draft Recommendation I�
�� ������

to monitor the PCR�

In general� the GCRA uses a Theoretical Arrival Time �TAT � for the

earliest time instant the next cell is expected to arrive� The TAT is initialized

with the arrival time of the �rst cell of the connection ta����

For PCR enforcement� cells should be spaced by I � T �the increment

of the GCRA�� but due to CDV a tolerance with limit L � � is employed� If

cell number k arrives later than expected� the TAT for the next cell is given

by the actual arrival time plus the increment� If cell number k arrives before

its TAT but not before TAT � L� then the TAT for the next cell is derived

by incrementing the TAT for cell number k by I� Contrarily� the TAT is not

changed and the cell is declared as non�conforming if it arrives earlier than

TAT � L�

For the enforcement of the SCR� the increment parameter I is set to Ts

for a SCR ��Ts� The limit parameter L � �s is called Burst Tolerance �BT�
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non�conforming

cell

yes
ta�k� � TAT � L

no

TAT � max�ta�k�� TAT � � I

conforming cell

next cell

arrival of cell k at time ta�k�

Figure ��
� GCRA�I�L� as Virtual Scheduling Algorithm�

and corresponds to the MBS that can be transmitted at PCR by MBS �

b� 	 �s��Ts � T �c�

The conformance of cells of a connection at an interface is de�ned in

relation to the conformance algorithm� here the GCRA� and corresponding

parameters speci�ed in the connection tra�c descriptor� Since we do not con�

sider ATM cells with priorities in this monograph� we assume the CLP �Cell

Loss Priority��transparent cell �ow model� i�e� the network generally disre�

gards the CLP bit in the cell header�
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����� Tra�c and congestion control

In an ATM network� a balance is necessary between the e�ciency achieved

by allowing the tra�c from di�erent users to share the network resources

and not allowing bursts in one user�s tra�c to cause congestion that impacts

the QoS of another user� This goal can be achieved by the following means�

� Preventive control� Connection Admission Control �CAC� and Usage

Parameter Control �UPC��

� Reactive control� Rerouting connections and cell discarding�

The CAC function is de�ned as the set of actions taken by the network at

connection establishment in order to determine whether a connection can be

progressed or should be rejected� This decision is based on the tra�c descrip�

tors of all existing connections� the tra�c parameters of the new connection

and on the QoS requirements of all connections�

The UPC is de�ned as the set of actions taken by the network to monitor

and control tra�c� Its main purpose is to protect network resources from ma�

licious as well as unintentional misbehavior which can a�ect the QoS of other

already established connections by detecting violations of negotiated param�

eters and taking appropriate actions� If the PCR ��T shall be monitored

at the UNI� the CDV which is introduced between the PHY SAP �Physical

Layer Service Access Point� and the UNI must be tolerated using the tol�

erance limit � � Thus� the PCR of an ATM connection can be monitored at

the UNI using GCRA�T� ��� The SCR ��Ts can be monitored at the UNI by

employing a BT of �s	� � i�e� with GCRA�Ts� �s	��� The choice of the BT as

�s	� is motivated by the observation that a cell stream which complies with

GCRA�Ts� �s� at the PHY SAP complies with GCRA�Ts� �s 	 �� at the UNI

if � is su�cient to tolerate the CDV introduced� Cells which are identi�ed

as non�conforming by the GCRA can either be discarded or optionally be

tagged to be discarded in case of network congestion�
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In general� reactive control is a problem not only in ATM but all high�

speed networks since� if congestion is discovered somewhere in the network�

large amounts of tra�c are already in transit on the transmission facilities�

Another problem is the limited knowledge of the network operator about the

tra�c emitted by a source due to the large variety of tra�c characteristics�

��� MPEG video tra�c over ATM networks

Concerning the transmission of MPEG video tra�c over packet networks�

ATM�based networks in our case� there are a lot of open questions with

respect to both coding and telecommunication aspects �see Zhang et al�

��������

Since the MPEG standards suite only de�nes the syntax of a bit stream

which a standard decoder must be able to decompress� there is a huge variety

of di�erent encoding parameter sets and modes� We will focus only on the

aspects relevant to transmitting the bit stream over an ATM network�

There are two bit rate modes at the encoder output�

� Constant Bit Rate �CBR�� The output bit rate of the encoder is held

constant by means of a feedback loop control� As soon as the output

bu�er exceeds a given limit� the coding quality is reduced to decrease

the number of bits per frame� If the number of bits per frame is too

small stu�ng bits are used to increase the amount of data�

� Variable Bit Rate �VBR�� The output bit rate is variable� but the

quality of the video is held approximately constant�

From the point of view of the network provider� CBR video has several

advantages� Due to the known cell rate� CAC is very simple� During the

holding time of the connection only this cell rate has to be controlled� i�e�

only PCR monitoring takes place� Therefore UPC of such a CBR source

is simple� too� For instance� the ATM Forum Technical Committee �����a�
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selected constant packet rate MPEG�� encoding in their Video on Demand

Speci�cation ��� �

For VBR video there are some problems� The de�nition of an e�ective

bandwidth of a VBR video stream which is needed for CAC is di�cult� since

the statistical properties of video streams can be very di�erent depending on

the coding scheme and the content of the video sequence� Thus� it will be

hard to �nd a small set of parameters to calculate the e�ective bandwidth

of this type of video streams� In a close relationship to this problem is the

UPC problem� The selection of the parameters of a VBR video stream to be

controlled� and techniques for implementing this strategy are open questions�

Digital video has a number of properties that lead to QoS requirements

that di�er from other services� Among these QoS requirements are�

� Cell loss� The compression of digital video removes a large amount of

the redundancy present in the video images� By doing this� it increases

the impact of cell loss on the QoS� At present� it is not clear what cell

loss probability will be tolerable� This will depend on a number of

factors� including the sensitivity of the human visual system to dif�

ferent types of degradation� The e�ect of cell loss can be reduced by

coders that insert particular redundant information into their output

bit streams to assist the decoder to minimize the e�ect of cell loss�

� Cell delay� Due to the coding and decoding there is always some delay

even when there is no media access� bu�ering and transmission delay�

The delay requirements depend on the video service� For interactive

services like video conferencing and video telephony� there should be

as little delay as possible� For distribution services like video on de�

mand and TV broadcasting� the delay usually does not constitute a

problem� since the user is not able to notice it� The consequence of

these requirements is that no tra�c shaping can be done for interac�

tive services� since tra�c shaping always produces delay due to bu�er�

ing cells� Again� the level of delay tolerable in interactive services is
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not precisely known� One problem will be to give a reliable statement

about the maximum delay introduced by the network�

It is easier to guarantee characteristics of cell loss and delay for CBR

services� However� for a given network capacity� it is possible to achieve

higher quality in the decoded video using VBR compression compared to

CBR� Hence� there is good reason to search for techniques for managing

networks carrying VBR tra�c� Possible algorithms may contain �constrained

variability�� either by sophisticated loop�back controls within the coder or by

signaling schemes with the network� cells with di�erent priorities �see Pancha

and Zarki �������� or MPEG�� multi�layer coding�

The above presentation of teletra�c engineering problems for MPEG

video over ATM networks induces us to study the following scenario� a

�single�layer� VBR MPEG�� bit stream is transmitted over an ATM network

without priorities� The encoding is performed based on a �xed GOP pattern�

We chose MPEG�� encoding since we intend to compare both our modeling

and performance evaluations results with those of the current teletra�c lit�

erature which is mainly based on MPEG�� data sets� Work on MPEG�� or

even MPEG�� video data sets are not very widespread at the moment� The

VBR mode was chosen due to the fact that CBR streams are not interesting

for modeling and for CAC and UPC dimensioning problems� Single�layer en�

coding is no restriction with respect to our presented modeling approaches

since the same models are applicable for each layer� Concerning the ATM

transmission� we assume that the higher layer PDUs arrive in the form of

single video frames at the AAL� where they are packetized into ATM cells�

These cells are then transmitted equally spaced until the arrival of the next

video frame� This �average per�frame bit rate� technique was proven to be

the most e�cient with regard to cell losses and delays �see Skelly et al� ����
��

Enssle �������� As an alternative the PDU may consist of MPEG slices or

macroblocks �see Pancha and Zarki �������� It should be noted� however�

that di�erences in these approaches will only be noticeable in systems with

very short bu�ers since they are �ltered out by larger bu�ers�
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� Statistical analysis of MPEG

video traces

The �rst steps in modeling a real world�s stochastic process are always a thor�

ough analysis of the technical system creating this process and of measure�

ments of the process itself� Here� we are interested in the statistical properties

of the output process of an MPEG video encoder� The structure of this out�

put is determined by the coding parameters� such as number of slices� GOP

pattern� and CBR or VBR mode� There is no known procedure to obtain the

statistical parameters of the encoder output given the uncompressed video

material and the coding parameters� Thus� the statistical properties of the

output process can only be obtained by measurements�

From the multitude of coding parameter sets and encoder output mea�

surements� we use the following� We focus on one�layer video data streams

of MPEG�� type� Most of the encoders will use this scheme and in case of

MPEG�� multi�layer encoding the statistical properties of the base layer are

almost identical to this type of stream� We will only consider VBR encoded

video sequences since CBR video is trivial from statistical analysis and mod�

eling point of view� Concerning the encoder output� we focus on frame size

measurements� Smaller items of encoded data� such as slices or macro blocks�

might also be considered for statistical analysis and modeling� For instance�
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Chan and Leon�Garcia ������ present an analysis of cell interarrival times for

a variety of VBR video codecs� Most of the interesting performance issues�

however� can be examined using frame size sequences�

First� we introduce the MPEG encoded sequences used for our statistical

analysis� Simple statistics are provided such as moments and peak�to�mean

ratios for both the frame sizes and the GOP sizes where the GOP size is

the sum of frame sizes of one GOP� We �t model distributions to the frame

and GOP size histograms and analyze the correlations of both the frames

and GOPs� Finally� the long�range dependence or selfsimilar properties of

the sequences are examined�

A further aspect of statistical analysis is the evaluation of the video se�

quences� scene length properties where a scene is de�ned as a sequence of

consecutive frames without cuts� zooming� or panning� In this monograph�

scene statistics are not considered since we do not have the technical equip�

ment to browse through all the sequences frame by frame within a tolerable

amount of time� This would be necessary to decide about the scene changes�

In Section 
�
�
� a method is presented how �pseudo scenes� can be included

in a model to improve its performance�

A detailed description of the techniques used for statistical inference can

be found in Appendix A of this monograph�

��� Introduction of the video data sets

In general� long MPEG frame size traces of several thousand frames are

not publically available� Therefore� traces from VHS video tapes had to be

encoded at our institute� We chose several movies� TV sports events and

TV shows� which were encoded at the Institute of Computer Science of the

University of W�urzburg using the UC Berkeley MPEG�� software encoder

�see Gong �������� Table ��� shows the sequences which we used to produce

the data sets�
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Table ���� Overview of encoded sequences

Movies �buy cassettes�

dino Jurassic Park

lambs The Silence of the Lambs

TV sports events �recorded from cable TV�

soccer Soccer World Cup ���� Final� Brazil � Italy

race Formula � car race at Hockenheim�Germany ����

atp ATP Tennis Final ����� Becker � Sampras

Other TV sequences �recorded from cable TV�

terminator Terminator �

talk� German talk show

talk� Political discussion

simpsons Cartoon

asterix Cartoon

mr�bean Three slapstick episodes

news German news show

mtv Music clips

All sequences mentioned below were encoded using the following param�

eter set�

� Frame rate� �
 frames per second�

� Each frame consists of one slice�

� GOP pattern� IBBPBBPBBPBB ��� frames��

� Quantizer scales� �� �I�� �� �P�� �� �B��

� Motion vector search� logarithmic�simple� search window size� �� half

pels� reference frame� original�

�




� Statistical analysis of MPEG video traces

� Encoder input� 
������ pels in ����� color format�

� Number of frames per sequence� ����� �about half an hour of video�

Due to hardware limitations� some parameters might not be optimal with

respect to the quality of the MPEG video sequence� We used a Sun Sparc ��

for the image processing and encoding and captured the sequence from a

VCR with a SunVideo SBus board�

��� Overview

Table ��� shows the compression rates� the mean values� Coe�cients of Vari�

ation �CoV�� and the peak�to�mean ratios of the frame and GOP sizes� The

GOP size is de�ned as the sum of frame sizes of one GOP� For the sake

of comparison we also present the statistical data of starwars as reported

by Garrett and Willinger ������� Note� that this frame size trace is from

an MPEG encoded video with the same GOP pattern as our sequences� It

should not be mixed up with Garrett�s data set which consists of only a

single frame type�

Unfortunately� even the statistical properties of the sequences of the same

category� such as movies or cartoons� are not stable� For example� the mea�

surements of terminator and lambs or of simpsons and asterix have no mo�

ments lying close together� This will lead to di�culties in �nding tra�c

classes for MPEG video to be used for CAC�

In the remainder of this section� we mainly present the results of the

statistical analysis of the dino and starwars sequence� Results for other se�

quences are shown if they are of particular interest�
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��� Distributions

Table ���� Simple statistics of the encoded sequences

Compr� Frames GOPs

Sequence rate Mean CoV Peak� Mean CoV Peak�

X � �  bits! Mean  bits! Mean

asterix ��� �� 
�� ���� ��� ��� ��� ���� ���

atp ��� �� ��� ���
 ��� ��� ��� ��
� 
��

dino ��
 �
 ��� ���
 ��� �
� ��� ���� ���

lambs 
�
 � 
�� ��

 ���� �� �
� ���� 
�


mr�bean �
� �� ��� ���� �
�� ��� 
�� ��
� ���

mtv �
� �� ��� ���� ���� �
� 
�� ���� ���

news ��
 �
 

� ���� ���� ��� ��� ���� ���

race �� 
� ��� ���� ��� 
�� ��� ��
� 
��

simpsons ��
 �� 
�� ���� ���� ��� ��� ���
 
��

soccer ��� �
 ��� ���
 ��� 
�� ��� ���� 
��

talk� ��
 �� 

� ���� ��
 ��� ��� ��
� ���

talk� ��� �� ��� ���� ��� ��� �

 ���� 
��

terminator ��
 �� ��� ���
 ��
 �
� ��
 ��

 
��

starwars �
� �
 
�� ���� ���� ��� ��
 ��
� 
��

��� Distributions

Figures ��� and ��� show the frame size histograms of the I�� P�� and B�

frames of the dino and the starwars sequence� respectively� The shapes of

the curves indicate that the I�frames may be approximated by a normal

probability density function� whereas the P� and B�frames have a histogram

resembling a Gamma or a lognormal probability density function� Gamma

or lognormal distributions are commonly suggested to model the frame and

GOP sizes of MPEG video sequences �see Heyman et al� ������� Pancha

and Zarki ������� Enssle ������� Krunz et al� ����
��� Garrett and Willinger
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������ report that for their data set a hybrid Gamma�Pareto probability

density function provided the best approximation of the histogram�

For the probability density function �tting we use both Q�Q plots �see

Appendix A��� and visual tail comparisons� Considering the Q�Q plots� the

frame and the GOP size histograms of almost all traces can be well approxi�

mated with lognormal probability density functions� Only for a small number

of I�frame histograms� both normal and lognormal probability density func�

tions lead to a reasonable approximation accuracy� For illustration� we show

Q�Q plots for the dino I�frames �cf� Figure ��
� and the dino GOPs �cf� Fig�

ure ����� The comparison of the right tails of the histograms and the model

probability density functions shows that lognormal probability density func�

tions approximate well the frame and GOP size histograms �cf� Figures ��


and �����

To sum up� lognormal probability density functions are adequate model

probability density functions for both frame and GOP sizes of VBR MPEG

video sequences� Compared to other probability density functions the log�

normal probability density function o�ers several advantages�

��� The estimation of the parameters is simple compared to e�g� Gamma

probability density functions� which are similar in shape�

��� A process with a lognormal marginal distribution generates only non�

negative samples� In contrast� normal �Gaussian� marginals lead to

negative frame or GOP sizes of the model process� This behavior has

to be corrected at the cost of increased model complexity�

�
� Processes with lognormal marginals can be generated from processes

with normal marginals by using an exponential transform� This fa�

cilitates the application of models with Gaussian marginals such as

autoregressive processes and several families of selfsimilar processes�
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Figure ���� Frame size histograms of the dino sequence
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��� Correlations

Time�dependent statistics are important since correlations in data streams

can a�ect the performance of the ATM network carrying this tra�c� This

problem is examined in Chang and Wang ������ and Chan and Leon�Garcia

������ in the context of video tra�c and in Li and Mark ����
� and Livny

et al� ����
� in a more general context� All studies report that cell losses

and�or delays of the considered queuing systems are considerably higher for

positvely correlated input tra�c than for uncorrelated input tra�c� Thus� it

is important to analyze the correlation properties of video tra�c�

There are a number of measures for second�order properties of empirical

time series� such as autocorrelation functions �ACFs�� periodograms� indexes

of dispersion� and selfsimilar properties� We will focus on ACFs and the

estimation of selfsimilar properties since we use this information in the sequel

to determine our video tra�c models� If one is more interested in burstiness

measures of a given tra�c sample or in indicators of non�stationarity� indexes

of dispersion should also taken into consideration �see Gusella �������� First�

autocorrelation functions of frame sizes and of GOP sizes are presented �see

Appendix A���� The frame�by�frame correlations depend on the pattern of

the GOP and� in principle� always look like Figure ���� assuming the same

GOP pattern is used for the whole sequence� The autocorrelation function

clearly re�ects the ���frame GOP structure� The pattern between two I�frame

peaks is therefore repeated with slowly decaying amplitude of the peaks�

If a model is needed which imitates the frame�by�frame correlations of an

MPEG video tra�c stream the GOP�pattern based shape of the autocorrela�

tion function has to be considered� An approximation of the autocorrelation

function is presented in Enssle �������

Based on the frame level correlations� it is di�cult to obtain a clear pic�

ture of the mid� and long�range correlations of the video tra�c stream since

the curve will be dominated by the periodic GOP structure� We therefore

consider the autocorrelation function of the GOP sizes�
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Figure ��� shows the autocorrelation function of the GOP sizes of the

starwars and dino sequences� For comparison� we provide an exponential

function matched to the empirical autocorrelation function of the �rst few

lags� Exponential autocorrelation appears if the GOP size process is mem�

oryless� An autocorrelation function of the statistical data decreasing less

rapidly than exponentially indicates strong dependences in the GOP size

process� In Figure ��� this is clearly the case� whereas for a few other se�

quences� for instance for soccer� the autocorrelation function and the �tted

exponential function are matching well� This result makes it di�cult to �nd

a unique GOP layer modeling approach for all types of video sequence since

none of the model classes will be �exible enough to model all possible corre�

lation structures with the same accuracy�

To obtain an improved support for the decision about the appropriateness

of a certain model class� we need to examine the long�range correlation be�

havior of the video sequences� This particular characteristic of a time series

is often referred to as selfsimilarity or long�range dependence� The impor�

tance of detecting the presence of this behavior is twofold� First� queuing

systems� or statistical estimators� reaction on long�range dependent input

streams di�ers from that on uncorrelated or low�lag correlated input �see

Norros ������� Adas and Mukherjee ����
�� Likhanov et al� ����
��� Second�

most of the model classes� such as �nite Markov chains and �nite�order au�

toregressive processes� are not capable of modeling long�range dependence�

For the comparison of model�based and trace�based performance analysis

results it is therefore necessary to know whether this property is present in

the video data sets or not since it can be a source of deviating results�

It is di�cult� however� to evaluate long�range dependence of the video

sequences by means of the autocorrelation function� A succinct way of mea�

suring long�term dependence is through the Hurst parameter H �see Beran

������� Leland et al� �������� We estimated the H parameter of all GOP size

sequences using both R�S analysis and Whittle�s maximum likelihood esti�

mator �MLE� as described in Appendix B��� We did not estimate the H value







� Statistical analysis of MPEG video traces

of the frame size sequences since we would have to aggregate the frame size

sequence to avoid the e�ect of low�lag correlations on the estimator� Even

in the case of GOP size sequences� we have to be aware of strong low�lag

correlations as shown by the GOP autocorrelation functions �cf� Figure �����

This has several consequences for the H estimation�

Concerning the R�S analysis� we either have to cut o� an adequate num�

ber of R�S samples for small ranges r� or to use aggregated sequences as

input data sets� The �rst method may lead to errors since the wrong por�

tion of r values is considered for the estimation� The second method leads

to errors since the data set is becoming smaller�

In case of the Whittle MLE� the situation is even more complex� Here� the

quality of the estimates depends on choosing an adequate underlying model�

In our case� it is obvious that models without an appropriate low�lag correla�

tion behavior such as Fractional Gaussian Noise �FGN� or Fractional Autore�

gressive Moving�Average �FARIMA� processes without low�lag correlations�

in short FARIMA��� d� �� with d � H � ��
� lead to biased H estimates� We

therefore use FARIMA�p� d� �� models with an order p larger than �� This

family of selfsimilar processes provides both low�lag and long�range corre�

lation modeling capabilities� Then� we have to estimate the correct model

order p� We solve this problem by estimating the parameters for a number

of orders and choosing the parameter set where the autocorrelation curve

of the corresponding FARIMA�p� d� �� provides a good approximation of the

sample autocorrelations for a given number of lags �see also Appendix B������

Table ��
 shows the H estimates for all the considered sequences� The

�rst column consists of the results of the R�S analysis with K � �� 
� ranges

starting from r� � ��� and rejecting the r values with less than � R�S samples

for the computation of the regression line� To rule out low�lag correlation

in�uences� we determine the slope values of regression lines starting from r�

to r��� In our experience� this sequence of slope values converges to the H

estimate bHRS as the low�lag correlation e�ects fade out� The second column

gives the results of the Whittle estimator bHW assuming a FARIMA�p� d� ��
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process� The bpW values are determined as described above� For comparison�

the order estimate bpAIC of an ordinary AR�p� process based on Akaike�s

Information Criterion �AIC� is presented �see Appendix B�
����

Table ��
� Hurst parameter estimates for the GOP sequences

R�S Whittle MLE Min AIC

Sequence analysis for FARIMA�p� d� �� for AR�p�bHRS
bHW bpW bpAIC

asterix ���� ���
 
 ��

atp ���� ���� � �

dino ���
 ���� � ��

lambs ���� ���� � ��

mr�bean ���
 ���� � ��

mtv ���� ���
 � ��

news ���� ���� � �

race ���� ��
� 
 �

simpsons ���� ���� � �

soccer ���� ��
� 
 �

talk� ���� ���� � ��

talk� ���
 ���� � 



terminator ���� ���� � �

starwars ���
 ���� 
 ��

Note that time series without any long�range dependence have a Hurst

parameter of ��
� whereas time series of computer tra�c can have H values up

to ��� �see Garrett and Willinger �������� Only the race and soccer results do

not clearly indicate long�range dependence� All other sequences have bHRS

and bHW values larger than ���� For most of the sequences� the results of
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both estimators are in agreement� A perfect agreement can in our opinion

not be forced since both estimators inherit heuristic approaches� For the R�S

analysis� it is a subjective decision where the low�lag correlation e�ects end�

For the Whittle estimator� one has to �nd the appropriate model process�

It has been suggested that� in case of video tra�c� a larger H value re�ects

a larger amount of movement �see Beran �������� The H values� however�

show that one cannot necessarily conclude a lot of movement in the video

from a high H value� Even political discussion can have an H value larger

than that of a soccer match� This leads to the conclusion� that long�range

dependence is a property inherent in MPEG video processes independently

from the content of the video sequence�

Comparing the number of parameters bpW 	 � of the FARIMA�p� d� ��

processes to the bpAIC values of the AR�p� processes� in almost all cases the

fractal models need less parameters� In addition� an AR�p� process �p ���

is not capable of modeling long�range dependence due to its exponentially

decaying ACF�

��� Markovian order

Markovian models are widely used for analysis and simulation� Therefore�

the Markovian properties of our video time series have to be examined� In

particular� it would be of interest to determine the Markovian order of these

data sets �see Appendix A�
�� The previous section showed that the autocor�

relation curve of the data sets does not decay exponentially and that there is

a strong indication of long�range dependence� Markovian models� however�

have an exponentially decaying autocorrelation function� We therefore do

not attempt to estimate the Markovian order of the data sets but restrict

ourselves to the discussion of the pth�order empirical entropy curves of the

dino GOP sequence� The appearance of these curves for the other data sets

is essentially the same�
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Figure ��� shows the empirical entropies for Markov chains up to the

order of �� for a discretization of the original time series into �� ��� and 
�

intervals� The smaller the empirical entropy the better a Markov chain of this

particular order is able to model the discretized time series� From the curves�

we conclude that for all discretization levels the step from a histogram model

�Markovian order of �� to a �rst�order Markov chain provides considerable

improvements in the model quality� For orders higher than �� the curves look

di�erent� In the case of � intervals� there is only a small decrease in the

empirical entropy while the order is increased� This indicates that a �rst�

order Markov model is appropriate� A Markov model with � states� however�

will lead to a poor approximation of the distribution of the GOP sizes� To

obtain good models with �� or 
� intervals� the curves indicate that the

order should be larger than 
� Note� that a pth�order Markov chain �p � ��

based on a time series discretized into M intervals has Mp states� We would

therefore need at least one million states for M � ��� This will not lead to

�

�

�




� � � � � ��

em
p
ir
ic
a
l
en
tr
o
p
y

order


� intervals

�� intervals

� intervals


� intervals

�� intervals

� intervals

Figure ���� Empirical entropies of the dino GOP sizes


�



� Statistical analysis of MPEG video traces

computer memory problems since most of the states will not be used� Due to

basing the estimation of the probabilities on data sets� which consist only of

several thousand samples� the empirical transition matrix will only contain

a small number of nonzero elements� On the other hand� it is very di�cult

to estimate transition probabilities with any useful accuracy�

To sum up� the discussion of the Markovian properties of the GOP size

sequences shows that higher�order Markov models are recommended but lead

to problems of statistical signi�cance� In Section 
�
�
� we show how this

problem can partially be solved using nested Markov chains instead of higher�

order Markov chains�
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� Modeling of MPEG video

tra�c

There are several reasons to develop models for VBR MPEG video tra�c

and to use them for the performance analysis of ATM networks� The �rst

reason is to extract statistical properties of video tra�c which have signi��

cant impact on the network performance� We gain a lot of insight if we are

able to reduce the statistical complexity of the empirical video data sets� It

is true that only the frame size trace from the output of an MPEG encoder

contains all statistical information about the encoded video� However� the

large number of properties makes it di�cult to determine the performance

and to identify how certain properties of the tra�c impact on this perfor�

mance� The second reason is the computational complexity of simulations of

ATM networks� particularly at cell level� It often takes long simulation runs

to obtain results of high accuracy� In some cases� numerical complexity can

be considerably reduced using tra�c models and standard analytical tools

like matrix analysis or discrete�time analysis� The third reason is the need

for connection tra�c descriptors for video tra�c� If the tra�c model is sim�

ple� i�e�� it has only a small number of parameters� these parameters might

be used as tra�c descriptors for Connection Admission Control �CAC� and

Usage Parameter Control �UPC��
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For model selection and development� we follow the guidelines of Buza�

cott and Shanthikumar ����
� p� �
�� Several aspects should be considered

during the modeling process�

� Complexity versus simplicity� More details lead to a model which is

more di�cult to develop� to verify� and to understand� Conversely�

a simple model may not represent the data adequately and lead to

inaccurate performance predictions�

� Flexibility� In most cases� one single model will not be appropriate to

support all decisions� Therefore� it should be possible to extend the

model with tolerable e�ort�

� Data requirements� The model complexity should re�ect the amount of

data available to estimate the model parameters� Inaccurate estimates

may lead to wrong performance predictions�

� Transparency� The model should be designed such that not only the

developer is able to understand it�

� E	ciency� The consumption of resources while computing the model

parameters and using it for simulation or analysis studies should not

exceed currently accepted limits� for instance in storage or running

time�

��� A layered video tra�c modeling scheme

For the development of video tra�c models� we can exploit both knowledge

about the coding technique� MPEG�� in our case� and the statistical analysis

of measured frame size sequences� The main information from the MPEG

standard which we use for model development can be summarized as follows�

� There are three frame types� I�� P�� and B�frames�

��



��� A layered video tra	c modeling scheme

� A pattern of frame types� called GOP� is repeated continuously to

create the encoded frame sequence�

� The frames of one single GOP strongly depend on each other�

Moreover� if we wish to create a model at cell level� both the charac�

teristics of the particular AAL� that is used for video transmission� and the

details of any shaping applied to the cell stream before it enters the network

should also be taken into account�

Based on the information presented up to this point� we are already able

to develop a scheme with three layers �cf� Figure 
���� GOP layer� frame layer

and cell layer� Higher layers� such as scenes� can be added if necessary and

if the statistical properties of the scene change process are available�

BPBI BB

GOP Structure

AutoregressiveMarkov

Histogram Approximate

Unshaped Shaped

ATM Adaption Layer

GOP layer
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T
im
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Figure 
��� Layered video tra	c modeling scheme
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Based on the results of Chapter �� we are able to select an appropri�

ate stochastic process for the frame or the GOP layer� We then have to lay

down the way the layers depend on each other� For example� to generate

a frame size sequence based on the GOP size process� we have to consider

the structure of the GOP pattern giving the order of the frame types� The

simplest way to �nd the frame sizes based on a GOP size sample is to use a

scaling factor for each frame of the GOP� where the scaling factors are the

mean sizes of the frames of one GOP divided by the mean GOP size of a

given data set� More complex models may use frame size histograms or ap�

proximate probability density functions to generate the frame size sequence

�cf� Figure 
����

To obtain a cell level model� we have to decide how frames are segmented

into cells� This will depend on the considered AAL and on the existence of

shaping facilities between video source and ATM network� If a statistical

analysis of video cell stream measurements is available it would be possible

to base models directly on this material� This approach may lead to simpler

models for the cell process�

The presented model development scheme is not a recipe for a perfect

video tra�c model� It is more the outline of a variety of stochastic modules

and the description of how they interact in the case of video tra�c� The

model developer will have to choose which modules are appropriate for the

analysis�

It should be noted that any model needs to be validated� Even quite

complex models rely on simplifying assumptions and may ignore signi�cant

correlation e�ects� To obtain useful and reliable performance analysis re�

sults� it is important to know how these assumptions a�ect the results of the

analysis�
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��� Literature review

A large variety of papers about video tra�c modeling can be found in the

current teletra�c literature� The modeling approaches can be divided into

the following classes�

� Histogram models�

� Markov models�

� Autoregressive processes�

� TES models�

� Selfsimilar models�

An overview on video models can be found in e�g� Frost and Melamed ������

or Rose and Frater ������� In the following sections� we give a survey of

current video tra�c publications� Note� that almost all papers deal with one

model or one model class and only a few of them are based on the same

video data sets� In addition� several data sets are produced by non�standard

codecs� or codecs which are not used in ATM networks� Some of the authors

do not even validate the modeling approaches by means of real data sets� We

therefore do not comment on the quality of their modeling approaches� A

major contribution of this monograph is to adapt the modeling approaches

presented in the following to VBR MPEG video tra�c and to compare the

models on a common basis of data sets�

Histogram models

Histogram models are the simplest modeling approaches since they do not

take into account the correlation structure of the video data sets and they

need no in�depth statistical inference for the computation of their parame�

ters�

�
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Skelly et al� ����
� report that a histogram model provided good results

for estimating the bu�er occupancy distribution of an ATM multiplexer with

video input sources� Shro� and Schwartz ������ use these results to estimate

end�to�end cell loss probabilities for video tra�c� Both papers are based on

data sets which consists of only one frame type� We mention the work of

Krunz et al� ����
� in this section� since they provide a model for MPEG

video tra�c with all three frame types although the authors used a �tted

lognormal distribution instead of a histogram� They use the simple approach

of cycling through a set of three di�erent lognormal random variables� i�e��

one for each frame type� to generate a sequence which re�ects the GOP

pattern of MPEG coding�

Markov models

Under Markov models� we subsume all models that have a state space and

a state transition probability or rate matrix that characterizes the behavior

of the model� such as Markov chains� Markov Renewal Processes �MRP��

Markov Modulated Poisson Processes �MMPP�� etc� Numerous papers deal

with Markov model approaches since the estimation of the model parameters

is often straightforward and there is a large number of analysis techniques

available to examine queuing systems with this type of input�

First� we present the models which are used to describe the video codec

output at frame level� Maglaris et al� ������ use a birth�death Markov model

for the video input of their queuing systems� This model is extended by Sen

et al� ������ to a superposition of video sources and to a single video source

with two activity levels� Blondia and Casals ������ present a matrix analytic

solution of a queuing system with input from a video model with multiple

activity levels� Pancha and Zarki ����
a� ���
b� suggest Markov chains to

model the slice and the frame size process� They report that for their data

sets the transition matrices were almost tridiagonal if maximum likelihood

estimates for the transition probabilities are used� A Markov chain approach
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is also used by Heyman et al� ������ where the authors use the lag�� au�

tocorrelation of their video data and the assumption that their frame sizes

are negative�binomially distributed to construct the transition matrix of the

Discrete Autoregressive �DAR� model� Cohen and Heyman ����
� extend

this work� In the paper of Coelho and Tohme ����
� a Markov chain is used

to predict the output of a video encoder� Lucantoni et al� ������ show that�

applying their own goodness�of��t metrics� a Markov Renewal Process out�

performs the Heyman et al� approach� Frater et al� ������ present another

extension of the Heyman et al� model� They use Pareto distributed instead

of exponentially distributed sojourn times for the states� In contrast to the

other Markovian models� an aggregation of these model streams will lead

to long�range dependent tra�c� A more complex state�based model is sug�

gested by Rodriguez�Dagnino and Leon�Garcia ������� They use a Markov

chain to model the scene changes of a video sequence� During the holding

time of a state or scene frames are generated by an Autoregressive Mov�

ing Average �ARMA� process� A similar approach is used by Chandra and

Reibman ������ for modeling two�layer MPEG�� video tra�c� They discov�

ered clusters of frames in their data sets and model the cluster changes by a

Markov chain� During the holding time of a particular state the frames are

generated by an autoregressive process� A di�erent approach is followed by

Heyman and Lakshman ������� They de�ne a statistical criterion which is

used to separate the scenes of a video sequence and combine the scene length

distribution with their former DAR modeling approach�

In contrast to the above Markov models� Cosmas and Odinma�Okafor

������ model the encoder output on cell level using a Geometrically Modu�

lated Deterministic Process �GMDP��

Autoregressive models

A class of models which also attracts a lot of researchers is the class of

autoregressive �AR� processes� This class is particularly interesting since a
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� Modeling of MPEG video tra	c

wide range of methods known from time series analysis can be applied for

parameter estimation and model characterization�

Besides the Markov model already mentioned above� Maglaris et al�

������ present a �rst�order AR model for their data set� Nomura et al� ������

also use a �rst�order autoregressive process to model the frame size process

of their experimental encoder� In addition� they suggest to use Markov mod�

ulated AR processes for video sequences consisting of several scenes� Roberts

et al� ������ use the Maglaris et al� model for their performance considera�

tions of a multiplexer with VBR video input tra�c� A superposition of two

�rst�order AR processes and a Markov chain is considered by Ramamurthy

and Sengupta ������� The �rst AR process models the short�range behavior�

the second AR process the mid�range behavior� and the Markov chain mod�

els single peaks of the frame size process� Chowdhury and Sohraby ������

compare bandwidth allocation algorithms for packet video which is mod�

eled using the Maglaris et al� approach� One of the few models dedicated to

MPEG video tra�c is presented by Enssle ������� He uses three �rst�order

AR processes to model the MPEG frame types separately� A similar ap�

proach is used by Adas ������ to predict the frame sizes of an MPEG trace�

He used higher order AR processes� In contrast to these two approaches�

Stokes ����
� uses one AR�pG� model for the complete sequence� where pG

is the number of frames in one GOP�

Gr�unenfelder et al� �����a� ����b� suggest an ARMA model to charac�

terize the cell interarrival process at the output of their video encoder�

TES models

Transform�Expand�Sample �TES� models were developed to model autocor�

related time series with arbitrary marginal distributions� An introduction of

TES processes and the related theory is beyond the scope of this monograph�

Melamed et al� ������ give an outline of this model class� In the example sec�

tion of this paper� the authors present a TES model for VBR video tra�c�
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��� Video tra	c models

Lee et al� ������ report about a TES model which is used to model

the frame size sequence at the output of an encoder with two layers� A

VBR MPEG sequence is modeled by Reininger et al� ������ using three TES

processes for the di�erent frame types� Ismail et al� ����
� extend this model

for layered MPEG video tra�c�

Selfsimilar models

Recently� a lot of attention has been paid to selfsimilar or long�range de�

pendent modeling of tra�c streams in communication networks� Up to now�

most of the papers mainly deal with the statistical analysis of data sets� i�e��

in most cases with the estimation of the Hurst parameter of an empirical se�

quence� and provide little information about tra�c models and the analysis

of queuing systems with fractal input sources� In Norros ������ and Likhanov

et al� ����
�� the authors found that in G�D�� systems with selfsimilar in�

put the queue length distribution does not decay exponentially � as in the

case of non� or short�range correlated input tra�c � but hyperbolically or

Weibullian�

Garrett and Willinger ������ present a detailed statistical analysis of a

two hour VBR video trace and present a FARIMA��� d� �� model for video

tra�c� In Adas and Mukherjee ����
�� the authors use a FARIMA��� d� ��

model for their experiments� Enssle ����
� suggests to use a FGN model for

MPEG video tra�c and compares its performance to a white noise process

with the same marginals� In contrast to these papers� Huang et al� ����
�

generate selfsimilar model traces directly from the autocorrelation function

of the MPEG I�frame sizes using Hosking�s method�

��� Video tra�c models

Most of the models from the literature approximate the behavior of the frame

size process at the video encoder output� This is a reasonable choice if the
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data sets used for the model parameter estimation consist of only one frame

type� In our case� however� a frame layer model will have to re�ect the pe�

riodic GOP structure of MPEG formed by three di�erent frame types to be

realistic� The modeling of this speci�c periodic behavior will already require a

large number of parameters� Moreover� correlations over larger intervals than

several frame periods are di�cult to include� We therefore focus on modeling

the GOP size process and use a simple method to generate the frame size

process from it� Models on scene level are also possible but require complex

statistical analysis� Note that larger time scales lead to smaller numbers of

samples which can be used to estimate the model parameters� This often im�

plies a decrease in statistical signi�cance of the measurements� For instance�

given a sequence of �� ��� frames and a �� frame GOP pattern� the GOP size

sequence has only about 
 ��� samples and the scene length statistics will be

based on a few hundred samples� In addition� scene level models work on time

scales which are partly covered by GOP level models� Thus� careful consider�

ation is necessary to justify the additional complexity of MPEG model levels

higher than GOP level� One of our models� the scene�oriented model� is a

GOP level model where scene level correlation information is included with�

out extensive additional measurements� The selfsimilar model covers all time

scales by de�nition� This does not necessarily mean� however� that selfsimilar

models capture the speci�c characteristics of GOPs and scenes�

In the following� we discuss how frame sizes are computed from a GOP

size sequence� First� we use an empirical video frame size trace to estimate

the mean size of each frame type �I� P� or B� of the GOP� If we divide the

mean frame sizes by the mean GOP size� we receive a scaling factor for each

frame of the GOP� Note� that we do not distinguish between the individual

P� and B�frames� Table 
�� shows the scaling factors for the starwars and

the dino data sets�

To generate a sequence of frame sizes� we use one of the models introduced

later to generate the GOP sizes and compute the frame sizes by multiplying

the GOP size with the scaling factors� As the results of the following chapters
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Table 
��� Frame scaling factors

I B B P B B

starwars ��
�
 ���
� ���
� ����
 ���
� ���
�

dino ��

� ����� ����� ����� ����� �����

P B B P B B

starwars ����
 ���
� ���
� ����
 ���
� ���
�

dino ����� ����� ����� ����� ����� �����

show� this simple method leads to a good approximation of the frame process

of the video trace� In particular� the periodic nature of the frame process is

approximated with little e�ort� Due to the fact that both GOP and frame

sizes of each type are approximately lognormally distributed� this method

also leads to frame size distributions which are close to the original ones�

The only frame layer information which is lost consists of the frame�by�frame

correlation which is present apart from the correlation induced by the GOP

pattern� As a result� a model frame trace can have a larger maximum frame

size than the empirical trace while the mean and variance of both traces are

the same� In several scenarios� see e�g� Chapter �� this can lead to performance

predictions which are more pessimistic than those of the empirical data sets�

In those cases� we cross�check our results with models which are not based

on the GOP size sequences but on the I�frame sequences of the data sets� We

obtain an I�frame based vector of frame scaling factors simply by dividing

the above frame scaling factors by the leading I�frame factor� The model

parameters are determined from the I�frame size sequence instead of the

GOP size sequence� Thus� we obtain a model which better re�ects the frame

size process within a GOP than the GOP�based models at the cost of a worse

performance in modeling the GOP�by�GOP interdependences�

In the following sections� we introduce models of di�erent complexity
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and approximation quality which we intend to compare with regard to their

statistical properties and their accuracy to predict performance measures

such as cell losses at ATM multiplexer bu�ers� The models can be divided

into two classes� discrete versus continuous marginal distribution� The his�

togram model� the simple Markov chain model� and the scene�oriented model

are based on states and have a histogram�type marginal distribution� The

autoregressive model and the selfsimilar model have a lognormal marginal

distribution�

����� Histogram model

The histogram model is the simplest model� It is equivalent to modeling a

time series by independent and identically distributed �i�i�d�� random vari�

ables� This implies that a number of algorithms for the analysis of queuing

systems with i�i�d� input tra�c can be applied� The main disadvantage of

this model is that any GOP�by�GOP correlation remains unmodeled� The

statistical analysis of the GOP traces� however� shows considerable positive

autocorrelation for at least the �rst ��� lags� In application scenarios where

the results depend on the accuracy of the modeled autocorrelation behavior�

e�g� systems with large cell bu�ers� the performance estimates based on the

histogram model� such as losses or delays� can be several orders of magnitude

too small�

Parameter estimation

Let fxi � i � �� � � � � Ng denote the considered GOP size trace� The only

user�de�ned parameter of the histogram model is the number k of histogram

intervals� The relative frequency hj of the samples in the GOP size intervals

and the GOP size sj related to interval j �j � �� � � � � k� are computed with

the formulae presented in Appendix A��� A small k value leads to a poor

approximation of the marginal distribution of the empirical trace whereas a
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large k value may lead to problems of statistical signi�cance due to too few

observations�

Generation of a model trace

Let f�ig be U��� �� distributed white noise� Given the frequencies hj and

GOP sizes sj �j � �� � � � � k� the trace ftig is generated by

ti � sj with j � min

�
l �

lX
j	�

hj � �i

�
� �
���

For each of the models of this chapter we present one trace with � ��� samples

and discuss the shape and properties� The model parameters are estimated

on the basis of the dino GOP size sequence� Figure 
�� shows the �rst � ���

samples of this data set� We point out that trace diagrams are no proof of the

quality of a model� Nevertheless� traces are attractive since they illustrate

the di�erences of the models without applying any statistical machinery�
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Figure 
��� Trace from the dino GOP size sequence
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Figure 
�
 shows a trace generated by the histogram model with a number

k � �� of intervals� It re�ects the discrete nature of the sample sizes� Due

to the fact that correlations are not modeled� no time�dependent structure

is noticeable�
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Figure 
�
� GOP size trace generated by the histogram model

����� Simple Markov chain model

The simple Markov chain model consists of a �rst�order Markov chain and is

able to model the histogram and the lag�� autocorrelation of the given data

set� There are several analysis techniques for queuing systems with Markov

chain type input� e�g� Neuts ������� Neuts ������� or Anick et al� ������� Since

the estimation of the Markovian order in Section ��
 shows that only large

orders lead to a considerable improvement of the model quality compared

to the �rst�order case we will not consider conventional higher�order Markov

chains in the sequel�
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Parameter estimation

Let fxi � i � �� � � � � Ng denote the considered GOP size trace� The only

parameter which has to be speci�ed for the �rst�order Markov chain is the

number M of states� The transition matrix P �  pij! and the GOP size

vector s �  s�� � � � � sM ! can be computed with the formulae presented in

Appendix B����� Note� that for parameter estimation we will only consider

the maximum likelihood estimates approach since the DAR��� approach does

not �t into our intended evolution from the histogram model over the simple

Markov chain model to the scene�oriented model�

Generation of a model trace

Let f�ig be U��� �� distributed white noise� Given P and s� the sequence of

states fmig is generated by

mi � min

�
l �

lX
j	�

pmi���j � �i

�
� �
���

i�e�� being in state mi��� the next state mi is estimated by accumulating the

transition probabilities of row mi�� ofP until a �xed but random threshold �i

is exceeded� The trace ftig is determined by

ti � smi
� �
�
�

Figure 
�� shows a trace generated by the simple Markov chain model

with M � �� states� As in the histogram case� the trace clearly re�ects the

discrete nature of the sample sizes� Compared to the trace of the histogram

model� more structure in time is present� In contrast to the empirical trace�

however� the average behavior does not change in time� indicating that no

long�term correlations are modeled�
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Figure 
��� GOP size trace generated by the simple Markov chain model

����� Scene�oriented model

The scene�oriented model is a �rst�order Markov chain with a rede�ned set

of states� The intention of this rede�nition is to facilitate the modeling of

scene changes and to achieve an improvement of the autocorrelation modeling

properties of the Markov chain with a moderate increase in the number of

states� Before we are able to classify the GOPs into di�erent scenes we have

to determine the scene boundaries of the video sequence� From a statistical

point of view� it is not necessary to �nd out the scene boundaries of the

original video sequence by watching the movie since we are not interested in

a statistical analysis of the scene length� Therefore� we use a method to �nd

these boundaries which only depends on a few statistical properties of a group

of consecutive GOP sizes� These parameters should be available by simply

scanning the GOP size sequence without any knowledge about the content of

the video sequence� Compared to having to watch the sequence� this approach

is fast and needs no additional technical equipment� In addition� the state

space of the Markov chain can be automatically generated directly from
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the GOP size trace� Heyman and Lakshman ������ present an algorithm to

split a video trace into scenes� It is based on the fact that normally a new

scene starts with a frame which is considerably larger than the preceding

frames� This behavior results from the predictive encoding which is used in

most video encoding schemes� The �rst frame of a new scene can not be

predicted from former frames and therefore contains more information� In

our case� however� this algorithm is not applicable since our aim is to �nd

out scene changes among GOP sizes� Due to the summing of frames� the

sudden increase of frame size at the beginning of a scene is averaged out and

is not detectable anymore� Thus� we developed new algorithms to determine

scene changes for GOP size sequences�

Parameter estimation

Let fxi � i � �� � � � �Ng denote the considered GOP size trace� In addition

to the number of states MG used to model the GOP sizes while being in a

particular scene� we have to specify the number of scene classes MS� For our

traces MG and MS values from �� to �� resulted in a good approximation

of both the marginal distribution and the low�lag correlations of the data

sets� Note� for MS � � the scene�oriented model degenerates to the simple

Markov chain model mentioned above� To determine the scene class of each

xi we suggest the following two algorithms� Both algorithms group together

GOPs into scenes which have approximately the same GOP size�

Variation�based algorithm� For the variation�based algorithm� we deter�

mine the scene boundaries based on the coe�cient of variation for a sequence

of consecutive GOP sizes� We add GOPs to the sequence under considera�

tion until its weighted coe�cient of variation is changing more than a preset

value� The last GOP added is de�ned as the beginning of a new scene�

In the following� we present a more formal description of the algorithm�

We �rst need to specify the scene change threshold �S� Let nG denote the

current GOP number and be nS the current scene number�
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��� Set nG � � and nS � ��

Set the current left scene boundary bleft�nS� � ��

��� Increment nG by �� Compute the coe�cient of variation bcvnew
of fxbleft
nS�� � � � � xnGg�

�
� Increment nG by �� Set bcvold � bcvnew� Compute the coe�cient of

variation bcvnew of fxbleft
nS�� � � � � xnGg�

�i� If j bcvnew � bcvoldj�nG � bleft 	 �� � �S then set the right scene

boundary bright�nS� � nG � � and the left scene boundary of

the new scene bleft�nS 	 �� � nG� Increment nS by � and go to

step ����

�ii� If �i� does not hold go to step �
��

Iterating this algorithm over the whole GOP size sequence provides a series

of NS scene boundary pairs� Now� we compute the average GOP size "xS�i�

for each scene

"xS�i� �
�

bright�i�� bleft�i� 	 �

bright
i�X
k	bleft
i�

xk with i � �� � � � � NS �
���

and extend the given GOP size trace fxig to a series of pairs f�xi� "xi�g with

"xi � "xS�s� for bleft�s� � i � bright�s�� �
�
�

i�e�� pairs formed by the GOP size and mean GOP size of the scene where

this particular GOP is located�

Our experiments show that �S should be chosen such that the resulting

average scene length is at least ten GOPs to obtain a reasonable approxima�

tion quality of the autocorrelation function� The range of lags which is well

approximated has to be determined heuristically varying �S and MS �

Average�based algorithm� The average�based algorithm consists of shift�

ing a moving average window of size W over the trace� Compared to the
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variation�based algorithm� it is very simple since the scene boundaries have

not to be computed explicitly� The only parameter needed for the algorithm

is the window size W � The given GOP size trace fxig is extended to a series

of pairs f�xi� "xi�g with

"xi �
�

W

i�W��X
k	i

xk for i � �� � � � �N �W 	 �� �
���

Assuming the adequate number of scene classes MS and a window of

size W � the average�based algorithms leads to a model whose approximation

quality of the autocorrelation curve of the data set is good for approximately

the �rst W lags� Figure 
�
 shows this property for scene�oriented models

�tted to the dino data� All models have MG � �� GOP classes and MS �

�� scene classes� implying a ������� transition matrix� The window size

W was varied from � to ���� Note� that a value of W � � results in the

autocorrelation curve of the simple Markov chain model�
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Figure 
�
� Autocorrelation functions of the scene
oriented model
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In the sequel� we only use the average�based algorithm to determine the

scene classes due to its simple way to set the expected correlation range�

Estimation of the transition matrix and the size vector � Before we start

to determine the transition matrix for the scene�oriented model we have to

de�ne an appropriate state space� Each pair of the series f�xi� "xi�g is related

to a state �mG
i �m

S
i �� where mG

i � f�� � � � �MGg denotes the GOP size class

and mS
i � f�� � � � �MSg the scene class of GOP i� The classes are obtained by

discretizing both the xi and "xi analogously to the �rst�order Markov chain

case �see also Appendix B������ The MG �MS states are ordered such that

the states for one scene class are grouped together with ascending GOP class

number� The entries pij of the transition matrix can now be estimated as

shown in the appendix� The size vector s is determined in two steps� First� we

compute the size vector of length MG based on the xi values as in the �rst�

order case� Then� the vector s is formed by concatenating MS copies of that

vector� For instance� let MG � 
 and MS � �� Then� the state space consists

of f��� ��� ��� ��� �
� ��� ��� ��� ��� ��� �
� ��g and s �  s�� s
� s�� s�� s
� s�!�

Generation of a model trace

The model trace is generated analogously to the �rst�order Markov chain

case� Figure 
�� shows a trace generated by the scene�oriented model with

MG � �� GOP classes and MS � �� scene classes� To estimate the param�

eters� the average�based algorithm was used with a window size W � ����

As for the other state based models� the sample sizes are from a discrete

set� Compared to the trace of the simple Markov chain model� more vari�

ation in the average behavior is noticeable� indicating that some long�term

correlation is modeled�

����� Autoregressive model

Autoregressive processes are widely used in the time series analysis liter�

ature� Due to the di�culties in analyzing systems with autoregressive in�
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Figure 
��� GOP size trace generated by the scene
oriented model

put� the queuing theory literature focuses on Markovian input streams� In

our case� autoregressive models have the advantage of a smaller number of

model parameters while providing a similar autocorrelation behavior and

a higher accuracy in modeling the marginal distribution of the empirical

traces than Markov chain models� We obtain a lognormal marginal distri�

bution which is typical for MPEG video tra�c by simply transforming the

N�	n� 
n� marginal distribution of a standard AR�p� process by an expo�

nential function� By means of the model order p� we are able to determine

the number of lags of the empirical autocorrelation curve that are modeled

correctly�

Parameter estimation

Let fxi � i � �� � � � � Ng denote the considered GOP size trace� Assuming

lognormally distributed GOP sizes� we �rst have to transform fxig to a

time series with normal marginals fxni g by xni � log xi� The parameters

of the normal marginal of the transformed process are given by the sample
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mean b	n and the sample variance b

n� Now� the model order p has to be

determined� This can be done either by heuristic considerations or applying

Akaike�s information criterion �AIC�� The values b��� � � � � b�p are given by the

Yule�Walker estimates for fxni � i � �� � � � � Ng � For AIC and Yule�Walker

estimates see Appendix B�
���

Generation of a model trace

Let f�ig be a N��� �� distributed white noise process� The values 	n and 
n

are set to the given estimates b	n and b

n or in dependence of the expected

mean 	t and variance 

t of the model trace�

	n � log
	
tq



t 	 	
t

�
���



n � log


t 	 	
t

	
t
�
���

For a model trace of length N � we generate a trace of the Gaussian process

ftmi � i � �� � � � � L 	Ng applying the recurrence relation

tmi � ��t
m
i�� 	 � � �	 �pt

m
i�p 	 �i �
���

with tmi � � for i � � and given the parameters ��� � � � � �p� We neglect the

�rst L samples to avoid start�up errors� The value L is determined by compar�

ing the autocorrelation curve of the trace ftmi � i � L 	 �� � � � � L 	 Ng and

the theoretical autocorrelation curve of the AR�p� process� If both curves

match well the value L is large enough� The marginal distribution of trace

ftmi g will be Gaussian but not with the expected parameters� We therefore

transform the samples tmi to the N�	n� 



n� distributed samples tni as follows�

tni �
�tmL�i � 	m� � 
n


m
	 	n for i � �� � � � � N �
����

with 	m denoting the mean and 

m the variance of ftmi g �

��
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Finally� the trace ftig is generated from ftni g by

ti � exp tni �
����

Figure 
�� shows a trace generated by an AR��� model with lognor�

mal marginal distribution� In contrast to the state�based models mentioned

above� the sample sizes follow a continuous distribution� This makes the

trace look closer to the original data set compared to the Markov�type mod�

els� Since the average behavior does not change very much over time the

trace behaves like a continuous equivalent of the simple Markov chain case�
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Figure 
��� GOP size trace generated by the auto
regressive model

����� Selfsimilar model

Selfsimilar processes form a model class which facilitates the modeling of

long�range dependence� All other models are only capable of modeling short�

term correlations� The selfsimilar models allow parsimonious models but the

estimation of their few parameters is not as straightforward as for the other

��
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models� Since this class of models is used in telecommunication research

only for a few years� the number of papers on performance analysis in the

presence of long�range dependent tra�c is small� We therefore had only a

few guidelines or rules of thumb for parameter estimation and performance

evaluation with selfsimilar models�

Due to the results of Section ���� we decided to use FARIMA�p� d� �� pro�

cesses with p � � to model the GOP size traces� Note� that d � H � ��
�

FGN or FARIMA��� d� �� also facilitate the modeling of long�range depen�

dence but o�er no possibility to match the models to the low�lag correlations

of the data sets if necessary� Standard FARIMA processes have a Gaussian

marginal distribution� Similarly to the autoregressive models� we obtain the

adequate marginal distribution by transforming the N�	n� 
n� marginal dis�

tribution of the FARIMA process to a lognormal marginal�

Parameter estimation

Let fxi � i � �� � � � � Ng denote the considered GOP size trace� Assuming

lognormally distributed GOP sizes� we �rst have to transform fxi � i �

�� � � � � Ng to a time series with normal marginals fxni � i � �� � � � � Ng by

xni � log xi� The parameters of the normal marginal of the transformed

process are given by mean b	n and variance b

n� The model order bp� the Hurst

parameter bH � bd 	 ��
 and the parameters b��� � � � � b�p of the AR�p� part of

the FARIMA�p� d� �� process are estimated as described in Appendix B�����

Generation of a model trace

In contrast to the other model traces� the selfsimilar trace has to be generated

in one piece to provide the expectedH value� For the generation of a Gaussian

FARIMA�p� d� �� trace of length N we used the two�step algorithm suggested

by Hosking ������ � We �rst generate a FARIMA��� d� �� trace of length

L	N � Then� we add the AR�p� part by applying the appropriate recurrence

relation and cut o� the �rst L samples� The whole generation process is
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��� Video tra	c models

equivalent to that of an AR�p� trace besides the fact that f�ig is white noise

in the AR�p� case and long�range dependent in the FARIMA�p� d� �� case

for d � �� If d � �� i�e�� H � ��
� the statistical properties of AR�p� and

FARIMA�p� d� �� traces are the same�

Generation of the FARIMA�
�d�
� trace� Given d � H���
� let f�i � i �

�� � � � � L	Ng denote the FARIMA��� d� �� trace� Set v� � �� Choose �� from

N��� v��� Then generate L 	 N points by iterating the following algorithm

for k � �� � � � � L 	 N �

�kk � d��k � d� �
����

�kj � �k���j � �kk�k���k�j j � �� � � � � k � � �
��
�

mk �

kX
j	�

�kj�k�j �
����

vk � ��� �
kk�vk�� �
��
�

Choose each �k from N�mk� vk��

Generation of the FARIMA�p� d� �� trace� In the following� we partly re�

peat formulae from Section 
�
�� to obtain a selfcontained model description�

Given ��� � � � � �p of the AR�p� part and a Gaussian FARIMA��� d� �� trace

f�i � i � �� � � � � L 	 Ng � Set 	n and 
n to the given estimates b	n and b

n or

in dependence of the expected mean 	t and variance 

t of the model trace�

	n � log
	
tq



t 	 	
t

�
����



n � log


t 	 	
t

	
t
�
����

We obtain a trace of the Gaussian FARIMA�p� d� �� process ftmi � i �

�� � � � � L 	 Ng applying the recurrence relation

tmi � ��t
m
i�� 	 � � �	 �pt

m
i�p 	 �i �
����

with tmi � � for i � �� We throw away the �rst L samples to avoid start�up

errors� The value L is determined by comparing the autocorrelation curve

�




� Modeling of MPEG video tra	c

of the trace ftmi � i � L 	 �� � � � � L 	Ng and the theoretical autocorrelation

curve of the FARIMA�p� d� �� process� If both curves match well the value L

is large enough� The marginal distribution of ftmi g is Gaussian but not with

the expected parameters� We therefore transform the tmi to the N�	n� 



n�

distributed tni by

tni �
�tmL�i � 	m� � 
n


m
	 	n for i � �� � � � � N �
����

with 	m denoting the mean and 

m the variance of ftmi g �

Finally� the L�	n� 



n� trace ftig is generated from ftni g by

ti � exp tni �
����

Figure 
�� shows a trace generated by an FARIMA���d��� model with

lognormal marginal distribution� The trace has appealing similarities to the

empirical trace� As for the original� its marginal distribution is continuous

and the average behavior changes slowly over time�
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Figure 
��� GOP size trace generated by the selfsimilar model
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��� Summary

��� Summary

Table 
�� classi�es the models presented in this chapter by means of their

marginal distribution and their autocorrelation function �ACF� properties�

Table 
��� Classi�cation of the models

no ACF ACF ACF

correlations exponential sum of hyperbolic

exponentials

discrete histogram simple scene�

marginal model Markov chain oriented #

distribution model model

continuous lognormal AR��� AR�p� self

marginal white model model similar

distribution noise p � � model

To complete the table� we added the lognormal distributed white noise

process as the continuous equivalent of the histogram model� The state�based

equivalent of the selfsimilar model requires an in�nite number of states to

obtain a hyperbolic ACF and is therefore not considered here� In addition� to

the best knowledge of the author� there are no publications available about

the parameter estimation of such Markov chains�

For illustration� Figure 
�� shows the ACF for the �rst ��� lags of the dino

GOP size sequence and the models with following parameters� simple Markov

chain model with M � ��� scene�oriented model with MG � ��� MS � ���

and W � ���� autoregressive model with p � �� selfsimilar model with

p � �� The ACF of the histogram model is not shown since the coe�cients

of correlation are � for lags larger than ��

It is clearly visible that the selfsimilar model and the scene�oriented

model lead to the best approximation quality of the empirical autocorrelation

�
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Figure 
��� Autocorrelation functions of the models

up to lag ��� of the given dino data set� Despite the fact that the coe�cient

of correlation for a lag of ��� is larger for the scene�oriented model� it has

to be noted that its ACF decays faster than the selfsimilar ACF for large

lags� The autoregressive model and the simple Markov model show almost

the same correlation behavior�
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� Model validation by

simulation

In the previous chapter� we provided a comparison of the models based on

their statistical properties and their sample traces� For the analysis of a

queuing system� however� it is often di�cult to decide in advance about the

model characteristics necessary to provide useful performance estimates� In

our case� the models range from the very simple histogram model to the

complex scene�oriented or selfsimilar models� To illustrate how simulations

support the model selection process� we present the studies of two important

ATM scenarios in this chapter� The �rst scenario consists of a typical UPC

scenario� We have a video tra�c source whose Sustainable Cell Rate �SCR� is

to be policed by a GCRA given a Burst Tolerance �BT�� We are interested in

those SCR�BT pairs where the cell loss or tag rate is below a given threshold�

The second scenario is an ATM switch or concentrator multiplexing a number

of video tra�c input lines onto one output line� This scenario is of particular

interest since we expect a number of problems for multiplexed VBR MPEG

video tra�c due to the periodic GOP pattern� In addition� this scenario

can be used to evaluate multiplexing gains for video tra�c or bandwidth

estimators for CAC algorithms�
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� Model validation by simulation

��� Introduction of the simulation setup

In the following� we give an introduction to the simulation we used to study

the two scenarios� In both studies� we consider a queuing system with a

�nite bu�er and a single server with constant service time� The bu�er size

is denoted by S and the service rate by B� The performance measures of

interest are the cell loss probability Ploss and the mean waiting time of a

cell W �

We make use of the �uid simulation approach to estimate the loss proba�

bilities and delays �see Frost and Melamed �������� Instead of individual cell

arrivals we consider frame data as a �uid� which �ows into the bu�er at a

constant rate� There are two important bene�ts from the �uid approach� It

is conceptually simple and it leads to enormous simulation speed�ups while

the accuracy of the results is comparable to cell�oriented simulations� This

method is applicable if the cell rate stays constant for a period of time which

is considerably longer than the cell interarrival times� In our study� this is

clearly the case since the rate stays constant for one frame duration� Due to

the constant interarrival time of the frames� this bit rate is equal to frame

size � frame rate� where for our data sets the frame rate r is �
s��� Loss prob�

abilities can be calculated in terms of over�ow volumes� The average bu�er

content� which is needed to compute the mean cell delay� can be determined

in terms of the time it takes to clear the current bu�er�

The �uid simulation approach and the constant frame rate the simulation

lead to a simple implementation of the simulation� Let us consider a frame

sequence ffi � i � �� � � � � Ng from measurements or based on a model� a

bu�er size of S cells� and a system load of �� Since we assume that arriving

frames are packetized into ATM cells with a payload of �� octets we �rst

have to transform each frame size fi  bits! into bfi  bits! by

bfi �

�
fi

�� � �

�
� �� � �� �����

where dxe is the smallest integer number larger than x� Let wi denote the

��



��� Single input source

bu�er content upon arrival of packetized frame i� The number of bits b served

during a frame period of r�� is given by

b �
B

r
�

b	
�

�����

where b	 is the sample mean of f bfig � The system evolves as follows�

w�i�� � maxfwi 	 bfi � b � �g� ���
�

wi�� � minfw�i�� � Sg� �����

The amount of loss li during interval i is given by

li � maxfw�i�� � S � �g ���
�

and the total loss probability Ploss by

Ploss �

NX
i	�

li

NX
i	�

bfi � �����

Due to the constant service rate B the mean waiting time W of a cell is the

average bu�er occupancy divided by the service rate�

W �
�

N

�
w�

�
	

NX
i	


wi 	
wN��

�

�
�

B
� �����

For all simulation experiments� we based our models on the dino data

set� The results are essentially the same for our other data sets and Garrett�s

starwars MPEG data set�

��� Single input source

As mentioned above� a �nite single server queuing system with a single input

source can also be interpreted as a GCRA or a tra�c shaper for a rate to be
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� Model validation by simulation

controlled of B and a CDVT or BT of S� The value Ploss gives the cell tag

rate of the GCRA or the cell loss rate at the shaper bu�er� respectively� The

value W is the mean delay introduced by the shaper� Given a maximum value

for Ploss and�or W � the user or the network provider intend to dimension

the parameters B and S for a given MPEG sequence� We therefore provide

diagrams which show the Ploss and W values for varying S and a constant

B� i�e�� a given system load �� In addition� we present diagrams where S is

plotted against B for a given Ploss� These �iso�loss� curves are suggested in

Lucantoni et al� ������ for testing the accuracy of video models�

����� Frame and GOP regimes

Before we present a variety of curves comparing model trace and empirical

trace results� we provide a diagram that highlights an interesting character�

istic of a bu�ered VBR MPEG video tra�c stream� In Figure ��� the solid

line depicts the cell losses of a single MPEG stream for a system load of

� � ��� in dependence of the bu�er size in cells�

The striking feature of this curve is a knee at a bu�er size of about ���

cells� The two other loss curves clearly show that this is the point where

the system changes from frame to GOP regime� For bu�er sizes of less than

about ��� cells� the cell loss behavior can be reproduced with a trace that is

generated simply from the histograms of each frame type based on the GOP

pattern and which therefore does not inhere any GOP�by�GOP correlations�

On the other hand� for bu�er sizes of more than about ��� cells� the loss

curve of the GOP size sequence is almost identical to that of the frame size

sequence although no periodic behavior is modeled� The borderline of the

two regimes is approximately three times the average frame size of about 



cells� At the �rst glance� this result is surprising since one would expect the

GOP length of twelve times the average frame size� Keeping in mind that

due to our GOP pattern of �IBBPBBPBBPBB� a group of three consecutive

frames is always formed by a large I� or P�frame and two small B�frames�
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Figure ���� Cell loss curve of dino frame size sequence �� � ����

it becomes clear that already a bu�er size of three times the average frame

size is large enough to �lter out most of the periodic behavior of the video

tra�c stream� The cell curve has a knee for all loads larger than about ����

For lower loads a bu�er of ��� cells already prevents from cell loss�

From modeling point of view� the following conjectures arise�

��� For bu�er sizes of less than ��� cells� simple models will already lead

to good results if they reproduce the GOP pattern�

��� For bu�er sizes of more than ��� cells� models will only succeed if they

mimic the GOP�by�GOP behavior in an adequate way�

����� Low load results

In the following� we compare the cell loss and average cell delays of the empiri�

cal data sets to those of the models� To avoid confusing diagrams� we separate

the results according to the marginal distribution of the model traces� i�e�

either discrete �histogram� simple Markov chain� and scene�oriented model�

��



� Model validation by simulation

or continuous �autoregressive and selfsimilar model� and according to the

data set which is used for the model parameter estimation� i�e�� either GOP

sizes or I�frame sizes� This results in the following four result groups� discrete

GOP models� continuous GOP models� discrete I�frame models� and contin�

uous I�frame models� Note� that the solid line always shows the curve for the

dino frame size trace� The delays are not given in seconds but in multiples

of the frame duration of �� msec� The mean frame size is about 

 cells and

the maximum frame size is 
�� cells assuming a payload of �� bytes per cell�

First� we present the results for a system load of � � ��
� In our single

source scenario low loads make sense since such a system is equivalent to a

GCRA with a SCR close to the peak rate of the tra�c stream� We do not

provide the diagrams for the continuous GOP results since they are the same

in tendency as the discrete ones�

Figure ��� shows that discrete GOP models clearly overestimate the cell

losses for all bu�er sizes� This is also the case for the continuous GOP models�

The delay predictions of the discrete and continuous GOP models tend

to overestimate the empirical values for bu�er sizes of less than ��� cells

and to underestimate them for more than ��� cells �cf� Figure ��
�� As soon

as the bu�er is large enough to prevent losses� the delay stays on the same

level� It is worth mentioning that for a load of ��
� all models show almost

the same behavior independently of their very di�erent complexity� This

indicates that for bu�er sizes of less than ��� cells a good approximation of

the GOP�by�GOP correlation behavior is not necessary�

Figures ��� and ��
 show losses and delays for the discrete I�frame models�

Here� we observe a very good match to the empirical curves� Thus� for low

loads and bu�er sizes of not more than ��� cells the model should be based

only on the frame traces and that a modeling of statistical properties of the

GOP traces does not improve the model quality� Since all I�frame models

show the same accuracy it is su�cient to use the simple histogram model�
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Figure ���� Cell losses for discrete GOP models �� � ��
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Figure ���� Cell losses for discrete I
frame models �� � ��
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Figure ��
� Cell delays for discrete I
frame models �� � ��
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����� High load results

Due to the graceful change in the model behavior while increasing the load�

we only show a set of diagrams for a load of � � ���� Such a system is

equivalent to a GCRA with a SCR close to the mean rate of its input tra�c�

In case of small bu�er sizes or burst tolerances we have to expect a large

amount of cell losses whereas for large bu�er sizes average cell delays grow

considerably�

Figures ��� to ���� show the losses and delays for all GOP models� In

contrast to a load of ��
� the model accuracy depends on the ability of the

model to approximate the GOP�by�GOP behavior of the empirical trace�

The histogram model only provides good approximation results for bu�er

sizes of less than ��� cells� Both lag���correlation models �autoregressive and

simple Markov chain model� lead to good results up to bu�er sizes of a few

thousand cells� For bu�er sizes of more than ten thousand cells� the scene�

oriented model slightly underestimates the losses and the selfsimilar model

overestimates the cell losses� As far as the delays are concerned� both models

lead to very accurate estimates for the whole range of considered bu�er sizes�

All models besides the histogram models show the knee at ��� cells bu�er

size independently from discrete or continuous marginal distributions�

The I�frame models are less accurate than expected even for bu�er sizes

of less than ��� cells �cf� Figure ������ They are clearly outperformed by the

GOP models for both losses and delays over the whole range of considered

bu�er sizes�
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Figure ���� Cell losses for discrete GOP models �� � ����
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Figure ���� Cell delays for discrete GOP models �� � ����
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Figure ���� Cell losses for continuous GOP models �� � ����
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Figure ���� Cell delays for continuous GOP models �� � ����
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Figure ����� Cell losses for discrete I
frame models �� � ����

����� Iso�loss curves

The next set of diagrams �Figures ���� to ����� shows the the empirical and

model iso�loss curves� i�e�� for a given target loss rate we plot the bu�er size

versus the SCR of the GCRA� For simplicity� we transform the SCR into the

amount of data transmitted during one frame duration� This amount ranges

from about the average frame size to that value where the target loss rate

can be met even without a bu�er� The curves were generated by means of an

iterated bisection of the bu�er sizes given the amount of transmitted data

and the target loss rate� Considering a maximum bu�er size of ��� ��� cells�

this approach takes �� bisections for each data point� We provide curves for

target loss rates of ���� and ������ For smaller target loss rates� the curves

become problematic from statistical point of view� For higher loss rates than

shown here� say ���� both the GOP and the I�frame histogram model lead

to an accurate prediction of the iso�loss curve� From practical point of view�
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however� this curve is obsolete since no customer is willing to dimension a

GCRA for a target loss rate of the order of �� $�

Figures ���� and ���� show that GOP models can only be used if the

expected bu�er size is larger than ��� cells� For smaller bu�er sizes� the re�

sults become very inaccurate� For a SCR of less than say �� cells per frame

duration in the Ploss � ���
 case and ��� cells per frame duration in the

Ploss � ���� case� the simple Markov chain approach matches well the em�

pirical results whereas the histogram approach is not applicable� The results

for the scene�oriented model are not shown since there is no substantial im�

provement compared to the simple Markov chain model� For a large SCR�

the I�frame histogram model leads to very accurate results �cf� Figures ���


and ������ Figure ���
 also shows that even the highly correlated scene�

oriented model cannot be used for a SCR close to the mean rate of the video

sequence�
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loss curves for discrete GOP models �Ploss � �����
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����� Summary

After presenting the cell loss and delay results� we reconsider our conjectures

on the required model properties� The various curves show that the model

accuracy does not only depend on the bu�er size as assumed but also on the

system load� For load of say less than ��
� the I�frame models outperform

the GOP models for bu�er sizes of less than ��� cells� In all other cases� i�e��

bu�er sizes of more than ��� cells or loads of more than ��
� GOP models

should be used for the prediction of cell losses and delays� The decision about

the model class has to be based on the bu�er size� For bu�ers of less than

��� cells� a histogram model is already very accurate� For larger bu�er sizes�

lag���correlation models should be applied� Only for very large bu�er sizes

it necessary to use models with improved correlation properties�

The conclusion for the approximation of iso�loss curves is twofold� For

resulting bu�ers of less than ��� cells� i�e�� a SCR close to the peak rate of the
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video sequence� I�frame histogram models are adequate� For bu�ers of more

than about ��� cells� i�e�� a SCR close to the mean rate� GOP�based lag���

correlated models such as the simple Markov chain should be considered�

To sum up� in most cases GOP�based histogram or lag���correlated mod�

els are a good choice for the prediction of the performance measures for a

single video tra�c source�

��� Multiplexed input sources

Besides the estimation of GCRA parameters� the estimation of possible mul�

tiplexing gains and adequate bu�er sizes for a number of superposed MPEG

video tra�c streams is of high interest� Before we present performance re�

sults� we �rst have to consider the implications of multiplexing tra�c streams

which inhere a periodic structure�

����� Cross�correlation e	ects

The phase�shift with respect to the frame types of the GOP pattern intro�

duces several performance and fairness problems� Since the average I�frame

is large compared to P� and B�frames� system resources which were provided

based on average bit rates will run short if too many video sources send

I�frames at the same time� Moreover� the shift patterns may lead to unfair�

ness for sources whose I�frames lie close together since they experience more

losses than other sources�

For the rest of this chapter� we assume that all streams to be multiplexed

have the same statistical properties and that the frames of all streams start

at exactly the same instant� This is a restriction compared to real systems

since there the frames may start at arbitrary instants� On the other hand� this

assumption will simplify the analysis and simulation of the system consider�

ably without introducing principle changes in its properties� Even with this

��
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simplifying assumption� we have a huge number of di�erent phase shift op�

portunities for N multiplexed video streams with a GOP length of �� frames�

To our best knowledge� there is no formula published for the number of op�

portunities� Standard combinatorial formulae cannot be applied since both

the pattern of parallel I�� P�� and B�frames and the periodic GOP pattern

have to be taken into account� Andreassen ����
� provides an approxima�

tion for such a formula where P� and B�frames are not considered separately�

Nevertheless� it is possible to identify worst case and optimal case scenarios�

The worst case consists of the high source alignment where the I�frames of all

sequences are transmitted in parallel �cf� Figure ���
�a��� The optimal case

is a low alignment scenario where the maximum number of commonly multi�

plexed I�frames is minimal �cf� Figure ���
�b��� The lower bound for the cell

losses in the optimal case are is given by the cell loss curves for multiplexing

sources where the bit�rate is averaged over one GOP� i�e�� where the periodic

GOP pattern is �ltered out�

�a� High alignment �b� Low alignment

Figure ���
� Alignment scenarios

In real systems� both extreme cases are possible but the average behavior

is of greater interest� Since extensive simulation of all possible start scenarios

is not feasible we decided to determine the start frame type of each input

stream at random and to conduct a large number of simulation runs with

random sets of start frames� We found that for a number of about ����

runs the loss and delay estimates were stable� This number had to be chosen

�
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heuristically since con�dence intervals are not available for this kind of sim�

ulation experiment� For the computation of the con�dence intervals it would

be necessary to know all equivalence classes of the shift patterns with regard

to the resulting loss� i�e�� patterns belong to the same class if the simulation

will lead to the same cell losses� For instance� if we assume a GOP pattern

of �IPP� and multiplex two sources the possible shift patterns are�
I P� P


I P� P


��
I P� P


P
 I P�

��
I P� P


P� P
 I

�
where the middle and the right pattern are equivalent with regard to cell

losses� The estimation of the equivalence classes for longer GOP patterns

and larger numbers of multiplexed streams is not trivial and beyond the

scope of our work�
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Figure ����� Cell loss curve of �� multiplexed dino frame size sequences with

di
erent alignments �� � ����

In Figure ����� the cell loss curves of �� traces and di�erent alignments

are depicted� In the case of high alignment� i�e�� if all traces are in phase� the

��
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losses are very high and do not decrease considerably even for large bu�ers�

For small bu�er sizes� the low alignment case leads to a smaller cell loss rates

than the random case but for increasing bu�er sizes the two curves converge�

The reason for this striking result is that periodic e�ects are �ltered out by

larger bu�ers� In the following� we give an explanation of this behavior�
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Figure ����� Cell loss curve of �� multiplexed dino frame sequences �� � ����

Figure ���� shows the cell losses for �� multiplexed dino frame size se�

quences with random alignment� As in the single source case� we observe a

knee in the curve� In contrast to that case� however� the knee is located at

about �� times the mean frame size �about ��� cells� and not at about 


times the mean frame size �about ��� cells�� This means that due to the

random alignment multiplexing� we have to bu�er the average amount of

data of a GOP to �lter out the periodic frame pattern� As a consequence�

it is not necessary to use a model which reproduces the periodic behavior of

the frame trace if the bu�er size becomes large enough�

From the results presented above� there are a number of conclusions with

respect to MPEG transmission over ATM networks� First� when a number of

�
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MPEG video sources are fed into a single multiplexer� the cell loss probability

is very sensitive to the alignment among the GOP structures of these sources�

Consequently� it will be very di�cult to guarantee the cell loss probability

for a multiplexer �or alternatively to perform the CAC and UPC functions

of the network� without knowing in advance how the GOP structures of the

video sources are aligned�

Therefore� it would be useful for the network to be able to control this

alignment� However� this is not feasible in practice� Hence� there can be no

guarantee that a performance close to the best case shown in our plots will be

achieved� In fact� it is certain that sometimes the performance will approach

the worst case� with cell loss probabilities in the order of �� $�

Smoothing the cell stream over intervals larger than a frame will only

lead to improvements for smaller multiplexer bu�er sizes� For larger bu�ers

this will have no e�ect since the losses are caused by correlation e�ects on a

GOP time scale� These e�ects are hard to reduce without introducing large

delays� The delay requirements of the application will dictate the amount of

burstiness that can be reduced by bu�ering or smoothing�

����� Statistical multiplexing gain

Another question which often arises in ATM networks is whether there is

a gain in bandwidth by multiplexing a number of tra�c streams while pro�

viding a particular QoS� say a certain maximum cell loss rate� or� in other

words� which bandwidth is required for an individual tra�c stream to meet a

given QoS �see Kelly �������� In Figure ����� we give the bandwidth relative

to the average bandwidth of the video stream which is required for a single

stream to guarantee cell losses of less than ���� and ���� for a multiplexer

with a bu�er size of ��� cells versus the number of multiplexed sources�

Given the number of sources the required bandwidth is determined by

a bisection of the bandwidth interval ranging from the average bandwidth�

corresponding to the loss rate for a multiplexer load of � � ���� to the

��
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Figure ����� E
ective bandwidth �bu
er size� ��� cells�

peak bandwidth� corresponding to zero losses� The required bandwidth of

a single video stream� also known as e�ective bandwidth� decreases rapidly

from about two times the average bandwidth for �� multiplexed sources and

a maximum cell loss rate of ���� to about ��
 times for 
� sources� For

larger numbers of sources� the required bandwidth decreases more slowly� In

principal� the same behavior can be observed for the ���� loss curve� Garrett

and Willinger ������ obtain similar results for their starwars data set� It is

important to note that there is no linear decrease in required bandwidth�

This makes it di�cult to �nd simple approximations of this curve which are

necessary for CAC functions� Chou and Chang ������ report that they had

problems to apply standard methods to �nd an e�ective bandwidth formula

for video tra�c due to the presence of long�range dependence in the data

sets�

��



� Model validation by simulation

����� Cell losses

Now� we present the cell loss curves for multiplexed model traces under

moderate and high load conditions� We restrict ourselves to a small number

of diagrams since the behavior is essentially the same as in the single source

case apart from the fact that the change from frame� to GOP�dominated

behavior can be observed at bu�er sizes of about ��� cells and not at about

��� cells�

In Figure ����� we present the cell loss curves for �� multiplexed traces

for an o�ered load of � � ���� The I�frame�based histogram model leads to

a good approximation of the empirical dino trace losses whereas the GOP�

based model clearly overestimates the cell losses� This observation holds if

the load is small enough such that a bu�er of less than about ��� cells avoids

cell losses�

Figures ���� and ���� show the cell loss estimates for a variety of bu�er

sizes and a multiplexer load of � � ��� for models with discrete and contin�

uous marginal distributions� respectively� As in the single source case� the

histogram model can only be used for bu�er sizes left of the knee� The �rst�

order correlation models lead to a good approximation quality for a large

range of bu�er sizes� Only for very large bu�er sizes of several ten thousand

cells� higher�order models such as the scene�oriented or selfsimilar models

should be applied�
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Figure ����� Cell losses for �� histogram model traces �� � ����
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Figure ����� Cell losses for �� discrete GOP model traces �� � ����
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Figure ����� Cell losses for �� continuous GOP model traces �� � ����

����� Summary

The simulation results of the previous sections lead to a number of conclu�

sions concerning the selection criteria for video tra�c models� As expected�

the most important system property is the bu�er size� In other words� the sys�

tem memory capacity determines the correlation capabilities a video model

should have� In this context� we are able to identify three bu�er size inter�

vals� dominated by the periodic frame pattern� dominated by the GOP�level

correlations� transition from frame to GOP regime�

If bu�er sizes are smaller than the number of frames of one GOP times

the average frame size the cell loss and delay results are dominated by the pe�

riodic frame pattern and considerably larger than results which are based on

GOP size traces� i�e�� traces without that particular periodic pattern� In the

single source case� it is also possible to �lter out the periodic e�ects for bu�er

sizes smaller than the average GOP length �cf� Section ����� This e�ect� how�

��
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ever� cannot be expected in general since it depends on the particular GOP

pattern used to encode the sequence� Under the frame regime� histogram

models lead to good approximations of the cell loss and delay result of the

empirical traces� It is mandatory to model the periodic frame pattern but not

the GOP�by�GOP correlations� For moderate loads� the model parameters

should be computed from the I�frame size traces� whereas for high loads� the

GOP size traces should be used� The conclusions of Enssle ������ corroborate

our result that for small to moderate bu�er sizes the long�range dependence

e�ects have no in�uence on multiplexer cell loss results and hence have not

to be modeled�

If the bu�er becomes large enough to �lter out the periodic frame pattern

models can be based on GOP size traces and the level of complexity is consid�

erably reduced� On the other hand� it now becomes important for the model

to re�ect the GOP�level correlations� For a wide range of bu�er sizes� mod�

els which consider only lag�� correlations� such as �rst�order Markov chains

or autoregressive processes� are appropriate� Only for very large bu�ers� say

tens of thousands of cells� models with improved correlation capabilities have

to be applied�

The most complex models have to be applied for bu�er sizes at about the

change from frame to GOP regime� They have to include both the periodic

frame pattern and GOP�level lag�� correlations to obtain a good approxima�

tion quality�

If a model for the whole range of bu�er sizes is required� either selfsim�

ilar or scene�oriented type of models based on GOP size traces should be

considered� Then� one has to be aware of the fact that these models over�

estimate the cell losses for low tra�c intensities or multiplexer loads� The

average delays predicted by these models are less a�ected by varying load

conditions�

��
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� Application examples of the

models

Up to now� we used the VBR MPEG video models in simulation studies only�

In this chapter� we devote our attention to two examples indicating how easy�

to�obtain derivates of the histogram and the simple Markov chain model can

be used in combination with analytical methods� In both examples� we apply

algorithms to compute cell losses which are based on the discrete�time anal�

ysis approach of Tran�Gia and Ahmadi ������� In contrast to our simulation

studies� we base our models on the Bellcore starwars data set� since� due to

its large number of frames� the parameter estimation of the models becomes

more reliable� The �rst example� which we called frame�based analysis� shows

how a �uid �ow simulation of a bu�er with a single video source can be re�

placed by an analysis even if the model re�ects correlations over a few lags�

The second example� named cell�based analysis� shows how analytical meth�

ods can be used to study UPC�parameter dimensioning problems of VBR

video tra�c sources�

�




� Application examples of the models

��� Frame�based analysis

For our analysis� we consider a one�stage queuing system with a single video

tra�c source� The bu�er is of �nite length and the service time is constant�

Figure 
�� depicts the system and provides the most important system pa�

rameters�

D

video source bu�er

X B

output link

W

S

Figure 
��� Bu
er with a single video tra	c source

For system analysis� we make the following assumptions�

� The time is discretized into frame durations D� i�e�� the reciprocal of

the frame rate r� and synchronized to frame starts�

� All data is discretized into ATM cells carrying �� octets of payload� i�e��

the frame sizes� the bu�er content� and the amount of data transmitted

during a frame duration�

� Cells of a single frame are regarded as a �uid according to the approach

presented in Section ����

����� Analysis without GOP correlations

First� we analyze the system using a slightly modi�ed histogram model�

Instead of using the GOP size histogram and scaling factors� we directly use

��
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the frame size distributions of the I�� P�� and B�frames derived from the video

traces� Note that this model re�ects the GOP pattern but does not contain

any GOP�by�GOP correlations� We will use the term uncorrelated model to

refer to this model�

The following notation is used to characterize the system�

Xn � random variable for the number of cells in the nth frame�

B � random variable for the number of cells transmitted dur�

ing one frame duration D� in our case B is deterministic

and we denote the constant number of cells transmitted

by b�

Wn � random variable for the number of cells waiting in the

bu�er upon the arrival of the nth frame�

S � bu�er size�

The random variables Xn� B� and Wn follow discrete distributions xn�k��

b�k� and wn�k�� where� for instance� x�i� � Pr
	
Xn � i



�

Due to our �uid��ow assumption� we are able to simplify the computation

of the distribution of the bu�er content wn�k� considerably as compared to

standard un�nished work approaches such as� e�g�� by Tran�Gia and Ahmadi

������� The system evolution is determined by the following equation�

Wn�� � min fmaxfWn 	 Xn � b� �g� Sg � �
���

At �rst glance� our approach looks like a typical batch arrival process with

batch size of Xn� In contrast to the original method� however� we already

subtract the maximum amount of data which can be transmitted during a

frame duration b upon arrival of frame n� This has to be done due to the

�uid��ow assumption and the discretization of the system time into frame

durations� After the arrival of one frame as a batch of cells� we have to

subsume in one equation the behavior of the modeled system until the next

frame arrival� i�e�� equally spaced cells entering a bu�er which is served at a

constant rate� Integrating both arrival and service process over D� and taking

into account the content of the bu�er before the frame arrival as well as the

�
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limited bu�er size leads to Eqn� �
���� For illustration� Figure 
�� shows a

snapshot of the system evolution containing the three possible cases� If the

bu�er content plus the new video data minus the amount of data which can

be transmitted exceeds the bu�er size then cells are lost �left bar�� If more

data can be transmitted than the bu�er content plus arriving data then the

bu�er runs empty �center bar�� In all other cases the bu�er contains cells

and there are no losses during the frame duration �right bar��

Xn�� � b

t

bu�er empty

loss
W �t�

S

Xn � b

Wn Wn��

Figure 
��� Snapshot of the system evolution

Eqn� �
��� leads to the following recursion for the distribution of the

bu�er content�

wn���k� � 
S 	 
�  wn�k�� x�k�� ��k 	 b�! � �
���

Here� � denotes the discrete convolution� 
� and 
S are sweep operators�

and ��k 	 b� is the shifted Kronecker delta� They are de�ned as follows�

� Discrete convolution�

c�k� � a�k�� b�k� �

�X
j	��

a�k � j� � b�j�� �
�
�

��
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� Low sweep operator�


� a�i�! �

����
����
� � i � ��

�P
j	��

a�j� � i � ��

a�i� � i � ��

�
���

� High sweep operator�


S a�i�! �

����
����
a�i� � i � S�
�P
j	S

a�j� � i � S�

� � i � S�

�
�
�

� Kronecker delta�

��i� �

�
� � i � ��

� � otherwise�
�
���

Figure 
�
 provides a pictorial description of Eqn� �
���� In addition� Fig�

ure 
�� shows a diagram of the computation of the bu�er content distribu�

tion� This diagram constitutes the basic building block of the algorithms

presented in the following�

Assuming that the bu�er content distribution of the multiplexer con�

verges to a steady state� w�k� � limn��wn�k� is the solution of the �x�point

equation

w�k� � 
S 	 
�  w�k�� c�k�! � �
���

where

c�k� � x�k�� ��k 	 b�� �
���

Eqn� �
��� is the discrete�time analogue of the Lindley integral equation of

GI�GI��� S queuing systems �see Kleinrock ����
���
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�


�


S

���k 	 b�

wn���k�

xn�k�

wn�k�

Figure 
�
� Block scheme of the basic algorithm

In the following� we extend this basic algorithm to cope with arrivals

which do not follow a single distribution but a cyclic sequence of distribu�

tions which re�ects the GOP pattern of length N of MPEG video tra�c

streams� A single step of the iterative system description with the general

��
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S
�

x�k� ��k 	 b�

c �k�

w�k�

Figure 
��� Computation of the bu
er content distribution �basic algorithm�

distribution x�k� is now replaced by a sequence of N sub�steps with the dis�

crete distributions of the I�� P�� and B�frame sizes xj�k�� j � �� � � � � N � where

the order is determined by the GOP pattern of the empirical data set�

In case of stationarity� we obtain the following system of equations�

wj���k� � 
S 	 
�  wj�k�� cj�k�! j � �� � � � � N � �

w��k� � 
S 	 
�  wN���k�� cN �k�! � �
���

where cj�k� � xj�k�� ��k 	 b��

We determine the solution of this �x�point problem iteratively by ap�

plying the scheme shown in Figure 
�
� The following steps constitute the

algorithm�

��� Initialize w��k� with the distribution of an empty system�

i�e�� w���� � �����

��� Compute the system functions cj�k��

�
� Apply convolution and sweep operators 
� and 
S�

��
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. . .
S
� 
S
� 
S
�

x��k� ��k 	 b�

c��k� c
�k� cN �k�

w��k� w
�k� wN �k�

��k 	 b� ��k 	 b�x
�k� xN �k�

Figure 
�
� Computation of the bu
er content distribution �uncorrelated

model�

��� Repeat this operation for each system function �in total N times��

�
� If the convergence criterion is not met� go to Step �
��

The bu�er content distributions wj�k� are now used to compute the

cell loss probability Ploss� Since we have to consider the whole GOP the loss

probability is the average loss during a GOP duration divided by the average

GOP size

Ploss �
E L!

E Y !
�

PN
j	� E Lj !PN
j	� E Xj!

� �
����

where L �Lj� denotes the amount of cells lost during one GOP �frame�

duration� and Y �Xj� is the GOP �frame� size�

To determine the average amount E Lj ! of losses during a frame duration�

we have to consider all cases where

k � �S � i� 	 b i � �� � � � � S� �
����

with k cells arriving at a bu�er that contains i cells� In other words� cells are

lost if

k � �S � i� 	 b 	 �� � � � � xmax� �
����

���
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where xmax denotes the maximum frame size of all frames�

The average amount of losses is then computed by

E Lj ! �
SX
i	�

wj�i� �

��xmax�
S�i��bX
l	�

xj ��S � i� 	 b 	 l� � l

�� � �
��
�

����� Analysis with GOP�correlations

From the results of Chapter �� we concluded that the histogram model leads

only to good cell loss predictions if the multiplexer bu�ers are small� For

larger bu�ers� models including GOP�by�GOP correlations� such as the sim�

ple Markov chain model or the autoregressive model� clearly outperform

models without GOP correlations� Therefore we extend the model of the

previous section to include GOP�by�GOP correlations for a small number of

lags� We will use the term correlated model to refer to the model�

In addition to the notations introduced for the uncorrelated model we

use the following terms�

Xnj � random variable for the number of cells in the jth frame

of the nth GOP following the distribution xj�k� with

j � �� � � � � N �

Yn�h � random variable for the class of GOP n� h� where GOP

n is currently being processed by the algorithm�
The notion of GOP classes is identical to that of the scene�oriented model�

i�e�� the GOP class of a given GOP is the sequence number of the GOP

size histogram interval in which this particular GOP falls� To obtain M

GOP classes a histogram with M intervals is used� GOP classes have to

be introduced instead of actual GOP sizes to keep the model numerically

tractable�

For the correlated model we replace the frame sizes Xn by �h	���dimen�

sional vectors �Xn� Yn��� � � � � Yn�h�� where

x�k� t�� � � � � th� � Pr
	
X � k� Yn�� � t�� � � � � Yn�h � th



�

�
����
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This means that the current frame size depends on the GOP sizes of one or

more previous GOPs� For illustration see Figure 
��� Note� that for simpli��

cation the conditional probabilities are not computed for each frame of the

GOP but for each frame type�

. . .

. . .

. . . . . .

Xn� XnNXn� Yn�� � t� Yn�h � th

time

I P BBPIBPI

Figure 
��� Conditional frame size probabilities

To simplify the notation we de�ne t � �t�� � � � � th� to represent the cur�

rently considered conditions� for instance� x�k� t�� � � � � th� � x�k� t��

The conditional frame size distributions x

t�
j �k� are given by

x

t�
j �k� �

xj�k� t�P
k xj�k� t�

� �
��
�

Hence� we obtain a new set of equations which determine the evolution of

the bu�er content�

w

t�
j���k� � 
S 	 
�

h
w

t�
j �k�� x


t�
j �k�� ��k 	 b�

i
�

w

t�
� �k� �

X
t

q � w

t�
N���k� �
����

for j � �� � � � � N and t � f�� � � � �Mgh� Let N denote the GOP length� M the

number of GOP classes� and q the probability of the vector of conditions t�

The system of equations can be solved by an iteration as depicted in

Figure 
��� The operator in the hexagon is introduced to improve the read�

ability�
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Figure 
��� Computation of the bu
er content distribution �correlated

model�

Starting with a common bu�er content distribution for all cases at the

beginning of a GOP� we have to compute the iterations for each set of condi�

tions ti separately� Each of these sequences of iterations forms a row of the

computing scheme� At the end of the GOP� all these distributions have to

be aggregated to a single distribution by means of the weights qi� For h � ��

��
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Figure 
�� reduces to Figure 
�
�

The cell loss probability has to be computed as a weighted sum of the

loss probabilities on each path of Figure 
���

Ploss �
MhX
i	�

qi � p

ti�
loss �
����

with �see Eqn� �
�����

p

ti�
loss � �
����

�

NX
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����� Numerical results

In this section� we present cell loss results for both the uncorrelated model

and the correlated model with h � �� �� 
� The frame size distributions were

derived from the Bellcore starwars data set� i�e� N � ��� The number of GOP

classes M is 
� Table 
�� shows some statistical data of the video stream�

Table 
��� Statistical data of the starwars sequence�

Frame type Number Average Min Max CoV
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Figure 
�� shows the cell loss results for a bu�er size of ��� cells� The

o�ered load � is given by � � E X!�b� where E X! denotes the average frame

size of the whole sequence� For bu�ers of this size and smaller� all model

variants lead to approximately the same good prediction of the cell losses of

the trace�driven simulation� Therefore� as already concluded from the results

of Chapter �� it is su�cient to use simple histogram�based models in the

presence of bu�ers with a size in the order of the average frame size�

The situation is di�erent for larger bu�ers� Here� as depicted in Figure 
��

for a bu�er size of ���� cells� the modeling of the GOP�by�GOP correlation

becomes important� This is re�ected by the ranking of the model approxi�

mation quality� where the correlated model with h � 
 is several orders of

magnitude better than the uncorrelated model�

In Figure 
���� we �x the o�ered load at � � ��� and compute the cell

loss probabilities for a wide range of bu�er sizes� Only the model with h � 


leads to acceptable estimates of the trace�based cell losses up to a bu�er size

of about ��� cells� The predicted losses of the other models are accurate up

to a bu�er size of ��� cells and underestimate the losses for larger bu�er

sizes�

��




� Application examples of the models

���


����

��
 ��� ��
 ��� ��� ��� ��� ���

ce
ll
lo
ss
p
ro
b
a
b
il
it
y

o�ered load

starwars
h � 

h � �
h � �

uncorrelated

Figure 
��� Cell loss curves for a bu
er size of ��� cells

����

����

����

��
 ��� ��
 ��� ��� ��� ��� ���

ce
ll
lo
ss
p
ro
b
a
b
il
it
y

o�ered load

starw�
h � 

h � �
h � �

uncorrelated

Figure 
��� Cell loss curves for a bu
er size of ���� cells

���



��� Frame
based analysis

����

����

���


����

�� ��� ���� �����

ce
ll
lo
ss
p
ro
b
a
b
il
it
y

bu�er size  cells!

starwars
h � 

h � �
h � �

uncorrelated

Figure 
���� Cell loss curves for � � ���

����� Summary

In the above section� we presented an analysis technique which is capable to

make use of some models developed in Chapter 
� It is possible to consider the

di�erent frame size distributions� the cyclic GOP pattern� and the GOP�by�

GOP correlation for a small number of lags� Taking into account the results

of Chapter �� the cell loss prediction quality is as expected�

The implementation of the algorithm is simple but there are a number of

problems with respect to memory consumption and running time� Generally�

the iteration takes longer to converge if the bu�er size is increased or the

o�ered load decreased� In addition� for the correlated model the time to

converge is considerably longer than for the uncorrelated model� Another

di�culty that arises for the correlated model is the memory requirements

to store the conditional frame sizes� Even if we apply sophisticated storage

techniques the correlation order which can be used for experiments is clearly
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limited since the number of probabilities grows exponentially with the value

of h� Another subject which should be considered in greater detail in another

study is the convergence behavior of the algorithms� The problems listed

above are not speci�c to our model and to our tra�c but can generally be

found while applying this discrete�time analysis technique�

��� Cell�based analysis

In this section� we present an analytical approach for the dimensioning of

the GCRA for VBR MPEG video cell stream monitoring in ATM networks

�cf� Section ����
�� Again� the analysis technique is based on the discrete�time

analysis approach of Tran�Gia and Ahmadi ������� However� in contrast to

the previous section� we do not work on frame scale but on cell scale with

respect to the time discretization� This section generalizes the results of Rose

and Ritter ����
�� With the analysis provided� it is also possible to consider

a spaced video cell stream and not only a video stream where the frames are

transmitted as a back�to�back burst of cells�

����� UPC of video tra�c

As with other services� a video connection that has been accepted by the

CAC mechanism has to be monitored by the UPC to check whether it ful�lls

the tra�c contract negotiated with the network�

Unlike with other services� for video tra�c it is hard to determine the key

tra�c parameters� The only parameter which is available without di�culties

is the PCR of the coder adaptor to the ATM network� i�e� the transmission

capacity of the ATM adaptor� If a more detailed description of the cell stream

of the video connection is needed one has to know the video sequence in ad�

vance� but this will only be the case for movie broadcast services or video

data base retrievals� Video connections which consist of live video transmis�

sion� like broadcasts of sports events� will su�er from a lack of information

���
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about the cell stream�

One possibility to overcome this problem is the de�nition of video cate�

gories with di�erent safety bandwidth requirements� for example� categories

with respect to the frequency of scene changes or the set of tolerated camera

actions� But even if we would be able to compute a variety of parameters of

the video cell stream in advance� we have to decide which of these parameters

will be used for CAC and UPC�

The PCR is already standardized as source tra�c descriptor by the ITU�

T ������� To improve the estimates of CAC functions� it would be desirable

to know the Mean Cell Rate �MCR� of the tra�c stream� This tra�c de�

scriptor is useless in the case of video� however� since it cannot be policed

e�ciently by any UPC function due to the burstiness of this kind of tra�c�

Studies concerning MCR policing can be found in e�g� Ritter and Tran�Gia

����
� or Roberts ������� Therefore� the introduction of the Sustainable Cell

Rate �SCR� as source tra�c descriptor was discussed in the standardization

bodies� We investigate whether it is advantageous to use the SCR as control

parameter of video cell streams and how to dimension the required parame�

ters�

Several simulation studies were carried out considering the dimensioning

of UPC parameters for VBR video tra�c� Rathgeb ����
� examines the

behavior of leaky buckets and other policers for several video traces� He

concludes that leak rates which are close to the mean rate of the stream are

not practical since they require large bu�ers in the network and consequently

lead to large transmission delays� Smoothing at the source would only shift

the source of delay from inside the network to its edges� Reibman and Berger

����
� come to similar conclusions in their study� In addition� they note

that due to the large SCR which has to be chosen the multiplexing gain

for video sources will be much lower than expected� To overcome the UPC

dimensioning problems� Reininger et al� ����
� suggest a scheme for the

renegotiation of the tra�c parameters during connection time�
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����� Tra�c model

The basic idea of our model is to describe the coder output process by an

array of frame size distributions of the speci�c GOP pattern of a video se�

quence as in Section 
��� From the starwars sequence we will therefore obtain

a sequence of �� di�erent distributions� The only frame�by�frame correlation

information which is used in our model is the order of the frame size distribu�

tions given by the GOP pattern� The long�term dependences among frames

of consecutive GOPs� e�g� the correlations introduced by similar pictures of

one movie scene� seem to be less important in our case�

To sum up� the GOP pattern is the only correlation information which

is used for our model� To describe the cell stream produced by the ATM

adaptor of the MPEG coder� the following is assumed�

� a single�layer coder is used�

� the ATM adaptor and the transmission link have the same capacity�

� the ATM adaptor transmits the cells with a given intercell distance�

� the �rst cell of a frame is transmitted at the beginning of the frame�

This means that one frame at a time will arrive at the ATM layer� the pack�

etization takes place� and the ATM cells are transmitted with the maximum

rate of the adaptor taking into account the given spacing distance� In our

opinion� this way of transmission might not be optimal with respect to cell

loss due to cell discarding at the UPC� but it seems to be a realistic assump�

tion�

The modeled cell stream can be described by the following parameters�

� frame duration D� which is measured in cells and can be calculated

by D � B�r� where B denotes the maximum output rate of the ATM

adaptor in cells�sec and r denotes the frame rate of the video sequence

in frames�sec� Of course� the maximum frame size of the encoded

video sequence always has to be smaller than D cells�
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� intercell distance dcell� i�e�� each used slot is followed by dcell�� empty

slots� If dcell � �� the cells are transmitted back�to�back� The maximum

value of dcell is bD�xmaxc� where xmax is the number of cells of the

largest frame�

� frame size distributions x��i�� � � � � xN �i� for a sequence with a GOP of

N frames� which are sampled from real MPEG�coded video data�

Here� xj�i� denotes the probability that frame number j of a GOP has

a length of i cells�

In Figure 
���� the cell streams of a simple �IP��GOP sequence are shown

as an example� i�e� N � �� with frame size distributions x��i� and x
�i�� Every

D � �
 cells a new frame is starting� where its size in cells is computed from

its distribution� Figure 
��� �a� shows a cell stream with dcell � �� and �b� a

cell stream with dcell � ��

I IP

X X

D

I IP

D

1 2
�a�

�b�

Figure 
���� Examples of the model cell stream�
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����� Cell loss analysis

As in Section 
��� the cell loss estimation algorithm based on the discrete�

time analysis of the GI �X��D�� � S queuing model presented in Tran�Gia

and Ahmadi ������� This analysis technique was applied in H�ubner ������ to

analyze the GCRA if the input tra�c is assumed to follow a renewal process�

An extension which deals with ON�OFF sources was presented in Ritter and

Tran�Gia ����
�� Based on this approach� we develop an algorithm to cope

with the cyclic occurrence of frames of di�erent types in MPEG coded video

sequences�

The current state of the GCRA�Ts� �s� is described by a discrete�time

random variable Z�t�� which represents the remaining time until the next cell

is expected to arrive �see H�ubner �������� A cell arriving at time t� seeing

the GCRA in state Z�t�� � i is considered to be conforming for i � �s�

otherwise non�conforming�

For the presentation of the algorithm� the following notation is used�

Xj � discrete random variable for the size of frame number j

in the GOP measured in cells�

Z�j�k � Z�t� just before the beginning of the k�th slot in frame

number j in the GOP�

Z�
j�k � Z�t� just after the beginning of the k�th slot in frame

number j in the GOP�

The distributions of Z�j�k and Z�
j�k are z�j�k�i� and z�j�k�i�� respectively� The

frame sizes Xj are assumed to follow renewal processes with distributions

xj�i��

Figure 
��� shows a snapshot of the system evolution during the arrival

of frame j� Each arriving cell increments the remaining time Z�t� by Ts�

If Z�t� is less than �s arriving cells are conforming� If it is larger arriving

cells are rejected or tagged� In our example the �fth cell is rejected due to

violation of the limit �s�
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Figure 
���� Snapshot of the system evolution

Let us consider a particular frame in the GOP� say frame number j and

assume a frame size of dD�dcelle cells� This corresponds to a frame which

has the maximum possible size to be transmitted with an intercell spacing

of dcell cells�

If k modulo dcell equals �� i�e�� a cell is arriving at slot k then Z�
j�k is

determined from Z�j�k by

Z�
j�k �

�
Z�j�k � Z�j�k � �s�

Z�j�k 	 Ts � Z�j�k � �s�
�
����

Otherwise� Z�
j�k is computed by

Z�
j�k � Z�j�k� �
����

According to Eqn� �
����� the corresponding distributions can be obtained

��
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by

z�j�k�i� �

���
���
� � � � i � �s�

z�j�k�i� � �s � i � Ts�

z�j�k�i� 	 z�j�k�i� Ts� � Ts � i � Ts 	 �s �
����

for �s � Ts� For �s � Ts the following holds�

z�j�k�i� �

���
���
� � � � i � Ts�

z�j�k�i� Ts� � Ts � i � �s�

z�j�k�i� 	 z�j�k�i� Ts� � �s � i � Ts 	 �s� �
����

In case of Eqn� �
����� i�e� no cell arrival in slot k �k modulo dcell 
� ��� we

obtain the distributions z�j�k�i� by

z�j�k�i� � z�j�k�i�� �
��
�

The computation of Z�j�k�� is driven by the decrease of Z�t� until it reaches

zero� i�e��

Z�j�k�� � maxf�� Z�
j�k � �g� �
����

Therefore� the distributions are determined by

z�j�k���i� �

���
���
z�j�k��� 	 z�j�k��� � i � ��

z�j�k�i 	 �� � � � i � Ts 	 �s�

� � i � Ts 	 �s�

�
��
�

The next step is the computation of the state of the GCRA�Ts� �s� at the

beginning of the next frame boundary� Since we computed Z�j�k assuming a

frame size equal to dD�dcelle cells� we now have to take into account the

di�erent possible frame sizes� The state of the GCRA�Ts� �s� just before the

frame boundary in dependence of the size m of the current frame is given by

Z�j�D�j � maxf�� Z�j�m� � �D �m��g� �
����
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if we de�ne m� � �m� �� � dcell 	 �� The reason for this is that there are no

cell arrivals in the last �D �m�� slots of the frame period� We obtain the

corresponding distributions by

z�j�D�m�i� �

�������
�������

D�m�P
l	�

z�j�m��l� � i � �

z�j�m��i	 �D �m��� � � � i � Ts 	 �s � �D �m��

� � Ts 	 �s � �D �m��

� i � Ts 	 �s

�
����

Using Z�j�D�m� the system state just before the next frame boundary is given

by

Z�j���� � Z�j�D�Xj � �
����

where �j	�� is computed modulo N � To obtain z�j�����i�� we have to multiply

the system state distributions just before the frame boundary z�j�D�m�i� by

the probabilities of observing a frame of size m for the frame type j� This

leads to the following equation�

z�j�����i� �

dD�dcelleX
m	�

xj�m� � z�j�D�m�i�� �
����

Now� the distributions in equilibrium can be derived by applying iteratively

the equations presented above with respect to the GOP used and the current

slot in each frame�

Given the equilibrium system state distributions just before the cell

arrivals� the probability pj�k� to observe a non�conforming cell at slot k

�k � �� � � � �D � �� in a frame of type j is

pj�k� �

Ts��sX
i	�s��

z�j�k�i� for j � �� � � � � N� �
�
��

To derive the probability Pj to observe a non�conforming cell in a given frame

in the GOP� the pj�k� values have to be multiplied with the complementary

��
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cumulative probability distribution xcj�i� of the frame size distribution xj�i��

This has only to be done for values of k� where cell arrivals are possible�

i�e� k modulo dcell � �� Furthermore� a normalization is required�

Pj �

dD���dcelleP
k	�

pj�k � dcell� � x
c
j�k�

dD���dcelleP
k	�

xcj�k�

for j � �� � � � � N�

�
�
��

The overall cell loss probability can now be obtained by

Ploss �

NP
j	�

Pj � E Xj!

NP
j	�

E Xj!

� �
�
��

����� Numerical results

Parameters and con�guration

In this section we present numerical results based on simulation and analysis

to show the e�ectiveness of SCR monitoring of video cell streams and point

out some interesting properties for dimensioning the UPC function� We focus

on four ATM adaptor capacities� �
� Mbps� �
 Mbps� 
��
 Mbps� and 
� Mbps�

For the considered starwars sequence� this leads to the frame durations D

and minimum �Tpeak� and maximum values �Tmean� for the SCR parameter

Ts shown in Table 
���

It is important to note that all simulation results were produced using

directly the sequence of the frame sizes of the starwars movie and not by

means of the tra�c model�
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Table 
��� ATM adaptor and SCR parameters

Capacity D Tpeak Tmean

�
� Mbps ����� 
� 
��

�
 Mbps �
�� �
 ���


��
 Mbps 
��
 � ��


� Mbps 

�� � ��

Simulation study

We �rst give simulation results for a capacity of B � �
� Mbps to show

how the parameters Ts and �s a�ect the cell loss probability� Figure 
��


depicts the loss curves for Ts ranging from 
� to ���� where �s is measured

in multiples of the frame duration D�

�s in frame durations
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Figure 
��
� Dependence of cell rejection probability on Ts �B � �
� Mbps�
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For small values of Ts� the losses decrease very fast� whereas for values

of Ts larger than �� a knee in the curve can be observed� The knee is always

located at a value �s for which the UPC function tolerates bursts which have

the maximum frame length of the video sequence� If a certain value of �s

is reached� e�g� �s � 
��D for Ts � ��� the loss probability drops to zero�

i�e�� there are no losses as soon as the parameter �s is large enough to force

the UPC function to accept consecutive bursts of several frames� We prove

this assumption by using only the frame data of GOPs with a high mean

frame length� i�e� worst case GOPs� for the simulation and obtain the same

drop�down locations of the curves� For all values of Ts in Figure 
��
� small

loss probabilities can be achieved� It should be noted� however� that already

for Ts � �� a bu�er capacity in the network elements of about ���� cells is

required to store the burst of this single connection that is tolerated for a cell

loss probability of less than ����� Generally� bu�er sizes in ATM networks

are in the order of ��� cells� Therefore� the value Ts should be chosen to be

close to Tpeak to obtain realistic values for the required bu�er size� e�g� for

Ts � �� a bu�er size of about 
�� cells is needed�

Figure 
��� shows that the SCR owns a certain scalability property� The

cell loss curves remain almost identical if the parameters Ts and �s are scaled

by the same factor as the adaptor capacity� In Figure 
���� two groups of

curves for Ts � �� and Ts � ��� are depicted� We start with a capacity

of �
� Mbps and use the scaling factors ���� ��
� and ���
� i�e�� Ts � �� for

�
� Mbps� Ts � 
� for �
 Mbps� and Ts � �
 for 
��
 Mbps� To allow for a

comparison of these curves� the horizontal axis has to be scaled accordingly�

Note that the video sequence which was used to create the input for the UPC

function was not scaled�

Figure 
��� shows that the curves of the two groups are matching well�

In general� the curves are matching better for large values of Ts�

By means of this scalability property� the SCR parameters for a large va�

riety of adaptor capacities can easily be calculated by multiplying a constant

if the curve for a single capacity is known�
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�s in frame durations
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Figure 
���� Scalability properties of policing parameters

Analytical results

Now� we investigate the accuracy of the analysis presented in Section 
���
�

Generally� the results are of exact nature if the frame sizes in the GOP follow

renewal processes� In reality� however� correlations can be observed�

In Figure 
��
� the overall cell loss probability for di�erent choices of dcell

is plotted over �s to verify the accuracy of our analysis� We use an adaptor

capacity of 
� Mbps and a SCR with Ts � �
� The relative di�erence between

the analytical and simulation values is always smaller than �$�

Since the accuracy does not depend on the choice of the intercell distance

�cf� Figure 
��
� we use dcell � � for the following numerical examples� Fur�

thermore� loss curves for I�� P�� B�frames only� as well as for all frames are

shown�

In Figure 
���� results for the same adaptor capacity of 
� Mbps and a

higher SCR with Ts � �� are presented� A relative di�erence of �$ can also
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Figure 
��
� Approximation accuracy �Ts � �
� B � 
� Mbps��

be observed for the loss curves of the single frame types I� P� and B� This leads

to the conclusion that our simple video coder output model is appropriate

for the estimation of the cell losses for this type of UPC function�

For the parameter set of Figure 
���� the B�frames always experience less

losses than the P�frames� and the P�frames less losses than the I�frames� This

seems to be obvious since the mean frame size of the B�frames is smaller than

the one of the P�frames� and the mean frame size of the P�frames smaller

than the one of the I�frames�

However� as presented in Figure 
���� crossing of the loss curves of dif�

ferent frame types is possible� This behavior depends on the long�term cor�

relations of the video sequence used� Moreover� there is no crossing of the

curves� if the value of Ts is chosen to be close to Tpeak and �s can be chosen

small� too� If the value of �s is larger than about two frame durations the

analytical results underestimate the cell losses� since the MPEG model does

not take into account GOP�by�GOP correlations of the video sequence� This
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Figure 
���� Approximation accuracy �Ts � ��� B � 
� Mbps� dcell � ��

e�ect is not problematic� however� since large values of �s would lead to large

bu�ers within the network� For useful values of Ts and �s the analysis is very

accurate �cf� Figures 
��� and 
�����

Figure 
��� shows the curves for a �
� Mbps ATM adaptor and a value

of Ts � 
�� The behavior of the curves is similar to that of Figure 
����

����� Summary

The results show that the analysis using this simple model is very accurate

compared to the simulation results based on real MPEG video data� A minor

drawback of the analysis technique is that the computation time depends on

the frame duration D� i�e� the ATM adaptor capacity� Large capacities lead

to time consuming computations� For all parameter sets considered in this

section� no numerical problems have occurred� In a number of cases� the

analysis took considerably longer than the simulation� However� for large
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Figure 
���� Approx� accuracy divergence �Ts � ��� B � 
� Mbps� dcell � ��

link capacities this can be avoided if we make use of the scalability property

of the SCR parameters�

As far as the dimensioning of the GCRA parameters Ts and �s is con�

cerned� the analytical and simulation results lead to several conclusions� To

deal with reasonable bu�er sizes of the network elements� it is necessary to

keep the parameter Ts close to the PCR of the video sequence considered� In

this case� both the required bu�er can be kept small and small values of �s

can be achieved� The parameter �s should always be chosen at least as large

as the maximum frame size of the video sequence times Ts to obtain small

loss probabilities�

Unfortunately� the loss curves show that the I�frames which contain the

most important information of the MPEG frames experience higher losses

than the other frame types� Discarding of cells on a frame�type basis could

therefore lead to an improvement of the video quality �see Ramanathan et al�

����
���

���



��� Cell
based analysis

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

�s in frame durations

ce
ll
re
je
ct
io
n
p
ro
b
a
b
il
it
y

��� ��
 ��� ��
 ���

����

����

����

���


�s in frame durations

ce
ll
re
je
ct
io
n
p
ro
b
a
b
il
it
y

��� ��
 ��� ��
 ������ ��
 ��� ��
 ������ ��
 ��� ��
 ������ ��
 ��� ��
 ������ ��
 ��� ��
 ������ ��
 ��� ��
 ������ ��
 ��� ��
 ���

all frames
I�frames
P�frames
B�frames
simulation

Figure 
���� Cell rejection analysis �Ts � 
�� B � �
� Mbps� dcell � ��

For video sequences with rapidly changing scene contents like action

movies or sports events� the SCR generally will lie close to the PCR if �s is

chosen reasonably� This implies a poor multiplexing gain� For sequences like

video conferencing or video telephony� however� the SCR can be dimensioned

remarkably lower than the PCR due to minor changes in the scene content�

The results presented in this section are based on the a priori knowledge

of the tra�c descriptor of the video source� In real systems� it will be dif�

�cult to determine the exact parameters for video tra�c which have to be

negotiated at connection set up� In most cases� it will even be impossible

for the user to in�uence the coding parameters in order to obtain a certain

descriptor�
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� Conclusion

This monograph was concerned with the modeling of VBR MPEG video and

the impacts of this kind of tra�c on ATM�based communication networks�

After a review of the MPEG coding standard and the basic principles

of the ATM technology� we presented a thorough statistical inference of the

frame and GOP �Group of Pictures� size traces of more than ten half�hour

MPEG���encoded video sequences� where GOP size is de�ned as sum of sizes

of a number of consecutive frames� For comparison� the Bellcore Star Wars

MPEG data set was also analyzed since it is often used as a benchmark

sequence in video modeling literature� A great deal of work was spent to

examine the correlation structure of MPEG frame and GOP size sequences�

The main results are as follows�

� The frame size traces inhere a periodic pattern due to the GOP�based

encoding�

� The GOP size traces show considerable positive correlation over the

�rst few hundred lags�

� There is a strong indication of long�range dependence for almost all

sequences�

In other words� the correlation properties change fundamentally with the

time scale� As a consequence� the memory capacity of the system to be

��




� Conclusion

examined� in our case the size of the ATM switch bu�ers� will be an important

model selection criterion�

The presence of time�scale�dependent correlation characteristics induced

the development of a layered modeling approach� Only then� the correlation

e�ects can be decoupled in order to create simple and transparent but yet

accurate models� We therefore modeled the GOP size process and derived the

frame sizes from the GOP sizes based on the GOP pattern� As an alternative�

the I�frame size process was modeled and the remaining frame sizes of a

GOP were generated from the size of the leading I�frame� Since we intended

to provide and compare MPEG video tra�c models for a wide range of

system parameters and analysis techniques� we discussed the properties and

parameter estimation of the following models�

� histogram model�

� simple Markov chain model�

� scene�oriented model�

� autoregressive model�

� selfsimilar model�

These models represent a large part of the currently applied tra�c model�

ing approaches� The models are of di�erent correlation complexity and the

marginal distributions of the generated samples are either discrete or con�

tinuous� All models were validated from the statistical view point and with

respect to their accuracy in predicting performance measures� such as cell

loss and cell delay at switch bu�ers� In addition� possible problems of the

model parameter estimation were outlined�

In the course of the simulation study� we discovered that the system

behavior is governed by two regimes which can be clearly separated� For

small bu�ers� i�e�� in the order of the average frame size of the trace� the

system behavior is dominated by the periodic GOP pattern� In this case�

���



it is su�cient to use the histogram model which contains no GOP�by�GOP

correlations� If the bu�er size is large enough to �lter out the periodic pattern

the GOP correlations play the most important role� Then� the simple Markov

chain model or the autoregressive model should be applied� Only if the bu�er

sizes are huge� i�e�� tens of thousands of cells� the models with the most

complex GOP correlation structure� such as the scene�oriented model or the

selfsimilar model� should to be used� In addition� we found that� under most

load conditions� the GOP�based models outperform the I�frame�based models

in terms of accuracy�

Another important aspect� which was considered by the simulation study�

is the multiplexing of several MPEG video tra�c streams� A number of

problems were identi�ed which occur due to the periodic GOP pattern and

which might lead to performance degradation and unfairness�

To support the use of the presented models in performance analysis work�

two detailed examples were provided� The �rst example consists of a discrete�

time analysis on frame level� Algorithms were developed for the estimation of

cell losses for modeling approaches with and without GOP level correlations�

The second example shows that a discrete�time analysis on cell level can be

used to determine the parameters for the usage parameter control of a VBR

MPEG video cell stream�

In the introduction� we expressed our intention to provide tra�c en�

gineers with models for VBR MPEG video tra�c in a scale that can be

handled� In general� it is possible to �nd such models at the cost of a limited

range of applications� In our opinion� however� a single video model for all

purposes is neither necessary nor useful�

We close this monograph with a bon mot of George Box emphasizing

that modeling should never be an end in itself but an aid to understand our

complex world�


All models are wrong but some of them are useful��
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Appendix

The following chapters provide the de�nition of statistical terms and an out�

line of statistical methods used in the main part of this monograph� Some

paragraphs repeat fundamental de�nitions to keep the monograph as selfcon�

tained as possible� Most of the de�nitions are from Law and Kelton �������

However� the subsections about selfsimilarity and parameter estimation of

selfsimilar processes o�er information which is not widespread at the mo�

ment� One of the few textbooks on selfsimilar processes and their parameter

estimation is Beran �������

For the remainder of the appendix� we use the following notational con�

ventions� Finite time series of length N � e�g� obtained from measurements�

are denoted by fxt � t � �� � � � �Ng � Stochastic processes are denoted by

fXt � t � Zg � In both cases� we omit the index set if possible� A letter with

a hat indicates an estimator� For instance� b	 denotes the estimator of the

mean 	�

���
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A� De	nitions and methods for

statistical inference

A��� Summary statistics

There is a large number of sample estimates which can be used to characterize

the given data set fxtg � In our work� we make use of the following�

� Sample mean �measure of central tendency��

b	 �
�

N

NX
t	�

xt� �A���

� Sample variance �measure of variability��

b

 �
�

N � �

NX
t	�

�xt � b	�
� �A���

� Sample coe�cient of variation �alternative measure of variability��

bcv �
b
b	� �A�
�

�
�



A� De�nitions and methods for statistical inference

� Sample peak�to�mean ratio �measure of burstiness��

bb �
maxt xtb	 � �A���

A��� Histograms

For a continuous data set� a histogram is a graphical estimate of the density

function corresponding to the distribution of the samples xt� To compute

a histogram� we break up the range of values covered by the data set into

k disjoint adjacent intervals  b�� b���  b�� b
�� � � � �  bk��� bk� where the interval

width %b � bi � bi�� is constant� The histogram is de�ned as the function

h�x� �

��
��
� if x � b��

hj�%b if bj�� � x � bj for j � �� �� � � � � k�

� if bk � x�

�A�
�

where hj is the proportion of the samples falling into the interval  bj��� bj��

The value %b should be varied until a �smooth� histogram is obtained�

For the statistical analysis and the estimation of the model parameters�

we set b� � mint xt� bk � maxt xt� and %b � �bk � b���k� If necessary� each

interval is related to a frame or GOP size si� which is de�ned as the average

size of the samples that lie in the interval  bi��� bi��

If the histogram is used for matching a model distribution to the data set

with emphasis on the correct matching of the tail� then both the histogram

and the model probability density function should be plotted in log�scale

�Figure ����� Otherwise� di�erences in the tails may not be identi�able� In

addition� histogram intervals� which contain less than say 
 samples� are not

considered for the matching due to the reduced statistical signi�cance of

these intervals�

�
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A��� Model distributions

A����� Uniform distributions

The probability density function of the uniform distribution U�a� b� is given

by

f�x� �

�
�

b� a
if a � x � b�

� otherwise�
�A���

Its mean is �b� a����

A����� Normal distributions

The probability density function of the normal distribution N�	N � 



N � is

given by

f�x� �
�p

�


N
exp

�
��x� 	N �


�

N

�
�A���

with mean 	N and variance 

N � There is no closed form of the normal

distribution function�

For a given data set� the MLE �maximum likelihood estimator� for the

mean is b	N � b	 and the MLE for the variance is b

N � �N � ���N � b

�

Figure A�� depicts the normal and lognormal probability density func�

tions �tted to the dino GOP size trace� A logscale plot of the same functions

can be found in Figure ��
�

We generate a N�	N � 



N � distributed random variable X by means of

two U��� �� distributed random variables U and V applying the method of

Hoover and Perry������ p� �����

x �
�p

�� log u sin �
v
�
� 
N 	 	N � �A���

�
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Figure A���� Normal and lognormal density functions

A����� Lognormal distributions

The probability density function of the lognormal distribution LN�	L� 



L�

is given by

f�x� �

��
��
�

x
q

�


L

exp

�
��log x� 	L�


�

L

�
if x � �

� otherwise

�A���

with mean exp�	L� 	 

L�� and variance exp�	L� 	 

L
�
exp�

L�� �

�
� There

is no closed form of the lognormal distribution function�

For a given data set� the MLE for 	L is b	L � �
PN

t	� log xt��N and the

MLE for 

L is b

L �  
PN

t	��log xt � b	L�
!�N �

A��� Q�Q plots

Let F �x� denote the distribution function of a continuous random vari�

able� For � � q � � � the q�quantile of F �x� is de�ned as the value

�
�



A��� Markovian order

xq solving F �xq� � q� Let qi � �i � ��
��N for i � �� �� � � � � N � i�e��

� � qi � �� For any continuous data set� a quantile�quantile �Q�Q� plot

is a graph of the qi�quantiles of a model distributions function bF �x�� i�e��

xmodel
qi � bF���qi�� versus the qi�quantile of the sample distribution function

&FN �x�� i�e�� xsample
qi � &F��

N �qi��

If bF �x� is equal to the true underlying distribution F �x� and if the sample

size N is large� then j bF �x� � &FN �x�j will be small and the Q�Q plot will be

approximately linear with an intercept of � and a slope of � �cf� Figures ��


and �����

For normal and lognormal distributions� the inversion of the distribution

is mathematically intractable� In both cases we use Riemann sums of the

probability density functions bf�x� to obtain approximations of the integrals

necessary to solve qi �
R xqi
��

bf�x�dx�

The estimation of the sample qi�quantiles is simple� First� we sort fxtg

in ascending order and obtain fxsortedt g � Now� the qi�quantile of &FN �x� is

given by xsortedi �

A��� Markovian order

A process fXtg has a Markovian order p �p � �� �� �� � � � � if

Pr
	
Xt � jjXt�� � it��� � � � � X� � i�



�

� Pr
	
Xt � jjXt�� � it��� � � � �Xt�p � it�p



�

�A����

In the coding theory literature� we �nd several methods to estimate the

Markovian order of a given sequence or time series� We focus on the method

of Merhav et al� ������ which is based on estimating the pth�order empiri�

cal entropy H�qpx� of a time series fxtg � Before we are able to apply their

method� we have to convert our frame or GOP size time series fytg into a

series of discrete states as follows� Given a number M of states of the Markov

�





A� De�nitions and methods for statistical inference

chain� the converted samples are determined by

xt �

��
��
� if yt � mint yt��

yt �min
t
yt

max
t

yt �min
t
yt
�M

�
otherwise�

�A����

Let A � f�� � � � �Mg and st � �xt��� xt�
� � � � � xt�p� � Ap with � � t � N �

We denote by ��xt� u� st� s� the indicator function for xt � u and st � s with

u � A and s � Ap�� Now let

qpx�u� s� �
�

N

X
t	�

N��xt� u� st� s�� �A����

qpx�s� �
X
u�A

qpx�u� s�� �A��
�

qpx�ujs� �

�
qpx�u� s��qpx�s� if qpx�s� � ��

� if qpx�s� � ��
�A����

We de�ne the pth�order empirical entropy as follows�

H�qpx� � �
X
s�Ap

qpx�s�
X
u�A

qpx�ujs� log
 q
p
x�ujs�� �A��
�

Merhav et al� ������ use H�qpx� to construct Markovian order estimators

which are based on the assumption that an upper bound on the order exists�

Since we cannot guarantee this behavior for our empirical video sequences�

we give an interpretation of the H�qlx� curve �� � l � lmax� for a number

of values M �cf� Figure ���� instead of estimating the Markovian order� A

large decrease of the empirical entropy from l to l 	 � indicates that the

model accuracy will be considerably improved if its order is increased from

l to l 	 �� On the other hand� a small decrease indicates that increasing the

model order will only lead to minor improvements�

�
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A�	� Correlations
 spectra
 and periodograms

A�
��� De�nitions for stochastic processes

The autocorrelation coe�cient �k of fXtg for lag k �k � Z� is de�ned by

�k �
E �Xt � 	��Xt�k � 	�!




�A����

with mean 	 � E Xt! and variance 

 � Var Xt!� The curve obtained for

several lags is known as autocorrelation function �ACF��

The spectral density f��� of fXtg � also referred to as spectrum� is de�ned

by

f��� �
�

�


�X
k	��

�k exp�i�k� �A����

with � �  �
�
!�

A�
��� De�nitions for empirical data sets

The sample autocorrelation coe�cient b�k of fxtg for lag k � k � �� �� � � � � N�

is de�ned by

b�k �
�

N

N�kX
t	�

�xt � b	� � �xt�k � b	�b

 � �A����

The sample periodogram I��� is given by

I��� �
�

�
N

�
�
�

NX
t	�

�xt � b	� cos�t

�

	

�
NX
t	�

�xt � b	� sin �t

�
��� �A����

with � �  �
�
!�

For a long time series fxtg the computation of b�k with Eqn� �A���� or

I��� with Eqn� �A���� can be very time�consuming� We therefore exploit the

fundamental relationship of fxtg � fb�kg � and I��� depicted in the following

diagram�

�
�
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�

�

�

�

� �

Eqn� �A���� Eqn� �A����

autocorrelation fct� fb�kg periodogram I���

time series fxtg F ���
F

F��

F

F��

F denotes the discrete Fourier transform of fxt � t � �� � � � � Ng de�ned by

fykg � F fxtg ��k� �

NX
t	�

xt exp�i�kt� �A����

and F�� the inverse of the Fourier transform de�ned by

fxtg � F��
fykg

��t� �
�

N

NX
k	�

yk exp��i�tk� �A����

with �k �  �
 � �k � ��!�N� k � �� � � � � N � I��� is derived from F ��� by

I��� � jF ���j
� �A����

This leads to further alternatives estimating I���� i�e��

I��� �
�

�


N��X
k	�
N���

b�k exp�i�k� �A��
�

�
�

�
N

�����
NX
t	�

xt exp�i��

�����



� �A����

All F and F�� calculations can be carried out using FFT �Fast Fourier

Transform� techniques which speed up the computation considerably� For

instance� we did not compute fb�kg by Eqn� �A���� but via I����

�
�
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A��� Selfsimilarity

A����� De�nition

The most common way to de�ne selfsimilarity of a process fXt � t � Zg

is by means of its distribution� if fXatg and aH fXtg have identical �nite�

dimensional distributions for all a � �� then fXtg is selfsimilar with param�

eter H �see Taqqu �������� In our case� however� we need a de�nition which

is more related to the properties of time series and which is more appropri�

ate for the development of estimators for the selfsimilarity parameter H �see

Willinger et al� ����
���

Let fXt � t � �� �� �� � � � g be a covariance stationary stochastic process

with mean 	� variance 

� and autocorrelation function �k� k � �� In partic�

ular� we assume that fXtg has an autocorrelation function of the form

�k � k��L�k� as k
�� �A��
�

where � � � � � and L is slowly varying at in�nity� For simplicity�

we assume that L is asymptotically constant� For each m � �� �� � � � � let

fX

m�
t � t � �� �� � � � g denote the process obtained by averaging the original

process fXtg over non�overlapping blocks of size m� i�e� fX

m�
t g is given by

X

m�
t � �X
t���m 	 ��� 	Xtm����m�

A process fXtg is called �exactly� second�order selfsimilar with selfsim�

ilarity parameter H � � � ��� if� for all m � �� �� � � � � 


X�m� � 

m���

and

�

m�
k � �k �

�

�

h
�k 	 ��
H � �k
H 	 jk � �j
H

i
� k � ��

�A����

where f�

m�
k g denotes the autocorrelation function of fX


m�
t g �

A process fXtg is called �asymptotically� second�order selfsimilar with

selfsimilarity parameter H � �� ��� if� for all k large enough�

�

m�
k 
 �k as m
�� �A����

�
�
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In other words� fXtg is second�order selfsimilar if the corresponding aggre�

gated processes fX

m�
t g are the same as fXtg or become indistinguishable

from fXtg at least with respect to their autocorrelation functions�

A����� Properties of selfsimilar processes

The following properties of selfsimilar processes are equivalent�

� Hurst e�ect� The rescaled adjusted range statistic �see section B�����

is characterized by a power law� E R�m��S�m�! � a�m
H as m 
 �

with ��
 � H � ��

� Slowly decaying variances� The variances of the sample mean are

decaying more slowly than the reciprocal of the sample size� i�e�




X�m� � a
m


H�
 as m 
 �� with ��
 � H � �� As a consequence�

classical statistical tests and con�dence intervals lead to erroneous re�

sults�

� Long�range dependence� The autocorrelations decay hyperbolically ra�

ther than exponentially� This implies a non�summable autocorrelation

function
P

k �k � �� This implies that even though the �k�s are indi�

vidually small for large lags� their cumulative e�ect is important�

� ��f�noise� The spectral density f��� obeys a power law near the origin�

i�e� f��� � a��
��
H � as �
 �� with ��
 � H � ��

The constants ai are �nite� positive� and independent of m or �� respectively�

In contrast to the above properties� short�range dependent processes� i�e�

H � ��
� show the following characteristics�

� 


X�m� � a�m

���

� � �
P

k �k ���

� f��� at � � � is positive and �nite�

���



B� Stochastic processes

B��� White noise processes

A stochastic process fXtg is called white noise process� in short white noise�

if the samples Xt form an independent and identically distributed �i�i�d��

sequence of random variables� It is completely characterized by the arbitrary

but �xed distribution of the Xt�

The spectrum of the white noise process is given by

f��� � � �B���

with � �  �
�
!�

B��� Markov chains

B����� De�nition and characteristics

We de�ne a Markov chain as a discrete�time Markov process with a discrete

state space� We assume an irreducible homogeneous Markov chain with a

�nite state space f�� � � � �Mg and positive recurrent states� These assump�

tions are achieved for our Markov models by construction� This Markov chain

fXtg is characterized by its one�step transition matrix P �  pij ! containing

���



B� Stochastic processes

the conditional probabilities

pij � Pr
	
Xt � jjXt�� � i



� with i� j � f�� � � � �Mg� �B���

If the Markov chain is also aperiodic there exists a steady�state distribution

� �  
�� � � � � 
M ! where 
i denotes the probability that the Markov chain is

in state i in equilibrium� The vector � is given by the solution of

� � �P�
X

� � �� �B�
�

The above de�nition can be generalized to pth�order Markov chains by appro�

priately rede�ning the state space� For instance� we can describe a �nd�order

Markov chain by the transition probabilities of state pairs of the process

fXtg in the following way�

p
i�j�
j�k� � Pr
	
Xt � kjXt�� � j�Xt�
 � i



� �B���

In the remainder of this section we focus on �rst�order Markov chains but

the results can easily be applied to higher�order Markov chains� For the

modeling of the frame or GOP processes it is necessary to relate every state

of the Markov model to a particular frame or GOP size denoted by si with

i � f�� � � � �Mg� In other words� every time the Markov state enters state i a

frame or GOP of size si is generated� The Markov model is fully characterized

by the transition matrix P and the size vector s �  s�� � � � � sM !� The mean

and variance of this process are given by

	 � � � sT � 

 �
X

� � diag�s�
 � 	
 �B�
�

where diag�s� denotes a square diagonal matrix with diagonal s� The corre�

lation coe�cient for lag k is obtained by

�k �
�





hX
� � diag�s� �Pk � diag�s�� 	


i
� �B���

���
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B����� Parameter estimation

There are several methods to determine the transition probability matrix� We

focus on the most popular approach� to determine maximum likelihood esti�

mates of the transition probabilities as suggested by e�g� Billingsley �������

The main disadvantage of this method is the number parameters involved

to describe the model� Therefore Heyman et al� ������ suggest to use the

approach of Jacobs and Lewis ����
�� Assuming a negative binomial distri�

bution of the samples� this approach needs only two parameters to describe

the marginal distribution and one correlation parameter for the generation of

the transition probability matrix� We do not consider this approach since an

improvement in approximating correlations at larger lags cannot be achieved

as natural as for the maximum likelihood estimates method� Hwang and Li

����
� report about a tool which generates the transition matrix based on

the histogram and power spectrum of the empirical data set� As an example�

they provide results for a video trace which indicate that their approach leads

to reasonable results� We do not consider their complex approach since the

approach presented in the following already lead to a good model quality�

Before we estimate the entries of the transitions matrix P we have to

convert our frame or GOP size time series fytg into discrete states as follows�

Given a number M of states of the Markov chain� the discretized samples

are determined by

xt � � if yt � mint yt

xt �

�
yt �min

t
yt

max
t

yt �min
t
yt
�M

�
otherwise

�B���

Let �p�xt� i� xt��� j� denote the indicator function of xt � i and xt�� � j with

t � �� � � � �N � � and i� j � f�� � � � �Mg and let �s�xt� i� denote the indicator

function of xt � i with t � �� � � � �N and i � f�� � � � �Mg� The MLE of pij is

��
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given by

bpij �

N��X
t	�

�p�xt� i� xt��� j�

MX
k	�

N��X
t	�

�p�xt� i� xt��� k�

�B���

and the sizes si by

si �

NX
t	�

�s�xt� i� � yt

NX
t	�

�s�xt� i�

� �B���

B��� Autoregressive processes

B����� De�nition and characteristics

A stochastic process fXtg is called autoregressive process of order p� in short

AR�p� process� if it is de�ned by the recurrence relation

Xt � ��Xt�� 	 � � � 	 �pXt�p 	 �t� t � Z� �i � R� �B����

where f�tg is a white noise process�

If we de�ne the characteristic function of the AR�p� process as

��x� � ��

pX
i	�

�ix
i �B����

we obtain a more concise form of Eqn� �B�����

��B�Xt � �t� �B����

where B denotes the backshift operator� i�e�� BXt � Xt���

���
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The spectrum of the AR�p� process is given by

f��� �


�

��exp i��
�B��
�

with � �  �
�
!�

B����� Parameter estimation

Given an order p� we use the Yule�Walker estimates b��� � � � � b�p as parameters

for the model AR�p� process of a given time series fxtg � They are obtained

by solving the following system of linear equations�������
b�� b�� � � � b�p�
 b�p��b�� b�� � � � b�p�� b�p�


���
���

���
���b�p�� b�p�
 � � � b�� b��

�    �
������
b��b�

���b�p

�    � �

������
b��b�

���b�p

�    � �B����

For Gaussian sequences this estimator is asymptotically normal and e�cient�

We estimate the process order bp by minimizing Akaike�s Information

Criterion �AIC� which is de�ned by

AIC�p� � log &

p 	
� � p

N
�B��
�

where &

p is the variance of the residuals fb�kg given by

b�t � xt � �b��xt�� 	 � � � 	 b�pxt�p� �B����

B��� Selfsimilar processes

B����� De�nitions and characteristics

For the analysis and simulation of systems where selfsimilar processes are

involved� there is a need of processes which exhibit this particular property�

��
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In this section� we give the de�nitions of two processes of this type� namely

the fractional Gaussian noise �FGN��see Mandelbrot and Ness ������� and

the fractional autoregressive integrated moving�average processes �FARIMA�

�see Hosking ��������

These processes were introduced to facilitate parsimonious modeling of

long�range dependent time series� Traditional models� for instance autoregres�

sive �AR� and autoregressive integrated moving�average �ARIMA� processes�

are only capable to model the short�range portion of the correlations of em�

pirical data sets� and even for a large number of coe�cients the long�range

portion will remain unmodeled�

The FGN process with parameter H � ��� �� is a stationary Gaussian

process with mean 	� variance 

� and autocorrelation function �k� k � �

as in Eqn� �A����� It is exactly selfsimilar if ��
 � H � �� Its spectrum is

de�ned by

f��� �






sin�
H� '��H 	 �� ��� cos��

�X
j	��

j� 	 �
jj�
H���

�B����

FGN�H� can also be de�ned as the process which has the same correlation

function as the process of unit increments %BH�t� � BH�t� � BH�t� �� of

fractional Brownian motion with exponent H�

Instead of using the increment process of fractional Brownian motion�

we can also start from Brownian motion and its discrete time analogue�

the random walk� This will lead to the class of FARIMA processes� since

the random walk can also be de�ned as an FARIMA������� process� For a

FARIMA�p� d� q� process the orders p and q are the classical ARMA param�

eters and d � H � ��
 is the fractional di�erence parameter�

With ���B�Xt � �t being the representation of the FARIMA������� pro�

cess� where B denotes the back�shift operator and f�tg a white noise process

with variance 

� � we generalize this de�nition for the FARIMA��� d� �� pro�

cesses as follows�

���B�dXt � at for � ��
 � d � ��
� �B����

���
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The fractional di�erence operator ���B�d is de�ned by the binomial series

���B�d �
P�

k	�

!
d
k

"
��B�k� The spectrum is

f��� �


�
�


�� sin
�

�
��
d �



�
�

j�� ei�j�
d for � � � � 
� �B����

Thus� f��� � ��
d � ���
H as �
 ��

If a good approximation of both the short�range and the long�range corre�

lations is mandatory the FARIMA�p� d� q� processes with non�zero p and�or

q should be used� A FGN process is not applicable in such cases since its

low�lag correlation behavior cannot be �tted to that one of empirical data

sets� In our studies� we focus on FARIMA�p� d� �� processes which have a

spectrum given by

f��� �


�
�


�
�� sin �



��
d

��exp i��
for � � � � 
 �B����

where ���� is de�ned as in Section B�
���

B����� Parameter estimation

The properties of selfsimilar processes �see section Section A����� lead to the

following methods to estimate H �see Willinger et al� ����
� and references

therein��

��� time�domain analysis� R�S statistics�

��� analysis of the variances of the aggregated processes X
m�� variance�

time plots� and

�
� periodogram�based analysis in the frequency�domain� Whittle�s maxi�

mum likelihood estimator�

In the following� we focus on the alternatives ��� and �
��

���
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R�S analysis

The feature that makes R�S analysis particularly attractive is its robustness

against changes in the marginal distribution� even for long�tailed or skew

distributions� On the other hand� for marginal distributions which are close

to normality a dramatic loss in e�ciency is reported� and� to our best knowl�

edge� no detailed analysis of robustness of R�S statistics was carried out yet�

Given an empirical time series fxt � t � �� � � � � Ng � the whole series is subdi�

vided into K non�overlapping blocks� Now� we compute the rescaled adjusted

range R�ti� d��S�ti� d� for a number of ranges r� where ti � bN�Kc�i��� 	�

are the starting points of the blocks which satisfy �ti � �� 	 r � N �

R�ti� r� � maxf��W �ti� ��� � � � �W �ti� r�g �

�minf��W �ti� ��� � � � �W �ti� r�g� �B����

where

W �ti� k� �

kX
j	�

xti�j�� � k �

�
�

r

rX
j	�

xti�j��

�
� k � �� � � � � r� �B����

Let S
�ti� r� denote the sample variance of xti � � � � � xti�r��� For each

value r we obtain a number of R�S samples� For small values r there are

K samples� The number decreases for larger ranges r due to the limiting

condition on the ti values mentioned above� These samples are computed for

logarithmically spaced values r� i�e� rl�� � m � rl with m � �� starting with

a value r� of about ��� Plotting log  R�ti� r��S�ti� d�! versus log r results in

the R�S plot�

Next� a least squares line is �tted to the points of the R�S plot� where the

R�S samples of the extremal ranges are not considered� The R�S samples of

the smallest ranges are dominated by short�range correlations and samples of

large ranges are statistically insigni�cant if the number of samples per range

is less than say 
� The slope of the regression line for these R�S samples

is an estimate for the Hurst parameter H� Both the number of blocks K

���
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and the number of values r should not be chosen too small� In addition�

some care has to be taken when deciding about the end of the transient� i�e�

which of the small values of r should not be taken into consideration for the

regression line� In practice� it has to be checked whether di�erent parameter

settings lead to consistent H estimates for fx

m�
t g with di�erent aggregation

levels m�

Figure B�� shows the R�S plot of the dino GOP sequence with K � � and


� columns of R�S samples� The regression line has a slope of ��� indicating

a Hurst parameter estimate of bH � ����

��

���

����

�� ��� ����

R
�
S

r

R�S samples
regression line

Figure B���� R�S plot of the dino GOP sequence

Periodogram�based analysis

If more information is needed on the H�estimate� such as con�dence inter�

vals� or information on the estimator itself� such as e�ciency and robust�

ness� periodogram�based estimators are used� In addition� these estimators

facilitate the estimation of short�range correlation parameters� The main

���
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idea of this method is to assume a certain selfsimilar process type� say a

FARIMA�p� d� q� process� and to �t the parameters of this process to the

given empirical sample� The �tting should be optimal in the sense that the

periodogram of the sample and the spectral density of the process are mini�

mizing a given goodness�of��t function�

As mentioned above� the spectral density of selfsimilar processes obeys

a power law near the origin� Thus� the �rst idea to determine the Hurst

parameter H is simply to plot the periodogram in a log�log grid� and to

compute the slope of a regression line which is �tted to a number of low

frequencies� This should be an estimate of �� �H� In most of the cases this

will lead to a wrong estimate of H since the periodogram is not appropriate

to estimate the spectral density �see Schlittgen and Streitberg ����
��� More

sophisticated methods have to be applied to obtain useful estimates of H�

Several periodogram�based estimators can be found in the literature� In

this paper we will focus on an MLE as presented in Beran ������ and Will�

inger et al� ����
� which is based on Whittle�s approximate MLE for Gaussian

processes ���

�� For Gaussian sequences this estimator is asymptotically

normal and e�cient �see Fox and Taqqu ������� Dahlhaus ��������

The spectral density of the selfsimilar process is denoted by f��� ��� where

the parameter vector of the process � � ���� � � � � �M � is structured as follows�

�� � 

� is a scale parameter� where 

� is the variance of the innovation � of

the in�nite AR�representation of the process� i�e�� Xt �
P�

i	� �iXt�i 	 �t�

This implies
R �
��

log ff  �� ��� �
� � � � � �M �!g d� � �� �
 denotes the Hurst pa�

rameter H� If necessary� the parameters �� to �M describe the short�range

behavior of the process� For FGN and FARIMA��� d� ��� only 

� and H have

to be considered� With � � ��
� � � � � �M �� the Whittle estimator b� of � mini�

mizes the quality�of��t function

Q��� �

Z �

��

I���

f��� ��� ���
d� �B��
�

where I��� denotes the periodogram of the given time series of length N

�
�
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de�ned by Eqn� �A����� bH is given by b�
 and the estimate of 

� by

b

� �

Z �

��

I���

f��� ��� b���
d�� �B����

The approximate �
$�con�dence interval of the b�i is given by

b�i � ����

r
Vii
N

�B��
�

where V � �D�� and the matrix D is de�ned by

Dij �
�

�


Z �

��

�

��i
log f���

�

��j
log f���d� i� j � f�� � � � �Mg�

�B����

For implementation details� we suggest to consider Chapter ���� of Beran

������� where an S	 listing of the Whittle estimator is provided� Given some

knowledge in numerical analysis� no special library functions are necessary to

implement the above formulae� However� FFT� vector� and matrix functions

would make the programming more convenient�

In practice� there are two problems which may have an e�ect on the

robustness of the estimator�

� Deviations from the model spectrum assumed� Deviations at higher fre�

quencies lead to a bias in the estimate of H� One possible solution is to

estimate H only from periodogram ordinates at low frequencies� For

large data sets� one can also aggregate the data over non�overlapping

blocks of length m and compute several bH
m� for the X
m�� We� how�

ever� prefer using a model process which is also able to model short

range correlations such as FARIMA�p� d� q� processes� Then� we are

able to use the full length time series what leads to a higher estima�

tion accuracy� On the other hand� we have the problem to determine

the appropriate process orders p and q�

�
�
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� Deviations from Gaussianity� Gaussianity can often be achieved by

transforming the data� but then it has to be proven that the esti�

mates of H for the original and the transformed data sets are identical

�see Huang et al� ����
��� For instance� this is the case for the log�

transformation fykg � log fxkg � We apply the log�transformation to

our approximately lognormally distributed video data sets to obtain a

Gaussian marginal distribution�

As mentioned above� we have to determine the model orders p and q

if we assume a FARIMA�p� d� q� model for our data set� Since we focus

on FARIMA�p� d� �� processes we have to �nd an appropriate value of p

for our model� In contrast to order estimators for AR �see Eqn� �B��
��

or ARMA models� only little is known about such estimators for FARIMA

models� Hosking ������ reports about an extension of Akaike�s Information

Criterion �AIC� for FARIMA�p� d� q� models� Beran ����
� and Beran and

Bhansali ������ report about model selection and parameter estimation of

FARIMA�p� d� q� processes� Nevertheless� we developed our own graphical

method to determine the value p for the following reasons� Our primary in�

terest is not the statistical analysis as such� but the computation of model

parameters� We intend to determine the smallest number of model parame�

ters possible that leads to good predictions of the behavior of the modeled

system� This has not necessarily to be the same number which is provided

by a statistical order estimator designed for objectives such as normality or

consistence�

Our data sets are processed as follows� We �rst log�transform our data

set to obtain approximately Gaussian marginals� Then� we compute the

FARIMA parameters for a number of p values starting with p � �� For

each of these values we plot the corresponding FARIMA spectrum and the

periodogram of the data set in a log�log grid�

Figure B�� shows the spectrum of the �tted FARIMA������� �� process

and the periodogram of the dino GOP size trace� This type of plot shows

whether the slope of the spectrum is correct for the low frequency part� i�e��

�
�



B��� Selfsimilar processes

����

����

����

����

���


����

���

���

��


� �� ��� ����

I
�


� N

�
t�
�f
�


� N

�
t�

t

dino
FARIMA

AR

Figure B���� Periodogram and �tted spectrum of dino GOP sizes
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the long�range correlations� However� it is hard to decide whether the model is

also appropriate for the high frequency part� i�e�� the short�range correlations�

We therefore transform both the spectrum and the periodogram using an

inverse Fourier transform �see Section A��� to obtain the autocorrelation

functions�

Figure B�
 shows the sample ACF of the dino GOP sizes and the ACF

of the FARIMA process mentioned above� The FARIMA������� �� process

provides a good approximation of both short and long�range correlations of

the dino GOP size trace up to a lag of ���� Note� that due to our graphical

approach to determine the order p� no error bounds on this estimate can be

given�

�
�
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